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Soft and collinear radiation in collider processes can be described in a universal way, that is independent
of the underlying process. Recent years have seen a number of approaches for probing whether radiation
beyond the leading soft approximation can also be systematically classified. In this paper, we study a
formula that captures the leading next-to-soft QCD radiation affecting processes with both final- and initial-
state partons, by shifting the momenta in the nonradiative squared amplitude. We first examine Wþ jet
production, and show that a previously derived formula of this type indeed holds in the case in which
massive color singlet particles are present in the final state. Next, we develop a physical understanding of
the momentum shifts, showing precisely how they disrupt the well-known angular ordering property of
leading soft radiation.
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I. INTRODUCTION

The calculation of scattering amplitudes in perturbative
quantum field theory continues to be an area of intense
activity, due to its many applications to current and future
collider experiments. While it is often possible to obtain
complete amplitudes at a given order in the coupling
constant, we sometimes wish to consider approximate
results, particularly where these can be resummed to all
orders in perturbation theory. A particularly well-studied
case is the emission of soft and/or collinear radiation
dressing an underlying scattering amplitude. This generates
infrared singularities, which will cancel for suitably inclu-
sive observables, such as total hadronic cross sections.

However, large contributions remain in perturbation theory,
typically involving large logarithms of dimensionless
energy ratios. A variety of methods have been developed
for resumming such contributions (see e.g., Refs. [1–13]),
all of which rely on the tight relationship between kine-
matically enhanced terms and infrared singularities, plus
the fact that soft and collinear factorization can be
described in terms of universal functions acting on arbitrary
amplitudes. The latter property has a simple quantum
mechanical interpretation: soft radiation has zero momen-
tum, and thus an infinite Compton wavelength by the
uncertainty principle. Thus, it cannot resolve the details of
the underlying scattering amplitude that produced the hard
outgoing particles. A similar story applies to collinear
radiation, which instead has a zero transverse momentum
relative to a given outgoing particle.
Heuristic arguments such as these are also useful for

understanding the wider implications of soft radiation.
Crucial for this paper will be a particular property of soft
radiation that is emitted from pairs of (color) charges, or
dipoles, in QED or QCD. Including all possible quantum
interference contributions in the squared amplitude, one
finds in QED that radiation is confined to a cone around
each charged particle, whose half-angle coincides with the
angle between the two charged particle momenta. This is
known as the Chudakov effect, and textbook treatments
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may be found in Refs. [14,15]. A corresponding effect
holds in QCD, where for two color charges there is no
radiation (at leading soft level) outside the cones surround-
ing each particle. For more complicated configurations of
partons, clusters of particles radiate according to their
combined color charge at sufficiently large angles. All of
these phenomena have a common quantum mechanical
origin similar to that already mentioned above: at large
angles, the wavelength of the emitted radiation is such that
it can only notice the combined color charge of a given
subset of partons. If this combined charge happens to be
zero (or color singlet in the QCD case), then there is no
radiation at large angles.
So much for soft radiation, whose properties are already

well known. Until recently, much less has been known
about how to systematically classify the properties of
radiation at subleading order in a systematic expansion
in the total radiated momentum. The frontier of such
attempts is at next-to-leading power (NLP), and the last
few years have seen an increasing number of techniques
aimed at clarifying whether any universal statements can be
made about such radiation, including its possible resum-
mation. The range of methods [16–77]—some of them
inspired by the much earlier work of Refs. [78–80]—
mirrors that used for soft radiation, and this body of
work is ultimately motivated by the fact that the numeri-
cal impact of such contributions may be needed to increase
the theoretical precision of collider physics observables
[44,81–91]. As well as studies aiming to develop new
resummation formulas, there is also scope for case studies
that look at well-defined consequences of next-to-soft
radiation, in order to build up our collective intuition of
how it behaves. The aim of this paper is to carry out such a
case study.
Our starting point is to consider a formula—first derived

in Ref. [31] and extended in Ref. [32]—that states that
leading next-to-soft radiative contributions can be
expressed in a particularly compact and elegant form.
That is, the squared amplitude including such radiation
can be written in terms of nonradiative amplitudes, but
where distinct pairs of partonic momenta are shifted in a
prescribed way. The shifted squared amplitudes are
then dressed by overall factors which are identical to those
that occur in the leading soft limit. Potential uses of such
formulas include increasing the precision of numerical
NLO calculations, and similar comments, independently
and using different methods, have been made in
Refs. [36,37,57]. However, the obvious similarity of these
momentum-shift formula to their leading-soft counterparts
means they are an excellent starting point for examining the
physics of next-to-soft radiation in a particularly trans-
parent way.
In this paper, we will first review the momentum-shift

formulas of Refs. [31,32], and introduce them by consid-
ering a process that has not previously been considered

before in this approach. That is, we will consider radiative
corrections toW production in associationwith an additional
hard jet.1 This is more general than either of the processes
considered previously in this approach. Reference [31]
looked only at color-singlet final states, whereas Ref. [32]
considered only final states with massless particles. As we
will yet again see, leading next-to-soft radiative corrections
take the form of a series of dipolelike terms.2

Next, we consider the effect of the momentum-shift
formulas on the emission of soft radiation from a single
final-state dipole. We will briefly review the well-known
calculation of how soft gluon emission is confined to cones
surrounding each hard particle, before correcting this to
include the effects of the momentum-shifts, and hence
leading next-to-soft effects. We will show explicitly that the
next-to-soft corrections break the angular ordering prop-
erty, in that they lead to emission outside of the usual
angular region. That this property is not preserved beyond
leading soft level will perhaps not surprise anyone.
However, the mechanism by which this happens, including
the details of the calculation, are interesting. Furthermore,
given that the origin of the momentum shifts is well-
understood as arising from orbital angular momentum
effects [31,32], we will be able to precisely interpret the
physics of how angular ordering breaks down. We believe
that this story offers novel insights into the physics of next-
to-soft radiation that, as well as being compelling in
themselves, may be of broader use.
The structure of our paper is as follows. In Sec. II, we

examine W þ jet production at NLO, showing that the
inclusion of radiative corrections up to next-to-soft level
reproduces the same momentum-shift formula as was
found for prompt production in Ref. [32]. After drawing
attention to the dipolelike nature of this formula, in Sec. III
we show that next-to-soft corrections lead to radiation
outside the cone regions associated with leading soft
radiation, and interpret the physics of this effect in detail.
In Sec. IV, we discuss our results and conclude.

II. A MOMENTUM-SHIFT FORMULA
FOR W PLUS JET PRODUCTION

A. W plus jet production up to NLO

We start by considering the LO process

qðp1Þ þ q̄ðp2Þ → Wðp3Þ þ gðp4Þ; ð1Þ

whose Feynman diagrams are shown in Fig. 1. This is itself
a correction to the Drell-Yan production of a W boson, but
we will consider that the final-state gluon is constrained to
be hard (e.g., through a nonzero transverse momentum

1For previous work on this process in the context of next-to-
soft physics, see Refs. [37,92].

2Very recently, Ref. [93] has provided alternative formulas for
capturing next-to-soft radiation, which also work at loop level.
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requirement), such that no infrared singularities are present.
Our aim is to show how next-to-soft corrections to this
process can be written according to a certain formula, and
we will be able to illustrate our point without having to
consider the alternative partonic channel qg → W þ g,
which in any case can be obtained from crossing.
Denoting the W boson mass by m, the various momenta
satisfy

p2
1 ¼ p2

2 ¼ p2
4 ¼ 0; p2

3 ¼ m2; ð2Þ

and we also define the Mandelstam invariants

s ¼ ðp1 þ p2Þ2; t ¼ ðp1 − p3Þ2; u ¼ ðp2 − p3Þ2:
ð3Þ

It is also conventional to define the alternative invariants

t1 ¼ t −m2; u1 ¼ u −m2; ð4Þ

which obey

sþ t1 þ u1 þm2 ¼ 0 ð5Þ

as a consequence of momentum conservation. With this
notation, the squared LO amplitude, summed (averaged)
over final (initial) colors and spins, is given by

jMð0Þj2 ¼ g2sg2w
CF

Nc

ð2m4 − 2m2ðtþ uÞ þ t2 þ u2Þ
2tu

; ð6Þ

where gs and gw are the strong and electroweak
coupling constants respectively, CF the quadratic
Casimir in the fundamental representation, and Nc the
number of colors.
Let us now consider the radiation of an additional

gluon, for which there are two types of diagram. First,
there is radiation of a quark or antiquark, as shown in Fig. 2.
These diagrams would also be present in the case of Wγ
production, which was first calculated at NLO in Ref. [94].
Next, there are diagrams in which the gluon is radiated
off the final state hard gluon, as in Fig. 3. Although the
full set of NLO diagrams forW þ jet production (including
all partonic channels) has been calculated before [95],
full analytic expressions are rarely reported due to their
cumbersome nature. Thus, we have recalculated these
diagrams independently in FORM [96] and FeynCalc [97],
finding agreement. Here, we will report analytic results for
the squared and summed / averaged matrix element
expanded to first subleading order in the emitted gluon
momentum. To do so, we can introduce the Mandelstam
invariants

p1 p3

p4p2

p1 p3

p4p2

(a) (b)

FIG. 1. Leading order diagrams forW plus jet production in the
qq̄ channel.
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FIG. 2. NLO diagrams to W plus jet production, in which a gluon is radiated off an (anti)quark.
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s ¼ ðp1 þ p2Þ2; q1 ¼ ðp1 − p3Þ2; q2 ¼ ðp2 − p4Þ2;
s2 ¼ ðp3 þ p4Þ2; q̂1 ¼ ðp1 − p4Þ2; q̂2 ¼ ðp2 − p3Þ2;

ð7Þ

and

tk ¼ ðp1 − kÞ2; uk ¼ ðp2 − kÞ2;
w1 ¼ ðp3 þ kÞ2; w2 ¼ ðp4 þ kÞ2; ð8Þ

where we have adopted notation for ease of comparison
with Ref. [31] (see also Ref. [98]). The various Mandelstam
invariants in Eqs. (7) and (8) can be expressed in terms of
five independent invariants, using the relations

q̂1 ¼ m2 − s − tk − q1;

s2 ¼ sþ tk þ uk;

q̂2 ¼ m2 − s − uk − q2;

w1 ¼ m2 − q1 − q2 − tk;

w2 ¼ q1 − q2 − uk: ð9Þ

Next, we can perform the next-to-soft expansion by
introducing a book-keeping parameter λ via

tk → λtk; uk → λuk; ð10Þ

before performing a Laurent expansion in λ to first
subleading order. Finally, one sets λ ¼ 1. Compact results
are then obtained upon using a particular Lorentz frame for
the final-state momenta. Following the case of Wγ pro-
duction in Ref. [94], we can choose the center of mass
frame of theW boson and hard gluon, for which an explicit
parametrization is

p1¼ðE1;0;…;0;E1Þ;
p2¼ðE2;0;…;0;ωsinψ ;ωcosψ −E1Þ;
k¼ðω;0;…;0;ωsinψ ;ωcosψÞ;

p3¼ðωW;…;−ω0 sinθ1 sinθ2;−ω0 sinθ1cosθ2;−ω0cosθ1Þ;
p4¼ðω0;…;ω0 sinθ1 sinθ2;ω0 sinθ1cosθ2;ω0cosθ1Þ; ð11Þ

with

E1 ¼
sþ tk
2

ffiffiffiffiffi
s2

p ; E2 ¼
sþ uk
2

ffiffiffiffiffi
s2

p ; cosψ ¼ ðuks − s2tkÞ
ðtk þ ukÞðsþ tkÞ

;

ω ¼ −
ðtk þ ukÞ
2

ffiffiffiffiffi
s2

p ; ω0 ¼ ðs2 −m2Þ
2

ffiffiffiffiffi
s2

p ; ωW ¼ ðs2 þm2Þ
2

ffiffiffi
s

p
2

: ð12Þ

Then the (next-to)leading power contributions to the squared matrix element (summed/averaged over colors and spins) are

jMð1Þj2jLP ¼
1

Nc

g4sg2w
tkuk

�
−
4C2

Fsððρ2 − 1Þ2cos2θ1 þ ðρ2 þ 1Þ2Þ
ðρ2 − 1Þðcos2θ1 − 1Þ

−
4CACFs

ffiffiffiffiffiffiffiffi
tkuk

p
ðρ2 − 1Þ2ðcos2θ1 − 1Þ

ððρ2 − 1Þ2cos2θ1 þ ðρ2 þ 1Þ2Þ sin θ1 cos θ2
ð−2 sin θ1 cos θ2

ffiffiffiffiffiffiffiffi
tkuk

p þ cos θ1ðtk − ukÞ þ tk þ uk

�
;

jMð1Þj2jNLP ¼
1

Nc

g4sg2w
tkuk

�
−

16C2
F

ðρ2 − 1Þ3ðcos2θ1 − 1Þ2
× ½−ðρ − 1Þðρþ 1Þðρ4 þ 1Þ sin θ1 cos θ1 cos θ2

ffiffiffiffiffiffiffiffi
tkuk

p þ ðρ2 þ 1Þρ2cos2θ1ðtk þ ukÞ − ðρ2 þ 1Þρ2ðtk þ ukÞ�

þ 2CFCA

ðρ2 − 1Þ3ðcos2θ1 − 1Þ2ð−2 sin θ1 cos θ1
ffiffiffiffiffiffiffiffi
tkuk

p þ cos θ1ðtk − ukÞ þ tk þ ukÞ2Þ
× ½−ðρ2 þ 1Þðsin θ1 cos θ2ð

ffiffiffiffiffiffiffiffi
tkuk

p ð−4ρ2ðt2k þ 6tkuk þ u2kÞ þ ρ4ð−ðtk − ukÞ2Þ
þ ðtk − ukÞ2Þ þ 4tkuk sin θ1 cos θ2ðρ4tk þ 2ρ2ðtk þ ukÞ − tkÞÞ − 2ðρ4 − 4ρ2 − 1Þtkukðtk þ ukÞÞ
þ 2cos2ðθ1Þð4 sin θ1 cos θ2ðtkuk sin θ1 cos θ2ð2ρ6tk þ 2ρ4ðtk þ ukÞ þ ρ2ðtk þ ukÞ − tk þ ukÞ
− ρ2

ffiffiffiffiffiffiffiffi
tkuk

p ðρ4ðt2k þ u2kÞ þ t2k þ ρ2ðtk þ ukÞ2 þ 4tkuk þ u2kÞÞ þ tkukððρ6 þ ρ4 þ 7ρ2 − 1Þuk
− ðρ6 þ ρ4 − 9ρ2 − 1ÞtkÞÞ þ ðρ2 − 1Þcos4ðθ1Þð−ðρ2 − 1Þ2 sin θ1 cos θ2ððtk − ukÞ2

ffiffiffiffiffiffiffiffi
tkuk

p

− 4t2kuk sin θ1 cos θ2Þ − 2tkukðρ4ðtk þ ukÞ þ 2ρ2ðuk − 3tkÞ þ tk þ ukÞÞ
− ðρ2 − 1Þ3cos5ðθ1Þðsin θ1 cos θ2ðtk − ukÞ

ffiffiffiffiffiffiffiffi
tkuk

p ðtk þ ukÞ − 4tku2kÞ
þ 4ρ2cos3ðθ1Þð2tkukðρ2ðtk þ ukÞ þ tk − 3ukÞ − ðρ2 þ 1Þ2 sin θ1 cos θ2ðtk − ukÞ

ffiffiffiffiffiffiffiffi
tkuk

p ðtk þ ukÞÞ
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þ cos θ1ðsin θ1 cos θ2ð8ðρ4 þ 1Þtkuk sin θ1 cos θ2ðð2ρ2 − 1Þtk − 2ðρ2 − 1Þ sin θ1 cos θ2
ffiffiffiffiffiffiffiffi
tkuk

p
− ukÞ

− ðρ2 − 1Þ2ð3ρ2 þ 1Þðtk − ukÞ
ffiffiffiffiffiffiffiffi
tkuk

p ðtk þ ukÞÞ − 4ðρ2 þ 1Þtkukð2ρ2tk þ ðρ4 − 2ρ2 − 1ÞukÞÞ

þ 2ðρ2 − 1Þ3tkukcos6ðθ1Þðtk − ukÞÞÞ�
�
; ð13Þ

where we have introduced the dimensionless parameter

ρ2 ¼ m2

s
: ð14Þ

A cross-check of this result can be obtained by considering
only the C2

F terms, which arise from the diagrams of Fig. 2.
These diagrams would also arise in Abelian gauge theory,
where C2

F would be replaced by the appropriate squared
electromagnetic charge of the incoming (anti)quarks. Then,
one may verify that taking ρ → 0 (i.e., the limit of zero W
mass) reproduces the case of γγ production examined
in Ref. [31].3

B. A momentum shift formula
for Wg production

Having obtained the gluonic (next-to)-soft contributions
to the NLO Wg matrix element, let us now see how these
can be obtained from a momentum-shift formula analogous
to those presented in Refs. [31,32]. Schematically, we can

write the contribution of a next-to-soft gluon emission from
a given Born amplitude as

Mað1Þ
NLP ¼

X
i

gsTa
i ϵ

†
μðkÞ

�
pμ
i

ηipi · kþ iε
−

ikνJðiÞνμ
ηipi · kþ iε

�

⊗ Mð0ÞðfpigÞ: ð15Þ
Here the sum is over all external parton legs in the Born
amplitude, Ta

i is a color generator on line i, where we have
adopted the Catani-Seymour notation of Refs. [99,100],
and η ¼ ∓1 for an incoming or outgoing particle respec-
tively. There is a polarization vector ϵ†ðkÞ for the outgoing
(next-to-soft) gluon, and we also introduced the total
angular momentum generator for each parton leg, which
can be further decomposed into its respective spin and
orbital contributions as

JðiÞνμ ¼ ΣðiÞ
νμ þ LðiÞ

νμ : ð16Þ
Here

Σνμ ⊗ Mð0Þ ¼ i
4
½γν; γμ� ⊗ Mð0Þ for Figs. 2ðaÞ − 2ðfÞ;

¼ iðgμρgνα − gμαgρνÞ ⊗ Mð0Þ
ρ ϵα for Figs. 3ðgÞ and 3ðhÞ;

LðiÞ
νμ ⊗ Mð0Þ ¼ i

�
piν

∂

∂piμ
− piμ

∂

∂piν

�
⊗ Mð0Þ for Figs. 2ðaÞ − 3ðhÞ.

We have used the symbol ⊗ in Eq. (15) to mean that the
various terms must be sandwiched (where necessary)
between the external wave function of line i, and the
nonradiative amplitude Mð0ÞðfpigÞ. Examples can be
found throughout Refs. [31,32], and we will see how this
works in detail below. Equation (15) follows from the
classic works of Refs. [78–80].4 In more modern literature
on scattering amplitudes, it is known as the next-to-soft

theorem [101,102] (see e.g., Refs. [103,104] for details of
how things are related), and has led to the discovery of
interesting mathematical ideas relating bulk spacetime
physics to a conformal field theory living on the celestial
sphere at null infinity [105,106]. Here, we will be much
more applied, and show how Eq. (15) leads to a simple
formula for next-to-soft gluon emission, whose physical
interpretation can be elucidated further.
Let us now consider the explicit case of Wg production.

In applying Eq. (15), we must start with the nonradiative
amplitude whose Feynman diagrams are given in Fig. 1. It
will be convenient to write the (gauge-dependent) sub-
amplitudeMX corresponding to a given Feynman diagram
X, where the latter spans the labels in Figs. 1–3. In book-
keeping all possible next-to-soft contributions, we will then
follow Refs. [31,32] in separating the three different kinds
of effect appearing in Eqs. (15) and (16).

3It is not immediately obvious that the limit of a massless W
boson should reproduce the photon process. However, this is
ultimately related to the fact that parity-violating terms in the
squared amplitude for W þ jet production turn out to be absent.
Furthermore, the longitudinal polarization state does not con-
tribute due to QED Ward identities.

4For off-shell gluons, there is an additional term in Eq. (15)
that is ∝ kμ. It vanishes for on-shell gluons, however, after
contraction with the polarization vector.
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1. Scalar terms

The first term in the square brackets in Eq. (15) acts
multiplicatively on the whole nonradiative amplitude, with
no additional spin structure. The physics of this is that this
term corresponds to leading soft level, and hence cannot be
sensitive to the spin (or orbital angular momentum) of a
given hard particle. Acting on the nonradiative amplitude,
one finds that the scalar terms sum to

Mscal ¼ gsϵ
†
μðkÞ

�
pμ
1

−p1 · k
Ta
1 þ

pμ
2

−p2 · k
Ta
2 þ

pμ
4

p4 · k
Ta
4

�
× ðMa þMbÞ: ð17Þ

Upon squaring the amplitude, we may evaluate all color
factors using the relations

C½Ta
1Ma� ¼ C½Ta

1Mb� ¼ CðaÞ ¼ CðdÞ;

C½Ta
2Ma� ¼ C½Ta

2Mb� ¼ CðcÞ ¼ CðfÞ;

C½Ta
4Ma� ¼ C½Ta

4Mb� ¼ CðgÞ ¼ CðhÞ; ð18Þ

where C½…� denotes taking the color factor of a given
diagram, and we have recognized the color factors fCðXÞg
of specific diagrams appearing in Figs. 2 and 3. Then,
evaluating all color traces in the squared amplitude before
summing/averaging over final/initial colors yields

jMscalj2 ¼
�
CF

�
CF −

CA

2

�
2p1 · p2

p1 · kp2 · k

þ C2
ACF

2

�
2p1 · p4

p1 · kp4 · k
þ 2p2 · p4

p1 · kp4 · k

��
jMð0Þj2:

ð19Þ
Here, we recognize the usual form of leading soft correc-
tions to a squared amplitude, where the individual terms
that appear correspond to separate pairs of color charges
that are linked by soft gluon emission. For each pair or
dipole, there is an appropriate color factor, plus a kinematic
prefactor that results upon combining the eikonal Feynman
rules for the gluon. As is well known [14,15], this
kinematic factor leads to a pronounced radiation pattern,
including the angular ordering property described in the
introduction, and that we will see in more detail in Sec. III.
For now, we simply note that the remaining (next-to)soft

gluon corrections will lead to corrections to this simple
radiation pattern, and our next task is to write them in a
manageable way.

2. Spin terms

Given that a coupling of the emitted gluon to the spin
angular momentum of a given hard particle is already next-
to-soft level, for the spin contributions to the total squared
matrix element, we need only worry about the interference
contribution

2Re½MscalM
†
spin�

up to next-to-leading power (NLP), where Mspin collects
all the spin effects at amplitude level. To find the latter, we
need the explicit forms of the Lorentz generators associated
with different parton legs. These are

Σαβ
ab ¼

i
4
½γα; γβ�ab ð20Þ

and

Σαβ
μν ¼ iðδαμδβν − δανδ

β
μÞ ð21Þ

for a spin-1=2 and spin-1 particle respectively, where lower
indices in these equations are spin-indices that must be
contracted along the line (n.b. lower-case Latin letters
denote spinor indices). From Eq. (15), one then finds that
the spin contribution to the NLO amplitude up to NLP level
is given by

Mspin ¼ gsv̄ðp2Þ
�

Ta
1

4p1 · k
Mð0Þργ½γμ; k�− Ta

2

4p1 · k
½k;γμ�Mð0Þργ

þ Ta
4

p4 · k
Mð0Þτγ½δμτ δνρ− δμρδντ �kν

�

×uðp1Þϵ†μðkÞϵ†ρðp4Þϵ†γðp3Þ; ð22Þ

where Mð0Þ
σ represents the nonradiative amplitude, stripped

of external wave functions. This must then be combined
with the scalar amplitude of Eq. (19) and summed over
polarizations and colors to find the interference contribu-
tion. Color factors may again be evaluated using Eq. (18),
and one may also simplify the result by repeated use of
anticommutation relations for Dirac matrices. One finally
obtains an interference contribution

2Re½MspinM
†
scal� ¼ −2NcC2

F
ðp1 þ p2Þ · k
p1 · kp2 · k

jMð0Þj2: ð23Þ

3. Orbital angular momentum terms

For the orbital angular momentum contributions, we
need the explicit form of the angular momentum operator
associated with leg i in momentum space:

(g)

p1 p3

p2

(h)

p1

p2 p
3

p4

k

p4

k

FIG. 3. NLO diagrams to W plus jet production, in which a
gluon is radiated off the hard gluon.
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Lαβ ¼ xαi p
β
i − xβi p

α
i ¼ i

�
pα
i

∂

∂p1β
− pβ

i
∂

∂p1α

�
: ð24Þ

Then, similarly to the spin case, the orbital angular momentum contribution can be written as

Morb ¼ igsv̄ðp2Þ
�

Ta
1

p1 · k

�
k · p1

∂

∂p1;μ
− pμ

1k ·
∂

∂p1

�
Mð0Þργ þ Ta

2

p2 · k

�
p2 · k

∂

∂p2;μ
− pμ

2k ·
∂

∂p2

�
Mð0Þργ

þ Ta
4

p4 · k

�
p4 · k

∂

∂p4;μ
− pμ

4k ·
∂

∂p4

�
Mð0Þργ

�
uðp1Þϵ†μðkÞϵ†ρðp4Þϵ†γðp3Þ: ð25Þ

Once again, this must be combined with the scalar amplitude of Eq. (19) in order to find the relevant interference term.
Applying similar steps to those outlined in Ref. [32], we find

2Re½MorbM
†
scal� ¼

�
NcC2

F
2p1 · p2

p1 · kp2 · k

��
δp1;2 ·

∂

∂p1

þ δp2;1 ·
∂

∂p2

�
Trð=p2Mð0Þργ1=p1M

ð0Þ†
ργ2 Þ

− Trðδ=p2;1Mð0Þργ1=p1M
ð0Þ
ργ2Þ − Trð=p2Mð0Þργ1δ=p1;2M

ð0Þ
ργ2Þ�

þ CACF

2

�
−

2p1 · p2

p1 · kp2 · k

�
=p1;2 ·

∂

∂p1

þ =p2;1 ·
∂

∂p2

�
þ 2p1 · p4

p1 · kp4 · k

�
=p1;4 ·

∂

∂p1

− =p4;1 ·
∂

∂p4

�

þ 2p2 · p4

p2 · kp4 · k

�
=p2;4 ·

∂

∂p2

− =p4;2 ·
∂

∂p4

��
Tr½=p2Mð0Þργ1=p1M

ð0Þ†
ργ2 �

�
Pγ2

γ1 ; ð26Þ

where Pγ2
γ1 denotes the W boson polarization sum. We

have used the chain rule where necessary, and also
introduced the momentum shifts

δpα
i;j ¼ −

1

2

�
kα þ pj · k

pi · pj
pα
i −

pi · k
pi · pj

pα
j

�
: ð27Þ

Equation (26) looks cumbersome, but we have yet to
combine it with the spin contribution of Eq. (23). To do

so, we may first introduce a Sudakov decomposition for the
emitted gluon momentum:

kμ ¼ p1 · k
p1 · p2

pμ
2 þ

p2 · k
p1 · p2

pμ
1 þ kμT; ð28Þ

where

kT · p1 ¼ kT · p2 ¼ 0: ð29Þ
Equation (27) then implies

δ=p1;2 ¼ −
1

2

�
kT þ 2

p2 · k
p1 · p2

=p1

�
; δ=p2;1 ¼ −

1

2

�
kT þ 2

p1 · k
p1 · p2

=p2

�
; ð30Þ

where upon substituting this into the second line of Eq. (26), we may ignore the terms ∼OðkμTÞ: upon carrying out all Dirac
traces, kμT will only ever be contracted with hard momenta in the process, to first order in soft momentum, and all such
contractions vanish. We then find

NcC2
F

2p1 · p2

p1 · kp2 · k
½−Trðδ=p2;1Mð0Þργ1=p1M

ð0Þ
ργ2Þ − Trð=p2Mð0Þργ1δ=p1;2M

ð0Þ
ργ2Þ�Pγ2

γ1 ¼ 2
ðp1 þ p2Þ · k
p1 · kp2 · k

jMð0Þj2: ð31Þ

Thus, upon combining Eq. (26) with Eq. (23), the second line of Eq. (26) is canceled. Up to next-to-soft level, one may then
absorb the various momentum shift terms into a redefinition of the squared nonradiative amplitude, to give the final result

jMNLPj2 ¼ CF

�
CF −

CA

2

�
2p1 · p2

p1 · kp2 · k
jMð0Þj2ðp1 þ δp1;2; p2 þ δp2;1; p3; p4Þ

þ CACF

2

2p1 · p4

p1 · kp4 · k
jMð0Þj2ðp1 þ δp1;4; p2; p3; p4 − δp4;1Þ

þ CACF

2

2p2 · p4

p2 · kp4 · k
jMð0Þj2ðp1; p2 þ δp2;4; p3; p4 − δp4;2Þ: ð32Þ
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This is our final result for the NLP matrix element, and it agrees with a similar formula derived for prompt photon
production in Ref. [32], thus showing that this is more general than previously thought. Indeed, the above arguments would
appear to generalize to arbitrary n-point scattering processes, with either massive or massless particles. Given Eq. (6), we
may implement the momentum shifts as in Eqs. (27) and (32), and then expand to next-to-leading power using a similar
method to that outlined in the previous section. Explicit results for the three shift terms appearing in Eq. (32) are
respectively as follows:

jMNLPj2j1 ¼
4g4sg2w
tkuk

CF

Nc

�
CF −

CA

2

��
−
sðρ2 − 1Þ2cos2θ1 þ ðρ2 þ 1Þ2

ðρ2 − 1Þ2ðcos2θ1 − 1Þ

þ 4ðρ − 1Þðρþ 1Þðρ4 þ 1Þ sin θ1 cos θ1 cos θ2
ffiffiffiffiffiffiffiffi
tkuk

p
− ðρ2 þ 1Þρ2ð1 − cos2θ1Þðtk þ ukÞ

ðρ2 − 1Þ3ðcos2θ1 − 1Þ2
�
;

jMNLPj2j2 ¼
2g4sg2wCFCA

Nc

�
sððρ2 − 1Þ2cos2θ1 þ ðρ2 þ 1Þ2Þ

ðρ2 − 1Þ2tkðcos θ1 þ 1Þð−2 sin θ1 cos θ2
ffiffiffiffiffiffiffiffi
tkuk

p þ cos θ1ðtk − ukÞ þ tk þ ukÞ
þ ð4cos2θ1ðρ2ð2ρ4t2k þ t2k þ ρ2ðtk þ ukÞ2 þ u2kÞ − sin θ1 cos θ2

ffiffiffiffiffiffiffiffi
tkuk

p ð−2ρ6ðuk − 2tkÞ þ ρ4ðtk þ 3ukÞ
− tk þ 2ρ2uk þ ukÞÞ þ cos θ1ðð3ρ6 − ρ4 þ 5ρ2 þ 1Þt2k þ 4 sin θ1 cos θ2ð2ðρ − 1Þðρþ 1Þð2ρ4 þ 1Þtkuk
× sin θ1 cos θ2 þ

ffiffiffiffiffiffiffiffi
tkuk

p ð−2ρ6ð2tk þ ukÞ þ ρ4ð3tk þ ukÞ − 2ρ2ðtk þ ukÞ þ tk þ ukÞÞ þ ðρ − 1Þðρþ 1Þ
× ð7ρ4 þ 6ρ2 þ 3Þtkuk þ 4ρ2ðρ2 þ 1Þu2kÞ þ 4ρ2cos3θ1ððρ4 þ ρ2Þt2k − ðρ4 þ 2ρ2 − 3Þtkuk − ðρ2 þ 1Þu2kÞ
þ ðρ2 − 1Þ3cos4θ1ðsin θ1 cos θ2

ffiffiffiffiffiffiffiffi
tkuk

p ðuk − 3tkÞ þ tkðtk þ ukÞÞ − ðρ2 þ 1Þðsin θ1 cos θ2
× ð8ρ2tkuk sin θ1 cos θ2 −

ffiffiffiffiffiffiffiffi
tkuk

p ðρ4ð3tk − ukÞ þ 4ρ2ðtk þ 3ukÞ − 3tk þ ukÞÞ þ ðtk þ ukÞ
× ððρ4 − 1Þtk þ 4ρ2ukÞÞ þ ðρ2 − 1Þ3tkcos5θ1ðtk − 3ukÞÞ

×
1

ðρ2 − 1Þ3tkðcos θ1 − 1Þðcos θ1 þ 1Þ2ð−2 sin θ1 cos θ2
ffiffiffiffiffiffiffiffi
tkuk

p þ cos θ1ðtk − ukÞ þ tk þ ukÞ2
�
;

jMNLPj2j3 ¼
2g4sg2wCFCA

Nc

�
−

sððρ2 − 1Þ2cos2θ1 þ ðρ2 þ 1Þ2
ðρ2 − 1Þ2ukðcos θ1 − 1Þð−2 sin θ1 cos θ2

ffiffiffiffiffiffiffiffi
tkuk

p þ cos θ1ðtk − ukÞ þ tk þ ukÞ
þ ð−4cos3θ1ðρ4ðt2k − 2tkuk − u2kÞ þ ðρ2 − 1Þ3uk sin θ1 cos θ2ð

ffiffiffiffiffiffiffiffi
tkuk

p
− tk sin θ1 cos θ2Þ

þ ρ6ukðtk − ukÞ þ ρ2tkðtk þ ukÞÞ − 4cos2θ1ðρ2ðt2k þ ρ2ðtk þ ukÞ2 þ 2ρ4u2k þ u2kÞ
þ sin θ1 cos θ2ððρ2 − 1Þ3tkuk sin θ1 cos θ2 −

ffiffiffiffiffiffiffiffi
tkuk

p ðρ4tk þ ρ2ð4tk þ ukÞ − tk þ 3ρ6ukÞÞÞ
þ cos θ1ð4ðρ4 þ ρ2Þt2k þ 4 sin θ1 cos θ2ððρ6 þ ρ4 − 3ρ2 þ 1Þtkuk sin θ1 cos θ2
−

ffiffiffiffiffiffiffiffi
tkuk

p ðρ4tk þ tk þ 3ρ6uk − ρ2ukÞÞ þ ðρ2 − 1Þ2ð3ρ2 þ 1Þtkuk þ ð3ρ6 − ρ4 þ 5ρ2 þ 1Þu2kÞ
− ðρ2 − 1Þ3cos4θ1ðsin θ1 cos θ2ðtk − 3ukÞ

ffiffiffiffiffiffiffiffi
tkuk

p þ ukðtk þ ukÞÞ þ ðρ2 þ 1Þðsin θ1 cos θ2
× ð ffiffiffiffiffiffiffiffi

tkuk
p ðρ4ðtk þ ukÞ − 4ρ2ð3tk þ ukÞ − tk − ukÞ − 4ðρ4 − 2ρ2 − 1Þtkuk sin θ1 cos θ2Þ þ ðtk þ ukÞ

× ð4ρ2tk þ ðρ4 − 1ÞukÞÞ þ ðρ2 − 1Þ3ukcos5θ1ðtk þ ukÞÞ

×
1

ðρ2 − 1Þ3ukðcos θ1 − 1Þ2ðcos θ1 þ 1Þð−2 sin θ1 cos θ2
ffiffiffiffiffiffiffiffi
tkuk

p þ cos θ1ðtk − ukÞ þ tk þ ukÞ2
�
: ð33Þ

Upon adding these results and simplifying, we find precise
agreement with the truncated NLO squared amplitude of
Eq. (13), thus confirming the validity of Eq. (32).
Comparing Eq. (32) with Eq. (19), we see that the

effect of the next-to-soft corrections is to modify the
leading power soft gluon squared amplitude by shifting
the momenta of the nonradiative amplitude. Crucially,

however, the corrections do not modify the dipolelike
nature of the result: in each term, the momenta that are
shifted in the nonradiative amplitude are the same hard
momenta that appear in the accompanying dipole radiation
pattern. This suggests a particularly nice physical inter-
pretation of the next-to-soft corrections, which we explore
in the following section.
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III. THE PHYSICS OF ANGULAR-ORDERING
BREAKDOWN

As discussed above, a well-known property of soft
radiation from pairs of (color) charges is that it is confined
to certain cones, centered around the hard particles that emit
the radiation. Put another way, successive soft gluon emis-
sions from the same pair of charged particles are strongly
ordered in angle, and this effect is built into angular-ordered
parton-shower algorithms to incorporate soft-gluon interfer-
ence effects in a straightforward way [14,15]. Given that
the leading next-to-soft gluon radiation that is captured by
Eq. (32) preserves a dipolelike form, it is natural to ask
whether themomentum-shift contributions lead to a breaking
or otherwise of the angular-ordering property. We will see
that, unsurprisingly, angular ordering indeed does not persist
at next-to-soft level. However, the origin of the breaking can
be traced very directly to the momentum-shift formula of
Eq. (32), which allows us to understand in physical terms
how it happens.

A. Angular ordering of soft radiation

Let us first recap the arguments leading to angular
ordering of soft radiation, where we will follow closely
the presentation in Refs. [14,15]. These arguments are
reproduced here to make our presentation self-contained, as
well as being necessary for the next-to-soft generalization
to be discussed below. We will consider a final state dipole
in QED, consisting of e.g., an electron-positron pair, as
shown in Fig. 4(a). In the limit in which the emitted photon
momentum is soft (kμ → 0), the NLO squared amplitude
for this process assumes the form

jMLPj2 ∼WijjMð0Þj2; ð34Þ
whereMð0Þ is the Born amplitude, and we have introduced
the radiation function

Wij ¼
E2
kpi · pj

pi · kpj · k
: ð35Þ

This consists of the eikonal dressing factor that we see in
e.g., Eq. (19), multiplied by the square of the photon energy
Ek to make the radiation function dimensionless. The
energy dependence will be compensated elsewhere in the
total squared amplitude, but it is the radiation function that
controls all angular dependence of the emitted radiation. To
probe the latter, it is standard to write

Wij ¼ W½i�
ij þW½j�

ij ; ð36Þ
where the modified radiation functions appearing on the
right-hand side are given by

W½i�
ij ¼

1

2

�
Wij þ

1

1 − cos θik
−

1

1 − cos θjk

�
;

W½j�
ij ¼ 1

2

�
Wij þ

1

1 − cos θjk
−

1

1 − cos θik

�
: ð37Þ

The reason for this—which is not necessarily obvious
a priori—is that the modified radiation functions have
precisely the angular ordering property noted above. That

is, the soft radiation captured by W½l�
ij is confined to a cone

around particle l, with a half-angle given by the angle
between particles i and j. To see this, we can choose a
Lorentz frame such that the 3-momentum p⃗i is oriented
along the z direction, and the 3-momentum p⃗j lies in the
ðx; zÞ plane:

pμ
i ¼ Eið1; 0; 0; 1Þ;

pμ
j ¼ Ejð1; sin θij; 0; cos θijÞ;
kμ ¼ Ekð1; sin θik cosϕik; sin θik sinϕik; cos θikÞ: ð38Þ

Here fθabg and fϕabg denote the polar and azimuthal
angles between particles a and b in a conventional spherical
polar coordinate system. Then

pj · k ¼ EjEkða − b cosϕikÞ; a ¼ 1 − cos θij cos θik;

b ¼ sin θij sin θik: ð39Þ

However, by choosing an alternative frame in which the
3-momentum of particle j defines the polar axis, one may
also surmise

pj · k ¼ EjEkð1 − cos θjkÞ; ð40Þ

such that comparing Eqs. (39) and (40) implies

1 − cos θjk ¼ a − b cosϕik: ð41Þ

The integration over the final-state phase space will include
an integral over the azimuthal angle ϕik of the emitted

photon, and a useful intermediate step in integrating W½i�
ij is

to consider the integral

pj

pi

k

(a)

pj

pi

k

x j

ix

(b)

FIG. 4. (a) A dipole consisting of two oppositely charged
particles, emitting a photon; (b) similar situation, taking into
account a nonzero displacement of each fermion from the origin.
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I½i�ij ¼
Z

2π

0

dϕik

2π

1

1 − cos θjk
; ð42Þ

which occurs in the first and third terms of Eq. (37), whose
explicit form in angular coordinates is

W½i�
ij ¼

1

2

�
1 − cos θij

ð1 − cos θikÞð1 − cos θjkÞ
þ 1

1 − cos θik

−
1

1 − cos θjk

�
: ð43Þ

Following Refs. [14,15], we may transform to z ¼ eiϕiq ,
such that Eq. (42) becomes a contour integral around the
unit circle in the complex z-plane:

I½i�ij ¼
1

iπb

I
dz

ðz − zþÞðz − z−Þ
; z� ¼ a

b
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

b2
− 1

s
:

ð44Þ

Only the pole at z ¼ z− lies inside the unit circle, such that
one may carry out the integral using Cauchy’s theorem,
yielding

I½i�ij ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − b2
p ¼ 1

j cos θik − cos θijj
: ð45Þ

Using this result and Eq. (43), one integrates over the
azimuthal angle to obtain:

Z
2π

0

dϕik

2π
W½i�

ij ¼
1

2ð1 − cos θikÞ
�
1þ ðcos θik − cos θijÞ

j cos θik − cos θijj
�
:

ð46Þ

A plot of this function is shown in Fig. 5 in blue, for
cos θij ¼ 0.2. We see that there is nonzero radiation only

for polar angles around particle i which are less than or
equal to the opening angle θij between the dipole, as
expected. Furthermore, the divergence at cos θik → 1 coin-
cides with the emitted photon becoming collinear with
particle i.
Here we have explicitly considered QED, where this

pronounced radiation pattern is known as the Chudakov
effect. The same arguments apply to QCD in the case of
single gluon radiation from a dipole, where this is an overall
color singlet [14,15]. In both cases, the simple quantum
mechanical argument for the suppressed radiation outside
the cone is that the wavelength of the emitted photon
becomes such that it cannot resolve the individual (color)
charges in the dipole.

B. Next-to-soft radiation from a dipole

Having recalled how angular ordering arises from
soft radiation, let us now examine how the additional
momentum-shift corrections in Eq. (32) modify the picture.
To this end, we may again restrict ourselves to the simplest
possible case of a final-state dipole in gauge theory, namely
the electron-positron pair of Fig. 4(a). Then the effect of an
additional photon emission up to next-to-soft level is to
modify Eq. (34) to

jMNLPj2 ∼WijjMð0Þðpi − δpi;j; pj − δpj;iÞj2; ð47Þ

using the momentum shift definitions of Eq. (27).5 Up
to NLP level, we can expand to first order in the momen-
tum shifts, and also use the fact that the squared Born
interaction depends only on the Mandelstam invariant
s ¼ 2pi · pj, to get

jMNLPj2 ∼WijfðsÞ − 2½δpi;j · pj þ δpj;i · pi�Wijf0ðsÞ;
ð48Þ

where

fðsÞ ¼ jMð0Þj2 ð49Þ

is the squared Born amplitude with unshifted kinematics,
and the prime denotes its first-order derivative with respect
to the Mandelstam variable s. To examine the angular
properties of the next-to-soft term, we define the dimen-
sionless radiation functions

W̃½l�
ij ¼ −

�
δpi;j · pj

EkEj
þ δpj;i · pi

EkEi

�
W½l�

ij ; ð50Þ

such that

cos( ik)

2

4

6

8

10

FIG. 5. Blue: distribution of soft photon radiation from a dipole
with opening angle cos θij ¼ 0.2; Orange: corresponding result
coming from the leading next-to-soft correction, as captured by
the momentum shifts in Eq. (32). The dashed line shows the
nonangular ordered contribution to the next-to-soft result.

5An explicit derivation of this formula can be found in
Ref. [32], and uses similar steps to those presented here in
Sec. II B.
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W̃ij ¼ W̃½i�
ij þ W̃½j�

ij ¼ −
�
δpi;j · pj

EkEj
þ δpj;i · pi

EkEi

�
W½l�

ij ð51Þ

controls the total next-to-soft correction to the radiation
pattern. Using the parametrization of Eq. (38), we have

W̃½i�
ij ¼ ð1 − cos θikÞW½i�

ij þ ð1 − cos θjkÞW½i�
ij : ð52Þ

In the first term, the prefactor is independent of the
azimuthal angle ϕiq, and thus does not affect the integration
over the latter. We can thus reuse the previous result for the

azimuthal integration ofW½i�
ij when calculating the radiation

pattern. In the second term of Eq. (52), the prefactor cancels
the singularity in cos θjk, such that one findsZ

2π

0

dϕik

2π
W̃½i�

ij ¼
1

2

�
1þ cosθik − cosθij

jcosθik− cosθijj
�

þ 1

2

Z
2π

0

dϕik

2π

�
1− cosθij
1− cosθik

þa−bcosϕik

1− cosθik
− 1

�

¼ 1

2

�
1þ cosθik − cosθij

jcosθik − cosθijj
�
þ sin2

�
θij
2

�
cot2

�
θik
2

�
: ð53Þ

This is our final result for the azimuthally averaged next-
to-soft radiation pattern from one particle in a dipole.
Interestingly, it has the form of a sum of an angular-ordered
term, analogous to the pure soft case, plus a breaking term,
which has a remarkably compact analytic form. We show
this function in Fig. 5, and can see clearly the effect of
the angular-ordering term, in that there is a discontinuity
at cos θik ¼ cos θij. However, for cos θik < cos θij, corre-
sponding to gluon emission outside the cone region, there is
indeed a nonzero radiation distribution. For completeness,
we show the effect of the nonangular-ordered term [i.e., the
second term in Eq. (53)] inside the cone. This is shown as

the dashed line in Fig. 5, and we see that it smoothly joins
the radiation outside the cone, as it should. There remains a
(hard) collinear singularity around particle i, which acts as
a next-to-soft correction to a collinear emission which is
also strictly soft. In interpreting the figure, we must

remember that the LP and NLP radiation functions (W½i�
ij

and W̃½i�
ij respectively) are defined with different energy

ratios to make them dimensionless. Thus, the overall
normalization between the two curves in Fig. 5 is not
particularly meaningful. Rather, Fig. 5 illustrates the
significant qualitative difference between the angular dis-
tributions of soft and next-to-soft radiation: the latter breaks
angular ordering.
Note that a similar effect appears for massive emitters at

leading soft level, as is well-known [14,15]. Denoting
the energy-normalized velocity of the two dipole legs with
vi and vj respectively, one obtains for the azimuthally
averaged emission pattern

Z
2π

0

dϕik

2π
W½i�

ij ¼
vi

2ð1 − vi cos θikÞ

2
64 vi − cos θik
1 − vi cos θik

þ cos θik − vj cos θijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos θik − vj cos θijÞ2 þ sin θ2ikð1 − v2jÞ

q
3
75: ð54Þ

This reduces to the massless form when vi ¼ vj ¼ 1.
However, when vj ≠ 1 (but vi ¼ 1) the sharp transition
is replaced by a smooth damping of the total radiation from
the dipole, which extends to angles larger than the opening
angle of the dipole. This is shown in Fig. 6, which contrasts
the massless and massive cases. Here, the presence of an
intrinsic momentum scale results in the breaking of
angular-ordering, and it would be interesting to further
examine the interplay between next-to-soft and massive
effects.
Let us now understand the next-to-soft effect in more

physical terms. We can do this given that radiation outside

the cone is associated with the specific momentum shifts in
Eq. (27), whose origin is the orbital angular momentum
contributions to the squared matrix element. One can only
generate such an orbital angular momentum if the two
worldlines of the fermions in the dipole are mutually
displaced. In particular, let us choose the origin of space-
time such that both lines are displaced to 4-positions xμi and
xμj , as shown in Fig. 4(b). The relationship between such
displacements and next-to-soft corrections was considered
in Ref. [21] (see also Ref. [107]), which used Schwinger
proper time methods to write the scattering amplitude for
hard particles emitting radiation in terms of quantum

cos( ik)

1

2

3

4

5

6

FIG. 6. Blue: distribution of soft photon radiation from a dipole
of massless particles with opening angle cos θij ¼ 0.2; Orange:
corresponding result if particle j is massive, such that vj ¼ 0.5
in Eq. (54).
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mechanical (first-quantized) path integrals over their space-
time trajectories. More specifically, one can show that such
an amplitude is given by

Aðp1;…; pnÞ ¼
Z

DAμ

�Yn
i¼1

Z
ddxie−ipi·xifðxi; pi;AμÞ

�

×Hðx1…xn;AμÞeiS½Aμ�; ð55Þ

where Hðx1;…xn;AμÞ is a hard function that produces
the outgoing particles at initial positions fxig with final
momenta fpig. The formal definition of this quantity can
be found in Ref. [21], and will not be needed in what
follows. The path integral in Eq. (55) is over the (next-to)
soft gauge field, and includes the usual dependence on the
action S½Aμ�, where we suppress the dependence on the
matter fields for brevity. Associated with each hard particle
is an integral over its initial position xi, a certain expo-
nential factor, and further factor fðxi; pi;AμÞ, which for
scalar particles is

fðxi; pi;AμÞ ¼
Z

Dzi exp

�
i
Z

∞

0

dτ

�
ż2i
2
þ qiðβ þ ẋÞ · Aðxi

þ βiτ þ ziÞ þ
iqi
2
∂ · Aðxi þ βiτ þ ziÞ

��
:

ð56Þ

In this equation, we have parametrized the spacetime
trajectory of the ith particle via

xðiÞðtÞ ¼ xi þ βiτ þ ziðτÞ; ð57Þ

where βi is the 4-velocity associated with the final
momentum pi, and τ the proper time. The quantity ziðτÞ
then constitutes a fluctuation about the classical straight-
line trajectory, and the path integral over ziðτÞ corresponds
to summing over all possible fluctuations. This path
integral is carried out subject to the boundary conditions
of fixed initial position xi and final momentum pi for each
particle. Finally, qi is the electric charge of hard particle i.
As shown in Ref. [21], the path integral over worldline

trajectories in Eq. (57) can be carried out perturbatively.
The leading term—corresponding to keeping the classical
trajectory only—amounts to the hard particle not recoiling,
and thus emitting pure soft radiation only. Expanding
order-by-order in ziðτÞ then amounts to including all
possible wobbles in the spacetime trajectory which, by
the uncertainty principle, amounts to including the emis-
sion of radiation at progressively subleading orders in the
momentum of the emitted radiation. By keeping the first-
order term only, Ref. [21] found a set of Feynman rules
corresponding to the emission of next-to-soft radiation
from hard particles. Repeating the analysis for fermionic
emitting particles leads to an extra term in Eq. (56), that

corresponds to the spin-dependent part of the next-to-soft
theorem of Eqs. (15) and (16).
Now let us focus on the contribution to Eq. (55) that

stems from the initial separation of the dipole members,
namely the nonzero initial positions fxig. At next-to-soft
level, keeping track of these nonzero positions means
that the path integral in Eq. (56) can be replaced by its
leading term (i.e., the classical trajectory only). The hard
particle factor of Eq. (56) then reduces to the well-known
Wilson line describing the emission of soft radiation [21]:

fðxi; pi;AμÞ → exp
�
iqi

Z
∞

0

dτβμi Aμðxi þ βiτÞ
�

¼ 1 − qi

Z
ddk
ð2πÞd

pμ
i ÃμðkÞ
pi · k

eipi·k þOðq2i Þ;

ð58Þ

where we have transformed to momentum space in the
second line, and expanded in the coupling so as to isolate
the effect of a single photon emission in the second term.
Next, we can expand the exponential appearing in the k
integral, where the first subleading correction corresponds
to the next-to-soft contribution. Collecting these factors
on all lines, the effect of the nonzero initial positions in
the path integral of Eq. (55) is

�Yn
i¼1

Z
ddxie−ixi·pi

��Xn
j¼1

qj
ddk
ð2πÞd ð−ixj · kÞ

pj · AðkÞ
pj · k

�

×Hðp1;…; pnÞ ¼ ΓμAμ; ð59Þ

where carrying out the integrals over the positions fxig
yields

Γμ ¼
Z

ddk
ð2πÞd

Xn
j¼1

qj

�
pμ
j

pj · k
kν

∂

∂pjν

�
Hðp1;…; pnÞ: ð60Þ

In the path integral over the gauge field, this looks like
an additional Feynman rule for the emission of a single
photon from each line, which involves a derivative acting
on the hard function. In fact, the result of Eq. (59) is
incomplete. In Eq. (55), the hard function depends upon
the gauge field, as it must. Expanding this order-by-order
in the coupling amounts to including the effects of soft
photon emissions from inside the hard interaction (see
Ref. [21] for a detailed explanation). As shown in the
very early work of Ref. [78], such contributions can be
fixed by gauge invariance. The most straightforward way
to implement this here is to note that the factor Γμ will
form part of a complete scattering amplitude Aμ for the
emission of a photon of momentum k, which must satisfy
the Ward identity kμAμ ¼ 0. This in turn implies that we
must modify
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Γμ → Γ̃μ; kμΓ̃μ ¼ 0: ð61Þ

Requiring a local combination of momenta yields the
unique result (see also Ref. [108])

Γ̃μ ¼
Z

ddk
ð2πÞd

Xn
j¼1

qjkν

�
pμ
j

pj · k
∂

∂pjν
−

pν
j

pj · k
∂

∂pjμ

�

×Hðp1;…; pnÞ: ð62Þ

Comparison with Eq. (24) allows to explicitly recognize
the form of the orbital angular momentum of each hard
particle,6 a fact which was not clarified in Ref. [21].
However, it makes precise the above expectation, that
nonzero initial positions of the dipole members will
indeed give rise to the orbital angular momentum part
of the next-to-soft theorem.
The physics of angular-ordering breaking is then as

follows. Soft radiation has an infinite Compton wavelength,
and thus is unable to see the separation between the two
fermion worldlines, as they emanate from a given hard
interaction. Next-to-soft radiation, on the other hand, is able
to resolve the length scale corresponding to the difference
in initial particle positions, which manifests itself in the
orbital angular momentum contributions being nonzero, as
captured by the momentum shifts in Eq. (32). The fact that
wide-angle radiation now sees the initial “size” of the
dipole means that it will no longer see a zero net charge.
Hence, radiation can be present outside the cone.
Our analysis in this section was of radiation in QED,

but a similar analysis could be carried out in QCD. For pairs
of color charges forming a color singlet, the above analysis
straightforwardly generalizes: there is no radiation outside
the cone at leading power [14], but there would indeed be at
next-to-leading power. A more involved analysis would be
needed for partons which do not form a color singlet. In that
case, there is radiation outside the cone even at leading
power, but one would expect the radiation profile to change
at next-to-leading power, as could be analyzed on a case-
by-case basis.

IV. CONCLUSION

In this paper, we have performed a case study looking
at the physical interpretation of next-to-soft radiation.
The characterization of such radiation is of great interest
in furthering the precision frontier at current collider

experiments, as well as addressing interesting conceptual
questions in field theory. In addition to building up new
methods and techniques, it is important to build intuition
about next-to-soft physics, that may in turn inform further
developments. With this motivation in mind, we have here
focused on a particular formula for incorporating gluon
radiation using a dipolelike formula that incorporates next-
to-soft effects through shifts of the momenta appearing in
the nonradiative amplitude. This formula first appeared for
color-singlet final states in Ref. [31], and was extended to
particular processes with partons in the final state in
Ref. [32]. We have here checked its validity in another
process (Wg production), and we expect our analysis to
generalize further. Next, we looked at the physical conse-
quences of this formula, which stem from the fact that it has
the form of a sum of dipolelike contributions.
One of the most well-known properties of soft emission

from dipoles is that interference effects lead to suppression
of the radiation outside cones surrounding each hard
particle, whose half-angle corresponds to the opening angle
between the constituents of the dipole. Faced with Eq. (32),
then, we can ask if the inclusion of next-to-soft corrections
breaks the angular-ordering property. Indeed it does, and
the physical mechanism of this is that the momentum shifts
capture precisely that part of the next-to-soft physics—
orbital angular momentum contributions—that is associ-
ated with an initial separation between the dipole constitu-
ents. This provides a new length scale, which the radiation
is then able to resolve. Although this creates some radiation
outside the cones described above, there still remains a
significant discontinuity in the radiation distribution at the
edge of the cone.
We hope that our results provide useful physical intuition

to researchers working in this area, as well as inspiring
further similar studies.
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