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Abstract—Most existing sparse planar arrays cannot fully
realize their potential in terms of the degrees-of-freedom (DOFs)
due to redundancies in their co-array generation. Meanwhile,
the small inter-element spacing in conventional planar arrays
may cause serious mutual coupling effects. In this paper, a
series of designs for non-redundant sparse planar arrays in
different application scenarios are proposed. They can obtain
the maximum possible DOFs under the constraints of area and
the number of array elements. We first present the rule for
non-redundancy design for planar arrays, which is the basic
criterion for the following optimization problems. According
to generalized disjunctive programming (GDP), we establish
systematic solutions for array designs by two mixed-integer
linear programming (MILP) optimization approaches. Then,
three classes of non-redundant planar arrays are designed to
achieve minimum area, pre-determined area, and reduced mutual
coupling, respectively. In particular, the non-redundant planar
arrays with reduced mutual coupling can be designed to both
avoid small inter-element spacing and obtain the minimum area,
which makes them more robust to mutual coupling conditions.
Simulation results are provided to demonstrate the superiority of
the proposed planar array configurations for direction-of-arrival
(DOA) estimation.

Index Terms—Non-redundant array, planar array, virtual
array, mixed-integer linear programming, direction-of-arrival
estimation.

I. INTRODUCTION

Planar arrays, also known as two-dimensional (2D) arrays,
are widely used for 2D direction-of-arrival (DOA) estimation
in wireless communications, underwater acoustic localization,
radar, emitters tracking, etc [1]-[9]. Over the past few years,
the vast majority of research has focused on uniform planar
arrays, including uniform rectangular arrays (URAs), uniform
circular arrays (UCAs), hexagonal arrays, and parallel-shaped
arrays [2]. However, these array structures have small inter-
element spacing between adjacent elements, which may cause
severe mutual coupling effects [10]; they also have a smaller
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number of degrees-of-freedom (DOFs) due to the uniform
nature of their geometry configurations.

Recently, many studies have focused on nonuniform arrays
to extend the inter-element spacing and reduce mutual cou-
pling effectively. Among them, one-dimensional (1D) sparse
arrays have received wide attentions [11]-[16], and several
typical nonuniform linear arrays (NLAs) have been designed,
such as coprime arrays (CA) [17] and nested arrays (NA) [18].
The CA is composed of two sub-arrays with their number of
sensors being a coprime pair. It provides a large number of
unique virtual lags with reduced mutual coupling, while the
NA can provide more continuous virtual arrays with denser
array elements. Based on them, several other NLAs have
been developed for different purposes, including increasing
the number of consecutive or unique lags, reducing mutual
coupling effects, limiting array aperture, etc [19]-[22].

Inspired by these typical NLAs, several nonuniform planar
arrays (NPAs) have been proposed for 2D DOA estimation.
Parallel linear arrays are one of the classical categories,
including parallel coprime array (PCA) [23], parallel nested
array (PNA) [24], and others [25], [26]. Based on parallel
linear arrays, many 2D DOA estimation algorithms have
been designed for improving estimation accuracy, reducing
variables and computational complexity [26], [27]-[29]. Non-
parallel linear arrays are another type of array configurations.
For instance, the conventional cross array is composed of two
uniform linear arrays which are connected at the middle point
of each array orthogonally. The improved cross-shaped array
is considered for mixed source localization [30]. In [31], the
L-shaped array is discussed, which has higher accuracy than
the conventional cross array. Then, the NLAs are applied to
sub-arrays of the L-shaped array [32], [33]. In [34], the V-
shaped coprime (VCA) and the V-shaped nested array (VNA)
configurations are developed, which are able to use fewer array
elements to estimate the same number of sources. Another
typical 2D array with hole-free virtual array was proposed
in [35], [36]. However, these aforementioned NPAs cannot
achieve the highest DOFs due to redundancy in their unique
lags.

To obtain more unique virtual lags, there have been a lot
of interests in studying and designing non-redundant sparse
arrays [37], [38]-[40]. Arsac et al. considered the minimum-
redundancy array (MRA), and they design array configura-
tions that constructed the largest possible linear virtual array
with zero redundancy [41]. The sensors are placed sparsely
and each inter-element spacing only appears once except
for position zero. Moreover, Vertatschitsch et al. employed
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the exhaustive search method to provide non-redundant 1D
arrays with minimum missing lags [39]. For sensors more
than four, the lags are unavoidable and the inter-element
spacing is discontiguous. Linebarger et al. introduced several
relationships about the bounds on the number of redundancies
in arrays [40]. As a result, the exhaustive search operation
can be simplified by using such prior information. However,
if the number of sensors becomes large, the exhaustive search
method is still time-consuming and impractical.

The non-redundant array designs mentioned above mainly
aim at linear arrays and has achieved some results. In this
paper, our work focuses on the design of non-redundant planar
arrays, i.e., generalizing the 1D case to 2D. To simplify the
discussion, we first convert the 2D coordinates of the array
elements to 1D unique data sets and develop the design rule for
non-redundant planar arrays. Based on practical requirements,
especially the array area and mutual coupling effects, different
formulations are considered for non-redundant planar arrays.

To modify search methods and reduce computation time,
generalized disjunctive programming (GDP) can provide a
solution for optimization problems involving both discrete
and continuous variables [42], [43]. The GDP can be re-
laxed by Boolean and continuous variables, which is an
alternative expression to the conventional algebraic mixed-
integer programming formulation [42]. Mixed-integer linear
programming (MILP) can convert GDP to corresponding in-
teger counterparts, and it is able to handle the problem that
some variables are continuous while others are integers. The
development of these optimization methods has been growing
fast over the past years [44], [45]. We consider using GDP and
MILP formulations to solve the design problem in our work.

The main contributions of this paper are summarized as
follows:

1) A design rule for non-redundant sparse planar arrays is
provided to ensure maximum possible DOFs of N2− (N −1)
DOFs for N array elements.

2) Based on the above rule, a disjunctive programming
framework is developed. Two MILP methods, the convex hull
and the big M -representation, are considered to solve the
disjunctive programming problems for generalized 2D array
designs. The proposed optimization methods can speed up the
search by adding more restrictive constraints.

3) Three classes of novel non-redundant planar arrays are
designed. The first non-redundant planar array can obtain
the minimum array area with a fixed size of one edge of
a rectangular region. The second array can adapt to any
determined P × Q rectangular region, where P and Q are
positive integers. The third one is designed to reduce mutual
coupling effects which provides larger array element spacing
than other classical 2D arrays.

The remaining part of this paper is organized into five
sections. Section II provides some preliminaries about signal
model, virtual array, mutual coupling, and DOA estimation.
We introduce the rule for non-redundant sparse planar array
design and two MILP methods for enhanced non-redundant
planar array designs in Section III. In Section IV, the design
of the proposed sparse planar arrays under specific conditions

is presented. In Section V, simulation results are provided.
Eventually, conclusions are drawn in Section VI.

Notations: (·)∗ , (·)T , and (·)H represent conjugate, trans-
pose, and conjugate-transpose, respectively. ‖·‖k , k = 1, 2
stands for `k-norm. ⊗ and � denote the Kronecker product and
Khatri-Rao product, respectively. The vectorization operator is
represented by vec (·). Moreover, IN represents the N × N
identity matrix and 1N represents the N × 1 column vectors
of all ones. For matrix Y, y(h) is its hth row and Y[h]

is the matrix formed by removing the hth row from Y.

The inequality Y
e

6= Z indicates that the elements of the
corresponding rows of Y and Z are not equal. Ω(·) is a logical
operator that returns True when the condition is met.

II. PRELIMINARIES

A. Signal Model

A planar array with N antennas is considered, with coor-
dinates of antennas as Ld =

[
LT1 ,L

T
2 , ...,L

T
N

]T
d, in which

Li = [xi, yi]
T ∈ Z2 is an integer-valued vector and d = λ/2

is the unit inter-element spacing with λ being the signal
wavelength. K far field, narrowband, and uncorrelated sources
impinge on the planar array from azimuth angles θi ∈ [0, 2π]
and elevation angles ϕi ∈ [0, π/2] , i = 1, 2, ...,K. Conse-
quently, the received signal vector can be written as

x(t) = A(θ, ϕ)s(t) + n(t) (1)

where s(t) = [s1(t), ..., sK(t)] is the source vector
and n(t) represents the noise vector following an ad-
ditive white Gaussian process. The matrix A(θ, ϕ) =
[a(θ1, ϕ1), ....,a(θK , ϕK)] denotes the array mainfold, where
the steering vector a(θi, ϕi) is expressed as

a(θi, ϕi) = [1, e−j(x1cosθisinϕi+y1sinθisinϕi)
2π
λ ,

..., e−j(xNcosθisinϕi+yN sinθisinϕi)
2π
λ ]T

(2)

where j =
√
−1.

From (1), the covariance matrix is given by

Rx = E
[
x(t)xH(t)

]
=

∑K
i=1 σ

2
i a(θi, ϕi)a

H(θi, ϕi) + σ2
nIN

= A(θ, ϕ)RsA
H(θ, ϕ) + σ2

nIN (3)

where Rs = E
[
s(t)sH(t)

]
= diag

([
σ2
1 , σ

2
2 , ..., σ

2
K

])
is the

source covariance matrix, and σ2
i denotes the power of the ith

source. In practice, Rx can only be estimated by a limited
number of snapshots as

R̃x =
1

T

T∑
t=1

x(t)xH(t) (4)

B. Virtual Array

To take full advantage of the covariance matrix R̃x, we
consider to vectorize it into an N2×1 column vector r, which
is written as

r = vec
(
R̃x

)
= Ā(θ, ϕ)g + σ̄2

nvec(IN ) (5)
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where Ā(θ, ϕ) = [ā(θ1, ϕ1), ...., ā(θK , ϕK)] with ā(θi, ϕi) =

a∗(θi, ϕi) ⊗ a(θi, ϕi), and g =
[
σ2
1 , σ

2
2 , ..., σ

2
K

]T
. Therefore,

the mth element in ā(θi, ϕi) can be simplified as

V (m) = e−j[(xq−xp)cosθisinϕi+(yq−yp)sinθisinϕi] 2πλ (6)

where xp, xq, yp, and yq are the coordinates of physical
antennas. Eq. (6) gives an example of a virtual array element
located at position [xq − xp, yq − yp]T .

Hence, the set of generated virtual array can be defined by

V = {Lp − Lq | Lp,Lq ∈ L} (7)

C. Mutual Coupling

The mutual coupling effect is not considered in previous
signal model (1). With mutual coupling, (1) can be modified
to

x(t) = CA(θ, ϕ)s(t) + n(t) (8)

where C ∈ CN×N stands for the mutual coupling matrix,
which is co-defined by many factors. In the 2D model, the
elements in C can be expressed as [36]

〈C〉Li,Lj =

{
c
(
‖Li − Lj‖2

)
‖Li − Lj‖2 ≤ B

0 ‖Li − Lj‖2 > B
(9)

where c(·) denotes the mutual coupling coefficient and B
is the maximum separation between antenna pairs assuming
the presence of mutual coupling effects. c(0) = 1 and
|c(k)/c(`)| = `/k are defined as in [10]. If the array element
spacing increases, the mutual coupling effect will decrease.
Therefore, the following weight function can be used to
measure the influence of mutual coupling [46].

Definition 1. (Weight function): The weight function w (m)
for 2D arrays is defined as the number of sensor pairs with
spacing m ∈ V.

w (m) = w (mx,my) =
∣∣{(L1,L2) ∈ Z2 | L1 − L2 = m

}∣∣
(10)

The magnitude of the weight function indicates the
level of mutual coupling. If the mutual coupling effect
is low, the value of weight function is small. Obviously,√
m2
x +m2

y is equal to the spacing between sensor pairs.
In planar array, we mainly consider the value of W =
(w(0, 1), w(1, 0), w(1, 1), w(1,−1)), where W is defined to
simplify the representation.

D. DOA Estimation Method

We briefly review the sparse reconstruction method for DOA
estimation in this part, which can use all the virtual array
elements. From (5), each row in r can be regarded as a virtual
array element located at set V, and we can construct a virtual
steering vector, corresponding to the difference co-array V.
According to [47], [48], the 2D DOA can be estimated by

min ‖g‖1 s.t.
∥∥r− Āg

∥∥
2
≤ κ (11)

where Ā is the N2×G over-complete dictionary with G� K
, G is the size of search grid, and κ is a small error term.

Therefore, the objective function with a regularized expression
is given by

ĝ = argmin
r

∥∥r− Āg
∥∥
2

+ µ ‖g‖1 (12)

where µ is a regularization parameter that balances the `1-
norm and `2-norm terms.

III. NON-REDUNDANT SPARSE PLANAR ARRAYS

The non-redundant planar array can obtain the maximum
possible DOFs with a fixed number of antennas. The number
of DOFs of a sparse array is the cardinality of its difference
co-array in this paper. All the virtual array elements in V are
unique except for the position at (0, 0). Considering a sparse
planar array with N elements, a total number of N2 virtual
elements can be generated through the principle of difference
co-array. Since the self-difference co-arrays by the physical
antennas are all located at (0, 0), there exist N − 1 redundant
zero lags. Hence, an N -element non-redundant planar array
can provide N2 − N + 1 achievable DOFs (unique virtual
array elements) in theory.

A. Design Rule for Non-redundant Sparse Planar Arrays

According to (7), if different pairs of sparse planar array
elements generate the same difference co-array in the same
position, it will lead to redundancy. However, redundancy at
position (0, 0) is inevitable, so this part is ignored in the
discussion. Assume that the difference co-array formed by a
pair of array elements is unequal to that of another pair of
array elements, and we then have

Li − Lj 6= Lm − Ln, i 6= m, i 6= j,m 6= n (13)

where i, j,m, n ∈ [1, N ]. The inequality is to make sure that
the positions of difference co-array are nonzero. However,
compared to the linear array case, the positions of planar
array elements are 2D variables, which are more difficult to
be analyzed. To simplify the discussion, assume that all array
elements are distributed in a P×Q rectangular region, where P
and Q are positive integers. The first array element is placed at
the origin (0, 0). In Fig. 1, we can convert the 2D coordinates
of the array element to a 1D unique ordinal number. Therefore,
the design rule for non-redundant sparse planar arrays can be
expressed as{

ηi + 1 ≤ ηi+1

ηj − ηk 6= ηm − ηn
i = 1, 2, ..., N − 1

j 6= m, j 6= k,m 6= n
(14)

where ηi = Qxi + yi, and xi and yi are the horizontal and
vertical coordinates, respectively. According to (14), we can
generate sparse planar arrays without redundancy.

B. Design of Enhanced Non-redundant Sparse Planar Arrays

In this subsection, we consider to improve the optimization
problem on the design of non-redundant sparse planar arrays.
According to [38], this work can also be formulated as an
MILP problem. It is necessary to construct appropriate con-
straints for specific scenarios to obtain optimal planar arrays.
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Fig. 1. The structure of a planar array.

In practice, if the array area is too large, it will increase the
cost and the size of the carrying platform. Therefore, it is
necessary to restrict the array area. The array elements are
considered to be placed in the region of P × Q. Moreover,
since the rectangular boundaries P and Q are equivalent, only
the case of P ≥ Q needs to be discussed. Therefore, we can
simplify the rule in (14) as follows,

min xN
s.t. ηi + 1 ≤ ηi+1 i = 1, 2, ..., N − 1

ηi − ηj 6= ηm − ηn i 6= j,m 6= n, i 6= m
(15)

where xN is the horizontal coordinate of the N th element.
Obviously, we have max(xi) = xN , i ∈ [1, N ]. Therefore, we
can achieve the minimum array area under a fixed Q.

We only need to focus on half of the virtual array elements,
because the difference co-array is symmetric about the origin.
In this way, the search size is reduced while the same dif-
ference co-array can still be obtained. Here, assume i > j
and m > n to make sure that we do not need to search
the symmetric part of the array elements. Hence, (15) can
be rewritten as

min xN
s.t. ηi + 1 ≤ ηi+1 i = 1, 2, ..., N − 1

ηi − ηj 6= ηm − ηn i > j,m > n, i 6= m
(16)

Next, define an (N − 1) × 2N selection matrix B, where
B(k,k) = −B(k,k+3) = −Q and B(k,k+1) = −B(k,k+2) = −1
for k ∈ [1, N−1]. To ensure that the array elements are unique
and arranged in ascending order, we introduce the following
inequality constraint

BL ≥ 1N−1 (17)

where L is a 2N×1 column vector. (17) satisfies the condition
ηi + 1 ≤ ηi+1 in (16) as a disjunction. In order to satisfy the
uniqueness condition of virtual array elements, we need to
define another N(N − 1)/2× 2N matrix U, given by

U =
[
UT

1 ,U
T
2 , ...,U

T
N

]T
(18)

where

Un =
[
ON−n,2(n−1),−v � 1N−n, IN−n ⊗ v

]
, n ∈ [1, N − 1]

(19)

with v = [2Q− 1, 1].
For better understanding, we give an example to explain

the structures of B and U. With N = 4 and Q = 2, they are
expressed as

B =

 −2 −1 2 1 0 0 0 0
0 0 −2 −1 2 1 0 0
0 0 0 0 −2 −1 2 1

 (20)

U =


−3 −1 3 1 0 0 0 0
−3 −1 0 0 3 1 0 0
−3 −1 0 0 0 0 3 1
0 0 −3 −1 3 1 0 0
0 0 −3 −1 0 0 3 1
0 0 0 0 −3 −1 3 1

 (21)

The column vector UL gives all possible combinations of
the difference co-array. However, the arrangement of elements
in vector UL is irregular, and there may be redundancies. To
avoid redundancy in difference co-array except for element
zero, we compare all the generated difference co-array ele-
ments to each other. Then, the following inequality condition
is set

1H−1u
(h)L

e

6= U[h]L, h ∈ [1, H] (22)

where H = N(N −1)/2. After traversing the values of h, we
can construct the extended matrix, which is given by

Û =


1H−1u

(1)

1H−1u
(2)

...
1H−1u

(H)

 and Ǔ =


U[1]

U[2]

...
U[H]

 (23)

The dimension of both matrices Û and Ǔ is D× 2N with
D = H(H − 1). Therefore, (22) can be further written as

ÛL
e

6= ǓL (24)

Moreover, we can obtain û(d)L 6= ǔ(d)L, d ∈ [1, D]
as another representation of (24). With (17) and (24), we
can represent (16) as a generalized disjunctive programming
problem [42], and it can be expressed as

min xN
s.t. BL ≥ 1N−1

Ω
(
û(d)L 6= ǔ(d)L

)
= True d = 1, ..., D

(25)

According to (14) and (16), the above disjunctive program-
ming problem (25) can guarantee a non-redundant difference
co-array. Considering that both sides of the condition of logical
operator are calculated as integers, it can rewritten as[
−1 ≥ û(d)L− ǔ(d)L

]
∨

[
û(d)L− ǔ(d)L ≥ 1

]
(26)

where ∨ indicates a logical OR operator.
We can then reformulate (25) as

min
∀δd∈{0,1},d∈[1,D]

xN

s.t. BL ≥ 1N−1[
δd

f (d)L ≤ −1

]
∨

[
1− δd

f (d)L ≥ 1

]
(27)
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Fig. 2. The non-redundant array geometries with N = 5 elements: (a) Q = 1, (b) Q = 2, and (c) Q = 3.

where δd is an integer, 0 or 1. Define F = Û − Ǔ with
f (d) = û(d) − ǔ(d). If δd = 1, the left-hand inequality is true.
While δd = 0, the right-hand inequality is satisfied. Then, we
can form a column vector δ = [δ1, ..., δD]

T .
It can be seen that (27) is a GDP problem and contains

integer variables L. However, most existing GDP solvers are
only applicable to continuous variables and do not work with
(27). To solve such problems efficiently, MILP is employed,
which can handle mixed integer variables, as a substitution to
GDP. Inevitably, due to the addition of integer variables, the
computational complexity increases, and we need to relax the
optimization problems by using partial prior conditions. We
consider two approaches to transform (27) into MILP, named
the convex hull and the big M -representation [43]. Although
the solution is the same for both approaches, the difference
between the two approaches is that the solution space of the
convex hull is smaller, so the number of iterations is less.
Nonetheless, it has more variables compared with the big M -
representation, and a slower convergence rate. Both can be
solved using existing MILP solvers [49], [50].

1) The convex hull: To achieve non-redundant sparse planar
array design, the convex hull formulation is written as

min
∀δd∈{0,1},d∈[1,D]

xN

s.t. BL ≥ 1N−1
−δd ≥ f (d)La ≥ −Mδd
M(1− δd) ≥ f (d)Lb ≥ 1− δd
La + Lb = L

(28)

where La and Lb are intermediate variables and their sum is
equal to L. M is a sufficiently large positive number defined
by users. When δd = 0, 0 ≥ f (d)La ≥ 0 represents that La
is zero. Similarly, the elements in Lb are zero when δd =
1. Hence, this method increases the number of variables by
adding intermediate variables.

2) The big M -representation: The big M -representation is
given by

min
∀δd∈{0,1},d∈[1,D]

xN

s.t. BL ≥ 1N−1
f (d)L ≥ 1−Mδd
−1 +M(1− δd) ≥ f (d)L

(29)

When δd = 0, we have f (d)L ≥ 1, and −1 ≥ f (d)L is
satisfied with δd = 1. Furthermore, the inequalities are clearly
valid and redundant when f (d)L ≥ 1 −M, δd = 1 and −1 +
M ≥ f (d)L, δd = 0. If the value of M in (28) and (29) is
too large, it will lead to an increase in computations. On the
other hand, a small M can cause the optimization problem
unsolvable. As suggested by [38] and [40], M = N2 is a
reasonable choice.

IV. PROPOSED PLANAR ARRAY DESIGNS

We design enhanced non-redundant planar arrays in this
section subject to the size of array area, mutual coupling effect,
etc. The first non-redundant planar array is designed to obtain
the minimum array area with a fixed size for one side of the
planar array. The second array can achieve the design for a
pre-determined array area. The last one is for reducing mutual
coupling effects.

A. Non-redundant Planar Arrays with Minimum Area

In this subsection, under the condition that Q = Q̄, we
design sparse planar arrays satisfying the minimum array area
without redundancy. (16) can be rewritten as

min xN
s.t. Q = Q̄ Q̄ ∈ Z+

ηi + 1 ≤ ηi+1 i = 1, 2, ..., N − 1
ηi − ηj 6= ηm − ηn i > j,m > n, i 6= m

(30)

Clearly the array becomes a 1D linear array when Q = 1.
Therefore, non-redundant linear array is a special case of
optimization problem (30). More generally, we can obtain
the non-redundant planar array with the minimum area under
different number of array elements N and different values of
Q.

The formulation of the convex hull with a certain Q̄ can be
expressed as

min
∀δd∈{0,1},d∈[1,D]

xN

s.t. Q = Q̄
BL ≥ 1N−1
−δd ≥ f (d)La ≥ −Mδd
M(1− δd) ≥ f (d)Lb ≥ 1− δd
La + Lb = L

(31)
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Fig. 3. The non-redundant planar array with fixed array area (N = 16,
Q = 16, and P̄ = 16).

Similarly, we can express the big M -representation formu-
lation as follows

min
∀δd∈{0,1},d∈[1,D]

xN

s.t. Q = Q̄
BL ≥ 1N−1
f (d)L ≥ 1−Mδd
−1 +M(1− δd) ≥ f (d)L

(32)

The above inequalities meet the requirement of designing
minimum-area non-redundant sparse planar arrays with a fixed
Q̄, and it is worth noting that the solutions satisfying the
condition of minimum area are usually not unique.

An example is given in Fig. 2. The solid black circles
denote the physical array antenna positions, the dashed blue
circles denote the positions of virtual array elements, and the
red crosses stand for holes. The number of array elements is
N = 5. It can be observed that when Q = 1 in (a) , we
can obtain the optimization problem for 1D arrays, which is
specifically analyzed in [38]. The minimum array aperture is
equal to 11. Similarly, in Fig. 2 (b) and (c), the non-redundant
sparse planar arrays with minimum area can be obtained under
the fixed Q = 2 and Q = 3, respectively. The array area is 10
for Q = 2 and 9 for Q = 3.

B. Non-redundant Planar Arrays with Fixed Array Area

In the previous section, we discussed array configurations
with minimum area that can be achieved, and obtained the
corresponding minimum value of P = Pmin. Considering
practical requirements, define P̄ as the size for proposed array

such that P̄ ≥ Pmin , and two MILP optimization problems
can be established. The convex hull formulation is given by

max
∀δd∈{0,1},d∈[1,D]

xN

s.t. Q = Q̄
xN ≤ P̄
BL ≥ 1N−1
−δd ≥ f (d)La ≥ −Mδd
M(1− δd) ≥ f (d)Lb ≥ 1− δd
La + Lb = L

(33)

Similarly, the formulation of the big M -representation can
be expressed as

max
∀δd∈{0,1},d∈[1,D]

xN

s.t. Q = Q̄
xN ≤ P̄
BL ≥ 1N−1
f (d)L ≥ 1−Mδd
−1 +M(1− δd) ≥ f (d)L

(34)

Fig. 3 shows design examples with 16 elements, where Q =
16 and P̄ = 16. The solid black circles denote the physical
array antenna positions and the dashed blue circles denote the
positions of virtual array elements.

C. Non-redundant Planar Arrays with Reduced Mutual Cou-
pling

When the inter-element spacing is small, mutual coupling
cannot be ignored. According to the weight function, the value
of w(0, 1), w(1, 0), w(1, 1), and w(1,−1) can best reflect
the level of mutual coupling effects. The array inter-element
spacing of the first two is equal to unit inter-element spacing,
which is the smallest spacing in the array. The other two are
spaced by

√
2 times the inter-element spacing. The less the

value of W is, the smaller the mutual coupling effect is, and
the DOA estimation performance will be better. Obviously, if
we have W = (0, 0, 0, 0), the array is least affected by mutual
coupling.

To reduce mutual coupling, the proposed array can be de-
signed to satisfy the condition of w(0, 1) = 0 and w(1, 0) = 0.
According to (16), the array elements are defined to have an
ascending ordinal number. w(0, 1) = 0 can be expressed as
ηi − ηj 6= −1, i < j, i, j ∈ [1, N ]. Hence, the condition
in (16) is strengthened to ηi + 2 ≤ ηi+1, i ∈ [1, N − 1].
It is not difficult to find that w(1, 0) = 0 is equivalent to
ηi − ηj 6= −Q, i < j, i, j = [1, N ]. We can construct a matrix
G as follows

G =
[
GT

1 ,G
T
2 , ...,G

T
N

]T
(35)

where GT
n =

[
ON−n,2(n−1),−v

′ � 1N−n, IN−n ⊗ v
′
]
, n ∈

[1, N − 1] with v
′

= [Q, 1]. The disjunctive optimization
problem in (25) can be extended as

min xN
s.t. BL ≥ 2× 1N−1

Ω
(
û(d)L 6= ǔ(d)L

)
= True d = 1, ..., D

Ω
(
ĝ(h)L 6= Q

)
= True h = 1, ...,H

(36)
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where ĝ(h) represents the hth row of G. Furthermore, the
disjunctive optimization problem in (27) can be reformulated
as given in (37).

Considering that the convex hull and the big M -
representation own the same solution, we use the latter with
fewer variables to solve the MILP optimization problem,
which is expressed as

min
∀δd,εh∈{0,1},d∈[1,D],h∈[1,H]

xN

s.t. Q = Q̄
BL ≥ 2× 1N−1
f (d)L ≥ 1−Mδd
−1 +M(1− δd) ≥ f (d)L
ĝ(h)L ≥ Q+ 1−Mεh
Q− 1 +M(1− εh) ≥ ĝ(h)L

(38)
Obviously, the designed array in (38) not only enjoys the

property of zero redundancy, but also reduces the mutual
coupling effect significantly with w(0, 1) = 0 and w(1, 0) = 0.

Similarly, if the mutual coupling effect needs to be further
reduced, we can add more constraints like w(1, 1) = 0 and
w(1,−1) = 0 in weight functions, which is equivalent to
ηi − ηj 6= −Q ± 1, i < j, i, j ∈ [1, N ]. Thus, the inequalities
constraint in (37) can be modified to ĝ(h)L ≤ Q − 2 and
ĝ(h)L ≥ Q + 2. Under a fixed Q, we can design the array
for the minimum area with no redundancy and low mutual
coupling effect. The specific problem formulation is given by

min
∀δd,εh∈{0,1},d∈[1,D],h∈[1,H]

xN

s.t. Q = Q̄
BL ≥ 2× 1N−1
f (d)L ≥ 1−Mδd
−1 +M(1− δd) ≥ f (d)L
ĝ(h)L ≥ Q+ 2−Mεh
Q− 2 +M(1− εh) ≥ ĝ(h)L

(39)

V. SIMULATION RESULTS

Numerical examples are provided to demonstrate the per-
formance of the proposed designs. The existing URA, PCA,
cross-shaped array, L-shaped nested array, and open box
array (OBA) are employed for comparison. The number of
antennas of each array configuration in the simulation is
kept the same. The signal-to-noise ratio (SNR) is defined as
SNR = 10 log10(σ2

s/σ
2
n), where σ2

s stands for the power of
each source and σ2

n represents the power of noise. In particular,
the root-mean-square error (RMSE) is used to measure the
performance of the designed arrays, which is expressed as

RMSE =

√√√√ 1

MK

M∑
m=1

K∑
k=1

(
(θ̂m(k)− θm)2 + (ϕ̂m(k)− ϕm)2

)
(40)

where M stands for the number of Monte Carlo experiments,
and

(
θ̂m(k), ϕ̂m(k)

)
denotes the mth estimate of (θm, ϕm)

for the kth source.

A. Simulation 1

In the first simulation, we focus on DOFs and mutual
coupling, which are important for the array configuration [46].
The curves for the number of DOFs for URA, PCA, L-shaped
nested array, OBA, and the proposed arrays are shown in
Fig. 4. The closed-form expressions for these existing arrays
can be found in [51]. Obviously, the three kinds of proposed
non-redundant planar arrays have a larger number of DOFs
than the others. Without any redundancy, the proposed array
configurations reach the highest number of DOFs, which is
N2 − (N − 1).

Both weight functions and mutual coupling matrices are
considered to show the mutual coupling effects of the proposed
arrays, and several typical arrays are analyzed, including
URA, PCA, L-shaped nested array, cross-shaped array, OBA,
the enhanced non-redundant planar array with minimum area
(ENPAma), the enhanced non-redundant planar array with
determined area (ENPAda), and the enhanced non-redundant
planar array with reduced mutual coupling (ENPAmc). The
number of array elements is fixed at 9 for all. The three
proposed array structures are shown in Fig. 5. The black circles
denote the physical antennas and the red crosses stand for
holes. The value of Q is fixed at 6. The pre-determined array
area is P̄ = 7 in Fig. 5 (b). The mutual coupling constraint is
satisfied with W = (0, 0, 0, 0) in Fig. 5 (c).

In Fig. 6, we use red circles to mark the values in W, be-
cause these cases characterize the severity of mutual coupling
effects. Based on the dense inter-element spacing, the value
of weight functions is large in URA. Compared to the URA,
the OBA owns smaller weight functions (W = (4, 4, 2, 2)).
The L-shaped nested array (W = (2, 2, 1, 1)), the cross-
shaped array (W = (2, 2, 0, 0)), and the PCA can also achieve
smaller weight functions with larger inter-element spacing.
Due to the non-redundancy property, the value of the weight
functions is equal to 1 at most except for w(0, 0), and
the mutual coupling effect is further reduced in the pro-
posed ENPAma (W = (1, 1, 1, 1)) and the proposed ENPAda
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min
∀δd,εh∈{0,1},d∈[1,D],h∈[1,H]

xN

s.t. BL ≥ 2× 1N−1[
δd

f (d)L ≤ −1

]
∨

[
1− δd

f (d)L ≥ 1

]
[

εh
ĝ(h)L ≤ Q− 1

]
∨

[
1− εh

ĝ(h)L ≥ Q+ 1

] (37)
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Fig. 5. The proposed array structures with 9 elements: (a) ENPAma, (b) ENPAda, and (c) ENPAmc.

Fig. 6. Weight functions for eight different 9-element arrays: (a) URA, (b) PCA, (c) L-shaped nested array, (d) Cross-shaped array, (e) OBA, (f) ENPAma,
(g) ENPAda, and (h) ENPAmc (The red circles mark the values in W).

(W = (0, 1, 1, 1)). Considering that the purpose of designing
ENPAmc (W = (0, 0, 0, 0)) is to suppress the mutual cou-
pling effects, it has the best performance in Fig. 6.

Fig. 7 shows the magnitudes of the mutual coupling ma-
trices. We consider eight different array configurations with
9 elements. It is a visual representation of the matrix C.
The deeper the blue color is, the smaller the mutual cou-
pling. Different arrays have the same value (c0 = 1) in the
diagonal elements, and the magnitudes are also the highest.
The property of URA is the worst due to small inter-element
spacing. Obviously, the proposed ENPAmc achieves the best
performance with smallest magnitudes.

B. Simulation 2

In this subsection, the performance of DOA estimation in
the absence of mutual coupling is examined versus SNR and
the number of snapshots. We utilize sparse reconstruction
algorithms, and the number of array elements is still fixed
at 9. Assume that there are two sources located at (45◦, 32◦)
and (55◦, 38◦). The eight array structures are kept the same
as in Simulation 1. The number of Monte-Carlo trials is 800.

Fig. 8 shows RMSE performance versus SNR in the absence
of mutual coupling. The regularization parameter µ = 2.5 for
the sparse reconstruction algorithm. The number of snapshots
is 500, and the grid step size is 0.1◦. The curves of the three
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Fig. 7. Magnitudes of the mutual coupling matrices for different kinds of 9-element arrays: (a) URA, (b) PCA, (c) L-shaped nested array, (d) Cross-shaped
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proposed enhanced non-redundant planar arrays is quite close
to each other. They can achieve better RMSE than the other
array configurations when SNR > 0dB. However, at low
SNRs, as expected, the performance of the designed arrays
is poor.

In Fig. 9, we show the performance of DOA estimation
versus snapshots without mutual coupling effects. SNR is
10dB and, the range of snapshots is from 300 to 2700,
with intervals of 300. Obviously, the higher the number of
snapshots, the better the performance. Moreover, the three
types of proposed arrays provide better estimation performance
than other existing arrays.
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Fig. 9. RMSE of DOA versus the number of snapshots in the absence of
mutual coupling.

C. Simulation 3

In this simulation, the DOA estimation performance in
the presence of mutual coupling is demonstrated. The mu-
tual coupling parameters are set as c(1) = 0.3, c(l) =
c(1)ejπ(l−1)/4/l, and B = 10. The RMSE performance versus
SNR is presented in Fig. 10. Fig. 11 shows the performance
versus snapshots.

In Fig. 10, the URA cannot work properly due to the
large mutual coupling effects between different antennas. The
proposd ENPAmc has smaller RMSE than other configurations
because of the reduced mutual coupling design. Similarly, the
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Fig. 11. RMSE of DOA versus the number of snapshots in the presence of
mutual coupling.

performance of the three non-redundant arrays is better than
other array configurations for different snapshots according to
Fig. 11.

VI. CONCLUSIONS

In this paper, a framework for non-redundant sparse planar
array design has been proposed. The designed arrays can
achieve the maximum possible DOFs due to no redundancies
in the generated virtual arrays. The rule for non-redundant
design of planar arrays was first introduced, which is also
the basic design criterion. According to GDP, the enhanced
non-redundant sparse planar array design was developed.
Furthermore, two types of MILP optimization approaches, the
convex hull and the big M -representation, were considered.
Then, taking different application conditions into considera-
tion, three kinds of non-redundant sparse planar arrays were
designed for minimum array area, pre-determined array area,
and reduced mutual coupling, respectively. Simulation results

have demonstrated the superior performance of the proposed
planar array configurations for DOA estimation, especially in
the presence of mutual coupling effects.
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