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Abstract—Source enumeration is typically studied under the
assumption of white noise, which may not be suitable for real-
world applications. In this article, a source enumeration algo-
rithm robust against both white and colored noises is presented,
where the adaptive diagonal loading (ADL) technique combined
with linear shrinkage (LS) coefficients are employed. First, a
proper loading level is adaptively determined under the presumed
number of sources v, which is then applied to mitigate correlated
and heterogeneous noise, and simultaneously yields an encourag-
ing result that the loaded eigenvalues match the asymptotic ratio
behavior of the eigenvalues obtained under white noise. Then,
by analyzing the characteristics of the loaded LS coefficients in
various situations, source enumeration is successfully achieved by
performing the second-order difference (SOD) operation on the
loaded LS coefficients. The proposed algorithm does not require
iteration or assume any prior information on noise, and therefore
achieves high efficiency and robust enumeration results.

Index Terms—Source enumeration, adaptive diagonal loading,
linear shrinkage coefficient, second-order difference operation,
random matrix theory.

I. INTRODUCTION

SOURCE enumeration is a critical problem in many ar-
ray signal processing applications, such as multiple-input

multiple-output (MIMO) wireless communications [1], [2],
electroencephalography (EEG) [3], functional magnetic res-
onance imaging (fMRI) [4], sonar and radar systems [5]–[7],
and normally regarded as an important input parameter for the
following direction finding and localization processes (such as
spatio-temporal dipole fitting and multiple signal classification,
etc).

Many source enumeration algorithms have been developed
based on different criterions, such as the Akaike information
criterion (AIC) [8], the Bayesian information criterion (BIC)
[9], the minimum description length (MDL) criterion [10],
the multichannel time series based AIC and/or MDL criteria
[11], the reduced-rank MDL estimation (MDLE) criterion
[12], the minimum mean square error (MMSE)-based MDL
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(mMDL) criterion [13], the linear shrinkage based MDL
(LS-MDL) criterion [14], the heuristic shrinkage coefficient
(SCDheur) based criterion [15], and the recently proposed two-
step difference (TSD) criterion [16], etc. It should be noticed
that the LS coefficient based enumerators in [15] and [16]
have a robust performance in some difficult situations, such
as a large number of sources and a small number of samples.
Therefore, they hold great potential in more practical applica-
tions. Nevertheless, most of them are based on the assumption
of additive white noise, and exploit the resulting multiplicity
of the smallest eigenvalues to determine the number of signals;
as a result, they are sensitive to any deviation from the white
noise model, and thus may not perform consistently with data
corrupted by unknown noise.

In practice, due to the application of various filters as well
as different hardware configurations in receiving channels,
correlated and heterogeneous noise models are more appro-
priate [17]. To handle such noise models, several algorithms
have been proposed in recent years. In [18], an alternative
detection criterion by deriving a new likelihood function was
proposed for a nonuniform noise environment, where a proper
transformation of the covariance matrix was applied to cope
with the spatial non-uniformity of the noise. Through building
a novel MDL objective function in the presence of unknown
nonuniform noise, a global MDL minimization-based source
enumeration algorithm was introduced in [19], which can yield
a good estimate in both uniform and nonuniform noise cases.
In [20], the Gerschgorin disk estimator (GDE) developed
from the projection concept was presented, where the unitary
transformation of the covariance matrix was employed, with
robustness against unknown noise models. In [21], a modified
GDE, called GDEWE, was proposed, which achieved source
number estimation without eigendecompositon, and therefore
computationally efficient. Different from [20] and [21], Eguiz-
abal and Lameiro et al. modeled source enumeration as a
regression problem, and then applied the information-theoretic
criteria (ITC) to determine the model order of the regression
[22]. Such an approach is suitable for colored noise, provided
that the noise is sufficiently weaker than the signal. According
to a non-asymptotic goodness-of-fit metric, a signal subspace
matching (SSM) based algorithm was presented in [23], which
is applicable to both white and colored noise, and to a very
small number of samples. Based on the SSM, a modified
version termed as invariant SSM (ISSM) was proposed in [24],
which is aimed at matching a pair of translation invariant
subspace and subsequently achieves an improved detection
performance. Instead of applying SSM and ISSM, signal sub-
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space projection (SSP) and eigen-subspace projection (ESP)
were introduced in [25], where a good source enumeration
performance for both white and colored noise scenarios was
achieved. In addition, as verified by numerical experiments in
[16], although TSD is proposed based on white noise, it has
a reasonable performance under the case of banded colored
noise, which is attributed to its full utilization of the distance
between the signal and noise LS coefficients, as well as the
distinct second-order difference feature of LS coefficients.
Unfortunately, it fails to keep detection performance consistent
with probability one.

In this article, a new source enumeration algorithm to cope
with both white and non-white noises is proposed, where the
asymptotic behavior of eigenvalues of the sample covariance
matrix (SCM) in random matrix theory is exploited. Such an
algorithm can be regarded as a modified version of TSD.
By applying the linear shrinkage coefficient and developing
the adaptive diagonal loading (ADL) technique properly, the
detection stability and consistence of the proposed solution
are guaranteed under various array configuration conditions
and different types of noise. The main contributions of this
work are summarized as follows:

• An ADL technique is developed to mitigate the problem
of eigenvalue dispersion under unknown noise, which
gives a clear guideline on how to choose the diago-
nal loading (DL) level reliably in comparison with the
conventional DL [26]–[28], and subsequently exhibits
improved robustness against different noise scenarios. To
the best of our knowledge, it is the first time to adopt such
a technique to solve the source enumeration problem.

• It is proved that the loaded eigenvalues obtained from
ADL can match well with the asymptotic ratio behavior
of the eigenvalues in white noise. With this specific char-
acteristic, an improved source enumeration performance
is achieved with enhanced flexibility.

• The asymptotic behavior of the loaded LS coefficients is
analyzed in detail. With the aid of this asymptotic behav-
ior and the ADL technique, the second-order difference
(SOD) operation on loaded LS coefficients is exploited
to achieve satisfactory source enumeration results.

• Extensive simulations are provided to show the effective-
ness and superiority of the proposed algorithm in terms
of the probability of correct detection (PCD) in different
array configurations, different incident source powers and
various noise scenarios.

The rest of the article is organized as follows. The problem
formulation is presented in Section II. The developed ADL
technique, the asymptotic characteristic analysis of the loaded
LS coefficients, and the algorithm design are introduced in
Section III. Simulation results are provided in Section IV, and
conclusions are drawn in Section V.

II. PROBLEM FORMULATION

Consider d narrowband source signals impinging on an
array of m sensors from distinct directions {θi}di=1. The m×1
vector of the complex envelopes of the signals received by the

array at time observation t can be written as

x (t) = A (θ) s (t) + w (t) , t = 1, . . . , n (1)

where A (θ) = [a (θ1) , . . . ,a (θd)] is the m × d array
manifold matrix with its i-th column representing the steering
vector of source i; s (t) = [s1 (t) , . . . , sd (t)]

T and w (t) =
[w1 (t) , . . . , wm (t)]

T stand for the d × 1 signal vector and
m × 1 noise vector, respectively, and (·)T is the transpose
operation. Here, it is assumed that the signals are uncorrelated
with noise w (t) and independent and identically distributed
(IID) complex Gaussian, i.e., s (t) ∼ CN (0d,Σs), where 0d,
Σs and CN (0d,Σs) represent the d×1 zero vector, d×d full-
rank diagonal matrix and complex Gaussian distribution with
mean 0d and covariance Σs = E{s(t)s(t)H}, respectively,
E{·} denotes the statistical expectation operation, and (·)H
the conjugate transpose operation.

Based on (1) and above assumptions, the array covariance
matrix is given by

Rx = E{x(t)x(t)H} = AΣsA
H + W (2)

where W = E{w(t)w(t)H} represents the unknown and
arbitrary zero-mean noise covariance matrix. It can be spatially
white noise with a diagonal covariance matrix having equal
elements, nonuniform noise with a diagonal covariance matrix
having non-equal elements [29], [30] or any other colored
noise with a banded covariance matrix [24], [31], [32].

In practice, we can only obtain the sample covariance matrix
(SCM) of x(t), which is used to replace Rx and calculated
with n samples by

R̂x = (1/n)
∑n

t=1
x(t)x(t)

H
. (3)

According to [15], if w (t) is spatially white, W will reduce
to σIm, and the sample eigenvalues l1, . . . , lm of R̂x under the
framework of general asymptotic theory (where m,n → ∞
and m/n = c ∈ (0,∞)) will follow

l1 ≥ · · · ≥ ld ≥ ld+1 ≥ · · · ≥ lm (4)

(m−d)




1
m−d

m∑
i=d+1

li

1
m−d

m∑
i=d+1

l2i

− [ σ
σ2(1 + c)

] D→N (02,D)

(5)
with

D =

[
σ2c 2σ3c(c+ 1)

2σ3c(c+ 1) 2σ4c(2c2 + 5c+ 2)

]
(6)

D→ denoting convergence in distribution, σ the noise variance,
and Im the m×m identity matrix. Such asymptotic behaviors
indeed provide fundamental conditions for many source enu-
merators, such as LS-MDL, SCDheur and TSD. Unfortunately,
when the noise is non-white, these asymptotic behaviors will
no longer hold, and may result in failed detection for those
enumerators. In what follows, we will first demonstrate how to
exploit our designed technique to match a special asymptotic
ratio behavior to the maximum extent possible for non-white
noise, and subsequently propose a novel source enumerator
with significantly improved performance.
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III. PROPOSED ALGORITHM

In this section, we first provide the definition of the LS coef-
ficients, then present the ADL technique and a new expression
for the signal LS coefficient after applying the designed ADL
technique, and finally we combine them together to introduce
our proposed algorithm.

A. LS Coefficient

The LS technique is an efficient tool for robust covariance
matrix estimation [33]–[35] and reliable detection of the
source number in the general asymptotic theory framework,
which is quite suitable for high-dimensional covariance esti-
mation and scenarios where the number of sensors is large and
comparable with the number of samples [14]–[16].

The aim of LS is to shrink SCM or its corresponding
subspace covariance matrix towards a target matrix (“un-
structured”) or a scaled identity matrix (“structured”), em-
ploying an appropriate LS coefficient that is asymptotically
optimal for any distribution. For source enumeration un-
der the IID Gaussian assumption of observations, the struc-
tured form is more appropriate [15]. Let R(v), Σ

(v)
N =

diag (λv+1, . . . , λm), S
(v)
N = diag (lv+1, . . . , lm), and F =

[tr
(
Σ

(v)
N

)
/ (m− v)]Im−v denote the LS oracle estimate,

unbiased noise subspace covariance matrix (NSCM), sample
NSCM and shrinkage target under v presumed sources, respec-
tively. Consequently, the oracle estimate R(v) is the solution
to the following constrained minimization of the mean square
error (MSE) [33]:

min
α(v)

g
(
α(v)

)
∆
= E

[∥∥∥R(v) −Σ
(v)
N

∥∥∥2

F

]
s.t. R(v) = α(v)F +

(
1− α(k)

)
S

(v)
N (7)

where α(v) ∈ [0, 1] is the shrinkage coefficients, Im−v the
(m− v)× (m− v) identity matrix; ‖·‖F and tr (·) denote the
Frobenius norm and the trace of a matrix, respectively.

Setting the derivative of g
(
α(v)

)
to zero, the oracle estimate

of α(v) is calculated by

α(v)
o =

E
[
tr
(
F− S

(v)
N

)(
Σ

(v)
N − S

(v)
N

)H]
E
[∥∥∥S(v)

N − F
∥∥∥2

F

]

=

E
[
tr

(
S

(v)
N

(
S

(v)
N

)H)]
− tr

(
Σ

(v)
N

(
Σ

(v)
N

)H)
E
[
tr

(
S

(v)
N

(
S

(v)
N

)H)]
− 1

m−v

(
tr
(
Σ

(v)
N

))
=

E
[

1
m−v

∑m
i=v+1 l

2
i

]
+ 1

m−v
∑m
i=v+1 λ

2
i

E
[

1
m−v

∑m
i=v+1 l

2
i

]
−
(∑m

i=v+1 λi

m−v

)2 . (8)

For Gaussian observations, it can be derived according to
the theoretical result in [36] that the consistent estimate of

α
(v)
o can be replaced by

α̂(v)
c =

1
m−v

∑m
i=v+1 l

2
i + (m− v)

(
1

m−v
∑m
i=v+1 li

)2

(n+ 1)

(
1

m−v
∑m
i=v+1 l

2
i −

(∑m
i=v+1 li
m−v

)2
) . (9)

Given the fact that α̂(v) can be larger than one, it is normally
replaced by α̂(v) = min

(
α̂

(v)
c , 1

)
in practice. In what follows,

we demonstrate in detail how to exploit the LS coefficient for
robust source enumeration in various noise scenarios.

B. ADL Technique

The conventional DL technique is known as an effective
approach to solve robust inversion problem of the low-rank
or ill-conditioned SCM, and widely adopted in the field of
beamforming [37] and covariance matrix reconstruction in
hybrid analog-digital architectures [38]–[40]. Through adding
a scaled identity matrix on the diagonal of the original SCM,
one can not only improve the condition number of SCM and
avoid ill-conditioned solutions, but also reduce the normalized
variance of noise eigenvalues. Such properties provide a great
potential for eigenvalue-based source enumeration in non-
white noise. However, it should be emphasized that most of
existing DL is designed by a user-defined constant loading
value, which is only tailored for some certain scenarios. As a
result, its flexibility and generalization ability are inadequate,
and limit its application in non-white noises.

Instead of employing the conventional DL technique, the
ADL technique established on the following proposition under
the random matrix theory is investigated.

Proposition 1: Let λ̃1, . . . , λ̃m represent the eigenvalues of
the SCM R̂x in descending order under unknown noise, and

1
m−v

(∑m
i=v+1 λ̃i

)
= τv . Further assume that m− v → m as

m,n→∞, m/n→ c. Then, by selecting the positive loading
level %v satisfying the following condition:

%v = −τv +

√
τ2
v +

∑m
i=v+1 λ̃

2
i − (m− v)τ2

v (1 + c)

(m− v)c
(10)

the ratio behavior of loaded eigenvalues λ̄1, . . . , λ̄m will match
the ratio behavior in white noise, i.e.,

(m− v)

∑m
i=v+1 λ̄

2
i(∑m

i=v+1 λ̄i
)2 = (1 + c) . (11)

Proof: According to (5), the ratio behavior of eigenvalues
in white noise satisfies

(m− d)

∑m
i=d+1 l

2
i(∑m

i=d+1 li
)2 → (1 + c) . (12)

By exploiting the ADL technique with loading level %v in
non-white noise, the loaded eigenvalues λ̄i can be expressed
as λ̄i = λ̃i+%v . If %v satisfies the condition in (10) under the
presumed source number v, it can be further derived that∑m

i=v+1
λ̄2
i = (m− v) (τv + %v)

2
(1 + c) (13)
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which directly yields

(m− v)

∑m
i=v+1 λ̄

2
i(∑m

i=v+1 λ̄i
)2 = (1 + c) . (14)

Next, we prove %v > 0. To this end, we only need to con-
centrate on the analysis of

∑m
i=v+1 λ̃

2
i − (m− v)τ2

v (1 + c). It
can be observed that (m− v)τ2

v (1 + c) can be regarded as the
quadratic sum of

∑m
i=k+1 l

2
i in white noise under v sources.

Without loss of generality, it is assumed that the eigenvalues
under white noise and non-white noise have the same mean
value or expectation, and we then have

m∑
i=v+1

λ̃2
i −

m∑
i=v+1

l2i = (m− v)
[
D
(
λ̃i

)
− D (li)

]
(15)

where D (ζ) stands for the variance or degree of dis-
persion of eigenvalue ζ. As D

(
λ̃i

)
> D (li), we have∑m

i=v+1 λ̃
2
i − (m− v)τ2

v (1 + c) > 0 and %v > 0.
Remark 1: It can be seen that the loading level is adaptively

determined once the SCM R̂x, m,n and v are given, which
provides a clear guideline and great flexibility on choosing %v
properly. Moreover, it is worth emphasizing that the ratio be-
havior in (11) is of great importance for subsequent LS-based
source enumerator, which provides an observable condition to
distinguish signal LS coefficients from noise LS coefficients.

Remark 2: It is necessary to point out that we aim to make
any presumed source number v meet the requirement of (11)
for the proposed estimator, which is different from the case of
white noise where only d is employed. In other words, we here
form a set of hypothesized source number v to replace d; under
a certain v, we further analyze the asymptotic behavior of the
previous k(≤ v) loaded LS coefficients, where k is defined
as an auxiliary parameter. In what follows, we will first show
that if the SOD of the loaded LS coefficients satisfies a special
inequality condition (i.e., (41) in section III-D) for a given v
and any k ≤ v, it can be inferred that v ≤ d; and then,
according to this characteristic, we propose the new source
enumerator.

C. Characteristic of Loaded LS Coefficients

In this section, we first introduce two special parameters
αkv and γkv , and then analyze their asymptotic characteristics.
Different from the definitions of αk and γk in [14]–[16], as
well as α(v) above, here αkv and γkv are calculated by the
loaded eigenvalues with the presumed source number v and
auxiliary parameter k. The relationship between αkv and γkv is
expressed as

αkv =
m− k + γkv

(n+ 1) (γkv − 1)
(16)

where

γkv = (m− k)

∑m
i=k+1 λ̄

2
i(∑m

i=k+1 λ̄i
)2 , k, v ≤ m− 1. (17)

According to Proposition 1, it can be further derived for
k ≤ v that

γkv = (m− k)

[∑v
i=k+1 λ̄

2
i +

∑m
i=v+1

(
λ̄i
)2][∑v

i=k+1 λ̄i + (m− v) (τv + %v)
]2

= (m− k)

∑v
i=k+1 λ̄

2
i[∑v

i=k+1 λ̄i + (m− v) (τv + %v)
]2

+ (m− k)
(m− v) (τv + %v)

2
(1 + c)[∑v

i=k+1 λ̄i + (m− v) (τv + %v)
]2 . (18)

With (18), we give the following proposition 2.
Proposition 2: For large-scale antenna arrays and a suffi-

ciently high signal-to-noise ratio (SNR), where signal eigen-
values λ̃k ' O(m) � τv [16], if the difference between the
two sorted signal eigenvalues λ̃k and λ̃v is not significant, or
precisely λ̃v ≤ λ̃k ≤

√
κλ̃v , where κ = 2 + 2 v−kd−v , and '

implies that the values of its two segments are of the same
order or comparable, then, the following inequality holds

2
(
αvv − αv−1

v

)
> αkv − αk−1

v , k ≤ v < d. (19)

Proof: For scenarios of v < d and signal eigenvalues
λ̃k ' O(m) � τv , it can be regarded that they dominate all
eigenvalues. By ignoring the term τv in %v , we have

%v ≈

√∑m
i=v+1 λ̃

2
i

(m− v)c
≈

√∑d
i=v+1 λ̃

2
i +

∑m
i=d+1 λ̃

2
i

mc
. (20)

Define
∑d
i=v+1 λ̃

2
i = (d− v)

^

λ, and
∑m
i=d+1 λ̃

2
i =

^
c (d− v)

^

λ, where ^
c is a very small constant under the

scenarios of large-scale arrays and high SNRs. Then, (20) can
be written as

%v ≈
√

(1 +
^
c ) (d− v)

√
^

λ/mc = c1

√
^

λ/mc (21)

where c1 =

√
(1 +

^
c ) (d− v) ≈

√
d− v.

Noting that m− k,m− v → m as m→∞. Subsequently,
according to the derivation in Appendix, it can be obtained
for k < v that

αkv →
c(

c+
∑v
i=k+1 c

2
i

) (22)

where ci =
√
cλ̃i

c1

√
^
λ

.

For k = v ≥ 2, it can be obtained from (17) that γvv = 1+c,
which directly yields

αvv =
m− v + 2 + c

c(n+ 1)
=
m− v + 2 + c

m+ c
≺ 1, v ≥ 2, (23)

where a ≺ b represents that a < b but strictly a ≈ b.
Subsequently, it can be derived that

τ = 2
(
αvv − αv−1

v

)
− αkv − αk−1

v

→ 2

(
1− c

c+ c2v

)
−
(

c

c+
∑v
i=k+1 c

2
i

− c

c+
∑v
i=k c

2
i

)
=

2c2v
c+ c2v

− cc2k(
c+

∑v
i=k+1 c

2
i

)
(c+

∑v
i=k c

2
i )
. (24)
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Define ς =
(
c+

∑v
i=k+1 c

2
i

) (
c+

∑v
i=k c

2
i

)
, and then (24)

can be simplified as

τ →
2c2vς − cc2k

(
c+ c2v

)
(c+ c2v) ς

. (25)

Since λ̃v ≤ λ̃k ≤
√
κλ̃v , it can be derived according to the

expression of ci that

c2v ≤ c2k ≤ κc2v (26)

c2v →
cλ̃2
v

(d− v)
_

λ
≥ c

d− v
. (27)

Based on (26) and (27), and the fact that

ς ≥
[
c+ (v − k) c2v

] [
c+ (v − k + 1) c2v

]
>
[
c+ (v − k) c2v

]2 ≥ [1 +
v − k
d− v

]2

c2 (28)

c+ (v − k + 1) c2v ≥ c+ c2v (29)

we have

τ ≥ c2v
(c+ c2v) ς

[
2ς − κc

(
c+ c2v

)]
>
c2v
(
c+ c2v

)
c

(c+ c2v) ς

(
2

[
1 +

v − k
d− v

]
− κ
)

= 0. (30)

That is, 2
(
αvv − αv−1

v

)
> αkv − αk−1

v for k ≤ v < d.
Remark 3: It should be noticed that κ = 2 + 2v−kd−v is a

tight condition for proposition 2. Since some constraints were
relaxed during the above derivation process, the value of κ can
be larger in practice. In addition, it is seen that κ increases with
the decrease of k for given v and d, which conforms to the
characteristics of the distribution of eigenvalues. On the other
hand, it is worth emphasizing that the value of κ also reflects
the requirement for the powers of the incident signals, if the
signals are of equal power or the difference between signal
powers is not significant, (19) holds almost surely as shown
later by simulations, which provides a significant property for
the subsequent difference based source enumerator.

Proposition 2 discusses the situation for v < d, the follow-
ing proposition 3 further discusses the situation for v ≥ d.

Proposition 3: For d ≤ k ≤ v, γk−1
v − γkv � c and αkv −

αk−1
v → 0, provided that m−v,m−k → m, and for k ≤ d−1,
αkv → 0.

Proof: For m− v → m, we have

%v → −τv +

√
τ2
v +

(m− v)(τ2
v + D(λ̃))−mτ2

v (1 + c)

(m− v)c

= −τv +

√
D(λ̃)/c = −τv +

√
ξ/c (31)

where ξ = D(λ̃) is a constant represents the variance corre-
sponding to m− v small eigenvalues for given observed data.

Subsequently, it can be derived that

γk−1
v − γkv

= (m− k + 1)

∑m
i=k λ̄

2
i(∑m

i=k λ̄i
)2 − (m− k)

∑m
i=k+1 λ̄

2
i(∑m

i=k+1 λ̄i
)2

=

∑m
i=k λ̄

2
i

(m− k + 1) (τv + %v)
2 −

∑m
i=k+1 λ̄

2
i

(m− k) (τv + %v)
2 (32)

which directly yields

γk−1
v − γkv →

(λ̃k + %v)
2

m(τv + %v)2
=

(λ̃k − τv +
√
ξ/c)

2

m(
√
ξ/c)

2

=
(1 + (λ̃k − τv)

√
c/ξ)

2

m
. (33)

Given the following(
λ̃k − τv

)2

+
∑m
i=k+1

(
λ̃i − τv

)2

m− k + 1
= ξ,(

λ̃k − τv
)2

�
∑m

i=k+1

(
λ̃i − τv

)2

(
λ̃k − τv

)2

→ mξ −
∑m

i=k+1

(
λ̃i − τv

)2

� mξ

we have
λ̃k − τv√

ξ
�
√
m (34)

and

γk−1
v − γkv �

(1 +
√
mc)

2

m
≈ c. (35)

Note from (17) that γvv = 1+c, and γv−1
v , · · · , γkv , γk−1

v →
1 + c for a small v − d, and we then have

αkv − αk−1
v =

m− k + 1

(n+ 1) (γkv − 1)
− m− k + 2

(n+ 1)
(
γk−1
v − 1

)
→ m− k

n+ 1

γk−1
v − γkv

(γkv − 1)
(
γk−1
v − 1

) → 0 (36)

for k = d, · · · , v.
For k ≤ d− 1, γkv can be written as

γkv = (m− k)

d∑
i=k+1

(
λ̃i + %v

)2

+
m∑

i=d+1

(λ̃i + %v)
2

(
d∑

i=k+1

(λ̃k + %v) +
m∑

i=d+1

(λ̃i + %v)

)2

→ m

d∑
i=k+1

(ρkϑm+ %v)
2

+ (m− d)(τv + %v)
2(1 + c)(

d∑
i=k+1

(ρkϑm+ %v) + (m− d)(τv + %v)

)2

(37)
where ϑ stands for SNR, ρk � 0 is a constant, and ρkϑm ≥
O(m−d) represents the required condition for relatively high
SNRs defined in [16]. On the other hand, %v � m for v ≥ d.
Subsequently, we obtain that γkv → m and αkv → 0.

An intuitive illustration for propositions 2 and 3 is shown
in Fig. 1, where m = 100, n = 500, d = 4, and the auxiliary
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Fig. 1. αk
v versus the auxiliary parameter k with various v under banded

noise, m = 100, n = 500 and d = 4 with their corresponding DOAs
−24◦,−12◦, 12◦, 24◦.

parameter k varies from 0 to 15, while v changes from 3 to
8. As can be seen clearly from Fig. 1,

2
(
αvv − αv−1

v

)
> αkv − αk−1

v , k ≤ v < d (38)

αkv − αk−1
v < 0.05→ 0, d ≤ k ≤ v (39)

αkv → 0, k ≤ d− 1, v ≥ d (40)

for each given v, which is consistent with the theoretical results
of propositions 2 and 3.

D. Source Enumeration

Define ∆(k) = αkv−αk−1
v , and then, according to the above

analysis, we can indeed obtain

∆(v) −∆(v+1) > ∆(k) −∆(v), k ≤ v ≤ d (41)

∆(v) −∆(v+1) < ∆(d) −∆(v), v > d (42)

which indicates that if ∆(v)−∆(v+1) > ∆(k)−∆(v) holds for
a given v and any auxiliary parameter k ≤ v, we can obtain
that v ≤ d. In other words, the condition of (41) remains valid
as v increases until v = d. Such a conclusion enables us to
achieve source enumeration via the following criterion

d̂ = max v, s. t. ∆̄(v,v+1) > ∆̄(k,v), k ≤ v (43)

where ∆̄(k,v) = ∆(k) −∆(v) denotes the second-order differ-
encing (SOD) of LS coefficient α.

The proposed algorithm is summarized in Algorithm 1,
where χ̂ denotes the estimate of χ.

Remark 4: In order to construct SOD effectively, imple-
mentation of the proposed algorithm should start with v = 2,
and increases v step by step. When d ≥ 2, we achieve source
enumeration through (43). In particular, when d = 1 < v,
it can be seen that (42) is established directly. Under such a
circumstance, we can obtain that d̂ = 1.

Remark 5: It can be observed from Fig. 1 that the first-order
differencing (FOD) operation can achieve source enumeration
successfully, while the proposed approach exploits the SOD

Algorithm 1: Proposed Source Enumerator
Input: x(t),m, n
Output: d̂

1 Collect n snapshots x(1), . . . ,x(n).
2 Calculate SCM via R̂x = (1/n)

∑n
t=1 x(t)x(t)

H .
3 Perform eigenvalue decomposition on R̂x to obtain m

eigenvalues λ̃1, . . . , λ̃m in descending order.
4 for v = 2 : m do
5 Calculate %v according to (10) and α(k)

v according to
(16) for k ≤ v;

6 Calculate ∆(k) = αkv − αk−1
v and its corresponding

SOD values ∆̄(v,v+1) = ∆(v) −∆(v+1) and
∆̄(k,v) = ∆(k) −∆(v);

7 if ∆̄(v,v+1) > ∆̄(k,v) then
8 v=v + 1 ;
9 else

10 break;
11 end
12 end
13 Return d̂ = v

operation for source enumeration. The reason can be explained
as follows: i) The SOD operation can provide a larger distance
between ∆̄(v,v+1) and ∆̄(k,v) for k ≤ v, in comparison with
the FOD operation, enabling the proposed algorithm to provide
better estimation performance, especially for relatively low
SNRs; ii) as analyzed in Remark 3, 2

(
αvv − αv−1

v

)
> αkv −

αk−1
v , k ≤ v < d, holds almost surely if the difference between

signal powers is not significant, which implies that the SOD
operation provides greater capacity for source enumeration
under situations of unequal-power sources.

Remark 6: The advantages of the proposed algorithm can
be summarized as follows:

• According to (5), for IID Gaussian white noise, ξ → τvc,
and %v → 0, and therefore, the proposed source enu-
merator becomes a TSD-like enumerator; for non-white
noise, %v > 0, with the established condition of (11), the
proposed algorithm can still achieve satisfactory source
enumeration via (43). In addition, by some preliminary
simulation results, the proposed algorithm still works for
the more general families of noise, such as mixed white,
banded and nonuniform noise, as well as elliptical and/or
generalized elliptical distribution noise. This is because
that with the application of ADL, the behavior of LS co-
efficient and its corresponding SOD relationship are still
valid under such circumstances; and it could be a topic of
our future research for more rigorous interpretation and
simulation verification. In a word, the proposed algorithm
exhibits great robustness against various types of noise.

• The computational complexity of the proposed algorithm
mainly lies in the SCM calculation and performing it-
s EVD, which requires O

(
m2n+ 4

3m
2
)
; as the SOD

operation involved in (43) does not include complex
multiplications, it is ignored. Note that the major com-
plexity of the most representative LS-MDL, SCDheur
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(a) (b)

Fig. 2. PCD versus SNR under BCN, with four sources located at {−24◦,−12◦, 12◦, 24◦}: (a) m = 80, n = 60; (b) m = 50, n = 300.

(a) (b)

Fig. 3. PCD versus SNR under DCN, with four sources located at {−24◦,−12◦, 12◦, 24◦}: (a) m = 80, n = 60; (b) m = 50, n = 300.

and TSD algorithms also involve the computations of the
SCM and EVD, and therefore, the proposed algorithm is
almost the same as/slightly lower than these enumerators
in terms of computational complexity, showing good
practical applicability. Although there are some reduced-
complexity enumerators, such as MDLE, mMDL and
GDEWE, which avoid the calculation of SCM and its
EVD, and roughly require O (mnq), with q denoting the
dimension of the reduced-rank observation space, it is
necessary to point out that the proposed algorithm can
provide significant improvement in enumeration perfor-
mance (see related simulation results for details).”

• Analyzing from the algorithm derivation process, it can
be seen that the proposed algorithm does not rely on array
geometries nor the prerequisite of c > 1 or c < 1, and
thus it is applicable to a wide range of array geometries
and array configurations, as shown later by simulations.

• Note that the proposed algorithm essentially relies on
the SCM and LS coefficients. Due to similarity, it is
possible to achieve further improved performance by
combining the proposed solution with the shrinkage
fixed-point covariance estimators such as the shrinkage
Tyler’s M-estimator [41], [42], which also exploits the LS
coefficient and is more suitable for elliptical distribution
models. Such a proposal could be another interesting
topic for our future research.

IV. SIMULATION RESULTS

In this section, simulations are performed to demonstrate
the effectiveness of the proposed algorithm. The LS-MDL
[14], MDLE [12], SCDheur [15] and TSD [16] algorithms
tailored to white noise, and the GDE [20], GDEWE [21] and
ISSM [24] algorithms tailored to colored noise are selected
for comparison. The white noise is IID zero-mean complex
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(a) (b)

Fig. 4. PCD versus SNR under IID white noise, with four sources located at {−24◦,−12◦, 12◦, 24◦}: (a) m = 80, n = 60; (b) m = 50, n = 300.

(a) (b)

Fig. 5. PCD versus SNR for randomly spaced linear arrays under different types of noise, with four sources located at {−24◦,−12◦, 12◦, 24◦}, m = 50
and n = 300: (a) under BCN; (b) under DCN.

Gaussian with covariance matrix σIm, while the colored noise
is generated from the white noise by two different parametric
models: the first generates noise with a diagonal covariance
matrix (DCN) with non-equal elements, whose i-th element at
time index t is given by

ni(t) = η ∗ wi(t) (44)

where wi(t) is the white noise corresponding to the i-th sensor,
η is the nonuniform scaling factor, given by

η =


1

1− β
1 + β

i mod 3 = 1
i mod 3 = 2
i mod 3 = 3

(45)

and the second model generates a banded covariance noise
(BCN), given by

n(t) = Υ
1
2 ∗W(t) (46)

with W(t) being an m×n matrix generated by Gaussian white
process, and the (p, q)-th element of Υ is expressed as

Υ(p, q) = β|p−q| ∗ ejπ(p−q)/2 (47)

with β < 1 representing a parameter controlling the level
of non-whiteness. In particular, β = 0 indicates the case of
white noise. It is necessary to emphasize here that some of
the compared algorithms, such as LS-MDL and MDLE, are
ITC-based enumerators, while the proposed one, SCDheur and
TSD are essentially threshold-detection enumerators. Hence, it
may be unfair to compare them directly under the considered
scenarios. However, because the selected ITC-based solutions
are some of the most representative algorithms in the field of
source number estimation, they are also selected for compar-
ison as good references.

In the simulations, unless otherwise specified, uncorrelated
zero-mean complex Gaussian signals combined with uniform
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(a) (b)
Fig. 6. Comparison of the PCD between the proposed algorithm and reduced-rank based enumerators for small-scale arrays with two sources located at
{20◦, 40◦}: (a) m = 12, n = 100, DCN; (b) m = 18, n = 256, BCN.

(a) (b)

Fig. 7. PCD versus β under BCN, with four sources located at {−24◦,−12◦, 12◦, 24◦}: (a) SNR=-5, m = 80 and n = 60; (b) SNR=-10, m = 50 and
n = 300.

linear arrays with half-wavelength spacing are considered. The
SNR of the i-th signal is defined as SNR = log σsi

σn
, where

σsi denotes the power of the i-th signal. The probability of
correct detection (PCD) is utilized to measure the source
enumeration performance, which is calculated from 1000
independent Monte Carlo trials.

A. Simulation Results for Equal-Power Signals

1) PCD versus SNR: To examine the ability of the proposed
algorithm against different noises, BCN and DCN with β =
0.5, and IID white noise are considered, respectively. For each
type of noise, the array configurations for sample enough (c <
1) and sample starving (c > 1) are also considered. Figs. 2-4
show the PCD versus SNR for BCN, DCN and white noise,
respectively, where four equal-power sources are located at
{−24◦,−12◦, 12◦, 24◦}, and SNR varies from -15 dB to 5

dB. In Figs. 2(a), 3(a) and 4(a), m = 80 and n = 60 (c > 1),
while in Figs. 2(b), 3(b) and 4(b), m = 50 and n = 300
(c < 1).

As can be seen in Fig. 2, the proposed algorithm performs
better than the compared algorithms in the whole SNR region.
Meanwhile, it is noted that only the proposed one and ISSM
can provide accurate detection in low SNRs for both c > 1
and c < 1. In contrast, TSD can achieve source enumeration
accurately in the sample-starving scenario, but lose consistence
in sample-enough scenario, while GDE requires a high SNR
for precise enumeration. Moreover, it can be further seen
that the required SNR for the proposed algorithm to achieve
100% accurate detection are 10 dB and 7 dB lower than that
for ISSM in sample-starving and sample-enough scenarios,
respectively, showing great robustness of the proposed algo-
rithm.

From Fig. 3, it can be observed that the proposed algorithm
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(a) (b)

Fig. 8. PCD versus β under DCN, with four sources located at {−24◦,−12◦, 12◦, 24◦}: (a) SNR=-5, m = 80 and n = 60; (b) SNR=-10, m = 50 and
n = 300.

(a) (b)

Fig. 9. PCD versus n in colored noise, with four sources located at {−24◦,−12◦, 12◦, 24◦}, SNR=-5 dB and m = 50: (a) BCN; (b) DCN.

can still provide accurate source enumeration for c > 1 under
white noise, followed by the compared SCDheur, TSD, ISSM
and GDE, while LS-MDL cannot achieve 100% accurate
detection regardless of SNR, due to the model mismatch
problem. Particularly, for c < 1, only three algorithms can
detect the number of sources effectively, and the remaining
two tailored to white noise fail completely.

Further observation from Fig. 4 shows that the proposed
algorithm can still provide a satisfactory source enumeration
result. In particular, the performance of the proposed one is
slightly worse than LS-MDL, but better than the other state-
of-the-art algorithms for the sample-starving scenario. For the
sample-enough scenario, the proposed algorithm even obtains
100% detection accuracy at the lowest SNR. That is, the
proposed solution cannot only handle white noise well, but
also provide a competitive enumeration result. Through the
above simulations, we can conclude that the proposed source

enumerator is a general one, capable of dealing with both
white and colored noises.

2) PCD versus SNR for randomly spaced linear arrays:
The proposed algorithm is applicable for various array ge-
ometries. To show this, a linear array with randomly spaced
elements is employed here. The PCD result under BCN and
DCN is shown in Fig. 5, where m = 50, n = 300, and
the remaining settings are the same as in the first simulation.
From the result, we can observe that the PCD of the proposed
solution is almost the same as that under the uniform linear
array, demonstrating its robustness to the change of the array
layout. Moreover, it can also be observed that ISSM is invalid
under such a circumstance, since it is specifically designed for
the uniform array, and needs to exploit the translation invariant
subspace for source number estimation.

3) PCD versus SNR for small-scale arrays: This simulation
shows the performance of the proposed algorithm under a
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(a) (b)

(c) (d)

Fig. 10. PCD versus SNR for unequal-power sources (SNR+6dB, SNR+6dB, SNR, SNR), with four sources located at {−24◦,−12◦, 12◦, 24◦}: (a) c > 1
under BCN; (b) c < 1 under BCN; (c) c > 1 under DCN; (d) c < 1 under DCN.

small-scale uniform linear array, and compares with the perfor-
mance of the computationally efficient MDLE and GDEWE.
The simulation result for two sources located at {20◦, 40◦}
is shown in Fig. 6, where m = 12 and n = 100 for
Fig. 6(a), m = 18 and n = 256 for Fig. 6(b), and both
DCN and BCN are again considered. It can be seen that the
proposed algorithm is still effective in small-scale arrays and
its performance is significantly better than that of MDLE and
GDEWE.

4) PCD versus parameter β: In this simulation, the impact
of β is examined, where the impinging sources are the same
as in the first simulation, both BCN and DCN are taken into
consideration, and their corresponding results are illustrated
in Figs. 7 and 8, respectively. In Figs. 7(a) and 8(a), SNR is
fixed as -5 dB, m = 80 and n = 60, while in Figs. 7(b) and
8(b), SNR is set to -10 dB, m = 50 and n = 300. It can be
seen that the proposed algorithm outperforms the compared
ones for various β values. In detail, for BCN and c > 1, only
ISSM, TSD and the proposed algorithm can work effectively

when β > 0.5, but it is noted that ISSM cannot converge to
one; for c > 1 and a lower SNR, the proposed algorithm can
provide almost 100% PCD at β = 0.5, while the other ones
basically fail under such heavily colored noise, demonstrating
great robustness of proposed algorithm against colored noise.

5) PCD versus n in colored noise: This simulation shows
the PCD results of various algorithms with different number
of samples n, where m = 50, SNR=-5 dB, β = 0.5, and n
varies from 10 to 400. As can be seen in Fig. 9, GDE cannot
work in such a noisy condition since SNR< 0 dB, while LS-
MDL, TSD and SCDheur show obvious fluctuations, and only
the proposed algorithm and ISSM can always provide stable
estimate in both sample-starving and sample-enough scenar-
ios. Nevertheless, it is worth emphasizing that the proposed
algorithm outperforms ISSM significantly.

B. Simulation Results for Unequal-Power Signals

This simulation examines the performance of the proposed
algorithm under unequal-power source signals, where both
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BCN and DCN are considered again. The simulation config-
urations are the same as in Figs. 2 and 3, except that the
SNRs of first two sources have increased by 6 dB on the
basis of equal power, respectively. That is, there is a 6 dB
SNR difference between sources. However, it can be seen
that the proposed algorithm can not only provide satisfactory
source enumeration results for both c > 1 and c < 1, but
also yield 100% accurate enumeration when SNR≥-8 dB.
As a comparison, it can be seen from Fig. 10 that ISSM
is greatly affected under different SNR conditions, making
it difficult for its PCD to reach 100% within the observed
SNR region. On the other hand, it can also be observed that,
due to the SNR increase for part of impinging sources, GDE
has shown significant performance improvement compared to
equal-power conditions, and SCDheur provides a competitive
result for c > 1 and DCN scenario. However, they are
not robust and consistent for all considered scenarios. This
simulation again demonstrates robustness and superiorities of
the proposed algorithm clearly.

V. CONCLUSION

A novel and computationally efficient source enumeration
algorithm has been proposed, which is applicable to both
spatially white and colored noise, and can provide an improved
performance for scenarios of large-scale arrays with small
number of samples. The solution is established on the ADL
and LS techniques, by matching the asymptotic ratio behavior
of the eigenvalues in white noise. We have formed a set
of hypothesized source number v, and their corresponding
LS coefficients αkv , and further analyzed the characteristics
of loaded LS coefficients in detail. With the aid of such
characteristics, a novel SOD based source enumerator was
designed. Simulation results have shown that the proposed
algorithm can not only exhibit improved robustness against
white and colored noise, but also provide a higher PCD
for source enumeration in various array configurations, than
existing state-of-the-art algorithms.

APPENDIX

Substituting (21) into (18) yields

γkv → m

∑v
i=k+1

(
λ̃i + c1

√
^

λ/mc

)2

[(
τv + c1

√
^

λ/mc

)
m+

∑v
i=k+1 λ̃i

]2

+

m2

[(
τv + c1

√
^

λ/mc

)]2

(1 + c)[(
τv + c1

√
^

λ/mc

)
m+

∑v
i=k+1 λ̃i

]2 . (48)

With the definition of
^

λ and the condition of λ̃k ' O(m)�

τv , it can be derived for k < v that

√
^

λ ' O (m), yielding

c1

√
^

λ/c '
∑v

i=k+1
λ̃i ' O(m) (49)

τv =
1

m− v
∑m

i=v+1
λ̃i ≈

1

m− v
∑d

i=v+1
λ̃i

'
√

^

λ/m� O(m)

(50)

which implies that(
τv + c1

√
^

λ/mc

)
m+

∑v

i=k+1
λ̃i

→ c1

√
m

^

λ/c ' O
(
m

3
2

) (51)

Consequently, we have

γkv − γk−1
v → −

(
λ̃k+c1

√
^
λ/mc

)2

[
c1

√
^
λ/c

]2

= −

(
√
cλ̃k

c1

√
^
λ

+ 1√
m

)2

≈ −c2k

(52)

where ck =
√
cλ̃k

c1

√
^
λ

. Due to λ̃k ≤ λ̃k−1 leading to c2k ≤ c2k−1,

and γvv = 1 + c, γkv ≈ 1 + c +
∑v
i=k+1 c

2
i . It can be derived

that

αkv =
m− k + γkv

(n+ 1) (γkv − 1)
=
m− k + 1 +

(
γkv − 1

)
(n+ 1) (γkv − 1)

=
m− k + 1

(n+ 1) (γkv − 1)
+

1

(n+ 1)

=
m− k + 1

(n+ 1)
(
c+

∑v
i=k+1 c

2
i

) +
1

(n+ 1)

→ c(
c+

∑v
i=k+1 c

2
i

) .
(53)
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