
A descent algorithm for the optimal control of ReLU
neural network informed PDEs based on approximate

directional derivatives

Guozhi Dong 1, Michael Hintermüller 2,3, Kostas Papafitsoros 4

Abstract. We propose and analyze a numerical algorithm for solving a class of optimal control
problems for learning-informed semilinear partial differential equations. The latter is a class of PDEs
with constituents that are in principle unknown and are approximated by nonsmooth ReLU neural
networks. We first show that a direct smoothing of the ReLU network with the aim to make use of
classical numerical solvers can have certain disadvantages, namely potentially introducing multiple
solutions for the corresponding state equation. This motivates us to devise a numerical algorithm
that treats directly the nonsmooth optimal control problem, by employing a descent algorithm
inspired by a bundle-free method. Several numerical examples are provided and the efficiency of the
algorithm is shown.

Keywords. Optimal control of nonsmooth partial differential equations, data-driven models, neural
networks, bundle-free methods, descent algorithms

1. Introduction

1.1. Context and motivation. In this paper we study a numerical algorithm for the following
artificial neural network based optimal control problem:

(PN)
minimize J(y, u) :=

1

2
∥y − g∥2L2(Ω) +

α

2
∥u∥2L2(Ω), over (y, u) ∈ H1

0 (Ω)× L2(Ω),

subject to
{−∆y +N (·, y) = u, in Ω,

y = 0, on ∂Ω,
and u ∈ Cad.

Here Ω denotes an open, bounded, Lipschitz domain in Rd with boundary ∂Ω, d ≥ 2, g ∈ L2(Ω) is a
given desired state, α > 0 is fixed, and Cad is an admissible set for the control u, which is assumed to
be a nonempty, closed and convex subset of Lp(Ω) for some p ≥ 2. The state (variable) is y which,
given a control u, solves a semilinear elliptic partial differential equation (PDE), the state equation.
The term that renders the above problem nonstandard is the function N : Rd×R → R, a constituent
of the PDE acting as a constraint for the minimization problem. In fact, throughout we assume
that N represents a ReLU (Rectified Linear Unit) artificial neural network, that is, a neural network
that has the ReLU σ(t) := max(t, 0) as its activation function. We note that the ReLU is one of
the most common and advantageous activation functions in deep learning [6, 17], see Section 2 for
more details and definitions. As a result, N is in general a nonlinear and nonsmooth function. We
mention that here we consider N to be monotonically increasing in the variable y which guarantees
the uniqueness of a solution to the state equation, resulting in a well-defined control-to-state map.

The semilinear PDE in (PN) is thus an instance of a learning-informed PDE, a concept that was
introduced in [13] and further explored recently in other works [1, 22]. We assume that it forms an

1School of Mathematics and Statistics, HNP-LAMA, Central South University, Lushan South Road 932, 410083
Changsha, China
2Institute for Mathematics, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
3Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Mohrenstrasse 39, 10117 Berlin, Germany
4School of Mathematical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, UK
Emails: guozhi.dong@csu.edu.cn, hintermueller@wias-berlin.de, k.papafitsoros@qmul.ac.uk

1

mailto:guozhi.dong@csu.edu.cn
mailto:Hintermueller@wias-berlin.de
mailto: k.papafitsoros@qmul.ac.uk

approximating model to an unknown ground truth physical law expressed by

(1.1)
{−∆y + f(·, y) = u, in Ω,

y = 0, on ∂Ω,

with the function f being some unknown nonlinearity, which is approximated by the network N .
This could be achieved for instance in a setting where we have at our disposal a dataset

D := {(yi, ui) : yi (approximately) solves (1.1) for ui, i = 1 . . . , nD},
which corresponds to some pre-specified controls and associated state responses, collected for exam-
ple through measurements or computations. This dataset can be used towards evaluation instances
of f via f(xj , yi(xj)) ≃ ui(xj)+∆yi(xj) where {xj}ℓj=1 is an appropriate discrete collection of points
in the domain. Using these instances as a training set, a neural network N can be trained in the
context of supervised learning in an offline phase, and take the role of an approximating map for
the unknown f . Applications of the above framework were considered in [13] in order to learn the
physical law that governs the separation of a fluid into two immiscible phases as well as to learn
the physical law behind magnetic resonance imaging (MRI), where, instead of a PDE, a system of
ordinary differential equations (ODEs) acts as a constraint [12].

Several theoretical aspects of the optimal control problem (PN) were studied in detail in [14].
There, existence and uniqueness of solutions to the state equation were shown, as well as continuity
and directional differentiability properties of the control-to-state map. The main challenge here is
the aforementioned nonsmoothness of N due to the ReLU. In fact, it can be shown that the set of
functions represented by ReLU neural networks coincides with the family of piecewise affine maps.
In general one does not expect the associated control-to-state map SN to be Gâteaux differentiable
which poses difficulties in the derivation of first-order optimality conditions for the optimal control
problem. Addressing this latter aspect, stationary conditions were derived in the companion work
[14] based on generalized differentiability concepts. In this paper, we focus on establishing algorithms
for the numerical solution of (PN) towards the approximation of so-called B-stationary points.

With the desire of making use of classical numerical solvers, an immediate approach to solv-
ing (PN) would be to regularize the problem by smoothing the nonsmooth component N . As
a consequence, the classical Karush-Kuhn-Tucker theory for stationarity (see, e.g., [29]) becomes
available and solvers from (smooth) nonlinear programming, such as sequential quadratic program-
ming [24, 21], may be employed. Indeed such an approach has also been for long used in order to
derive limiting optimality conditions (under vanishing regularization) which unfortunately typically
leads to stationarity systems containing less information when compared to the strong stationarity
conditions as in [5, 10, 23], obtained by using nonsmooth analysis techniques. In this work, we show
that in the case of ReLU learning-informed PDEs, additional issues can arise from a smoothing ap-
proach. In particular, due to a potentially large architecture of a network N (large number of layers
and neurons), a natural and efficient way to smoothen N (after its training has been completed)
would be via simply smoothing the ReLU function in N , denoted now by σϵ, resulting in a smooth
network Nϵ approximating N . We refer to this technique as canonical smoothing of N . However we
show with simple examples that this type of smoothing does not necessarily preserve monotonicity
for deep enough networks, and in fact it does not even preserve it in a way that monotonicity of
the PDE operator could still be shown. This possibly renders the resulting control-to-state map
SNϵ multi-valued, posing difficulties when resorting to classical algorithms for the solution of the
regularized problem. This is yet another motivation for us to devise numerical methods which are
capable of directly solving (PN). In this vein, we propose to adapt the bundle-free method from [20],
originally developed for a class of mathematical programs with equilibrium constraints (MPECs).
The proposed algorithm makes use of an auxiliary optimization problem as in [20], and we show that
by approximating the derivatives of the ReLU network (but not the ReLU itself!) via a smoothed
max-function, then a descent direction for a reduced version of (PN) at a given control iterate is
identified or (ideally) B-stationarity of that iterate can be diagnosed. We also mention that in
[10], an algorithm for solving a very specific nonsmooth semilinear PDE (in a first-discretize-then-
optimize flavor) in the absence of control constraints has been proposed, where N (·, y) = max(0, y).

2

However, as it was also noted by the authors of [10] their algorithm cannot be applied to general
nonsmooth semilinear PDEs, and an efficient algorithm for the general case calls for new ideas. The
current paper aims to cover this gap.

1.2. Structure of the paper. In Section 2 we focus on the structure of the functional form of
ReLU networks. We are in particular interested in understanding how this structure changes af-
ter smoothing the ReLU network function via regularization of the associated activation function
(canonical smoothing). Here our main focus is on how this kind of smoothing can break the mono-
tonicity of the network. The implication of the latter concerning the emergence of nonuniqueness
of solutions of the learning-informed state equation is discussed in Section 3. We also collect basic
results concerning the general optimal control problem (PN) and in particular we recall the station-
arity conditions derived in [14]. In Section 4, we introduce and analyze a descent algorithm that
directly treats the nonsmooth optimal control problem. It is applied in Section 5 to several instances
of an optimal control problem with a ReLU network-informed semilinear second-order elliptic PDE.
In particular, also a nonmonotone setting is considered in order to challenge the solver.

2. Smoothings of ReLU neural networks

2.1. Definition and basic properties. We first fix some notation. For a set A, the characteristic
and the indicator functions 1A and XA, respectively, are defined as 1A(x) = 1 if x ∈ A and 1A(x) = 0
otherwise, and XA(x) = 0 if x ∈ A and XA(x) = +∞ otherwise. Unless otherwise stated ⟨·, ·⟩ denotes
the standard L2 inner product.

Definition 2.1 (Standard feedforward multilayer neural network). Let L ∈ N, network parameters
θ = ((W1, b1), . . . , (WL, bL)) with Wi ∈ Rni×ni−1 , bi ∈ Rni , for i = 1, . . . , L and ni ∈ N for i =
0, . . . , L. Furthermore let σ : R → R be an arbitrary function. We call a function N : Rn0 → RnL

a neural network with weight matrices (Wi)
L
i=1, bias vectors (bi)

L
i=1 (the network parameters) and

activation function σ if N (x) can be defined through the following recursive relation for any x ∈ Rn0:

z0 = x,(2.1)
zℓ = σ (Wℓzℓ−1 + bℓ) , ℓ = 1, . . . , L− 1,(2.2)

N (x) = WLzL−1 + bL.(2.3)

The action of the activation function σ in (2.2) is considered componentwise i.e. for a vector y =
(y1, . . . , yn) ∈ Rn we set σ(y) := (σ(y1), . . . , σ(yn)). More compactly, N can also be defined as

(2.4) N (x) = TL ◦ σ(TL−1) ◦ · · · ◦ σ(T2) ◦ σ(T1(x)), x ∈ Rn0 ,

where for every ℓ = 1, . . . , L, TL denotes the affine transformation z 7→ Wℓz + bℓ.

We call N a ReLU neural network if σ is the ReLU (Rectified Linear Unit) activation function:

(2.5) σ(t) = max(t, 0), t ∈ R.

Following the standard neural network terminology, we say that a neural network defined as in
(2.1)–(2.3), has L layers and L − 1 hidden layers, with the latter denoting the operations in (2.2).
The final operation (2.3) is called the output layer. Furthermore, ni is the number of neurons in the
i-th layer, i = 1, . . . , L, that is, it is the number of rows of the weight matrix Wi. The number of
neurons of a given layer is also called the width of that layer, while the number of layers is called
the depth of the network.

We should note that a neural network as a function, does not necessarily admit a unique represen-
tation with respect to the weight matrices, the bias vectors and the activation functions. Furthermore
in the Definition 2.1, the input of the ℓ-th layer consists only of the output zℓ−1 of the previous layer.
A more general neural network definition would allow the input for each layer to depend on the out-
put of all the previous layers. In that case every Wℓ would be a weight matrix of size Rni×(

∑ℓ−1
k=0 nk).

However, since every network of the latter type can be realized by a network as in (2.1), see [18], we
will stick to the more classical definition given above.

3

We are interested in the regularity of the functions that are realized by ReLU neural networks.
It turns out that the latter class coincides with the class of continuous piecewise affine functions.

Definition 2.2 (Continuous piecewise affine functions). Let n0 ∈ N. We say that a function F :
Rn0 → R is continuous piecewise affine (CPWA) if the following condition holds:

• F is continuous and there exist finitely many affine maps f1, . . . , fp : Rn0 → R for some
p ∈ N such that for every x ∈ Rn0, there exists an i ∈ {1, . . . , p} such that F(x) = fi(x).

We refer to [2, 3, 28] for further equivalent characterizations of CPWA functions. Note that
the above definition follows [2, Theorem 4.5] and it is perhaps the simplest of all the equivalent
characterizations. In particular this definition does not require to explicitely mention that a piecewise
affine function is associated with a partition of Rn0 by polyhedra.

Theorem 2.3 (Characterization of ReLU neural networks, [3]). A function N : Rn0 → R is a ReLU
neural network if and only if it is a CPWA function.

From the definition (2.1)–(2.3) it is clear that N : Rn0 → RnL , nL ≥ 1, is an RnL-valued ReLU
neural network if and only if N = (N1, . . . ,NnL) with each Ni : Rn0 → R, i = 1, . . . , L being a
scalar-valued ReLU neural network. Thus N is an RnL-valued ReLU neural network if and only if it
is an RnL-valued CPWA function, with the latter defined exactly as in Definition 2.2 with the only
difference being that the affine maps fi are RnL-valued.

To give an example, for p ≥ 2 and t1 ≤ · · · ≤ tp−1, we consider the following one dimensional
continuous piecewise affine function F with

(2.6) F(t) =





a1t+ γ1 if t ≤ t1,

ait+ γi if ti−1 ≤ t ≤ ti, i = 2, . . . p− 1,

apt+ γp if t ≥ tp−1.

Note that we assume that (ai, γi)
p
i=1 satisfy the appropriate conditions such that F is continuous.

Then it can be checked, see for instance [2, Corollary 3.5], that F can be written as

F(t) = a1t+ γ1 +

p−1∑

i=1

(ai+1 − ai)max(t− ti, 0)

= a1(max(t, 0)− a1max(−t, 0) +

p−1∑

i=1

(ai+1 − ai)max(t− ti, 0) + γ1.(2.7)

This means that F can be realized as a ReLU neural network with one hidden layer having p + 1
neurons. In particular, F = T2 ◦ σ(T1), where T1(t) = W1t + b1, T2(z) = W2z + b2 with W1 =

(1,−1, 1, 1, . . . , 1)T ∈ R(p+1)×1, b1 = (0, 0,−t1 . . . ,−tp−1)
T ∈ R(p+1)×1, and W2 = (a1,−a1, a2 −

a1, . . . , ap − ap−1) ∈ R1×(p+1), b2 = γ1 ∈ R.
Another characteristic of ReLU neural networks are their approximation capabilities. In fact it

can be easily checked that given a bounded domain U ⊂ Rn0 with Lipschitz boundary we have that
for every ϵ > 0 and f ∈ W 1,∞(U) there exists a ReLU neural network Nϵ : Rn0 → R such that
∥Nϵ − f∥W 1,∞(U) < ϵ, see also [14, Section 2.2].

2.2. Smoothings of ReLU neural networks. We are also interested in smoothing versions of
ReLU networks. One canonical way to achieve smoothing is via appropriately smoothing the ReLU
function σ which is the constituent of the network that determines its regularity. In optimal control,
typically specific approximating sequences are used [10, 23, 25] which we will also employ here.

Definition 2.4 (Canonical smoothing of ReLU). We say that the family σϵ : R → R (or ReLUϵ),
ϵ > 0, is a canonical smoothing of the ReLU function if:

(i) σϵ is a nonnegative, convex, monotonically increasing C1(R) function for all ϵ > 0.
4

(ii) σϵ → σ uniformly and monotonically as ϵ → 0, i.e.,

|σϵ1(x)− σ(x)| ≤ |σϵ2(x)− σ(x)| for 0 < ϵ1 ≤ ϵ2 and for every x ∈ R.
We say that a family of networks Nϵ : Rn0 → RnL, ϵ > 0, is a canonical smoothing of the ReLU
network N : Rn0 → RnL if it results from N by simply substituting the activation function σ by σϵ.

Lemma 2.5. Let (σϵ)ϵ>0, be a canonical smoothing of the ReLU function. Then the following two
additional properties hold:

(i) For all ϵ > 0 small enough, we have that 0 ≤ σ′
ϵ(t) ≤ 1, for all t ∈ R.

(ii) For every fixed δ > 0, we have that σ′
ϵ converges uniformly to 1 on [δ,∞) and uniformly to

0 on (−∞, − δ] as ϵ → 0.

Proof. Suppose that (i) does not hold. Then because every σϵ is convex and hence σ′
ϵ is increasing,

there exists ϵn → 0 and tn ∈ R such that σ′
ϵn(t) > 1 for every t ∈ [tn,∞). But that means that for

every n ∈ N there exists t ∈ [tn,∞) such that σϵn(t) is arbitrary far away from σ(t) contradicting
the uniform convergence.

For (ii), we fix δ > 0 and we first show that σ′
ϵ converges uniformly to 1 on [δ,∞). Given the

monotonicity of σ′
ϵ and (i), it suffices to show that limϵ→0 σ

′
ϵ(δ) = 1. We prove this by contradiction.

If this is not the case, then by (i), there exists a sequence ϵn such that limϵn→0 σ
′
ϵn(δ) = η for some

η ∈ [0, 1). By convexity, it holds that σϵn(0) ≥ σϵn(δ)−σ′
ϵn(δ)δ. From this we infer limn→∞ σϵn(0) ≥

(1 − η)δ > 0 which, however, contradicts limϵ→0 σϵ(0) = 0. The uniform convergence of σ′
ϵ to 0 on

(−∞,−δ] is proved similarly. □

There are numerous options for a canonical smoothing of the ReLU function, see for instance
Figure 1. It is also clear that Nϵ → N uniformly but as we will show later with a counterexample
the convergence does not have to be necessarily monotonic.

Nevertheless the following holds:

Proposition 2.6. Let N , (Nϵ)ϵ>0 : Rn0 → RnL be a ReLU network and a canonical smoothing of
it. Then it holds:

(2.8) ∥Nϵ −N∥∞ ≤ M∥σϵ − σ∥∞,

where the constant M does not depend on ϵ but only on the parameters of N . In particular, Nϵ → N
uniformly as ϵ → 0.

Furthermore, for every 1 ≤ p < ∞ and for every open bounded U ⊂ Rn0 we have that

(2.9) ∥∇Nϵ −∇N∥Lp(U) → 0, as ϵ → 0.

Proof. In order to show (2.8) we will show the result for networks with two hidden layers and then
one can proceed via induction. Let N = T3

(
σ
(
T2(σ(T1))

))
and Nϵ = T3

(
σϵ
(
T2(σϵ(T1))

))
be a

two hidden layer ReLU network and its corresponding canonical smoothing, in accordance to the
formulation (2.4) (without loss of generality let T3 be linear). Then, setting N (2)(x) := T2(σ(T1(x)))

and N
(2)
ϵ (x) := T2(σϵ(T1(x))), we estimate successively for x ∈ Rn0

|N (2)
ϵ (x)−N (2)(x)| = |T2(σϵ(T1(x)))− T2(σ(T1(x)))| ≤ ∥T2∥|σϵ(T1(x))− σ(T1(x))| ≤ ∥T2∥∥σϵ − σ∥∞.

(2.10)

We then further estimate

|Nϵ(x)−N (x)| = ∥T3∥
∣∣∣(σϵ(N (2)

ϵ (x))− σ(N (2)(x)))
∣∣∣

≤ ∥T3∥
(∣∣∣σϵ(N (2)

ϵ (x))− σϵ(N
(2)(x))

∣∣∣+
∣∣∣σϵ(N (2)(x))− σ(N (2)(x))

∣∣∣
)

≤ ∥T3∥(∥T2∥∥σϵ − σ∥∞ + ∥σϵ − σ∥∞)

≤ M∥σϵ − σ∥∞,

where we employed the mean value theorem for σϵ, using the fact that 0 ≤ σ′
ϵ ≤ 1. The induction

step follows similarly.
5

−2 −1.6 −1.2 −0.8 −0.4 0 0.4 0.8 1.2 1.6 2

0

0.4

0.8

1.2

1.6

2

σε(t) =





0 t ≤ − ε
2

1
2ε (t+

ε
2)

2 − ε
2 ≤ t ≤ ε

2

t t ≥ ε
2

ε = 3
ε = 2
ε = 1
ε = 0.5
ReLU

2

−2 −1.6 −1.2 −0.8 −0.4 0 0.4 0.8 1.2 1.6 2

0

0.4

0.8

1.2

1.6
σ′
ε(t) =





0 t ≤ − ε
2

1
ε (t+

ε
2) − ε

2 ≤ t ≤ ε
2

1 t ≥ ε
2

ε = 3
ε = 2
ε = 1
ε = 0.5
ReLU′

2

−2 −1.6 −1.2 −0.8 −0.4 0 0.4 0.8 1.2 1.6 2

0

0.4

0.8

1.2

1.6

2

σε(t) = ε ln(1+ex/ε)

ε = 0.8
ε = 0.4
ε = 0.2
ε = 0.1
ReLU

2

−2 −1.6 −1.2 −0.8 −0.4 0 0.4 0.8 1.2 1.6 2

0

0.4

0.8

1.2

1.6
σ′ε(t) =

1

1 + e−x/ε

ε = 0.8
ε = 0.4
ε = 0.2
ε = 0.1
ReLU′

2

Figure 1. Examples of canonical smoothings of the ReLU functions together with
depiction of the corresponding derivative approximations. In particular, the second
one is the so-called Softplus function, whose derivative is the logistic function - both
extensively used in machine learning.

For (2.9), notice first that N restricted to U (a function that we still denote by N) belongs to
W 1,∞(U), being Lipschitz. In particular ∇N : U → RnL×n0 is a function in L∞(U) and – see [7,
Theorem III.1] – for almost every x it is equal to

(2.11) ∇N (x) = WL · σ′(N (L−1)(x)) ·WL−1 · . . . · σ′(N (1)(x)) ·W1,

with N (K) defined as above and σ′ := 1(0,∞) being applied pointwise. Note that, while σ′(N i(x))
is an Rni-vector, in (2.11) using the same notation we denote the ni × ni diagonal matrix with the
same vector in the diagonal. Analogously ∇Nϵ ∈ C(U) where for every x

(2.12) ∇Nϵ(x) = WL · σ′
ϵ(N

(L−1)
ϵ (x)) ·WL−1 · . . . · σ′

ϵ(N
(1)
ϵ (x)) ·W1.

We check that ∇Nϵ → ∇N almost everywhere, and then (2.9) follows by employing the dominated
convergence theorem using the fact that ∇Nϵ is uniformly bounded in L∞(U) since 0 ≤ σ′

ϵ ≤ 1
for every ϵ > 0. In order to show the almost everywhere pointwise convergence of the gradients, in
view of the recursive formulas (2.11) and (2.12), and considering an inductive argument it suffices
to show that if N := (N1, . . . , Nn) : Rm → Rn is a ReLU network, Nϵ is a canonical smoothing such
that ∇Nϵ → ∇N almost everywhere as ϵ → 0 then also

(2.13) σ′
ϵ(Nϵ)∇Nϵ → σ′(N)∇N, a.e. as ϵ → 0.

Let Ũ be the set of full measure where ∇Nϵ → ∇N converges pointwise. Fixing an 1 ≤ i ≤ n, as a
first case, let x ∈ Ũ be such that Ni(x) ̸= 0. Then using Ni,ϵ(x) → Ni(x) and Lemma 2.5 (ii), we
get σ′

ϵ(Ni,ϵ(x)) → σ′(Ni(x)) and hence (2.13) holds for that x and the i-th row. Let now x ∈ Ũ such
that Ni(x) = 0. Since Ni is Lipschitz then, see e.g. [16, Theorem 3.3(i)], the set of such x such that

6

∇iN(x) ̸= 0 has a zero Lebesgue measure, so we can assume that ∇iN(x) = 0. Then (2.13) for the
i-th row follows from the fact that ∇iNϵ(x) → ∇iN(x) = 0 and the fact that 0 ≤ σ′

ϵ ≤ 1. □

Remark 2.7. Looking at the examples of Figure 1 one can see that σϵ can be actually chosen such
that

(2.14) ∥σϵ − σ∥∞ ≤ cϵ, for every ϵ > 0,

for some constant c > 0. Then (2.8) could be written in a stronger form as

(2.15) ∥Nϵ −N∥∞ ≤ Mϵ, for every ϵ > 0.

Since our focus here is on ReLU learning-informed PDEs, that is, PDEs that contain a ReLU
neural network, we are particularly interested in monotonically increasing networks. As we will see
later, they will guarantee uniqueness for the corresponding PDE. In particular we are interested in
whether the monotonicity of the ReLU networks can be preserved under canonical smoothing, or
not. If the latter is the case, then we study to which extent the resulting nonmonotone part can
be controlled by the smoothing parameter ϵ > 0. In what follows we will always make a distinction
between monotonically increasing and strictly monotonically increasing functions. The following
proposition sheds some light on this context.

Proposition 2.8. The following are true:
(i) There exists a canonical smoothing σ̃ϵ of the ReLU function such that for every (strictly)

monotonically increasing one-hidden layer ReLU network N : R → R, its corresponding
canonical smoothing Nϵ under σ̃ϵ is also (strictly) monotone for every ϵ > 0. However
preservation of monotonicity of one-hidden layer ReLU networks does not necessarily hold
for an arbitrary canonical smoothing.

(ii) The property of the above canonical smoothing σ̃ϵ does not hold for ReLU networks with more
than one hidden layers. That is, there exists a monotone increasing two-hidden layer ReLU
network such that its canonical smoothing Nϵ under σ̃ϵ is not monotonically increasing for
every ϵ > 0.

Proof. For (i) it suffices to define σ̃ϵ = ρϵ ∗ σ, where ρϵ(t) = ϵ−1ρ(t/ϵ) and ρ being the standard
mollifier,

ρ(t) = ce
− 1

1−t2 .

Here c > 0 is a constant such that
∫
R ρ dx = 1. It is easy to check that σ̃ϵ is a canonical smoothing.

For instance, the uniform convergence of σ̃ϵ to σ can be shown by standard techniques also taking
advantage of the uniform continuity of both σ and σ̃ϵ. Let N be an one hidden layer ReLU network,
that is

N (t) = b2 +W2σ(W1t+ b1)

= b2 +

n1∑

i=1

wi
2σ(w

i
1t+ bi1),

where W1 = (w1
1, . . . , w

n1
1)T , W2 = (w1

2, . . . , w
n1
2), b1 = (b1, . . . , bn1)

T and b2 ∈ R. Then from the
linearity of convolution we have

Nϵ(t) := b2 +

n1∑

i=1

wi
2ρϵ ∗ σ(wi

1t+ bi1) = ρϵ ∗
(
b2 +

n1∑

i=1

wi
2σ(w

i
1t+ bi1)

)
= ρϵ ∗ N (t).

Hence if N is (strictly) monotone then Nϵ is (strictly) monotone as well, since it is immediate to
check that this convolution preserves (strict) monotonicity.

In order to see that the above property does not hold for an arbitrary canonical smoothing,
consider for instance the canonical smoothing of the first example of Figure 1. Let N be the ReLU
neural network defined as

N (t) = max(λ1t, 0) + max(λ2t, 0)−max(λ3t, 0)−max(λ4t, 0),
7

where λ1, λ2, λ3, λ4 > 0 and λ1 + λ2 = λ3 + λ4 . This network has one hidden layer with 4
neurons and obviously, N ≡ 0 and is hence monotone. Given ϵ > 0, we have that for every
t ∈ [−ϵ/2λmax, ϵ/2λmax], with λmax := maxiλi that

(2.16) N ′
ϵ(t) = (λ2

1 + λ2
2 − λ2

3 − λ2
4)
t

ϵ
.

Then by simply choosing λi such that the specific linear combination of their squares in (2.16) is
not zero, we get that the derivative of Nϵ changes sign in a small neighbourhood of the origin and
thus implies nonmonotonicity.

In order to produce a counterexample for (ii) consider

M(t) = max(−max(t, 0), 0) = σ(−σ(t)),

which is a two-hidden layer ReLU neural network realizing again the zero function, and let Mϵ(t) =
σ̃ϵ(−σ̃ϵ(t)) denote its canonical smoothing under σ̃ϵ = ρϵ ∗ σ. Note that

(ρϵ ∗ σ)(t) =





0 if t ≤ −ϵ,
1
ϵ

∫
B(t,ϵ) ρ

(
t−s
ϵ

)
σ(s) ds if − ϵ < t < ϵ,

t if t ≥ ϵ.

For the derivative of Mϵ, it obviously holds that M′
ϵ(t) = −σ̃′

ϵ(−σ̃ϵ(t))σ̃
′
ϵ(t) ≤ 0. Furthermore, for

t ≥ ϵ, we have Mϵ = 0, while for t ≤ −ϵ we have Mϵ(t) = σϵ(0) > 0. Hence Mϵ is monotonically
decreasing. □

−0.4 −0.2 0 0.2 0.4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
N1(t) = σ(5t) + σ(5t)
N2(t) = −σ(9t)− σ(t)
N (t) = N1(t) +N2(t)
N1,ε(t) = σε(5t) + σε(5t)
N2,ε(t) = σε(9t) + σε(t)
Nε(t) = N1,ε(t) +N2,ε(t)

2

−0.4 −0.2 0 0.2 0.4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
N1(t) = σ(5t) + σ(5t)
N2(t) = −σ(9t)− σ(t)
N (t) = N1(t) +N2(t)
N1,ε(t) = σε(5t) + σε(5t)
N2,ε(t) = σε(9t) + σε(t)
Nε(t) = N1,ε(t) +N2,ε(t)

2

−6 −4 −2 0 2 4 6

−4

0

4

8

12

16

20
N
Nε, ε = 10
Nε, ε = 5
Nε, ε = 2.5
Nε, ε = 1.25

2

−6 −4 −2 0 2 4 6

−4

0

4

8

12

16

20
M
Mε, ε = 10
Mε, ε = 5
Mε, ε = 2.5
Mε, ε = 1.25

−4 −3 −2 −1 0 1 2 3 4
5

6

7

8

9

10

11

2

2

−6 −4 −2 0 2 4 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

σ(−σ(t))
σε(−σε(t)), ε = 10
σε(−σε(t)), ε = 5
σε(−σε(t)), ε = 2.5
σε(−σε(t)), ε = 1.25

2

Figure 2. Examples of non preservation of monotonicity of ReLU networks after
canonical smoothing as these are dictated by Proposition 2.8.

In Figure 2 we see a visualization of the examples given in Proposition 2.8. At the top part
of the figure, we provide an example corresponding to (i) of Proposition 2.8. There, the zero
function is written as a one hidden layer ReLU network, N (t) = max(5t) + max(5t)−max(9t, 0)−
max(t, 0) (dashed black line). Using the canonical smoothing of the first example of Figure 2.8 the
monotonicity is not preserved (top left, black solid line). On the other hand the linear smoothing
σ̃ϵ = ρϵ ∗ σ preserves the monotonicity, see top right plot. At the bottom part of Figure 2 we have

8

expressed the same monotone increasing CPWA function as a ReLU network of both one and two
hidden layers, N and M respectively,

N (t) = 4max(t, 0)− 4max(−t, 0) + 20− 4max(t+ 3, 0) + 3max(t− 3, 0),

M(t) = N (t) + max(−max(t, 0), 0),

where M trivially results by adding the zero function max(−max(t, 0), 0) to N . Nevertheless their
canonical smoothings Nϵ and Mϵ under the same σϵ look rather different. We note that here we
depict this for the canonical smoothing of the first example of Figure 2.8 but the differences are
similar for σ̃ϵ. The canonical smoothing Nϵ of the one hidden layer network remains monotonically
increasing (bottom left), which is not the case for the two hidden layer network Mϵ (bottom middle).
This is due to the term max(−max(t, 0), 0) whose canonical smoothing introduces a decreasing part
near the origin, see bottom right plot of Figure 2.

Remark 2.9. Note that even though canonical smoothings do not necessarily preserve monotonicity
– in particular as we saw, if N is increasing, Nϵ does not have to be increasing as well – nevertheless
the negative part of the derivative (N ′

ϵ)
− := max(−N ′

ϵ , 0) can be controlled. Specifically, according
to Proposition 2.6, if N : R → R is a monotonically increasing ReLU network – in particular
(N ′)− = 0, then given an open bounded U ⊂ R, and 1 ≤ p < ∞, we have for every canonical
smoothing Nϵ that

(2.17) ∥(N ′
ϵ)

−∥Lp(U) → 0, as ϵ → 0.

3. Basic facts of the optimal control problem and implications of smoothing

Recall the main learning-informed optimal control problem:

(PN)
minimize J(y, u) :=

1

2
∥y − g∥2L2(Ω) +

α

2
∥u∥2L2(Ω), over (y, u) ∈ H1

0 (Ω)× L2(Ω),

subject to
{−∆y +N (·, y) = u, in Ω,

y = 0, on ∂Ω,
and u ∈ Cad,

where the different constituents are defined in the introduction. We mention that in [14] a more
general setting was adopted by considering a function f instead of N , belonging to a slightly larger
family than the one defined by ReLU neural networks, with the main characteristic that y 7→
f(x, y) is directionally differentiable. Here, we note that N is additionally Hadamard directionally
differentiable with respect to the second variable. Using the chain rule for Hadamard directionally
differentiable functions we can state a recursive formula for N ′

x(y;h), where for every x ∈ Rd

N ′
x(y;h) := lim

tn→0+

N (x, y + tnh)−N (x, y)

tn
.

Indeed, for z := (x, y), and for N (2)(z) = W2 · σ(W1z + b1) + b2, W2 ∈ R1×n1 , W1 ∈ Rn1×(d+1),
b1 ∈ Rn1 , b2 ∈ R, we have that for any y, h ∈ R

(N (2))′x(y;h) = W2 ·
(
1(0,∞)(W1z + b1)W1(:, n0)h+ 1{0}(W1z + b1)max(0,W1(:, n0)h)

)
.(3.1)

Here W1(:, n0) denotes the last column of W1, and 1(0,∞)(W1z+b1) is a diagonal matrix, whose diago-
nal consists of the vector resulting from the componentwise action of the function 1(0,∞)(·) on the vec-
tor W1z+ b1 – similarly for the second summand in (3.1). Recursively for N (ℓ) = Wℓσ(N

ℓ−1(z))+ bℓ
we have

(N (ℓ))′x(y;h) = Wℓ ·
(
1(0,∞)(N

(ℓ−1)(z))(N (ℓ−1))′x(y;h) + 1{0}(N
(ℓ−1)(z))max(0, (N (ℓ−1))′x(y;h))

)
.

(3.2)

Comparing the formulas (3.1)–(3.2) with the formula (2.11) for the weak gradient of N , one notes
that while (2.11) holds almost everywhere, the formulas for the directional derivatives hold at every
point.

9

We will also make use of the function space

(3.3) Y := {y ∈ H1
0 (Ω) : ∆y ∈ L2(Ω)},

which is a separable Hilbert space with inner product (y, v)Y :=
∫
Ω∆y∆v+∇y∇v+ yv dx and it is

compactly embedded in H1
0 (Ω), see for instance [10]. Let N be the Nemytskii operator y 7→ N(y),

with N(y)(x) := N (x, y(x)) for y in some Lp space. Note that N : Lp(Ω) → Lp(Ω) is Lipschitz
continuous for every fixed 1 ≤ p ≤ ∞. We also remark, see [14, Section 3.2], that N : Lp(Ω) → Lp(Ω)
for 1 ≤ p < ∞ is Hadamard directionally differentiable with the directional derivative N ′(y;h) ∈
Lp(Ω) defined via N ′(y;h)(x) = N ′

x(y(x);h(x)). Next we briefly summarize the basic results of [14]
(see also [8] for a related result) concerning the optimal control problem (PN).

Theorem 3.1 ([14]). The following hold for the learning-informed optimal control problem (PN)
where we also assume that p > d

2 and p ≥ 2:

(i) For every u ∈ Lp(Ω), there exists a unique solution y ∈ Y ∩ C0,a(Ω) for the state equation of
(PN), where a > 0 depends only on p, d and Ω. In particular, for every M > 0 there exists a
constant ca (that depends on M) such that

(3.4) ∥y∥C0,a(Ω) ≤ ca∥u−N (·, 0)∥Lp(Ω), for all ∥u∥Lp(Ω) ≤ M.

(ii) The control-to-state map S : Lp(Ω) → Y is Hadamard directionally differentiable, and given
u ∈ Lp(Ω) and a direction h ∈ Lp(Ω), S′(u;h) := zh ∈ Y ∩ C0,a(Ω) is the unique solution of

(K)

{
−∆zh +N ′(y; zh) = h, in Ω,

zh = 0, on ∂Ω,

where y = S(u).
(iii) The optimal control problem (PN) has a solution.
(iv) (B-stationarity) If u ∈ Lp(Ω) is a local minimizer for (PN), y = S(u) is the associated

state, and J (·) = J(S(·), ·) is the reduced objective for (PN), then the pair (u, y) satisfies the
following variational inequality:

(3.5) J ′(u;h) = ⟨y − g, S′(u;h)⟩+ α⟨u, h⟩ ≥ 0, for all h ∈ TCad(u).

Here TCad(u) denotes the contingent cone of Cad at u ∈ Cad.
(v) (C-stationarity) If u ∈ Lp(Ω) is a local minimizer for (PN), and y = S(u) is the associated

state, then the pair (u, y) satisfies the following optimality system:

(3.6)





−∆p̄+ ζ̄ p̄ = ȳ − g in Ω, p̄ = 0 on ∂Ω,

ζ̄(x) ∈ ∂N (x, ȳ(x)) for almost every x ∈ Ω,

(p̄+ αū, u− ū) ≥ 0 for all u ∈ Cad,

for some nonnegative ζ̄ ∈ L∞(Ω) and for some adjoint state p̄ ∈ Y . Here ∂N (x, ȳ(x)) is the
Clarke generalized gradient of Nx := N (x, ·) : R → R evaluated at ȳ(x).

(vi) (Weak stationarity) We say that ū ∈ Lp(Ω) and ȳ = S(ū) satisfy the weak stationarity condition
if the first and the third conditions of (3.6) are satisfied for some nonnegative ζ̄ ∈ L∞(Ω) and
for some adjoint state p̄ ∈ Y . Obviously any pair (ū, ȳ) of local minimizers for (PN) is weak
stationary.

We recall here that TCad(u) is defined as

TCad(u) := {h ∈ Lp(Ω) : for all tn ↓ 0 existshn → h ∈ Lp(Ω) with u+ tnhn ∈ Cad for all n ∈ N}.
Note that it can be shown [9, Lemma 6.34], that if Cad is of the form

(3.7) Cad = {u ∈ Lp(Ω) : ua(x) ≤ u(x) ≤ ub(x), for almost every x ∈ Ω}
with ua, ub ∈ L∞(Ω), ua < ub almost everywhere, then TCad(u) can be characterized by

10

(3.8) TCad(u) =

{
h ∈ Lp(Ω) :

h(x) ≥ 0, almost everywhere in {x ∈ Ω : u(x) = ua(x)}
h(x) ≤ 0, almost everywhere in {x ∈ Ω : u(x) = ub(x)}

}
.

Apart from the primal notion of B-stationarity, and the primal-dual notions of weak and C-
stationarity also one more primal-dual stationarity concept was discussed in [14], namely strong
stationarity. There, the relationships between all these concepts were analyzed. Here we focus
on B-stationarity, and in particular our developed algorithm studied in Section 4 builds on that
notion. We only mention that the C-stationarity system (which is weaker than strong stationarity)
is obtained as a limiting optimality system where N is substituted by some smooth version Nϵ and
the smoothing parameter ϵ vanishes. In that case the smoothing of the network N does not need to
be canonical as it is only used as a tool in order to get this stationarity system in the limit. Next, we
discuss the limitations that arise when this regularization is used not in order to study the limiting
case, but in order to solve the corresponding regularized optimal control problem with a classical
numerical solver, via smoothing the problem for a fixed ϵ > 0.

Implications of the ReLU smoothing on the uniqueness of the state equation. There are,
in general, two levels of approximation involved in the optimal control of learning-informed PDEs.
The first level of approximation arises from the approximation of f by a sequence of ReLU neural
networks Nn and can be thought as the capability of the ReLU-informed PDE to approximate some
ground truth nonsmooth physical model. This is studied in [14, Proposition 3.3]. The second level
of approximation – as we mentioned above – considers the approximating PDEs that arise after
smoothing the ReLU network in order to treat the problem algorithmically with classical solvers.
As we have mentioned in the introduction, due to the potentially large architecture of a network N
(large number of layers and neurons), a natural and efficient way to smoothen it (after its training
has been completed) would via simply smoothing the ReLU function, with the canonical smoothing
procedure described in the previous section. This would result in the following smoothed version of
the ReLU learning-informed PDE

(ENϵ)
{−∆y +Nϵ(·, y) = u, in Ω,

y = 0, on ∂Ω.

However, nonuniqueness issues for the solutions of (ENϵ) can arise, as demonstrated above in Propo-
sition 2.8, since the resulting canonically smoothed network Nϵ is not necessarily monotonically
increasing. Uniqueness for the solutions of (ENϵ) could be derived by showing that the operator
Aϵ : H

1
0 (Ω) → H−1(Ω) with

⟨Aϵ(y), z⟩H−1(Ω),H1
0 (Ω) :=

∫

Ω
∇y∇z dx+

∫

Ω
Nϵ(x, y)z dx,

is strongly monotone and then applying the Browder-Minty theorem. This is certainly the case
if Nϵ was monotone in y, but it could also follow, at least for small ϵ > 0, see [14, Proposition
3.3], if ∇Nϵ → ∇N uniformly. However in the case of a canonical smoothing Nϵ, the convergence
of ∇Nϵ to ∇N as ϵ → 0 can only be guaranteed to hold with respect to the Lp norm, for every
1 ≤ p < ∞, see (2.9). The potential nonuniform convergence of ∇Nϵ to ∇N makes the application
of the Browder-Minty theorem problematic. In order to be more precise, it would suffice as in the
proof of [14, Proposition 3.3], to show that for every η > 0 there exists ϵ0 > 0 such that for every
0 < ϵ < ϵ0

(3.9)
∫

Ω
(Nϵ(x, y1)−Nϵ(x, y2))(y1 − y2) dx ≥ −η∥y1 − y2∥2L2(Ω),

11

for all y1, y2 ∈ H1
0 (Ω). Indeed in that case, denoting by cΩ the Poincaré inequality constant, we

would have for every y1, y2 ∈ H1
0 (Ω)

⟨Aϵ(y1)−Aϵ(y2), y1 − y2⟩ ≥
1

(cΩ + 1)2
∥y1 − y2∥2H1

0
+

∫

Ω
(Nϵ(x, y1)−Nϵ(x, y2))(y1 − y2) dx

≥
(

1

(cΩ + 1)2
− η

)
∥y1 − y2∥2H1

0
,

and thus by choosing 0 < η < 1/(cΩ + 1)2 we would get strong monotonicity for the operator Aϵ

for small enough ϵ > 0. Consider now the example of Figure 2, where for Nϵ : R → R it holds that
there exists a c > 0 such that for every ϵ > 0, there exists a δ > 0 such that

∇Nϵ(t) = N ′
ϵ(t) < −c, for every t ∈ (−δ, δ).

This means that for every y1 < y2 ∈ H1
0 (Ω) with values in (−δ, δ) a pointwise application of the

mean value theorem gives for some θ, with θ(x) ∈ (y1(x), y2(x))∫

Ω
(Nϵ(y1)−Nϵ(y2))(y1 − y2) dx =

∫

Ω
N ′

ϵ(θ)(y1 − y2)
2dx < −c∥y1 − y2∥2L2(Ω).

Hence if c > 0 turns out to be large, the absorption of the last term into 1
(cΩ+1)2

∥y1 − y2∥2H1
0 (Ω)

is not possible. We note however that one can still prove existence of solutions for the PDEs with
nonmonotone nonlinearity for instance by showing that the latter is equivalent to the Euler-Lagrange
equation of an associated variational problem, see for instance [13] or by using the theory of type
M operators as it is done in the next section. Nevertheless uniqueness can no longer be guaranteed.

Having a (canonical) smoothing Nϵ of N , that satisfies the properties of Proposition 2.6 with the
additional property that Nϵ(x, ·) is monotonically increasing for every x ∈ Ω, could be theoretically
achieved in two ways: The first way would be to take advantage of the fact that any ReLU network N
of arbitrary number of layers can be realized by a ReLU network of one hidden layer. Then one could
use the canonical smoothing derived from convolution σϵ := ρϵ ∗ σ that preserves monotonicity, see
(i) of Proposition 2.8. Of course such an approach would not necessarily work in practice in the case
one wants to use a classical solver in order to solve a smooth version of (PN), since the one-hidden
layer version of N cannot be easily derived. The second way, would be to consider abandoning the
canonical smoothing approach and smooth directly the multilayer network as Nϵ := ρϵ ∗ N . While
such an approach preserves monotonicity, the computation of a convolution of the network could
be computationally demanding and the resulting function cannot necessarily be represented by a
neural network. Hence, both approaches appear impractical.

Our discussion here should serve as a warning that using feasible canonical smoothing approaches
of N with the target of solving a smooth approximating problem to (PN) using standard algorithms
could be problematic since multiple solutions for the smoothed state equation might be introduced
by this process. This provides a further motivation for designing algorithms that directly solve the
nonsmooth problem as we do in the following Sections 4 and 5.

4. A descent algorithm for B-stationarity

In this section we introduce a descent algorithm for the ReLU network learning-informed optimal
control problem (PN) and discuss its convergence. We recall that N is assumed monotone in y
which gives rise to a unique solution of the learning-informed state equation.

4.1. A descent algorithm. We aim to compute local minimizers for (PN) that satisfy certain
stationarity conditions, as outlined in Theorem 3.1. Here we are particularly interested in B-
stationarity, i.e., control-state pairs (u, y) that satisfy the following variational inequality:

(4.1) J ′(u;h) = ⟨y − g, S′(u;h)⟩+ α⟨u, h⟩ ≥ 0, for all h ∈ TCad(u).

For the ease of exposition, from now on we focus on the case where Cad is of the form (3.7) and
thus TCad(u) can be written as in (3.8). We also note that the variational inequality (4.1) admits an
equivalent formulation which avoids the use of TCad(u). We elucidate this in the following lemma.

12

Lemma 4.1. The variational inequality (4.1) is equivalent to

(4.2) J ′(u;h) = ⟨y − g, S′(u;h)⟩+ α⟨u, h⟩ ≥ 0, for all h ∈ Cad − {u} .

Proof. Since Cad − {u} ⊂ TCad(u) given u ∈ Cad, we immediately get that the variational inequality
(4.1) implies (4.2). Thus we only need to show the other direction. Suppose now that (4.2) is
satisfied and let h ∈ TCad(u) be arbitrary. From the definition of TCad(u) we have that there exists
tn ↓ 0 and hn → h in Lp(Ω) such that u+ tnhn ∈ Cad for all n ∈ N. Notice that tnhn ∈ Cad − {u}.
Using (4.2), tn > 0, the positive homogeneity of S′(u; ·) as well as its Lipschitz continuity from
Lp(Ω) → Y , see for instance [14], and passing to the limit as n → ∞, we find that

⟨y − g, S′(u; tnhn)⟩+ α⟨u, tnhn⟩ ≥ 0 ⇒
tn⟨y − g, S′(u;hn)⟩+ αtn⟨u, hn⟩ ≥ 0 ⇒

⟨y − g, S′(u;hn)⟩+ α⟨u, hn⟩ ≥ 0 ⇒
⟨y − g, S′(u;h)⟩+ α⟨u, h⟩ ≥ 0.

Since h was arbitrary in TCad(u), we conclude that (4.1) holds which completes the proof. □

We proceed in terms of the reduced version of (PN), i.e., by considering the state as dependent
on u, i.e., y = S(u), which allows to eliminate the state as an independent variable. Then, given
some u ∈ Cad, following [20] we consider the following auxiliary problem:

(4.3) minimize ⟨S(u)− g, S′(u;h)⟩+ α⟨u, h⟩ over h ∈ TCad(u).

Note that according to the definition of B-stationarity (4.1), it holds that h = 0 ∈ TCad(u) is a
solution of (4.3) if and only if (u, S(u)) is a B-stationary point. However, when (u, S(u)) is not
B-stationary, then problem (4.3) is not necessarily well-posed in the sense that it might not have a
solution. Indeed, in that case positivity of the energy may not be guaranteed for every h ∈ TCad(u).
But if there is an element h0 such that the energy is negative, then since τh0 ∈ TCad(u) for every
τ > 0, we get from the positive homogeneity that the energy is not bounded from below. As a
remedy, in what follows, we will work with the following regularized version:

(4.4) minimize
1

2
q(h, h) + ⟨S(u)− g, S′(u;h)⟩+ α⟨u, h⟩ over h ∈ Cad − {u} ,

where q : L2(Ω) × L2(Ω) → R is a symmetric functional with v 7→ q(v, v) convex, differentiable
(typically quadratic, hence the notation) and for every v, v′ ∈ L2(Ω) satisfying

(4.5) q(v, v) ≥ C1 ∥v∥2L2(Ω) and q(v, v′) ≤ C2 ∥v∥L2(Ω)

∥∥v′
∥∥
L2(Ω)

,

for some constants C1, C2 > 0. Note that according to [20, Lemma 2.1] h = 0 is a solution of (4.4)
if and only h = 0 is a solution of (4.3). Furthermore, the following proposition holds.

Proposition 4.2. Let u ∈ Cad be a feasible point for the reduced version of (PN). Then the following
properties are satisfied:

(1) The problem (4.4) admits a solution h̄ ∈ Cad − {u}.
(2) If h̄ ̸= 0, then h̄ is a descent direction for the reduced objective J associated with (PN).
(3) If the directional derivative S′(u; ·) : Lp(Ω) → Y is bounded and linear, then h̄ is unique.

Proof. The proof is essentially the same as the one of [20, Proposition 2.3], with the only difference
that h is constrained to Cad−{u} instead of the whole Lp(Ω). For the first assertion we only need to
notice that Cad−{u} is non-empty, convex and closed due to the assumption that Cad is non-empty,
convex and closed and u ∈ Cad. Then existence of solutions follows from the direct method of the
calculus of variations. For the second one, notice that since u is feasible, it follows that 0 ∈ Cad−{u}.
Therefore the same argument as [20, Proposition 2.3] can be applied here. The third assertion follows
from the strong convexity of the resulting problem. □

13

From this discussion it follows that for computing a descent direction for the reduced version of
(PN) at a non B-stationary point u, it suffices to solve (4.4). Notice, however, that solving (4.4)
is delicate whenever S′(u; ·) is not bounded and linear. The latter is typically connected to active
nonsmoothness of N , that is when the set

ΩN (u) := {x ∈ Ω : N (x, ·) is nondifferentiable at y(x) = S(u)(x)},
has a strictly positive Lebesgue measure (which we denote by m). In such a situation we will consider
a specific approximation of (4.4) as detailed below. Note that ΩN (u) is Lebesgue measurable since
N is jointly continuous on Ω×R. We mention also that in the case where ΩN (u) has zero Lebesgue
measure then (4.4) is a standard quadratic problem, presuming q quadratic.

The specific approximation of (4.4) which we utilize in the nonsmooth case consists of a substitu-
tion of the nonlinear (and nonsmooth) map S′(u; ·) by a differentiable approximation Πϵ(u; ·). More
precisely, fixing an ϵ > 0, we define dϵ ∈ Πϵ(u;h) where dϵ is a solution of the problem

(4.6) −∆dϵ +Dϵ(y; dϵ) = h, in Ω, and dϵ = 0, on ∂Ω.

The crucial point here is that Dϵ is the Nemytskii operator that corresponds to a function Dϵ which
is smooth with respect to the second variable but it does not correspond to the derivative N ′

ϵ of some
smoothing Nϵ of N . In order to define Dϵ we fix a canonical smoothing (σϵ)ϵ>0 of the ReLU function
such that also (2.14) holds. Then Dϵ is defined by simply substituting the ReLU (the max function)
by σϵ whenever this ReLU is applied to the direction d, but leaving the derivative of ReLU intact,
wherever that appears in the recursive formulas (3.1)–(3.2) for the directional derivative N ′

x(y; d) of
the ReLU network N . Specifically, for z := (x, y),

(D(2)
ϵ)x(y; d) = W2 ·

(
1(0,∞)(W1z + b1)W1(:, n0)d+ 1{0}(W1z + b1)σϵ(W1(:, n0)d)

)
,

(D(ℓ)
ϵ)x(y; d) = Wℓ ·

(
1(0,∞)(N

(ℓ−1)(z))(Dℓ−1
ϵ)x(y; d) + 1{0}(N

(ℓ−1)(z))σϵ((D(ℓ−1)
ϵ)x(y; d))

)
,

(Dϵ)x(y; d) = (D(L)
ϵ)x(y; d),

with ℓ = 3, . . . , L, where L is the number of layers of N . It is easy to check that the regularity
of Dϵ with respect to d is dictated by the regularity of σϵ. For the sake of clarity, we state the
formulas of Dϵ for the case of one and two-hidden layer ReLU networks, where also for simplicity,
there is no explicit dependence on x, i.e., N : R → R. For the one-hidden layer case we have for
W1 = (w1

1, . . . , w
n1
1)T , W2 = (w1

2, . . . , w
n1
2), b1 = (b1, . . . , bn1)

T , b2 ∈ R,

N (y) = b2 +

n1∑

i=1

wi
2max(wi

1y + bi1, 0),

N ′(y; d) =

n1∑

i=1

wi
2

(
1(0,∞)(w

i
1y + bi1)w

i
1d+ 1{0}(w

i
1y + bi1)max(wi

1d, 0)
)
,

Dϵ(y; d) =

n1∑

i=1

wi
2

(
1(0,∞)(w

i
1y + bi1)w

i
1d+ 1{0}(w

i
1y + bi1)σϵ(w

i
1d)
)
.

On the other hand for a two-hidden layer case we have, for W1 = (w1
1, . . . , w

n1
1)T , W2 = (wj,i

2)j,i,
i = 1, . . . , n1, j = 1, . . . , n2, W3 = (w1

3, . . . , w
n2
3), b1 = (b1, . . . , bn1)

T , b2 = (b1, . . . , bn2)
T , b3 ∈ R,

N (y) = b3 +

n2∑

j=1

wj
3max

(
n1∑

i=1

wj,i
2 max(wk

1y + bk1, 0) + bj2, 0

)
,

N ′(y; d) =

n2∑

j=1

wj
31(0,∞)(v

j)

(
n1∑

i=1

wj,i
2

(
1(0,∞)(w

i
1y + bi1)w

i
1d+ 1{0}(w

i
1y + bi1)max(wi

1d, 0)
)
)

+

n2∑

j=1

wj
31{0}(v

j)max

(
n1∑

i=1

wj,i
2

(
1(0,∞)(w

i
1y + bi1)w

i
1d+ 1{0}(w

i
1y + bi1)max(wi

1d, 0)
)
, 0

)
,

14

Dϵ(y; d) =

n2∑

j=1

wj
31(0,∞)(v

j)

(
n1∑

i=1

wj,i
2

(
1(0,∞)(w

i
1y + bi1)w

i
1d+ 1{0}(w

i
1y + bi1)σϵ(w

i
1d)
)
)

+

n2∑

j=1

wj
31{0}(v

j)σϵ

(
n1∑

i=1

wj,i
2

(
1(0,∞)(w

i
1y + bi1)w

i
1d+ 1{0}(w

i
1y + bi1)σϵ(w

i
1d)
)
)
,

where vj =
∑n1

i=1w
j,i
2 max(wk

1y + bk1, 0) + bj2.

We have the following approximation result.

Lemma 4.3. Let 1 ≤ p < ∞, N : Ω × R → R be a ReLU neural network, N : Lp(Ω) → Lp(Ω)
its corresponding Nemytskii operator, u ∈ Lp(Ω), y = S(u) and N ′(y; ·) : Lp(Ω) → Lp(Ω) be the
directional derivative of N . Then for the operator Lp(Ω) ∋ d 7→ Dϵ(y; d) it holds that

(4.7)
∥∥N ′(y; d)−Dϵ(y; d)

∥∥
Lp(Ω)

≤ Cϵ for all d ∈ Lp(Ω),

where C > 0 is some constant independent of ϵ. In particular Dϵ(y; ·) : Lp(Ω) → Lp(Ω).

Proof. The proof is straightforward via induction over the number of layers of N , using (2.14), and
thus we omit the details. □

Note that in particular for the functions N ′(y(·); ·),Dϵ(y(·); ·) : Ω × R → R we also have that
there exists a constant C > 0 such that for every ϵ > 0, d ∈ R and for almost every x ∈ Ω,

(4.8) |N ′(y(x); d)−Dϵ(y(x); d)| < Cϵ.

Using the fact that y ∈ L∞(Ω), as well as |σ′
ϵ| ≤ 1, it can also be deduced that Dϵ(y(x); ·) is

uniformly Lipschitz, i.e., there exists a c > 0 such that for every d1, d2 ∈ R, for every ϵ > 0 and
almost every x ∈ Ω

(4.9) |Dϵ(y(x); d1)−Dϵ(y(x); d2)| ≤ c|d1 − d2|.
In particular this also implies that there exist a, b > 0 such that for every d ∈ R and almost every
x ∈ Ω

(4.10) |Dϵ(y(x); d)| ≤ a+ b|d|.
Remark 4.4. We note that the constant C > 0 in (4.8), and hence also the one in (4.7), can be
considered to be independent of the state y and as a result also independent of the corresponding
control u. Indeed, observe that C is dependent on the L∞(Ω)-norm of y, but given the estimate (3.4)
and the fact that every u considered here belongs to the box constraint set Cad of the form (3.7), we
have that the L∞(Ω)-norm of y is uniformly bounded.

We note that one cannot necessarily expect the functions Dϵ(y(x); ·) to be monotone, see the
discussion in Section 2.2. Hence the Browder-Minty theorem can no longer be applied, in order
to get the existence of a unique solution for the regularized adjoint equation (4.6). Nevertheless
existence of solutions can be shown via applying the theory of type M operators, see [26]. We recall
that if V is a reflexive Banach space, and V ∗ is its dual, then an operator A : V → V ∗ is called to
be of type M whenever it holds that if dn ⇀ d, Adn ⇀ h and lim supn⟨Adn, dn⟩ ≤ ⟨h, d⟩ then it
follows that Ad = h. The corresponding proposition follows next.

Proposition 4.5. For every h ∈ L2(Ω), the equation (4.6) admits a solution dϵ ∈ H1
0 (Ω).

Proof. According to [26, Corollary 2.2] it suffices to show that A : H1
0 (Ω) → H−1(Ω) is type M ,

bounded and coercive where for every d, v ∈ H1
0 (Ω)

(4.11) Ad(v) := ⟨∇d,∇v⟩+ ⟨Dϵ(y; d), v⟩.
Note that the second term on the right-hand side of (4.11) is well-defined due to (4.10). The first
term of (4.11) defines a hemicontinuous and monotone operator and hence it is of type M , [26,

15

Lemma 2.1]. Thus in order to show that A is of type M , according to [26, Example 2.B] it suffices
to show that the operator B : H1

0 (Ω) → H−1(Ω)

Bd(v) := ⟨Dϵ(y; d), v⟩
is completely continuous, i.e., whenever dn ⇀ d in H1

0 (Ω) it holds that Bdn → Bd strongly in
H−1(Ω). Indeed from the compact embedding of H1

0 (Ω) into L2(Ω) we have that dn → d in L2(Ω).
Using (4.9) we estimate

(4.12) ∥Dϵ(y; dn)−Dϵ(y; d)∥L2(Ω) ≤ c∥dn − d∥L2(Ω)

and thus Dϵ(y; dn) → Dϵ(y; d) in L2(Ω) which implies that Bdn → Bd strongly in H−1(Ω). Finally,
clearly A : H1

0 (Ω) → H−1(Ω) is a bounded operator, and also coercive. Indeed, for the latter
property, we have for d ∈ H1

0 (Ω) that
Ad(d)

∥d∥H1
0 (Ω)

≥ 1

(cΩ + 1)2
∥d∥H1

0 (Ω) +
1

∥d∥H1
0 (Ω)

⟨N ′(y; d), d⟩+ 1

∥d∥H1
0 (Ω)

⟨Dϵ(y; d)−N ′(y; d), d⟩

≥ 1

(cΩ + 1)2
∥d∥H1

0 (Ω) +
1

∥d∥H1
0 (Ω)

⟨N ′(y; d)−N ′(y; 0), d− 0⟩︸ ︷︷ ︸
≥0

− C̃ϵ

∥d∥H1
0 (Ω)

∥d∥L2(Ω),

for some constant C̃ > 0. Here, cΩ is the Poincaré constant and we have used the fact that N ′(y; d)
is monotonically increasing with respect to d and also (4.8).

□

Upon fixing an ϵ > 0, we use a solution of (4.6), denoted by dϵ = dϵ(h) ∈ Πϵ(u;h), to replace
S′(u;h) when ΩN (u) has positive Lebesgue measure. In particular, (4.4) is approximated by the
following problem:

(4.13)
minimize

1

2
q(h, h) + ⟨S(u)− g, dϵ⟩+ α⟨u, h⟩ over h ∈ L2(Ω), dϵ ∈ H1

0 (Ω)

subject to
{−∆dϵ +Dϵ(y; dϵ) = h, in Ω,

dϵ = 0, on ∂Ω,
and h ∈ Cad − {u} .

Proposition 4.6. The minimization problem (4.13) has a solution.

Proof. The first claim is that there exist constants c1, c2 > 0 independent of h and small ϵ > 0 such
that the following estimate holds true

(4.14) ∥dϵ∥H1
0 (Ω) ≤ c1 + c2∥h∥L2(Ω),

from which it straightforwardly follows that the objective in (4.13) is bounded from below and
coercive in L2(Ω). In order to show (4.14) we add and subtract N ′(y; dϵ) in (4.6) and test with dϵ
getting

∥∇dϵ∥2L2(Ω) + ⟨Dϵ(y; dϵ)−N ′(y; dϵ), dϵ⟩+ ⟨N ′(y; dϵ), dϵ⟩︸ ︷︷ ︸
≥0

= ⟨h, dϵ⟩

⇒∥∇dϵ∥2L2(Ω) − C̃ϵ∥dϵ∥L2(Ω) ≤ ∥h∥L2(Ω)∥dϵ∥L2(Ω).

By estimating the H1
0 norm by the L2 norm using the Poincaré inequality and by dividing by

∥dϵ∥H1
0 (Ω) we have the result. Consider now two minimizing sequences (hn)n∈N and (dnϵ)n∈N. From

the coercivity of the objective and from the estimate (4.14) it follows that these are bounded in
L2(Ω) and H1

0 (Ω) respectively and hence there exist h∗ ∈ L2(Ω) and d∗ϵ in H1
0 (Ω) such that hn ⇀ h∗

in L2(Ω) and dnϵ ⇀ d∗ϵ in H1
0 (Ω). Since Cad − {u} is convex and L2-strongly closed it follows that

h∗ ∈ Cad − {u}. It remains to show that (h∗, d∗ϵ) is a feasible pair, i.e., it satisfies (4.6). For this it
suffices to show that Dϵ(y; d

n
ϵ) ⇀ Dϵ(y; d

∗
ϵ) weakly in L2(Ω), which follows similarly as in the proof

of Proposition 4.5. The proof is complete in view of the lower semicontinuity of the objective in
(4.13) with respect to the corresponding weak convergences.

□
16

In the remainder of this section, we show that for sufficiently small ϵ > 0, we are still able to find
a descent direction by solving (4.13) instead of (4.4). We start with the following lemma.

Lemma 4.7. Let N be a ReLU neural network, u, h ∈ Lp(Ω), y = S(u), ϵ > 0, and let d = S′(u;h),
dϵ ∈ Πϵ(u;h) be defined as before. Then the following estimate holds:

(4.15)
∥∥dϵ − S′(u;h)

∥∥
H1(Ω)

≤ C
∥∥N ′(y; dϵ)−Dϵ(y; dϵ)

∥∥
L2(Ω)

.

with a constant C > 0 independent of h and ϵ. In particular in view of (4.7) the inequality

(4.16) ∥dϵ − S′(u;h)∥H1(Ω) ≤ Cϵ

holds for a generic constant C > 0 still independent of h and ϵ.

Proof. We have that dϵ, d satisfy

−∆dϵ +Dϵ(y; dϵ) = h, −∆d+N ′(y; d) = h, in Ω, and dϵ = d = 0 on ∂Ω.

It follows that eϵ := dϵ − d, satisfies

−∆eϵ +N ′(y; dϵ)−N ′(y; d) = N ′(y; dϵ)−Dϵ(y; dϵ) in Ω, and ehϵ = 0 on ∂Ω.

Identifying N ′(y; dϵ)−N ′(y; d) = ξ(dϵ − d) for some ξ ∈ L∞(Ω), with ξ ≥ 0 a mean value represen-
tation (cf. [14, Proposition 3.1]), and using standard estimates for elliptic PDEs (e.g., [15, Chapter
6, Theorem 2]) we have the conclusion. □

Remark 4.8. The estimate in Lemma 4.7 is uniform for every element of the set Πϵ(u;h) which is
potentially a non-singleton. We also note again that the constants C > 0 in (4.15) and (4.16) can
also be considered to be independent of y and u. This follows from Remark 4.4 and the fact that
the L∞(Ω)-norm of ξ above can be upper bounded independently of y (and ϵ), making the constant
C > 0 in the first estimate (4.15) independent on y (and ϵ).

Lemma 4.7 indicates that Πϵ(u;h) → S′(u;h) in H1(Ω) as ϵ → 0. We note that in order to
rigorously state this convergence we would need to define a selection function that chooses a solution
of (4.13) for every ϵ > 0. While this can be done using the axiom of choice, or at least the axiom
of countable choice, for a sequence ϵn → 0, we will refrain from using it whenever possible and
constrain ourselves to estimates of the type (4.16).

The next proposition shows that for sufficiently small ϵ > 0, we can indeed compute a descent
direction by solving (4.13) instead of (4.4).

Proposition 4.9. Let u ∈ Cad be a feasible point for the reduced problem of (PN) which is not
B-stationary. Then there exists ϵ∗ > 0, such that for 0 < ϵ < ϵ∗ a solution hϵ of problem (4.13) is a
descent direction for the reduced objective J of (PN) at u (in particular hϵ ̸= 0).

Proof. Our goal is to show that there exist ϵ∗ > 0 such that, for all ϵ < ϵ∗, if hϵ solves (4.13), then

⟨S(u)− g, S′(u;hϵ)⟩+ α⟨u, hϵ⟩ < 0.

Observe first that from the fact that S′(u; 0) = 0 and from (4.16), we have that there exists a constant
C > 0 independent of ϵ such that for every dϵ solving (4.6) for h = 0, we have ∥dϵ∥H1(Ω) ≤ Cϵ. It
follows that if (hϵ, dϵ) is a solution of (4.13), then we have

(4.17)
1

2
q(hϵ, hϵ) + ⟨S(u)− g, dϵ)⟩+ α⟨u, hϵ⟩ ≤ Cϵ.

again for a constant independent of ϵ > 0. Based on (4.17), we have

⟨S(u)− g, S′(u;hϵ)⟩+ α⟨u, hϵ⟩ ≤ Cϵ− 1

2
q(hϵ, hϵ) + ⟨S(u)− g, S′(u;hϵ)− dϵ⟩.(4.18)

Now in view of the estimate (4.16), we have for a generic constant C > 0 still independent of ϵ > 0
and u

⟨S(u)− g, S′(u;hϵ)⟩+ α⟨u, hϵ⟩ ≤ Cϵ− 1

2
q(hϵ, hϵ).(4.19)

17

In order to finish the proof it suffices to show that there exists ϵ∗ > 0 and M > 0 such that for every
ϵ < ϵ∗

(4.20) M ≤ q(hϵ, hϵ),

or in view of the coercivity estimate in (4.5), it suffices to show

(4.21) M ≤ ∥hϵ∥2L2(Ω).

Then by potentially reducing ϵ∗ further, the results follows. Suppose towards contradiction that
(4.21) does not hold. Then there exists a sequence ϵn → 0 such that ∥hϵn∥L2(Ω) → 0, which implies
that hϵn → 0 in L2(Ω). Then from Lemma 4.10 below we deduce that h̄ = 0 is a minimizer of (4.4)
which is a contradiction since we have assumed that u is not B-stationary. □

Lemma 4.10. Let u ∈ Cad, ϵn → 0 and let h∗ϵn be a minimizer for the problem (4.13) for every
n ∈ N. Then there exists a subsequence (h∗ϵnk

)k∈N and a minimizer h∗ of (4.4) such that h∗ϵnk
⇀ h∗

in L2(Ω) as k → ∞.

Proof. We first claim that the sequence (h∗ϵn)n∈N is bounded in L2(Ω). This can be seen for instance
from (4.16) and the fact that 1

2q(·, ·) + ⟨S(u)− g, S′(u; ·)⟩ is coercive. It follows that there exists a
subsequence (h∗ϵnk

)k∈N and h∗ ∈ L2(Ω) such that h∗ϵnk
⇀ h∗ in L2(Ω) as k → ∞. From the estimate

(4.14) we can assume that d∗ϵnk
⇀ d∗ in H1

0 (Ω) for some d∗ ∈ H1
0 (Ω) where d∗ϵnk

satisfies (4.6) for
h∗ϵnk

as right-hand side, also assuming that it has been selected using the axiom of countable choice.
Note that we can easily check that d∗ = S′(u;h∗), i.e., the pair (h∗, d∗) satisfies the unregularized
adjoint equation (K). Indeed, this follows from the fact that −∆d∗ϵnk

⇀ −∆d∗ and h∗ϵnk
⇀ h∗ in

H−1(Ω) and from the fact that Dϵnk
(y; d∗ϵnk

) → N ′(y; d∗) in L2(Ω). The last convergence can be
inferred from the estimate

∥Dϵnk
(y; d∗ϵnk

)−N ′(y; d∗)∥L2(Ω) ≤ ∥Dϵnk
(y; d∗ϵnk

)−N ′(y; d∗ϵnk
)∥L2(Ω)+∥N ′(y; d∗)−N ′(y; d∗ϵnk

)∥L2(Ω)

in combination with (4.7), the Lipschitz continuity of N ′(y; ·) and the fact that d∗ϵnk
→ d∗ in L2(Ω).

Using the minimizing property of h∗ϵnk
and letting G : L2(Ω) × H1

0 (Ω) → R with G(h, d) =
1
2q(h, h) + ⟨S(u)− g, d⟩+ α⟨u, h⟩+ XTCad(u)

(h) we have that

(4.22) G(h∗ϵnk
, d∗ϵnk

) ≤ G(hϵnk
, dϵnk

),

for all pairs (hϵnk
, dϵnk

) that satisfy (4.6) for ϵ := ϵnk
. We now claim that for every pair (h, d)

satisfying (K) there exists a pair sequence (h̄ϵnk
, d̄ϵnk

) that satisfies (4.6) for ϵ := ϵnk
for each index

k such that h̄ϵnk
→ h in L2(Ω) and d̄ϵnk

⇀ d in H1
0 (Ω). Indeed we can set h̄ϵnk

:= h for all k ∈ N,
and choose d̄ϵnk

∈ H1
0 (Ω) a solution of

−∆d̄ϵnk
+Dϵnk

(y; d̄ϵnk
) = h.

Similarly as before we can check that d̄ϵnk
⇀ d in H1

0 (Ω) where d = S′(u;h). By employing the
inequality (4.22) and taking limits on both sides we have

G(h∗, d∗) = lim inf
k→∞

G(h∗ϵnk
, d∗ϵnk

) ≤ lim
k→∞

G(h̄ϵnk
, d̄ϵnk

) = G(h, d).

Since (h, d) was an arbitrary pair satisfying (K), the result follows. □

Remark 4.11. We note that since the value of the constant M > 0 in (4.21) potentially depends
on u ∈ Cad, it cannot be guaranteed that ϵ∗ > 0 can be chosen to have a common fixed value for all
u ∈ Cad.

Details on how we solve (4.13) in practice are provided below in Section 4.2. Once (4.13) is solved,
and a descent direction h is identified, we perform an Armijo line search in order to compute a step
length that sufficiently decreases the reduced objective J . For the sake of completeness we outline
this in Algorithm 1, which assumes that we have already computed uk, uk + h ∈ Cad at the k-th

18

Algorithm 1 Armijo line search
Input: h ∈ TCad(uk), τ0 = τ > 0, c ∈ (0, 1), 0 < η ≪ 1, ν ∈ (0, 1), i = 0.
While

(4.23) J (uk + τih) > J (uk) + ντiJ ′(uk;h) and τi > η

Set: τi+1 = cτi, i = i+ 1
end while

iteration of the main algorithm. Here η > 0 is some parameter that prevents the step size from
becoming too small.

Note that the directional derivative of the reduced objective J ′(uk;h) in (4.1), can be evaluated
using standard adjoint calculus. The corresponding involved PDEs (the state equation in (PN) and
the adjoint equation (K)) are solved numerically via a (semismooth) Newton algorithm.

In practice, the decrease of the step length τ in Algorithm 1 may be faster than the decrease of
the magnitude of the descent direction h. This may result in an insufficient decrease of the cost
functional J , particularly when the iterates approach some nonstationary point where the (reduced)
objective is nonsmooth. In such a case we perform a robustification step similar to [20, Algorithm
4]. That is, we resort to a smoothed optimal control problem in order to compute a new control uk,
and then compute a new descent direction based on this uk. In particular, we solve the following
problem

(4.24)
minimize

1

2
∥y − g∥2L2(Ω) +

α

2
∥u∥2L2(Ω), over (y, u) ∈ H1

0 (Ω)× L2(Ω),

subject to
{−∆y +Nδ(·, y) = u, in Ω

y = 0, on ∂Ω
, and u ∈ Cad.

where Nδ is a (canonically) smoothed version of the network N . Note that since problem (4.24) is
merely a helpful tool in the overall algorithm (in practice the robustification step is rarely activated -
see next section), and not the final problem to be solved, the potential nonuniqueness of its solutions
is not a point of concern. The numerical solver for this smooth problem can be found for instance
in [13]. After every robustification step, we decrease the parameter δ by a factor c̃ ∈ (0, 1).

We state now in Algorithm 2 the overall descent algorithm which is based on the strategy of
sequentially minimizing the cost function in (4.13) in order to obtain descent directions. A few
initial remarks on Algorithm 2 are in order. Note that if uk is not a B-stationary point, then the
internal loop which is triggered in Step 3, in the case where hk is not a descent direction, is finite.
This is indeed guaranteed in view of Proposition 4.9. The extra update ϵ → c1ϵ in Step 4 after every
successful Armijo line search, ensures that the parameter ϵ goes to zero along the iterations.

We mention already here that in order to get an initial value for hk in Step 1, which is used as
initialization for Step 2, we solve the following problem

(4.25) minimize
1

2
q(h, h) + ⟨S(u)− g,Π0(u;h)⟩+ α⟨u, h⟩ over h ∈ Cad − {u} .

Here, for h ∈ L2(Ω), Π0(u;h) ∈ H1
0 (Ω) denotes a solution of the following linear equation:

(4.26)
{−∆d+D0(y)d = h, in Ω,

d = 0, on ∂Ω,

where D0 is the function that results by formally setting the derivatives of the ReLU functions at zero
to be zero, recall formula (2.11). Note that in the case m(ΩN (u)) = 0, (4.25) is equivalent to (4.4).
We point the reader to Remark 4.12 below regarding potential (but rare) complications which might
be caused by D0 in (4.26). We also note that if q(h, h) := ∥h∥2L2(Ω), then Algorithm 2 will perform
exactly like a (sub-) gradient descent method, which can be slow in terms of convergence rates. In
order to accelerate the algorithm, in the numerical examples we use the quadratic functional

(4.27) q(h, h) = ⟨Π0(u;h),Π0(u;h)⟩+ α⟨h, h⟩,
19

Algorithm 2 Proposed algorithm for optimal control of ReLU-network-informed PDEs
Input: u0 ∈ Cad, η > 0, ϵ = ϵ0 > 0, δ = δ0 > 0, 1 ≥ τ > τmin > 0, and c, c̃, c1, c2, ν ∈ (0, 1).

Obtain y0 = S(u0) by solving the state equation in (PN) using a semismooth Newton method.
Perform the following iteration for k = 0, 1, 2, . . .:
Step 1: Solve problem (4.25) at u = uk in order to get initial values for hk (details in Section 4.5).

If m(ΩN (uk)) = 0, go directly to Step 4.
Else go to Step 2.

Step 2: Solve the subproblem (4.13) (details in Sections 4.2 and 4.5) and update hk accordingly.
Step 3: If hk = 0, then terminate the iteration. Check if hk ̸= 0 is a descent direction, i.e., whether

⟨S(uk)− g, S′(uk;hk)⟩+ α⟨u, hk⟩ < 0.

If this is not satisfied, update ϵ → c1ϵ, and return to Step 2.
Step 4: Perform the Armijo line search in Algorithm 1 with parameters c, ν and

η := min
{
τmin, c̃ ∥hk∥L2(Ω)

}
to obtain a step length τ ∈ (0, 1], and then update ϵ → c1ϵ. If

τ < η, stop the line search, perform the robustification step by solving (4.24) to obtain a
new uk, update δ → c2δ, let k = k + 1 and return to Step 1.

Step 5: Set uk+1 = uk + τhk, and compute S(uk+1) using again a semismooth Newton method by
solving the state equation in (PN). Let k = k + 1.

and we denote its derivative at h by Qh. We also note that if the network function N (x, y) is
smooth with respect to y, then the proposed algorithm with the above quadratic functional is an
SQP (Sequential Quadratic Programming) type method.

Remark 4.12. As it was pointed out in [7], even though D0 is almost equal to the gradient of N
and in particular it is an almost everywhere positive function, its values at the nondifferentiability
points of N could lie strictly below the Clark subdifferential of N at these points. For example, if N :
R → R, then for every y ∈ R, it holds that ∂N (y) = [∂N (y), ∂N (y)], where ∂N := min{N ′

−,N ′
+},

∂N := max{N ′
−,N ′

+} with N ′
± denoting the left- and right-sided derivatives. While due to N being

increasing we have ∂N (y) > 0 for every y ∈ R, it could be the case that for some y0 ∈ R it holds
D0(y0) < 0 < ∂N (y0) and as a result if the function y in (4.26) attains the value y0 at a set of
positive measure the existence of that equation could be at stake. Since however (4.26) is only used to
get some initial values for hk, in practice, we can restrict ourselves to a nonnegative approximation
by setting the negative values of D0 to zero.

4.2. Solving problem (4.13). We continue by providing some details on solving (4.13) in Step 2
of Algorithm 2. From now on we assume that the state equation in (4.13) admits a unique solution
dϵ = dϵ(hϵ). This is indeed the case when, e.g., for sufficiently small ρ > 0, ⟨Dϵ(y; d), d⟩ ≥ −ρ∥d∥2L2(Ω)

for all d ∈ H1
0 (Ω). Then the first-order optimality condition for an optimal hϵ reads

(4.28) ⟨Qhϵ + pϵ(u;hϵ) + αu, s⟩ ≥ 0 for all s ∈ TCad−{u}(hϵ).

Note that in (4.28), pϵ(u;hϵ) represents the directional derivative of the second term in the objective
of (4.13).

Since we have assumed box constraints on the control variable (compare (3.7)), applying the
analogue of Lemma 4.1 in the present context, and treating the resulting complementarity system
via a nonlinear complementarity problem function as in [19], see also [27, Theorem 2.29], the above
variational inequality can be equivalently characterized by a system of equations as follows:

(4.29)





−∆dϵ +Dϵ(y; dϵ)− hϵ = 0 in Ω, and dϵ = 0 on ∂Ω,

−∆pϵ + ∂d(Dϵ(y; dϵ))pϵ = y − g in Ω, and pϵ = 0 on ∂Ω,

Qhϵ + pϵ + µ = −αu,

µ−max(0, µ+ λ(u+ hϵ − ub))−min(0, µ+ λ(u+ hϵ − ua)) = 0,
20

where λ > 0 is a constant which is typically set equal to the cost of the control, i.e., λ = α. The first
equation in (4.29) is simply (4.6), while the second one provides a way to calculate the directional
derivative in (4.28). The third equation represents the first-order stationarity condition of (4.13)
with µ being a slack variable, while the fourth one is used to enforce the box constraint u+hϵ ∈ Cad,
complementarity µ(u+ hϵ − ua)(u+ hϵ − ub) = 0 a.e. in Ω, as well as µ ≥ 0 a.e. on {u+ hϵ = ub}
and µ ≤ 0 a.e on {u+ hϵ = ua}. Under suitable assumptions, the nonlinear and nonsmooth system
(4.29) can be solved efficiently via a primal-dual active-set algorithm (PDAS) for which we provide
the details in Section 4.5 below.

The subtle point of the system (4.29) is that additional conditions are required for the existence
of solutions for the second equation since the L∞-function ∂d(Dϵ(y; dϵ)) might be negative on a large
set and hence the corresponding PDE operator would not be coercive. This is due to the potential
nonmonotonicity of Dϵ(y; ·). Below we provide a sufficient condition which guarantees existence of
solutions and, as a consequence the constraint qualification of [29] is satisfied. Thus, (4.29) indeed
represents the Karush-Kuhn-Tucker (KKT) system for (4.13). Note that as we show in Proposition
4.14, essentially unless an early stopping occurs, it holds that ∥hϵk∥L2(Ω) → 0 along the iterations
k of Algorithm 2. In view of (4.6), this implies that ∥dϵk∥H1

0 (Ω) → 0 as well. The condition below
leverages this fact.

Lemma 4.13. Let y ∈ Y ∩ C0,a(Ω) be a solution of the state equation in (PN) and let dϵ ∈ H1
0 (Ω)

be a solution of the first equation in (4.29) such that the estimate ∥dϵ∥H1
0 (Ω) → 0 as ϵ → 0. Suppose

that there exists δ > 0, possibly dependent on y, such that for small enough ϵ > 0, the set

(4.30) U = {x ∈ Ω : Dϵ(y(x); ·) is monotone increasing in (−δ, δ)}
has a full Lebesgue measure. Then for small enough ϵ > 0 the second equation in (4.29) has a
solution pϵ ∈ H1

0 (Ω).

Proof. It suffices to show that

(4.31) m({x ∈ Ω : ∂dDϵ(y(x); dϵ(x)) < 0}) → 0 as ϵ → 0.

Indeed, if this holds then the operator Aϵ : H
1
0 (Ω) → H−1(Ω), where for d, v ∈ H1

0 (Ω), Aϵd(v) :=
⟨∇d,∇v⟩+ ⟨∂dDϵ(y; dϵ)d, v⟩ is coercive for small enough ϵ > 0 and we can proceed as in Proposition
4.5.

Since we have ∥dϵ∥H1
0 (Ω) → 0 as ϵ → 0, using the Chebyshev inequality, it follows that

(4.32) m ({x ∈ Ω : |dϵ(x)| ≥ δ}) → 0 as ϵ → 0.

We then have the partition

({x ∈ Ω : ∂dDϵ(y(x); dϵ(x)) < 0} = ({x ∈ Ω : ∂dDϵ(y(x); dϵ(x)) < 0} ∩ {x ∈ Ω : |dϵ(x)| < δ}
∪ ({x ∈ Ω : ∂dDϵ(y(x); dϵ(x)) < 0} ∩ {x ∈ Ω : |dϵ(x)| ≥ δ}.

The first set in the partition above is a subset of Ω \ U so it has zero Lebesgue measure, while the
measure of the second set goes to zero as ϵ → 0 in view of (4.32). That shows (4.31). □

Lemma 4.13 indicates that, in order to have existence of solutions for the second equation in
(4.29), it suffices to impose some condition that guarantees that the smoothed function Dϵ(y(x); ·)
will not be decreasing in an area around zero; in a large set or in set of full measure as it is done here.
This is the main region of interest since ∥dϵk∥L2(Ω) → 0 and thus all its values will be essentially
concentrated around that area.

4.3. Convergence analysis. In this section, we provide information about the quality of the limits
of the sequence of controls (uk)k∈N and pertinent states (yk)k∈N generated by Algorithm 2. We start
with a result regarding the convergence of the sequence of descent directions (hk)k∈N. Unless stated
otherwise, from now on we assume that the conditions of Lemma 4.13 are satisfied in the remainder
of this section.

21

Proposition 4.14. Let (uk)k∈N be a sequence of controls generated by Algorithm 2. If for every
k ∈ N, uk is not a B-stationary point and the robustification step is activated only finitely many
times, then ∥hk∥L2(Ω) → 0 as k → ∞.

Proof. Note that since the robustification step is activated finitely many times only, we have that the
sequence (J (uk))k∈N is eventually strictly decreasing. Since all its elements are positive, it follows
that there exists J ∗ ≥ 0 such that J (uk) → J ∗. Assume without loss of generality, that for all but
finitely many iterates we have m(ΩN (uk)) > 0. Note that from the Armijo line search we have for
large enough k, and a constant C > 0 independent of ϵ and uk (see also (4.19))

J (uk+1)− J (uk) ≤ ντJ ′(uk;hk) ≤ ντCϵ− ντ

2
q(hk, hk)

≤ νCϵ− νC2

2
min(τmin∥hk∥2L2(Ω), c̃∥hk∥3L2(Ω)),

where we used the fact that 1 > τ > min(τmin, c̃∥hk∥L2(Ω)) and the estimate (4.5). Since 0 >
J (uk+1)−J (uk) → 0 as k → ∞ and the fact that ϵ is also going to zero along the iterates, see the
remarks after Algorithm 2, it follows that ∥hk∥L2(Ω) → 0. Lastly if m(ΩN (uk)) = 0 for infinitely
many k’s then, along that subsequence, still denoted by (uk)k∈N, we have

J (uk+1)− J (uk) ≤ ντJ ′(uk;hk) ≤ −ντ

2
q(hk, hk) ≤ −νC2

2
min(τmin∥hk∥2L2(Ω), c̃∥hk∥3L2(Ω)),

see (4.25) and (4.26). This concludes the proof. □

The next theorem provides more details about the iterates of Algorithm 2. In fact, depend-
ing on properties with respect to robustification and the nonsmooth behavior of N , along specific
subsequences limit points satisfying different types of stationarity are obtained, respectively.

Theorem 4.15. Let λ = α in the KKT system (4.29). Let (uk)k∈N be a sequence of controls
generated by Algorithm 2, with (yk)k∈N the corresponding states. Then the following hold true:

(1) Suppose the algorithm returns hk0 = 0 after finitely many iterations, and uk0 and yk0 are
the corresponding control and state, respectively. If m(ΩN (uk0)) = 0, then the algorithm
returns a B-stationary point; otherwise the following conditions are satisfied:

(4.33)

−∆yk0 +N (·, yk0)− uk0 = 0 in Ω, yk0 = 0 on ∂Ω,

−∆pk0 + χϵpk0 − yk0 = −g in Ω, pk0 = 0 on ∂Ω,

(pk0 + αuk0 , h) ≥ 0 for all h ∈ TCad(uk0).

where χϵ = ∂dDϵ(yk0 ; dϵ), and dϵ solves the PDE

−∆d+Dϵ(yk0 ; d) = 0 in Ω, d = 0 on ∂Ω.

Here ϵ denotes the value of this parameter at iteration k0.
(2) When the robustification step is activated only finitely many times, the following two cases

need to be distinguished:
(i) Along a subsequence where m(ΩN (ukl)) = 0 for all l ∈ N, there exists a further subse-

quence still denoted by (ukl , ykl), so that ukl → u∗ in L2(Ω), and u∗ ∈ Cad satisfies

(4.34) J ◦(u∗;h) ≥ 0 for all h ∈ TCad(u
∗),

where J ◦(u∗;h) is the Clarke directional derivative of J (·) at u∗ in the direction h,
i.e. J ◦(u∗;h) = supχ∈∂J (u∗)⟨χ, h⟩.

(ii) Along a subsequence where m(ΩN (ukl)) > 0 for all l ∈ N, there exists a further subse-
quence still denoted by (ukl , ykl), so that ukl → u∗ in L2(Ω), and u∗ ∈ Cad satisfies the
weak stationarity condition.

(3) When the robustification step is activated for infinitely many times, then there exists a
subsequence so that the algorithm converges to a C-stationary point along that subsequence.

Proof. We prove each of the statement here.
22

(1) The first statement on the smooth case is due to the setting of the algorithm. In fact, when
m(ΩN (uk0)) = 0, then we have Π0(uk0 ;h) = S′(uk0 ;h). When 0 is a minimizer of (4.3), then
for every h ∈ Cad − {uk0}, J ′(uk0 ;h) ≥ J ′(uk0 ; 0) = 0 due to the property of the minimizer.
Then using Lemma 4.1, we have the inequality for all h ∈ TCad(uk0). In the case m(ΩN (uk0)) >
0, S′(uk0 ;h) is replaced by a smooth approximation Πϵ(uk0 ;h) for some fixed ϵ > 0. The
conclusion is drawn by rewriting the KKT system in (4.29) where the equivalence between the
third variational inequality in (4.33) and the third and the fourth equations in (4.29) is applied,
a proof of which can be found in [27, Theorem 2.29].

(2) We turn to the first assertion in the second statement. Notice that for a bounded sequence
(uk)k∈N ⊂ Cad ⊂ L2(Ω), we can extract a weakly convergent subsequence denoted by (ukl), and
ukl ⇀ u∗ ∈ Cad. Let ykl , pkl be the solutions of the state equation and the second equation
in (4.29) corresponding to ukl , respectively, and y∗, p∗ be the solutions corresponding to u∗.
Using standard regularity results on solutions of elliptical PDEs, we have ykl ∈ H1

0 (Ω) and
pkl ∈ H1

0 (Ω) for all l ∈ N, and (ykl) and (pkl) are uniformly bounded in H1
0 (Ω), respectively.

Using the compact embedding of H1
0 (Ω) into L2(Ω), we conclude that ykl → y∗ and pkl → p∗ both

in the L2(Ω) norm topology. Referring to the fourth equation in the KKT system (4.29) for each
ukl in the subsequence, we derive also that ukl → u∗ strongly in L2(Ω) if we choose λ = α > 0.
This is because of Qhkl → 0 (as well as hkl → 0) and the relation Qhkl +pkl = −µkl −αukl → p∗

in L2(Ω), and the connection given by the fourth equation in (4.29) when λ = α, i.e.,

µkl = max(0, µkl + α(ukl + hkl − ub)) + min(0, µkl + α(ukl + hkl − ua))

which ensures that µkl → µ∗ in L2(Ω), and subsequently ukl → u∗ in L2(Ω). Since ykl ∈
L∞(Ω) and N(·) is Lipschitz, N ′(ykl) ∈ L∞(Ω) are uniformly bounded. Using the Banach-
Alaoglu theorem, we have N ′(ykl)

∗
⇀ ζ for some ζ ∈ L∞(Ω). From the definition of the Clarke

subgradient, we have ζ ∈ ∂N(y∗) by upper semicontinuity of ∂N(·); see, e.g., [4].
Using the above convergence properties, we arrive at the system

(4.35)

−∆y∗ +N (·, y∗)− u∗ = 0 in Ω, y∗ = 0 on ∂Ω,

−∆p∗ + ζp∗ − y∗ = −g in Ω, p∗ = 0 on ∂Ω,

⟨p∗ + αu∗, h⟩ ≥ 0 for all h ∈ TCad(u
∗),

where the same argument for the third variational inequality holds as in Case (1). By the
definition of Clarke’s generalized directional derivative and Lemma 4.1, we then conclude that

J ◦(u∗;h) ≥ ⟨p∗ + αu∗, h⟩ ≥ 0 for all h ∈ TCad(u
∗).

For assertion (ii), we use the same argument as in (i) to have ykl → y∗, pkl → p∗, and
ukl → u∗ in L2(Ω). Recall that hk → 0 in L2(Ω) in the KKT system in (4.29). Now we
show that (∂dDϵk(yk; dϵk))k∈N is a bounded sequence in L∞(Ω). Note that N(·) is Lipschitz
continuous and yk ∈ H1(Ω) ∩ L∞(Ω), and Dϵk(yk; ·) is C1 smooth and therefore Lipschitz with
respect to the second variable, from which we have that ∂dDϵk(·, ·) is uniformly bounded with
respect to both variables, i.e., for all k ∈ N we have |∂dDϵk(yk, dϵk)| ≤ M . Thus, we have
∂dDϵk(yk, dϵk) ∈ L∞(Ω) for all k ∈ N. Now using the Banach-Alaoglu theorem, we conclude
that there exists a weakly star convergent sub-sequence of ∂dDϵkl

(ykl , dϵkl), i.e., there exists
ζ ∈ L∞(Ω) such that ∂dDϵkl

(ykl , dϵkl)
∗
⇀ ζ (still denoted using the same indices). Passing to the

limit in the system (4.29) with respect to this subsequence, yields the conclusion.
(3) For the third statement, we take the subsequence whose elements correspond to the control and

state variables for activated robustification. This results a sequence of optimal control problems
with respect to the regularized PDEs in (4.24). Since in the lth robustification step, δl+1 = c̃δl
for some c̃ ∈ (0, 1) we infer δl → 0 as l → ∞. This yields a C-stationary point in the limit as
l → ∞. For the associated analytical details on the convergence of the smoothed optimal control
problems as δl → 0, we refer to the paper [14].

□
23

We note that Case (1) of Theorem 4.15 rarely occurs in practice and yields a desirable B-stationary
point if N is differentiable at uk0 ; otherwise an approximate version of a C-stationary point is
reached. Case (2) either yields a form of C-stationary point in (i), or an element satisying weaker
conditions in (ii). If (4.34) is combined with certain regularity of J given in the sense of Clarke [11,
Definition 2.3.4], e.g. local convexity around u∗, then (4.34) also implies B−stationarity. The latter
case produces the least favorable limit point in terms of stationarity. Finally, Case (3) provides a
point satisfying C-stationarity conditions, which are weaker than B-stationarity conditions.

4.4. Practical aspects concerning Algorithm 2. We recall that for the sake of presentation we
confine ourselves to the case where Cad is given by box constraints; see (3.7). We point out that
such box constraints are relevant in numerous applications in PDE constrained optimization.

In order to account for possible violations of the control constraints in the practical numeri-
cal realization (e.g. due to inexact solves), we use the following merit function for the line search
algorithm

(4.36) Ek(τ) := J (uk + τh) + κΨ(uk + τh),

where
Ψ(u) := ∥max(0, u− ub)∥L2(Ω) + ∥min(0, u− ua)∥L2(Ω) ,

evaluates the violation of the box constraint. Here κ > 0 is the parameter from Algorithm 2. The
above merit function replaces the objective function J in (4.23) in Algorithm 1. Thus, we need to
guarantee a descent direction for (4.36). In our setting the latter is connected to a practical stopping
rule for terminating the utilized solver for (4.29). Notice that if uk ∈ Cad, and the subproblem (4.13)
in particular the constraint has been settled with satisfactory accuracy, we shall have uk + h ∈ Cad
as well. Then (Ψ(uk +h)−Ψ(uk)) = 0 and the standard Armijo line search is applied. This is often
the case when a primal-dual active-set (PDAS) method (see, e.g., [19]) is applied to box constraints
as we will explain in detail in the next section. In case one aims at only approximately satisfying
the constraint along the iterates, i.e. (Ψ(uk + h) − Ψ(uk)) > 0, a similar termination condition for
the solver of the sub-problem (4.13) as in [13, Algorithm 1, (4.62)] can be applied. It consists of the
following inequalities:

(4.37)
J ′(uk;h) + κ(Ψ(uk + h)−Ψ(uk)) ≤ −ξq(h, h),

and Ψ(uk + h) ≤ (1− ξ)Ψ(uk),
for some ξ ∈ (0, 1).

The first inequality above guarantees a descent direction for the merit functional in every iteration.
Whereas the second condition enforces uniform decay of the constraint violation along the iterations.
Observe that if Ψ(uk) = 0, then Ψ(ul) = 0 for all l > k. The underlying assumption here is that the
solver for (4.29) is able to achieve sufficiently accurate solutions.

Notice also that in Algorithm 2, we require τ0 < τ ≤ 1, and observe further that by solving the
system (4.29) exactly we obtain a direction h with uk + h ∈ Cad. Hence if uk ∈ Cad and the solution
for (4.29) is accurate, then this implies that uk + τh ∈ Cad for all τ ∈ (0, 1] by convexity of Cad.
Consequently all the iterates are feasible, and the merit functional (4.36) is equivalent to the reduced
functional provided that all the systems are solved exactly. Indeed, in our experiments, we use the
PDAS algorithm which can compute highly accurate solutions for (4.29).

4.5. Details on the PDAS Algorithm. In the following, we provide some details on the imple-
mentation of PDAS in Algorithm 2, as it is employed in two different steps. First we utilize PDAS
to solve the KKT system of (4.25) for initialization, which is:

(4.38)
(K−1 + αId)h+ p0 + αu+ µ = 0,

µ−max(0, µ+ λ(u+ h− ub))−min(0, µ+ λ(u+ h− ua)) = 0,

with λ > 0 fixed. In practice we typically set λ := α > 0. Here Qh := (K−1 + αId)h, with
Q : L2(Ω) → L2(Ω) linear and continuous, i.e., Q ∈ L(L2(Ω)), is the derivative of 1

2q(h, h) and
K−1 ∈ L(L2(Ω), B) for some B ⊂ L2(Ω) with

K ∈ L(B,L2(Ω)), Kt = (−∆+ (D0(y))
∗(−∆+ (D0(y))t for t ∈ B.

24

This formulation formally requires that elements of B have H4(Ω)-regularity. However, numerically,
we split the operation of K into two subsystems, which allows to lower the regularity requirement.
That is, for given h ∈ L2(Ω) and sufficiently smooth Ω, Kt = h is realized via finding (s, t) ∈ Y ×Y ,
with Y as in (3.3), such that

−∆s+D0(y)s = h and −∆t+D0(y)t = s.

Computationally, (4.38) is realized as follows: we first introduce an auxiliary variable t ∈ B and
K−1h = t. Then, in every iteration of PDAS, we solve the linear system (4.39) below. For this
purpose let A+ denote an estimate for the upper active set {x ∈ Ω : u(x)+h∗(x) = ub(x)}, or short
{u+h∗ = ub}, at the solution h∗ ∈ L2(Ω) of (4.25) and analogously for A− and the lower active set
{u+ h∗ = ua}, with A+ ∩ A− = ∅. Further, I = Ω \ A, with A := A+ ∪ A−, is an estimate of the
inactive set {ua < u+ h∗ < ub}.

The resulting linear system reads

(4.39)

Kt− h = 0,

t+ αh+ J ′
0(u) + µ = 0,

h|A+ = ub|A+ − u|A+ , h|A− = ua|A− − u|A− , µ|I = 0,

where J ′
0(u) = p0 + αu, and v|S denotes the restriction of a function v : Ω → R to a set S ⊂ Ω.

Notice that only h|I and µ|A are our desired unknown variables now.
Next, let EI denote the extension-by-zero operator from I to Ω. Then, E∗

I is the restriction
operator from Ω to I. The operators EA+ , E∗

A+
, EA− , E∗

A−
and EA, E∗

A are defined analogously.
Note that, for instance, µ|I = E∗

Iµ. For convenience, below we will use both notations for restriction
operators. With these definitions and noting from the second and third equation in (4.39) that

h|I = −α−1(t|I + J ′
0(u)|I),

and
µ|A = −t|A − αE∗

A(EA+(ub − u)|A+ + EA−(ua − u)|A−)− J ′
0(u)|A,

we can reduce the system in (4.39) to solving

(4.40) (K + α−1EIE
∗
I)t = EA+(ub − u)|A+ + EA−(ua − u)|A− − α−1EIJ ′

0(u)|I .
for t ∈ B. Backward substitution then yields h|I and µ|A.

Utilizing the above considerations, PDAS solves (4.38) iteratively by estimating the active and
inactive sets and solving the associated linear system of the type (4.40) in every iteration. In this
context, the active set estimation works as follows: Assume that a current iterate (hl, µl) ∈ L2(Ω)2,
l ∈ N, is available. Then the next active and inactive set estimates are determined by

Al+1
+ := {µl + λ(u+ hl − ub) > 0}, Al+1

− := {µl + λ(u+ hl − ua) < 0},
Al+1 := Al+1

+ ∪ Al+1
− , I l+1 := Ω \ Al+1.

These sets are then used in (4.40), respectively (4.39), to obtain (hl+1, µl+1). Unless some stopping
rule is satisfied, PDAS returns to the next set estimation. We refer to [19] for more details on PDAS
including convergence considerations. The choice of numerical solvers for (4.40) may depend on the
size of the system after discretization. In our situation, the standard Matlab backslash is sufficient
already. In our tests below, the PDAS iterations are terminated if the L2(Ω)-norm residual of the
second equation in (4.38) drops below 10−16 or a maximum of 50 iterations is reached.

The second application of PDAS is connected to numerically solving the nonlinear system in
(4.29). Our strategy here is to decouple the system (4.29) into the following two subsystems:

(4.41)

{
−∆dϵ +Dϵ(y; dϵ)− h = 0 in Ω, and dϵ = 0 on ∂Ω,

−∆pϵ + ∂dϵ(Dϵ(y; dϵ))pϵ = y − g in Ω, and pϵ = 0 on ∂Ω,

and

(4.42)
{
Qh+ pϵ + µ = −αu,

µ−max(0, µ+ λ(u+ h− ub))−min(0, µ+ λ(u+ h− ua)) = 0.
25

Then, in our implementation of Step 2 of Algorithm 2, while the L2(Ω) residual norm of the system
(4.29) is larger than 10−16, or the iteration count is smaller than 50, we use a consecutive and
iterative way to implement the following:
(i) First we run Newton algorithm for (4.41) to get an update to dϵ and pϵ for a fixed h. The

algorithm can be initialized using the solution from its last round, and zeros for the first round;
(ii) Using the newly computed dϵ and pϵ from (i), we apply PDAS to (4.42) to obtain updates of µ

and h. The PDAS step is similar to the one we have described above. Only the terms pertinent
to the new quantities in (4.41) and (4.42) are adapted. Especially, now Q is associated with
the functional qϵ(h, h) = ⟨Πϵ(u, ·)h,Πϵ(u, ·)h⟩ + α⟨h, h⟩. However, we note here that in our
experiments, for each PDAS iteration for (4.42), we found that using simply the quadratic
functional q from the initialization step above gives almost the same convergence behavior than
using qϵ connected to Πϵ.

5. Numerical results

In this section, we demonstrate the practical performance of our proposed algorithm for solving
optimal control problems with nonsmooth partial differential equations which contain ReLU network
components.
Parameter setting of Algorithm 2. In our algorithm, we set η = 10−16, τmin = 10−16, ϵ0 =
δ0 = 10−1, c = 0.6, c1 = c2 = 0.1, β = 1.1, c̃ = 0.5. The parameter ν will be set depending on
the value of α and the respective example. In all the tested examples, we use finite differences for
the PDE discretization, and in particular the standard five-point stencil for the discrete Laplacian.
The algorithm is terminated if ∥h∥L2(Ω) ≤ 10−16. For solving both the state equation and the
adjoint equation, we use a (semismooth) Newton method [19], with the stopping rule on checking
the H−1(Ω)-norm of the residual. Specifically, if the residual norm is smaller than 10−16 or the
number of iterations is bigger than 50, then we stop the Newton solver. Numerical calculations were
performed on a laptop with Intel Core i7-10850H CPU and 64GB memory using Matlab R2020b.

5.1. Application to PDE with single max-function. Here we first show the result of our algo-
rithm when applied to an example presented in [10]. We choose Ω = (0, 1) × (0, 1) to be the unit
square, and design the exact solution and its adjoint state of the optimal control problem to be

(5.1) y = p =





((
x1 −

1

2

)4
+

1

2

(
x1 −

1

2

)3)
sin(πx2) x1 <

1

2
,

0 x1 ≥
1

2
.

No active control constraint is considered in this example for simplicity. The state equation is given
by the following second-order semilinear elliptic PDE:

−∆y +max(0, y) = u+ f in Ω, and y = 0 on ∂Ω,

where, given y and p, the optimal control u and the given function f can also be explicitly calculated
using the KKT condition of the optimal control problem. Note that introducing a given function f
into the PDE does neither change the analysis nor the algorithm. Both y and p are twice continuously
differentiable and have the value zero on the right half of Ω. Therefore, the nonsmoothness of the
max-function in the state equation at the solution appears on a set of positive measure in this
example. This renders the control-to-state map nonsmooth at the solution (u, y). We test our
algorithm by using different discretization sizes dx (uniform in both dimensions) and with respect
to variants of the control cost α. Particularly, in all the numerical tests provided in this paper, we
consider the following C2-smooth approximation of the max-function in Dϵ:

(5.2) σϵ(t) =





t− ϵ
2 , if t ≥ ϵ,

t3

ϵ2
− t4

2ϵ3
, if t ∈ (0, ϵ),

0, if t ≤ 0,

for given ϵ > 0. The numerical results are reported in Table 1. We observe here that our
26

α = 10−1, ν = 0.9 α = 10−2, ν = 0.9

Mesh size Cost ∥u− uh∥ / ∥u∥ ∥y − yh∥ / ∥y∥ Cost ∥u− uh∥ / ∥u∥ ∥y − yh∥ / ∥y∥
dx=1/16 0.0261 0.0506 0.0234 0.0263 0.044 0.2021

dx=1/32 0.0329 0.013 0.0058 0.0331 0.0116 0.052

dx=1/64 0.0368 0.0029 0.0012 0.037 0.003 0.0131

dx=1/128 0.0389 6.07× 10−4 1.03× 10−4 0.039 7.1× 10−4 0.0031

α = 10−3, ν = 0.9 α = 10−4, ν = 0.9

Mesh size Cost ∥u− uh∥ / ∥u∥ ∥y − yh∥ / ∥y∥ Cost ∥u− uh∥ / ∥u∥ ∥y − yh∥ / ∥y∥
dx=1/16 0.0281 0.0216 0.7755 0.0455 0.0057 1.3518

dx=1/32 0.0349 0.0057 0.2003 0.0523 0.0015 0.3501

dx=1/64 0.0387 0.0015 0.0511 0.0562 3.94× 10−4 0.0896

dx=1/128 0.0408 3.73× 10−4 0.0128 0.0582 1.0× 10−4 0.0226

α = 10−5, ν = 0.9 α = 10−6, ν = 0.9

Mesh size Cost ∥u− uh∥ / ∥u∥ ∥y − yh∥ / ∥y∥ Cost ∥u− uh∥ / ∥u∥ ∥y − yh∥ / ∥y∥
dx=1/16 0.2194 0.0011 1.592 1.9592 2.35× 10−4 1.6832

dx=1/32 0.2266 3.08× 10−4 0.4136 1.9702 8.32× 10−5 0.4421

dx=1/64 0.2305 8.06× 10−5 0.1061 1.9744 2.31× 10−5 0.1159

dx=1/128 0.2326 2.06× 10−5 0.027 1.9765 6.06× 10−6 0.0319

α = 10−7, ν = 0.9 α = 10−8, ν = 0.9

Mesh size Cost ∥u− uh∥ / ∥u∥ ∥y − yh∥ / ∥y∥ Cost ∥u− uh∥ / ∥u∥ ∥y − yh∥ / ∥y∥
dx=1/16 19.3566 3.27× 10−5 1.7302 193.3311 3.4782× 10−6 1.8797

dx=1/32 19.4059 2.03× 10−5 0.4713 193.7626 3.06× 10−6 0.6281

dx=1/64 19.4128 7.43× 10−6 0.1330 193.7970 2.09× 10−6 0.3067

dx=1/128 19.4151 2.09× 10−6 0.0468 193.8011 7.65× 10−7 0.2340

Table 1. Convergence performance of the proposed algorithm (for the single-max
function problem) in terms of mesh size dx and the regularization parameter α. The
exact solution y is given in (5.1), and u = p/α can be informed through the KKT
system as we assumed that the constraint is not active.

algorithm can achieve quadratic convergence rates with respect to the mesh size dx as in [10]. When
α becomes smaller, the convergence of the state variable becomes harder. It was reported in [10]
that the semismooth Newton type method used there, achieved no convergence when α = 10−6 or
smaller. However, our method is capable of preserving the quadratic convergence when α = 10−6.
For the case α < 10−6, as provided in the last two groups in Table 1, quadratic convergence rate can
be observed in the case of α = 10−7, and a suboptimal convergence rate appears when α = 10−8.
This shows that the proposed method is more robust for ill-conditioned problems.

In the following test examples, we also show that our proposed algorithm copes well with semilinear
PDEs whose nonlinearities are general ReLU network functions. In this sense, our proposed method
can be considered a genuine nonsmooth solver for such type of problems.

5.2. Application to general multilayer ReLU network PDEs. We consider a ReLU neural
network function N : R → R, with two-hidden-layers:

N (y) =
L∑

l=1

wl
2σ

(
K∑

k=1

wl,k
1 σ(wk

0y + bk0) + bl1

)
+ b2.

Our results here address optimal control problems for nonsmooth semilinear elliptic PDEs with
both, monotone and nonmonotone network functions, respectively, as shown in Figure 3. For the
sake of providing quantitative observations, we generate synthetic data by fixing the solution of
the PDE. The data is generated from the function g0 = 200 sin(πx) sin(πy) and the control u0 =
min(ub,max(ua,−∆g0 + N (g0))) for ua = −1000, ub = 1000, giving rise to a state y0. In this
example, we choose Ω = (0, 2) × (0, 2). Then the function g in the objective of (PN) is computed
numerically via the KKT-system for (u0, y0). Both test examples, respectively containing monotone

27

−100 −80 −60 −40 −20 0 20 40 60 80 100

0

20

40

60

80

100
function graph of N
derivative graph of N

2
−100 −80 −60 −40 −20 0 20 40 60 80 100

0

20

40

function graph of N
derivative graph of N

2

Weight parameters Bias
w1
0 w2

0 w3
0 b10 b20 b30

5 0.1 10 − − − 10 −1 −60

w1,1
1 w1,2

1 w1,3
1 w2,1

1 w2,2
1 w2,3

1 b11 b21
0.3 2 −0.16 0.1 1 −0.03 (−0.12) 0 1 −
2 − − 1.5 − − 0 − −

Figure 3. Graphs and corresponding weights for the monotone and nonmonotone
ReLU networks. The only difference is their w2,3-value (−0.03 vs −0.12).

and nonmonotone network functions, are generated in this way. We stress that the optimal control
of PDEs involving ReLU neural network components, as proposed and studied in this paper, is a
new feature in the literature, and our proposed algorithm is specific for the optimization with these
type of PDE constraints. For this reason we refrain from comparing our algorithm with other (less
tailored) methods for this set of examples.

Our numerical results are summarized in Table 2. Here we collect three cases of discretization
sizes with respect to varying cost parameter α. In all cases, we observe that m(ΩN) is not zero
at the solution rendering the control-to-state map genuinely nonsmooth. As a consequence, Step 2
in Algorithm 2 is always active. In Table 2, ‘Cost’ denotes the value of the objective functional of
the optimal control problem at the final iterate, and ’Iterates’ shows the number of outer iterations
in Algorithm 2. From the results reported in Table 2 we find that in both cases, monotone and
nonmonotone, the algorithm exhibits a robust behavior across the scales of dx and α. Specifically,
the almost constant iteration count for varying dx can be associated with mesh-independent con-
vergence of the algorithm. Moreover, in all cases highly accurate solutions could be obtained. In

Monotone case Nonmonotone case
α = 10−2 ν = 0.7 α = 10−2 ν = 0.7

Mesh size Cost ∥h∥ Iterates CPU time Cost ∥h∥ Iterates CPU time
dx=1/16 2453.4 2.0× 10−27 34 0.5s 2505.8 2.0× 10−27 33 0.4s
dx=1/32 2444.1 3.4× 10−27 31 1.5s 2496.1 4.9× 10−27 31 1.5s
dx=1/64 2441.6 1.4× 10−28 34 23.9s 2493.7 3.3× 10−27 35 39.0s

α = 10−10 ν = 0.7 α = 10−10 ν = 0.7

Mesh size Cost ∥h∥ Iterates CPU time Cost ∥h∥ Iterates CPU time
dx=1/16 1.4531× 10−4 7.9× 10−24 34 1.3s 1.4477× 10−4 4.2× 10−24 34 1.3s
dx=1/32 1.4535× 10−4 5.4× 10−23 34 4.7s 1.4474× 10−4 1.0× 10−22 34 22.2s
dx=1/64 1.4535× 10−4 3.9× 10−21 34 23.4s 1.4476× 10−4 4.7× 10−21 34 23.8s

α = 10−16 ν = 0.7 α = 10−16 ν = 0.7

Mesh size Cost ∥h∥ Iterates CPU time Cost ∥h∥ Iterates CPU time
dx=1/16 1.4531× 10−10 4.9× 10−17 55 14.1s 1.4477× 10−10 8.4× 10−17 54 13.5s
dx=1/32 1.4535× 10−10 8.5× 10−17 55 52.2s 1.4474× 10−10 8.1× 10−17 55 51.6s
dx=1/64 1.4535× 10−10 5.9× 10−17 55 273.6s 1.4476× 10−10 5.9× 10−17 55 283.3s

Table 2. Convergence performance of the proposed algorithm for monotone and
nonmonotone ReLU neural network functions.

28

our computations, we also tested the algorithm in the extreme case of α = 10−16, which however
exhibits still a similar performance as for the last set of examples for both monotone and nonmono-
tone functions. The only difference for this case is that we used λ = 10−6 in (4.38) rather than
λ = α as in the other cases.

6. Conclusion

In this paper, we have studied numerical aspects of optimal control problems with ReLU-network-
informed PDEs. It was firstly shown that a canonical smoothing of a ReLU network, though prac-
tically very plausible, cannot always preserve its monotonicity, something that could imply lack
of uniqueness of solutions for the corresponding ReLU-network-informed PDEs. Therefore tradi-
tional numerical approaches relying on such smooth approximations may encounter difficulties in
the solution process. This motivates us to propose a genuine nonsmooth algorithm which respects
the specific structure of ReLU networks in the PDEs. The proposed approach does not smoothen
the state equation itself, but it rather approximates the derivative of the control-to-state map via
smoothing of the max-function appearing at the directional derivatives. Such approximations were
proven to converge strongly to the original directional derivative of the nonsmooth operator in a
vanishing smoothing regime. Moreover, this approximation process allows to identify descent di-
rections of the reduced optimal control problem with respect to the nonsmooth PDEs at a given
control iterate. In our numerical tests, the proposed algorithm performs more robust in a benchmark
optimal control problem when compared to recent nonsmooth algorithms designed specifically for
the optimal control of PDEs with a single max-function. In addition, our algorithm also works well
for optimal control of semilinear elliptic PDEs with deeper ReLU network functions, which have a
more general nonsmooth structure when compared to a single max-function.

Acknowledgments. The authors thank the anonymous reviewers whose comments helped to im-
prove the paper. This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy – The Berlin Mathematics Research
Center MATH+ (EXC-2046/1, project ID: 390685689). The work of GD is supported by an NSFC
grant, No. 12001194 and partially also by an Innovative Platform Project of Hunan Province No.
20K078. The work of MH is partially supported by the DFG SPP 1962, project-145r. KP would
like to thank Amal Alphonse for useful discussions.

References

[1] C. Aarset, M. Holler, and T.T.N. Nguyen. Learning-informed parameter identification in nonlinear
time-dependent pdes. Applied Mathematics & Optimization, 88(3):1–53, 2023. https://doi.org/10.1007/
s00245-023-10044-y.

[2] C.D. Aliprantis, D. Harris, and R. Tourky. Continuous piecewise linear functions. Macroeconomic Dynamics,
10(1):77–99, 2006. https://doi.org/10.1017/S1365100506050103.

[3] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding deep neural networks with rectified linear units.
In International Conference on Learning Representations, 2018. https://openreview.net/pdf?id=B1J_rgWRW.

[4] J.-P. Aubin and H. Frankowska. Set-valued analysis. Springer Science & Business Media, 2009.
[5] V. Barbu. Optimal control of variational inequalities. Research Notes in Mathematics, 100, 1984.
[6] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE trans-

actions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.
[7] J. Berner, D. Elbrächter, P. Grohs, and A. Jentzen. Towards a regularity theory for ReLU networks – chain

rule and global error estimates. In 2019 13th International conference on Sampling Theory and Applications
(SampTA), pages 1–5, 2019. https://doi.org/10.1109/SampTA45681.2019.9031005.

[8] L. Betz. Strong stationarity for a highly nonsmooth optimization problem with control constraints. Mathematical
control and related fields, 13(4):1500–1528, 2023. https://doi.org/10.3934/mcrf.2022047.

[9] J.F. Bonnans and A. Shapiro. Perturbation analysis of optimization problems. Springer Science & Business Media,
2013.

[10] C. Christof, C. Meyer, S. Walther, and C. Clason. Optimal control of a non-smooth semilinear elliptic equation.
Mathematical Control & Related Fields, 8:247, 2018. https://doi.org/10.3934/mcrf.2018011.

[11] F.H. Clarke. Optimization and Nonsmooth Analysis, volume 5 of Classics in Applied Mathematics. Society for
Applied Mathematics, Philadelphia, 1987.

29

https://doi.org/10.1007/s00245-023-10044-y
https://doi.org/10.1007/s00245-023-10044-y
https://doi.org/10.1017/S1365100506050103
https://openreview.net/pdf?id=B1J_rgWRW
https://doi.org/10.1109/SampTA45681.2019.9031005
https://doi.org/10.3934/mcrf.2022047
https://doi.org/10.3934/mcrf.2018011

[12] G. Dong, M. Hintermüller, and K. Papafitsoros. Quantitative magnetic resonance imaging: From fingerprinting
to integrated physics-based models. SIAM Journal on Imaging Sciences, 12(2), 2019. https://doi.org/10.1137/
18M1222211.

[13] G. Dong, M. Hintermüller, and K. Papafitsoros. Optimization with learning-informed differential equation con-
straints and its applications. ESAIM: COCV, 28:1–44, 2022. https://doi.org/10.1051/cocv/2021100.

[14] G. Dong, M. Hintermüller, K. Papafitsoros, and K. Völkner. First-order conditions for the optimal control of
learning-informed nonsmooth PDEs. arXiv:2206.00297, 2022. https://arxiv.org/abs/2206.00297.

[15] L.C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics, Second Edition.
American Mathematical Society, 2010.

[16] L.C. Evans and R.F. Gariepy. Measure theory and fine properties of functions. CRC Press, Boca Raton, FL, 1992.
[17] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In Proceedings of the fourteenth

international conference on artificial intelligence and statistics, pages 315–323. JMLR Workshop and Conference
Proceedings, 2011.

[18] I. Gühring, G. Kutyniok, and P. Petersen. Error bounds for approximations with deep ReLU neural networks in
W s,p norms. Analysis and Applications, 18(05):803–859, 2020. https://doi.org/10.1142/S0219530519410021.

[19] M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semismooth Newton method.
SIAM Journal on Optimization, 13(3):865–888, 2003. https://doi.org/10.1137/S1052623401383558.

[20] M. Hintermüller and T.M. Surowiec. A bundle-free implicit programming approach for a class of elliptic mpecs in
function space. Mathematical Programming, 160:271–305, 2016. https://doi.org/10.1007/s10107-016-0983-9.

[21] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE Constraints, volume 23. Springer
Science & Business Media, 2009. https://doi.org/10.1007/978-1-4020-8839-1.

[22] B. Kaltenbacher and T.T.N. Nguyen. Discretization of parameter identification in PDEs using neural networks.
Inverse Problems, 38(12):124007, 2022. https://doi.org/10.1088/1361-6420/ac9c25.

[23] F. Mignot and J.P. Puel. Optimal control in some variational inequalities. SIAM Journal on Control and Opti-
mization, 22(3):466–476, 1984. https://doi.org/10.1137/0322028.

[24] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, New York, NY, USA, 2e edition, 2006.
[25] A. Schiela and D. Wachsmuth. Convergence analysis of smoothing methods for optimal control of stationary

variational inequalities with control constraints. ESAIM: M2AN, 47(3):771–787, 2013. https://doi.org/10.
1051/m2an/2012049.

[26] R.E. Showalter. Monotone operators in Banach space and nonlinear partial differential equations, volume 49.
American Mathematical Society, 1997.

[27] F. Tröltsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications, volume 112
of Graduate Studies in Mathematics. American Mathematical Society, 2010.

[28] S. Wang and X. Sun. Generalization of hinging hyperplanes. IEEE Transactions on Information Theory,
51(12):4425–4431, 2005. https://doi.org/10.1109/TIT.2005.859246.

[29] J. Zowe and S. Kurcyusz. Regularity and stability for the mathematical programming problem in Banach spaces.
Applied Mathematics and Optimization, 5(1):49–62, Mar 1979. https://doi.org/10.1007/BF01442543.

30

https://doi.org/10.1137/18M1222211
https://doi.org/10.1137/18M1222211
https://doi.org/10.1051/cocv/2021100
https://arxiv.org/abs/2206.00297
https://doi.org/10.1142/S0219530519410021
https://doi.org/10.1137/S1052623401383558
https://doi.org/10.1007/s10107-016-0983-9
https://doi.org/10.1007/978-1-4020-8839-1
https://doi.org/10.1088/1361-6420/ac9c25
https://doi.org/10.1137/0322028
https://doi.org/10.1051/m2an/2012049
https://doi.org/10.1051/m2an/2012049
https://doi.org/10.1109/TIT.2005.859246
https://doi.org/10.1007/BF01442543

	1. Introduction
	1.1. Context and motivation
	1.2. Structure of the paper

	2. Smoothings of ReLU neural networks
	2.1. Definition and basic properties
	2.2. Smoothings of ReLU neural networks

	3. Basic facts of the optimal control problem and implications of smoothing
	Implications of the ReLU smoothing on the uniqueness of the state equation

	4. A descent algorithm for B-stationarity
	4.1. A descent algorithm
	4.2. Solving problem (4.13)
	4.3. Convergence analysis
	4.4. Practical aspects concerning Algorithm 2
	4.5. Details on the PDAS Algorithm

	5. Numerical results
	5.1. Application to PDE with single max-function
	5.2. Application to general multilayer ReLU network PDEs

	6. Conclusion
	Acknowledgments

	References

