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1 Introduction

Loops are hard. It is an unhappy fact of life: to make precise predictions in most quantum
field theories, one must compute Feynman diagrams that contain loops. Even on Minkowski
spacetime, this is difficult due to momentum integrals that often diverge. On a cosmological
(time-dependent) spacetime background, things are even worse: loop diagrams contain po-
tentially divergent integrals both over momenta and over time. Since loop corrections can
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play an important role in a wide variety of cosmological settings — including precise calcu-
lations of the primordial power spectrum [1–18] and non-Gaussianity [19–31]; inflationary
features that may seed primordial black holes [32–41] or produce a stochastic gravitational
wave background [42–46]; de Sitter holography [47–50] and the IR stability of de Sitter
spacetime [51–56] — it is important to develop tools for evaluating (and better under-
standing) these loop diagrams. Our goal in this work is to take a step in this direction, and
in particular address the issue of the time integrals. The main result is a cosmological tree
theorem which can be used to expand any loop diagram in terms of (momentum integrals
of) tree-level diagrams, which are comparatively much easier to evaluate. This theorem
applies on any time-dependent spacetime background, and therefore can play a useful role
in future studies of the cosmological implications of loop corrections.

The cosmological wavefunction. The quantum-mechanical object that we focus on
computing is the wavefunction of the Universe [57]. This wavefunction characterises the
state of the quantum fields at a given time, and has recently played an increasingly cen-
tral role in inflationary cosmology. Any equal-time correlation function can be calculated
from it using the Born rule, and these cosmological correlators encode valuable informa-
tion about the new high-energy fields that can be excited during inflation [58]. But beyond
efficiently encoding all correlators, use of the wavefunction has been driven by its many
parallels with scattering amplitudes. The S-matrix programme of the 1960’s developed
a suite of constraints and calculational tools for amplitudes using the fundamental ax-
ioms of unitarity, causality and locality [59], and the modern incarnation of these ideas
includes powerful bootstrap techniques (see e.g. [60–63] for recent reviews). Proceeding
along similar lines has led to a variety of “bootstrap” approaches for efficiently computing
the cosmological wavefunction.

Cosmological bootstrap(s). One influential approach uses the de Sitter isometries [64–
67], building on earlier work [68–71] by introducing the requirement that certain unphysical
singularities must vanish for a Bunch-Davies initial state (see [72] for a recent review).
Another symmetry-based approach is the cosmological scattering equation [73, 74], or the
analytic continuation from (Euclidean) AdS where harmonic analysis is possible [75–82],
including recent progress towards a non-perturbative Kallen-Lehmann representation of
the two-point function [83–85]. Other bootstrap approaches take a general ansatz with the
desired analytic structure and apply various known limits and consistency relations [86–
89], without the need for full de Sitter symmetry, or build the desired coefficient by gluing
together simpler seed functions [90–94]. Altogether, these important advances represent
an “NLO revolution” for cosmological correlators: they have enabled the computation of
primordial non-Gaussianity and other observables in a range of different models beyond the
leading-order contact diagrams [95–102], much like the NNLO revolution currently taking
place for scattering amplitudes (where on-shell unitarity methods and factorisation have
enabled an explosion of new two-loop computations, see e.g. [103]).
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Unitarity. One aspect of many of these approaches is the use of perturbative unitarity.
Much like for amplitudes, unitary time evolution is encoded in perturbation theory1 as a set
of “cutting rules” which can relate any Feynman-Witten diagram for the wavefunction to
simpler diagrams with fewer internal lines [104–107] (see also [108] for recent cutting rules in
AdS).2 In the context of amplitudes, pairing unitarity and the optical theorem with causal-
ity and analyticity leads to powerful UV/IR relations that connect the coefficients in any
low-energy Effective Field Theory with properties of the underlying high-energy completion
(see e.g. [116–123] for an incomplete list). Despite some progress in this direction [77, 124–
127], the application of analogous UV/IR relations in cosmology has mostly been held back
by our understanding of causality/analyticity on time-dependent spacetime backgrounds.

Causality. Relativistic causality is the central pillar on which the Minkowski S-matrix
programme is built. This is the postulate that a local observer can only access information
from inside their past lightcone and affect events inside their future lightcone — or stated
mathematically: all local operators must commute at space-like separations. At the level
of the S-matrix, this property implies3 a particular analytic structure for 2 → 2 scattering
in the complex s-plane at fixed t, where s and t are the usual Mandelstam variables. On
a curved spacetime background, the implications of relativistic causality are less clear due
to the different local lightcones (mathematically, there is no analogue of s and t), although
see [128–135] for recent progress in implementing causality as a constraint in gravitational
field theories.

An alternative way forward is to consider the weaker condition of non-relativistic
causality. This is the requirement that any source which is local-in-time can only af-
fect its future, and is the property that underpins the classic Kramers-Kronig relations
for the dispersion of light in a medium. In a cosmological context, this non-relativistic
causality was recently used in [127] to find analogous dispersion relations for wavefunction
coefficients. Here, we are going to explore another consequence of non-relativistic causality:
namely that it forbids loops (closed time-like curves).

Feynman tree theorem. In the context of amplitudes, this aspect of non-relativistic
causality was exploited by Feynman long ago [136, 137] to derive what is often dubbed
“Feynman’s tree theorem”. This theorem provides a systematic way to cut open any closed
loop in a Feynman diagram and replace it by a sum over simpler diagrams with fewer
loops. It makes manifest the fact that, while drawing loops is often helpful to visualise
certain quantum corrections, since no physical signal could ever travel on such a trajec-
tory they must be expendable. Feynman’s theorem has since been developed in various

1Beyond the diagrammatic expansion, these unitarity relations can be understood as an infinite number
of conserved charges which follow from the total probability (the norm of the wavefunction) remaining
constant in time [104].

2A more geometric formulation of the wavefunction is provided by the cosmological polytope [109–114],
and [115] recently derived a number of new cutting rules in that language.

3The connection between causality and analyticity is fairly rigorous in simple theories, e.g. a real scalar
field with a mass gap, although in a completely general setting one often postulates analyticity in place of
causality since it can be precisely implemented at the level of the S-matrix.
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ways [138–140], and is now widely used in the literature, often together with on-shell uni-
tarity and recursion relations (see e.g. [141, 142] and [143–148] for some early work in that
direction). One prominent incarnation of Feynman’s theorem is the “loop-tree duality”
of [149, 150] (see also [151–155]), which can be used to efficiently implement IR subtrac-
tions numerically [156–160]. A version of Feynman’s tree theorem has even been applied
to the two-point function on a quasi-de Sitter background in order to determine the signs
of higher-loop diagrams without explicitly computing them [161]. In short, Feynman’s re-
markably simple relation has had a remarkable impact on how we compute and understand
loop corrections.

Main results. In this work, we consider the constraints imposed by non-relativistic
causality for the cosmological wavefunction. Concretely, our main results are to:

(i) derive a cosmological analogue of the Feynman tree theorem, which can be used to
express a Feynman(-Witten) diagram with any number of loops in terms of purely
tree-level diagrams,

(ii) use this tree theorem to determine, from purely tree-level data, simple expressions for
the one-loop wavefunction coefficients and the corresponding one-, two- and three-
point cosmological correlators,

(iii) demonstrate a cosmological analogue of the KLN theorem, namely that particular
singularities in the wavefunction cancel out in cosmological correlators,

(iv) describe a novel bootstrap procedure which combines unitarity cutting rules, the
absence of unphysical singularities and our causality condition in order to determine
any tree-level exchange diagram from simpler cut diagrams with no internal lines.

As a result, any Feynman-Witten diagram (with an arbitrary number of edges and loops,
and on an arbitrary time-dependent spacetime background) can now be expressed in terms
of the tree-level single-vertex diagrams of the theory.

As an example of the utility of our tree theorem, we consider the problem of deter-
mining from the wavefunction the equal-time correlation functions relevant for cosmology.
We find that many (otherwise mysterious) cancellations between loop- and tree-level con-
tributions can be explained by our Cosmological Tree Theorem, which provides a system-
atic way of simplifying the map from wavefunction to correlators. For example, for the
one-loop power spectrum (or one-loop bispectrum), the standard approach via the Born
rule generates 7 (or 13) separate Feynman-Witten wavefunction diagrams. Applying the
Cosmological Tree Theorem reduces this to just 2 (or 5) tree-level diagrams for massless
fields. The cancellations which take place between loop- and tree-level coefficients are anal-
ogous to the cancellation of IR divergences that takes place when computing an observable
cross-section from a scattering amplitude: a phenomenon often called the “KLN theo-
rem” [162, 163] (though see the recent discussion in [164, 165] for several subtleties in this
cancellation). The Cosmological Tree Theorem (2.60) for wavefunction coefficients and the
resulting Cosmological KLN theorem (together with the explicit results (3.23) and (B.7)
for the one-loop power spectrum and bispectrum) are the main results of this work.
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Synopsis. We end this introduction with a description of our notation and a technical
summary of the above results (i-iv). Then in section 2.1 we begin in earnest by deriving
simple consequences of causality for tree-level diagrams and describing a bootstrap pro-
cedure for determining an arbitrary exchange diagram from its cut contact diagrams. In
section 2.2 we move on to loop diagrams and illustrate our new Cosmological Tree Theorem
with several simple examples, before providing a general proof for an arbitrary diagram.
In section 3, we show how the Cosmological Tree Theorem can be used to identify the ana-
lytic structure of both the wavefunction and the corresponding in-in correlators, and give a
simplified mapping from the wavefunction coefficients to the one-loop power spectrum (the
longer expression for other correlators can be found in appendix B). Finally, we conclude
in section 4 with a discussion of the future directions that this opens up.

1.1 Notation and conventions

While the majority of our notation is fairly standard, we collect it here for ease of reference.
A reader already familiar with recent literature on the wavefunction of the Universe may
wish to simply note the definition (1.15) of our disc/Disc operations and their graphical
representation (1.16) and then proceed to our main results in section 1.2.

Time and momenta. We will consider quantum field theories on an isotropic time-
dependent spacetime background, which can be written as ds2 = a2(t)

(
−dt2 + dx2) in

conformal coordinates. We label each field ϕk(t) by its temporal location t and spatial
momentum k using the spatial Fourier transformation,

f(x) =
∫

d3k
(2π)3 fk exp(ik · x) , (1.1)

which commutes with time derivatives and integrals. We adopt the following shorthands
for time and momenta integrals, and frequently absorb factors of (2π)3 into the Dirac delta
function, ∫

t
≡
∫ 0

−∞
dt ,

∫
p
≡
∫

d3k
(2π)3 , δ̃3 (k) ≡ (2π)3δ3 (k) . (1.2)

Bold type always refers to spatial vectors, and we write their magnitude as k ≡ |k| ≡
+
√
δijkikj ≡

√
k · k.

Wavefunction coefficients. The central object of our study is the wavefunction of the
Universe, Ψ, which describes how an initial Bunch-Davies vacuum4 state |Ω⟩ evolves in
time from the far past to conformal time t = 0. This time evolution is implemented by
the unitary operator Û , and we project the resulting state onto the field eigenstate |ϕ⟩ at
t = 0, which gives the wavefunction,

Ψ[ϕ] ≡ ⟨ϕ|Û |Ω⟩ ≡ exp
[
+

∞∑
n

∫
k1,...,kn

1
n!ψk1...knϕk1 . . . ϕkn

]
. (1.3)

4When discussing a general conformally flat spacetime, we refer to the vacuum which coincides with the
instantaneous ground state in the far past as the Bunch-Davies vacuum.
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The ψk1...kn appearing in the exponential parameterisation of the wavefunction are the
wavefunction coefficients. We occasionally write ψn as shorthand for ψk1...kn .

Propagators. To develop a perturbative expansion for these coefficients, we define the
usual bulk-to-bulk and bulk-to-boundary propagators,

⟨ϕ = 0|iΠ̂k′ ϕ̂k(t)|Ω⟩ ≡ Kk(t) δ̃3 (k + k′)
⟨ϕ = 0|T ϕ̂k(t1)ϕ̂k′(t2)|Ω⟩ ≡ Gk(t1, t2) δ̃3 (k + k′) (1.4)

where we have written the field and its conjugate momentum in the Heisenberg picture, and
when no time argument is given these are to be evaluated at t = 0. T denotes time-ordering.
In the free theory (1.8), these are related by,5

Gk(t1, t2) = iPk [Θ (t1 − t2)K∗
k(t1)Kk(t2) + Θ (t2 − t1)Kk(t1)K∗

k(t2)−Kk(t1)Kk(t2)]
(1.5)

where Pk is the free-theory power spectrum, related to the wavefunction by 2Reψkk′ ≡
−δd

(
k + k′) /Pk. To prevent a proliferation of δ functions, it will often be convenient to

write the power spectrum as,

Pkk′ ≡ Pk δ̃
d (k + k′) . (1.6)

For concreteness, when we give examples below for a massless scalar field on Minkowki or
de Sitter, the corresponding power spectrum and propagators are given by,

Minkowski: a(t) = 1 , Pk = 1
2k , Kk(t) = eikt

de Sitter: a(t) = −1
Ht

, Pk = H2

2k3 , Kk(t) = eikt (1− ikt) (1.7)

together with (1.5) for Gk(t1, t2).

Perturbation theory. We consider theories with a (generally time-dependent) Hamilto-
nian that can be separated into a solvable quadratic part plus an interacting part which can
be treated perturbatively. For the quadratic part, a scalar field would have the Lagrangian,

Lfree(t) =
∫
d3x

√
−g

(1
2g

µν∇µϕ∇νϕ− 1
2m

2ϕ2
)

(1.8)

where gµν(t) is the time-dependent background metric.6 Our only requirement on the in-
teractions is that the Hamiltonian Hint(t) be Hermitian (i.e. time evolution remains unitary
in the interacting theory), although we also focus mostly on parity-invariant interactions
for the sake of more concise expressions.

Since each wavefunction coefficient in (1.3) corresponds to the connected part of,

⟨ϕ = 0|iΠ̂k1 . . . iΠ̂knÛ |Ω⟩
⟨ϕ = 0|Û |Ω⟩

= 1
Ψ[0]

δnΨ[ϕ]
δϕk1 . . . δϕkn

∣∣∣∣
ϕ=0

, (1.9)

5Note that Gk(t1, t2) differs from the usual Feynman propagator by the final term in (1.5), which is a
result of the different bra boundary condition (which is the zero-field eigenstate rather than the vacuum).

6We focus on the evolution of quantised fluctuations on a fixed time-dependent background (i.e. a
decoupling limit MP → ∞ in which backreaction can be neglected).
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we can represent this matrix element as a diagrammatic series over Feynman(-Witten)
diagrams in which,

• Each “external” line (which connects an interaction vertex at time t to the boundary)
carrying momentum k represents a factor of the free-theory Kk(t),

• Each “internal” line (which connects two interaction vertices at times t1 and t2)
carrying momentum p represents a factor of the free-theory Gp(t1, t2),

• Each vertex which connects n lines of momenta7 {k1, . . . ,kn} at time t corresponds
to a factor of δnLint(t)/δϕk1 . . . ϕkn ,

• All vertex times and internal momenta are then integrated over, i.e. perform
∫ 0
−∞ dt

for every vertex and
∫

p for every internal line,

• Finally, our normalisations are such that we include a factor of +i for every vertex
and −i for every propagator: this leads to an overall i1−L, where L is the number of
loops in the diagram [106].

For instance, a theory in which Lint contains the interaction 1
3!λ(t)ϕ3 would also contain

the diagram,

k1 k2 k3 k4

ps

≡ i

∫
t1t2

λ(t1)λ(t2) Kk1(t1)Kk2(t1)Gps(t1, t2)Kk3(t2)Kk4(t2) δ̃
( 4∑

b=1
kb

)
(1.10)

where ps = k1+k2 is fixed by momentum conservation. Expanding (1.9) order by order in
Hint then gives each wavefunction coefficient as an expansion in Feynman diagrams with
increasing numbers of loops,

ψn = ψtree
n + ψ1-loop

n + ψ2-loop
n + . . . (1.11)

Explicitly, in the main text we make use of,

ψtree
k1k2k3 =

k1 k2 k3

, (1.12)

ψtree
k1k2k3k4 =

k1 k2 k3 k4

+
k1 k2 k3 k4

+
k1 k3 k2 k4

+
k1 k4 k3 k2

ψ1−loop
k1k2

= 1
2

k1 k2

+ 1
2

k1 k2

+ 1
2

k1 k2

, ψ1−loop
k = 1

2

7We use a condensed notation in which k represents the momentum and also any other relevant quantum
numbers which distinguish the fields, e.g. their species (if more than one is present), their helicity (if spin
is non-zero), etc. The δ/δϕk then corresponds in the obvious way to taking a functional derivative with
respect to whatever field is identified by k.
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where the factors of 1/2 for the loop diagrams are the usual symmetry factors which appear
when expanding a matrix element of the form (1.9).8 In appendix B we give the analogous
expansions for ψtree

5 , ψ1−loop
3 and ψ2−loop

1 as further examples.

Discontinuities. The wavefunction coefficients will, in general, be non-analytic functions
of the spatial momenta due to the dependence of Kk(t) on the “energy” ωk of each external
line. On Minkowski, ωk = +

√
k2 +m2 is given by the usual on-shell condition for free

propagation. On a general time-dependent spacetime, we identify ωk with the phase of
Kk(t) in the far past, Kk(t) ∼ e+iωkt: for quasi-de Sitter spacetimes, this gives ωk = k for
any finite9 m2/H2. As discussed in [104–107], we can exploit this particular non-analyticity
to project any Kk or Gp within a diagram onto its real or imaginary part. The essential
idea is to analytically continue a particular energy (or subset of energies) to negative values
and then exploit the Hermitian analyticity of the propagators,

Kk(t)
∣∣
ωk→−ωk

= K∗
k(t) , Gp(t1, t2)

∣∣
ωp→−ωp

= G∗
p(t1, t2) . (1.13)

This is usually achieved by continuing k → −k in order to cross a branch cut (e.g. sending
+
√
k2 +m2 → −

√
k2 +m2).

In this work, we view each wavefunction coefficient or Feynman diagram as a function
of both the momenta {k} and their energies {ωk}, and make use of the following two
“discontinuity” operations,

disc
k1,...,kj

[F (ωk1 ,...,ωkn ;{k})]≡F (ωk1 ,...,ωkn ;{k})−F
(
−ωk1 ,...,−ωkj

,ωkj+1 ,...,ωkn ;{k}
)
,

(1.14)

Disc
k1,...,kj

[F (ωk1 ,...,ωkn ;{k})]≡F (ωk1 ,...,ωkn ;{k})−F ∗
(
ωk1 ,...,ωkj

,−ωkj+1 ,...,−ωkn ;{−k}
)
.

In words: disc corresponds to analytically continuing all indicated energies and is used
to extract the imaginary part of external lines. On the other hand, Disc corresponds
to analytically continuing all energies except those indicated, and is used to extract the
imaginary part of internal lines. For example,

disc
k1

[GpsKk1Kk2 ] = 2iGpsKk2 ImKk1 , Disc
k2

[GpsKk1Kk2 ] = 2iKk1 Im (GpsKk2) . (1.15)

Note that for contact Feynman diagrams with no internal lines, disc
k

[iψ] = Disc
k

[iψ].
In contrast to previous works,10 we make use of these two different operations in order

to avoid ever analytically continuing an internal energy. As far as we are concerned, each ψn

depends only on the {k} and {ωk} of the external momenta, and we may only analytically
8These symmetry factors appear in precisely the same way for scattering amplitudes, and we discuss

them further in appendix C.
9Note that in the flat space limit, H → 0 with m, k fixed, Kk(t) reduces to the Minkowski propagator

and ωk becomes
√
k2 +m2.

10In particular, while our Disc coincides with the Disc of [106] and the D̃isc of [67], the use of disc
appears novel.
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continue those (i.e. internal energies like ps = |k1 + k2| are treated as a function of k1 and
k2 due to momentum conservation).11

To represent the discontinuities diagrammatically, we introduce graphs with high-
lighted lines to denote taking a single discontinuity with respect to those momenta. If
only external lines are highlighted, it is the disc operation, while if any internal line is
highlighted it is the Disc operation. For instance,12

k1 k2 k3 k4

≡ disc
k1

 k1 k2 k3 k4

 , k1 k2 k3 k4

≡−iDisc
k2

i k1 k2 k3 k4

 .
(1.16)

If no lines are highlighted, no discontinuity is to be taken. It will also be convenient to use
a dotted external line to denote the analytically continued propagator K∗

k(t), since then
the disc corresponds to,

k1 k2 k3 k4

≡
k1 k2 k3 k4

−
k1 k2 k3 k4

. (1.17)

Finally, a comment about the terminology “discontinuity”. The name is inspired by
the analogy with scattering amplitudes, where the discontinuity across e.g. the s-channel
branch cut can be written in two equivalent ways,

lim
ϵ→0

[A12→34(s+ iϵ, t)−A12→34(s− iϵ, t)] = A12→34(s, t)−A∗
34→12(s, t) . (1.18)

Morally, the left-hand-side corresponds to our disc operation (since s± iϵ gives an energy
ωs = ±

√
s) and the right-hand-side corresponds to our Disc operation (since by CPT the

time-reversed process can be viewed as flipping the signs of all momenta). To make the
analogy more concrete, we showed in [127] that the Minkowski wavefunction in the complex
ω2

1 = k2
1 +m2

1 plane has a branch cut only along the positive real axis, and disc
ω1

is precisely
the discontinuity across this cut.

1.2 Summary of main results

To complement our more thorough and pedagogical presentation in sections 2 and 3, here
we provide a self-contained summary of the main narrative.

Review of cutting rules from unitarity. Existing cutting rules leverage the unitarity
of time evolution in the interacting theory (together with the Hermitian analyticity of the
free-theory propagators (1.13)) in order to reduce the number of internal lines in a Feynman

11This was recently made precise in [127] through a particular “off-shell” extension of the wavefunction on
Minkowski. An analogous construction for general time-dependent spacetime backgrounds will be reported
elsewhere [166].

12The factors of i for highlighted internal lines are such that the Disc selects ImGp at tree-level and

ReGp for a one-loop diagram (given the factor of i1−L in our Feynman rules).
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diagram. For instance, the simplest such rule is [106, 107],

Unitarity ⇒
k1 k2 k3 k4

= −
∫

qq′
Pqq′

 k1 k2 q
 q′ k3 k4

 , (1.19)

which says that the Disc operation (depicted by a highlighted line) effectively “cuts” an
internal line, brings the two resulting half-edges to the boundary and multiplies by a
factor of the boundary power spectrum Pqq′ .13 This identity can then be used to fix the
discontinuity of ψ4 in terms of its cuts into ψ3 × ψ3,

−iDisc
[
i ψtree

k1k2k3k4

]
=

3∑
perm.

∫
qq′

Pqq′ disc
q

[
ψtree

k1k2q

]
disc

q′

[
ψtree

k3k4q′

]
. (1.20)

in direct analogy with the usual Cutkosky cutting rules for scattering amplitudes.

New cutting rules from causality. In this work, we leverage causality of the free
theory to further constrain the perturbative wavefunction coefficients. For instance, the
entire exchange diagram above can be written as,

k1 k2 k3 k4

= −
∫

qq′
Pqq′

 k1 k2 q
 q′ k3 k4

+
k1 k2 k3 k4

(1.21)

where a directed arrow from t1 to t2 represents the retarded propagator,14

GR
p (t1, t2) ≡ 2PpIm

[
Kp(t1)K∗

p(t2)
]
Θ(t1 − t2) = Gp(t1, t2)− 2PpKp(t1)Im [Kp(t2)] .

(1.22)

Since GR
p is real its discontinuity vanishes, so taking Disc of (1.21) immediately repro-

duces (1.19). However, while the final term in (1.21) cannot be constrained by unitarity
alone, it can be constrained by causality. In particular, we show that,

Causality ⇒
k1 k2 k3 k4

−
k1 k2 k3 k4

= −iPpsdisc
q,q′

 k1 k2 q q′ k3 k4


(1.23)

as a consequence of the fact that GR
p (t1, t2) − GR

p (t2, t1) is a smooth function of t1 and
t2 and so can be written in terms of Kp’s without any step functions. This represents a
qualitatively new way to cut diagrams, and demonstrates how causality can complement
unitarity in fixing wavefunction coefficients. Furthermore, we find that demanding the

13For later convenience, we have chosen to express these cuts using an integral over the resulting external
momenta of the cut line. In tree-level examples such as this one, these momenta integrals are trivial thanks
to the δ functions inside Pqq′ and each wavefunction coefficient.

14GR
p corresponds to the retarded part of the two-point function (A.1), as described in appendix A.
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absence of certain unphysical (“folded”) singularities can be used to completely fix the
remaining freedom in the retarded exchange diagram,

Analyticity
(no folded

singularities)

⇒
k1 k2 k3 k4

is fixed by
k1 k2 q

, (1.24)

which is ultimately a re-writing of the bootstrap approach developed in [88] — the main
difference15 is that our retarded exchange is guaranteed to be an even function of the
exchanged momenta, which can simplify the bootstrap procedure. Altogether, the combi-
nation of unitarity, causality and a particular analytic structure are enough to completely
determine this (and indeed any tree-level) exchange diagram in terms of its cut diagrams
with fewer internal lines.

Causality at loop level. The consequences of causality are even more striking for loop
diagrams. While unitarity alone can determine the Disc of an arbitrary loop diagram in
terms of diagrams with fewer internal lines [106], the combination of unitarity and causality
immediately fixes the entire diagram (both Disc and non-Disc parts). The simplest example
of this phenomenon is the following one-loop diagram,

k1 k2

= −
∫

qq′
Pqq′

 k1 k2 q q′
+

k1 k2

, (1.25)

which has been re-written in terms of GR
p using (1.22). Taking the Disc again removes the

final term and reproduces the unitarity cutting rule of [106]. The new observation that we
exploit here is that,

Causality ⇒
k1 k2

= 0 . (1.26)

Causality forbids loops (closed time-like curves), and hence once any loop diagram is ex-
panded in terms of retarded GR

p propagators all of the loops must vanish. Consequently,
expressions like (1.25) can express any loop diagram in terms of (momentum integrals of)
tree-level diagrams.

Cosmological tree theorem. Our main result is to do this systematically for any closed
loop within a diagram D, and hence prove the cosmological tree theorem (2.60). Schemat-
ically, this takes the form,

−D =
∑
cuts
C

∫
cut line

momenta

∏
subdiagrams

n

disc
[
D

(n)
C

]
(1.27)

15There is another, more subtle, difference: the bootstrap procedure we describe here based on (1.21)
and GR

p does not require Hint to be unitarity, it relies only on unitarity/causality of the free theory.
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where the sum is over all possible ways of cutting one or more internal lines in the loop,
and as a result of the cuts C the diagram may split into disconnected components which
we label D(n)

C . As a result of the cuts, every term on the right-hand-side has at least
one fewer loops than the original diagram. Applied recursively to every closed loop in the
diagram, this can be used to replace any arbitrary loop-diagram with (momentum integrals
of) tree-level diagrams. As a simple example, the ψ1−loop

2 given in (1.12) can be written as,

−2ψ1-loop
k1k2

=
∫

qq′
Pqq′ disc

q′

[
ψtree

k1k2qq′

]
+
∫

q1q′
1

q2q′
2

Pq1q′
1
Pq2q′

2
disc

q′2

[
ψtree

k1q1q′
2

]
disc

q′1

[
ψtree

k2q2q′
1

]
.

(1.28)
While the momenta integrals may still pose a challenge, this has achieved the following
important simplification: there are no longer any time integrals. In practice, this means
that once the tree-level wavefunction coefficients have been determined to a sufficiently
high number of external legs, then the loop momenta integrands are completely fixed by
the above tree theorem. This is an important step towards a general Landau analysis of
the singularities in ψn, since from ψtree

n alone we can now determine all possible poles in
the loop integrand.

Cosmological KLN theorem. Finally, as an application of our new relations, we con-
sider how causality constrains cosmological correlators. While the standard Born rule
mapping from wavefunction to correlator introduces many terms at loop-level, our tree
theorem can be used to considerably simplify this map. In particular, we show that the
power spectrum of massless fields at one-loop order can be written as (a momentum integral
of) just two tree-level diagrams,

⟨Ω|ϕ̂k1 ϕ̂k2 |Ω⟩
Pk1Pk2

= Pk1k2

Pk1Pk2

+
∫

qq′
Pqq′ Re

 k1 q′ q k2

+
k1 q q′ k2

 (1.29)

+
∫

q1q′
1

q2q′
2

Pq1q′
1
Pq2q′

2

2Re

 k1 q1 q′
2

Re

 k2 q2 q′
1

−Re

 k1 q1 q′
2 k2 q2 q′

1


where the dotted line represents the analytic continuation to negative energy ωq′ and Pk

is the free-theory power spectrum. The analogous expression for the one-loop bispectrum
is given in (B.7), (B.10), (B.11). Interestingly, we find that the pattern of analytic contin-
uations and cuts is always such that no vertex (or connected set of vertices) can have a
total energy which depends on both the total external energy and the loop momenta.16 In
the wavefunction coefficients, such vertices generically do appear and lead to branch cuts
in the total external energy once the loop integration is performed. These branch cuts do
not appear in equal-time correlators, as noted in [31, 127] in various examples, and our
tree theorem makes their cancellation manifest. We demonstrate that this cancellation is
not confined to the power spectrum or bispectrum, but in fact takes place very generally.
Given the close analogy with the cancellation of IR divergences in amplitudes, we refer to
this result as the cosmological KLN theorem.

16For instance in (1.29), there is no vertex (or set of vertices) which depends on both ωk1 + ωk2 and
q = −q′.
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2 Wavefunction coefficients

In this section, we describe how the causal properties of the retarded propagator GR
p can be

used to constrain the wavefunction coefficients defined in (1.3). We begin with a discussion
of tree-level diagrams in subsection 2.1, and then move on to loops in subsection 2.2.

2.1 Causality and a tree-level bootstrap

Here we consider the constraints that causality can place on a general tree-level exchange
diagram, which we represent diagrammatically as,17

. (2.1)

Each gray blob represents a particular subdiagram with arbitrarily many external and
internal lines (i.e. a general function of Kk and Gp and their conjugates), and they are
connected by the single internal line shown. We have added a dotted pattern to the left
blob to indicate that it need not be the same subdiagram as the right blob.

Introducing directed edges. From the definition (1.22) of the retarded propagator and
the definition (1.16) of the discontinuity, we can trade any internal line (factor of Gp) for
a directed line (factor of GR

p ) as follows,

= −
∫

qq′
Pqq′

q′ q

. (2.2)

Note that since GR is real,

Disc
[
iGR

p (t1, t2)
]
= 0 , (2.3)

i.e. a directed internal line will vanish when highlighted. Taking the Disc of (2.2) therefore
produces,

= −
∫

qq′
Pqq′

q′ q

(2.4)

which are the tree-level unitarity cutting rules of [106, 107]. Note that while (2.4) requires
Hermiticity of the interaction Hamiltonian (i.e. real coupling constants so the discontinuity
on the left-hand-side implements Gp → 2i ImGp), the causal representation (2.2) does not
(since disc does not require any complex conjugation, there is no reality restriction on the
couplings).18

17As described in section 1.1, the dashed horizontal line represents the time t = 0 at which the wavefunc-
tion is evaluated: that the gray blob extend above this line simply reflects that they may contain arbitrarily
many external (as well as internal) lines terminating at t = 0, and in particular does not represent any
interaction or time evolution beyond t = 0.

18As described in appendix A, the definition (1.22) which underpins (2.2) follows from the unitarity and
causality of the free theory (1.8) only.
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Cutting rules from causality. But now notice that since Gp(t1, t2) is symmetric in t1
and t2, we could equally have written,

= −
∫

qq′
Pqq′

q′ q

, (2.5)

using GR
p (t2, t1), which is essentially the advanced propagator from t1 to t2. Additional

cutting rules therefore follow from comparing these two different expressions: for instance
their difference is,

− =
∫

qq′
Pqq′ disc

q,q′


q′ q

 . (2.6)

where the dotted external line indicates the analytically continued propagator K∗
q (t).

So by combining retarded and advanced propagation (or equivalently ψ({kL}, {kR}) −
ψ({kR}, {kL}), where {kL} and {kR} are the external momenta of the left- and right-hand
blobs) we can effectively cut the internal line and produce two disconnected subdiagrams.
This cutting rule is tied to causality, since it can be written as the propagator identity,

iGR
p (t1, t2)− iGR

p (t2, t1) = 2iPpIm
[
Kp(t1)K∗

p(t2)
]
(Θ(t1 − t2) + Θ(t2 − t1))

= Pp disc
p

[
Kp(t1)K∗

p(t2)
]

(2.7)

where the right-hand-side can only be written in terms of Kp alone since GR
p is proportional

to the Heaviside step function Θ(t1 − t2). In an acausal theory, with no such retarded
propagator (no way of separating sources in the future from responses in the past), it
would not be possible to construct a cutting rule of the form (2.6).19 As mentioned in
the introduction, these causal cutting rules complement previous unitarity cutting rules in
that they constrain the part of the diagram with vanishing Disc. What we have shown is
that unitarity and causality together can fix the diagram up to a residual freedom which
corresponds to adding,

+ . (2.8)

We give an overview and explicit comparison of the different unitarity and causality cutting
rules in appendix A, where we also make precise the connection with unitarity / causality
of the two-point function.

19Note that analogous cutting rules exist for S-matrix elements, in which case the internal line of the
Feynman diagram would be the usual Feynman propagator and the highlighted line would correspond to
simply K∗

p rather than ImKp.
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Causal bootstrap. The cutting rule (2.6) is written in terms of graphs with directed
edges, but ideally we would phrase such constraints in terms of the original diagram (2.2)
with undirected edges since this is what determines the wavefunction coefficients / cosmo-
logical correlators. To do this requires the symmetric part (2.8) of the retarded propagator.
Remarkably, we have found that in practice it is not necessary to compute this object ex-
plicitly, since it can inferred from the unitarity/causality cuts by demanding the absence of
certain unphysical singularities. This provides yet another way to “bootstrap” these wave-
function coefficients (i.e. determine them without actually computing nested time integrals
like (1.10)). Concretely, we input the following three ingredients:

(i) Causality of the free theory, so that each bulk-to-bulk Gp(t1, t2) may be expanded in
terms of a retarded GR

p (t1, t2) = i∆S
p (t1, t2)Θ(t1 − t2) for some ∆S

p ,

(ii) Unitarity of the free theory, which fixes ∆S
p (t1, t2) = 2PpIm

[
Kp(t1)K∗

p(t2)
]

in terms
of the bulk-to-boundary propagator,

(iii) Bunch-Davies initial state, so that the only singularities are at kinematics for which
the total energy entering one or more vertex vanishes,

and the output is a procedure for determining any tree-level exchange diagram from its
cut diagrams with fewer internal lines. It was previously shown in [88] that the absence of
certain unphysical (“folded”) singularities can be combined with unitarity of the interacting
theory to bootstrap an exchange diagram from its unitarity cuts. The approach described
here is essentially the same, but we apply this bootstrap to determine the retarded part of
the exchange (2.8) rather than the full diagram: this means that we only require unitarity
of the free theory (not necessarily of the interacting theory) and in practice can exploit the
fact that retarded propagator is a real, even function of p to simplify the computations and
remove the need for any further conditions (locality, etc.) to completely fix the exchange
diagram up to contact terms.

An example. Before describing the general procedure, let us give a simple example.
Suppose we have determined the contact ψtree

3 diagram in (1.12), and wish to determine
from it the exchange diagrams in ψtree

4 . Replacing the internal line with a retarded propa-
gator using (1.22) produces (1.21), in which the first term is determined by ψtree

3 but the
second term,

k1 k2 k3 k4

≡ Ppsdisc
ps

[∫
t1t2

Kk1(t1)Kk2(t1)Kk3(t2)Kk4(t2)Kps(t1)K∗
ps
(t2)Θ (t1 − t2)

]
(2.9)

seems to require a nested time integral. Rather than compute this explicitly, we can notice
that since it takes the form Pps disc

ps
[f(ps)], it must be an even function of ps.20 We can

20This follows from the fact that disc
ps

is clearly odd by definition (1.15), and the power spectrum Pps is

either odd or can be made odd by a suitable renormalisation (since any even p2n
s term can be absorbed into

the local counterterm (∂nϕ)2).
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therefore play the following trick. On general grounds, the Bunch-Davies wavefunction
coefficient may only have singularities when the total energy flowing into one or more
vertices vanishes. In this example, that corresponds to the total energy ωT = ωk1 + ωk2 +
ωk3 + ωk4 and the partial energies ωL = ωk1 + ωk2 + ωps and ωR = ωk3 + ωk4 + ωps .
Since the ψtree

3 discontinuity in the first term of (1.21) introduce unphysical singularities
at ωps = ωk1 + ωk2 and ωk3 + ωk4 , we can demand that these are cancelled by the even
function (2.9). This effectively fixes (2.9) up to terms which are analytic in p2

s (and such
terms can be absorbed into contact diagrams).

For example, for a λ
3!ϕ

3 interaction on a Minkowski spacetime background that pro-
duces,

k1 k2 k3

= λδ̃3 (k1 + k2 + k3)
ωk1 + ωk2 + ωk3

, (2.10)

the equation (1.21) becomes,

k1 k2 k3 k4

=
λ2δ̃3

(∑4
b=1 kb

)
ωLωR (ωk3 + ωk4 − ωps)

+
k1 k2 k3 k4

(2.11)

The only even function of ps which cancels the unphysical singularity (and does not intro-
duce any further unphysical singularities) is,

k1 k2 k3 k4

=
λ2δ̃3

(∑4
b=1 kb

)
ωT

1
ω2

ps
− (ωk3 + ωk4)2 (2.12)

up to an analytic function of p2
s which can be absorbed into contact interactions. Substi-

tuting this back into (2.11), we arrive at the simple answer,

k1 k2 k3 k4

=
λ2δ̃3

(∑4
b=1 kb

)
ωTωLωR

. (2.13)

Notice that we have therefore determined this exchange diagram without doing the nested
time integrals in (1.10). Of course, in this simple Minkowski example the time integrals are
fairly straightforward (and indeed produce (2.13)). But this same approach can be applied
more generally to any tree-level diagram on any time-dependent spacetime background.

General procedure. For any tree-level diagram D, we can split it into a retarded and
a cut part as shown in (2.2): we will write this as D = DR + DC . Now the bootstrap
proceeds as follows. Label the partial energies of the original diagram D which depend on
the momentum of the internal line’s energy ωp as {E1(ωp), . . . , En(ωp)}. D will generically
contain singularities when any Ej(ωp) = 0. Due to the analytic continuation, the cut DC

terms will contain additional singularities at Ej(−ωp) = 0. These unphysical singularities
are not present in D, and so they must exactly cancel with singularities in DR. However,
since DR is proportional to Pp disc

p
it must be an even function of p, and so if it contains
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a singularity at Ej(−ωp) it must also contain one at Ej(+ωp) with the same residue.
Proceeding in this way, one can determine all of the singularities at Ej(±ωp) and their
residues, which fixes DR up to a remainder that is analytic in ω2

p. This remainder, if non-
zero, can be absorbed into the local interaction which resembles D but with the internal
line collapsed into a single vertex. This represents the freedom to add any contact diagram
to D — this will not affect the cut diagrams DC and is ultimately related to our freedom
to perform field redefinitions.

Another Minkowski example. As a second simple example of this procedure, consider
the following tree-level diagram,

D =
k1 k2 k3 k4 k5

p q

(2.14)

The partial energies flowing into each vertex or collection of vertices are,

E1(ωp)=ωk1 +ωk2 +ωp , E2(ωp)=ωk3 +ωp+ωq , E3 =ωk4 +ωk5 +ωq , (2.15)
E4(ωp)=ωk3 +ωk4 +ωk5 +ωp , E5 =ωk1 +ωk2 +ωk3 +ωq , ωT =ωk1 +ωk2 +ωk3 +ωk4 +ωk5

where we have highlighted the p dependence of E1, E2 and E3. Replacing this internal line
with retarded propagators as in (2.2) produces the following cut contribution,21

DC = − λ3

2ωpE3

[
1

E1(ωp)E2(ωp)E4(ωp)
− 1
E1(ωp)E2(−ωp)E4(−ωp)

]
, (2.16)

for the cubic interaction on Minkowski (2.10) (and the 4-point exchange we bootstrapped
from it in (2.13)). For now we suppress the overall momentum-conserving δ-function. DC

has unphysical singularities at both E2(−ωp) and E4(−ωp) = 0, which cannot appear in
D. Consequently, we can construct DR using the ansatz ∑j Zj/(Ej(ωp)Ej(−ωp)) and fix
each Zj so that these folded singularities cancel. The result is,

DR = − λ3

E3

[
1

E2(ωp)E2(−ωp)E1(ωk3 + ωq)E4(−ωk3 − ωq)

+ 1
E4(ωp)E4(−ωp)E1(ωk3 + ωk4 + ωk5)E2(−ωk3 − ωk4 − ωk5)

]
(2.17)

so that the total DC +DR is simply,

D = λ3

ωTE1(ωp)E2(ωp)E3

(
1

E4(ωp)
+ 1
E5

)
. (2.18)

Again, notice how there was no need to ever perform a nested time integral: the retarded
part DR was fixed entirely by the singularities of DC .

21Note that we could have cut q and taken the disc of a single line in the resulting ψtree
3 : since this would

exactly mimic the previous example, here we have chosen to cut p and take the disc of the resulting 4-point
exchange diagram.
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In this simple Minkowski setting, it is straightforward to verify (2.18) by explicitly
performing the time integrals. The virtue of fixing D using causality is that we remove
the need to perform any time integrals, once the basic ψtree

3 vertex is known. This comes
at the cost of introducing unphysical singularities in the intermediate steps which are
ultimately absent in the final result (2.18). The simple structure of (2.18), and indeed
of all Minkowski wavefunction coefficients, can be made manifest using the “old-fashioned
perturbation theory” based on the Lippmann-Schwinger equation (see e.g. [91, 112, 127]
for recent reviews). This approach also removes the need for time integrals, and introduces
only the physical singularities in the partial energies. However, the utility of OFPT is
largely limited to Minkowski spacetime. So the second virtue of fixing D using causality
as described above, is that this method can be applied to any time-dependent background.

De Sitter example. To demonstrate this, consider the same exchange diagram (2.11)
but this time for the interaction Lint = λ

3! π̇
3a(t) for a massless scalar field π on de Sit-

ter. The contact diagram is readily determined by doing a single time integral of the Kk

propagator in (1.7),

k1 k2 k3

= − 2λk2
1k

2
2k

2
3

H(k1 + k2 + k3)3 , (2.19)

where for now we will omit the δ̃3 functions. The cut contributions to the exchange diagram
are then,

DC = −2λ2k2
1k

2
2k

2
3k

2
4p

(k12 + ps)3

[ 1
(k34 + ps)3 − 1

(k34 − ps)3

]
(2.20)

where kij ≡ ki + kj . Proceeding as above by making a general ansatz DR =∑
i,j Zj/(Ej(p)Ej(−p))i, we can immediately determine the retarded contributions,

DR = −4λ2k2
1k

2
2k

2
3k

2
4

k5
T

[
6k2

34(
p2

s − k2
34
) − 6p2

skTk34
(p2

s − k2
34)2 + p2

sk
2
T

(
3k2

34 + p2
s

)(
p2

s − k2
34
)3

]
, (2.21)

again up to an analytic function of p2
s. Summing DC and DR gives,

k1 k2 k3 k4

ps

= −4λ2k2
1k

2
2k

2
3k

2
4

k5
T

(4p4
sk

2
T

s3 + 6p3
s(k3

T − skT )
s3 + 3p2

s

s3 (2s2 − sk2
T + k4

T ) + 6
)
,

(2.22)
for two π̇3 interactions on de Sitter, where we have used the variables,

kT ≡ k1 + k2 + k3 + k4 and s ≡ −(k1 + k2 + ps)(k3 + k4 + ps) . (2.23)

In our opinion, this bootstrap route is far simpler than performing the nested time inte-
gration in (1.10). We verified (2.22) by carrying out the time integration explicitly, and
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also by checking that it correctly factorises in limits22 as kT → 0, EL → 0 or ER → 0. It
also matches the result given in [88, (6.47)].

While the three examples given in this section are fairly simple diagrams for which the
nested time integration can be performed explicitly, the point that we wish to stress is that
this procedure can be applied to any tree-level diagram on any time-dependent spacetime,
including those for which the time integrals become arduous or intractable. This removes
the need to ever perform a nested time integral in cosmology at tree-level. By repeatedly
applying (2.2) and fixing the DR part by matching against the unphysical singularities in
DC , all internal lines can be removed and any D can be expressed as a product of simple
contact diagrams (which require only a single time integral) and their discontinuities.

Manifest locality. There is a further difference between the bootstrap procedure de-
scribed above and that introduced in [88].23 In [88], the ansatz used for the exchange
diagram is only partially fixed by demanding the absence of unphysical singularities: there
is a remainder which must be fixed by demanding that ∂kb

ψn|kb=0 vanishes for each of the
external lines (assumed massless) with energy ωkb

= kb. This follows from the property of
massless mode functions,

∂

∂k
[Kk(t)] |k=0 = 0 . (2.25)

In the bootstrap described above, both DC and DR automatically satisfy ∂kb
DC |kb=0 =

∂kb
DR|kb=0 = 0 since they can be explicitly represented as integrals of Kk(t) propagators

(e.g. as in (2.9)). In the language of [88], the additional contribution BMLT is always zero
in our construction.

This is best illustrated by the examples of a ππ̇2 interaction for massless fields in de
Sitter, for which the ψtree

3 input for the boostrap would be,

ψtree
k1k2k3 ∝ −e3e2 + kT e

2
2 − 2k2

T e3
k2

T

, (2.26)

or a π̇(∂iπ)2 interaction in de Sitter, for which the ψtree
3 input for the boostrap would be,

ψtree
k1k2k3 ∝ −k

6
T − 3k4

T e2 + 11k3
T e3 − 4k2

T e
2
2 − 4kT e2e3 + 12e2

3
2k3

T

, (2.27)

where we have introduced the symmetric polynomials,

e3 = k1k2k3 , e2 = k1k2 + k2k3 + k3k1 , kT = k1 + k2 + k3 . (2.28)
22Note that in the amplitude limit, kT → 0, the variable s → (k1 + k2)2 − p2

s and becomes the usual
Mandelstam invariant. In fact, in that limit,

(2.22) ∼ −24λ2k2
1k

2
2k

2
3k

2
4

k5
T

(k1 + k2)2

s
∝ A
k5

T

∏4
a=1 k

2
aPka

(2.24)

and indeed coincides with the expected amplitude A for an π̇3 × π̇3 interaction (see e.g. [87, 105] for a
description of the proportionality constant in (2.24)).

23We thank David Stefanyszyn for pointing this out to us.
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In both cases, DR can be fixed (up to an analytic remainder which can be absorbed into
contact interactions) by demanding that it cancels the unphysical poles appearing in DC

and that it is an even function of ps, and the resulting D = DC +DR satisfies ∂kb
D|kb=0

since both DR and DC satisfy this property separately. It would therefore be interesting to
recast this causal bootstrap as a BCFW-type recursion relation, since the boundary term
from integrating an arc at infinity seems simpler than in previous approaches [67, 88].

Further identities. Finally, we remark that (2.6) is by no means the only constraint
which follows from the properties of GR

p . Unlike the bulk-to-bulk Gp, the retarded GR
p is

simply proportional to Θ(t1 − t2). As a result, we have propagator identities of the form,

Im
[
Kp1(t1)K∗

p2(t2)
]
GR

p2(t1, t2) = GR
p1(t1, t2) Im

[
Kp2(t1)K∗

p1(t2)
]

(2.29)

which corresponds to the diagrammatic identity,

Pq1q′ disc
q1,q′1


q′
2 q2

q1

 = Pq2q′
2

disc
q2,q′2


q′
1 q1

q2

 . (2.30)

In words, these identities say that in any diagram with colinear momenta (i.e. a pair of
external legs with q + q′ = 0), the disc with respect to these momenta can be used to
exchange the momenta of external and internal lines. This is a further constraint which
all Feynman-Witten diagrams must satisfy due to the causal properties of the free theory.
Unlike the above causal cutting rules, these identities only apply to particular colinear
configurations of momenta. At present, we have not found any particularly useful appli-
cation for them (except that they guarantee the consistency of different loop-level cutting
rules discussed in the next section). There may be some connection to the factorisation
in non-local soft limits recently studied in [94]. It would be interesting to explore these
relations further in future.

2.2 Loops and the cosmological tree theorem

Now we turn our attention to diagrams containing loops. In particular, we introduce and
then prove our Cosmological Tree Theorem, which can replace any loop diagram with a sum
over (momentum integrals of) tree diagrams. To build some intuition for how this works,
we begin by outlining several simple examples in subsection 2.2.1, postponing the general
statement of the theorem to subsection 2.2.2. While we initially focus on scalar fields, we
explain the straightforward generalisation to spinning fields at the end of this section.

2.2.1 Some examples

First we show, simply by inspection, that the one-loop correction to the wavefunction
coefficients which determine the power spectrum and the bispectrum can be written in
terms of simpler tree-level diagrams.
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One vertex. The simplest one-loop diagram contains only a single vertex. For instance, a
λ
4!ϕ

4 interaction contributes to the quadratic wavefunction coefficient through the diagram,

k1 k2

q

=
∫

q

∫
t
λKk1(t)Kk2(t)Gq(t, t) δ̃ (k1 + k2) . (2.31)

The coupling λ can depend on both time and, in the case of derivative interactions, all
three momenta entering the vertex. Notice that since the bulk-to-bulk propagator in this
diagram is evaluated at coincident times, it no longer contains any Θ(t1−t2) step functions.
It can be written simply as,

Gq(t, t) = 2PqKq(t)Im(Kq(t)). (2.32)

This allows us to express the momentum integrand in (2.31) in terms of a tree-level diagram
without any internal lines, using the disc operation (1.15) to extract the required imaginary
part of an external propagator. In this example, the identity (2.32) implies,

−
k1 k2

q

=
∫

qq′
Pqq′

 k1 k2 q q′
 (2.33)

where the highlighted line corresponds to taking a disc, as defined in (1.16). The iden-
tity (2.33) is the simplest example of our tree theorem. It shows that the time integration
in (2.31) can be replaced by cutting open the loop and taking a discontinuity. This turns
out to be a very general property of loop diagrams and is connected to the causal structure
of the propagator (anticipated in (1.26)).

Before moving on to our next example, let us make a few remarks about (2.31).

(i) For massless fields on a Minkowski spacetime background, these diagrams are partic-
ularly simple,

k1 k2 k3 k4

=
λ δ̃4

(∑4
b=1 kb

)
ωk1 + ωk2 + ωk3 + ωk4

,

k1 k2

q

= λδ̃4 (k1 + k2)
ωk1 + ωk2

∫
q

1
ωk1 + ωk2 + 2ωq

, (2.34)

and it is straightforward to confirm that (2.33) holds, essentially as a consequence of
the partial fraction identity,

1
(ωk1 + ωk2)(ωk1 + ωk2 + 2ωq)

= − 1
2ωq

(
1

ωk1 + ωk2 + ωq + ωq′
− 1
ωk1 + ωk2 + ωq − ωq′

) ∣∣∣
q′=q

. (2.35)
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The simplicity of the integrand in (2.34) can again be understood from old-fashioned
perturbation theory and its resulting recursion relation. One way to think of (2.33)
is that it gives up some of that simplicity (by splitting the single rational inte-
grand (2.34) into the two separate terms in (2.35)) in order to buy a greater gener-
ality: (2.33) can be immediately applied to fields of any mass on any time-dependent
spacetime background.24

(ii) As an example of this generality, consider the contact diagram given by the interac-
tion λ

4! π̇
4 on a fixed de Sitter spacetime. In that case, performing the explicit time

integration leads to,

k1 k2 k3 k4

= λδ̃3
( 4∑

b=1
kb

)
24k2

1k
2
2k

2
3k

2
4

(k1 + k2 + k3 + k4)5 ,

k1 k2

q

= −λδ̃3 (k1 + k2)
∫

q

(
24k2

1k
2
2q

4

(k1 + k2 + 2q)5 − 24k2
1k

2
2q

4

(k1 + k2)5

)
, (2.36)

which again satisfy (2.33).

(iii) In many ways the cutting rule (2.33) is a completion of those developed in [106],
since it expresses both the real and imaginary part of the loop diagram in terms of
tree-level cuts. It is straightforward to recover the results of [106] by taking a further
discontinuity of (2.33),

−
k1 k2

q

=
∫

qq′
Pqq′

 k1 k2 q q′
 (2.37)

where we have used that Disc
q

[
disc

q′

[
Kq(t)Kq′(t)

]]
= disc

q,q′

[
Kq(t)Kq′(t)

]
. Note that the

unitarity cutting rule (2.37) requires unitarity time evolution in the fully interacting
theory (so that λ commutes with the Disc operation defined in (1.15)), whereas the
tree theorem (2.33) uses only the unitarity/causality of the free theory.25

Two vertices. The next-simplest one-loop diagrams contains two vertices. For instance,
a λ

3!ϕ
3 interaction contributes to the quadratic wavefunction coefficient through the dia-

gram,

k1 k2

q1

q2

=
∫

q1q2

∫
t1,t2

λ(t1)λ(t2)Kk1(t1)Gq1(t1, t2)Gq2(t2, t1)Kk(t2)

× δ̃3(k1 + q1 − q2)δ̃3(k2 − q1 + q2) . (2.38)
24We will return to the comparison with OFPT at the end of this section.
25Since ∂tdisc

p
[Kp(t)] = disc

p
[∂tKp(t)], λ automatically commutes with disc for interactions with time-

derivatives.
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Ordinarily, a product of two bulk-to-bulk propagators would contain two Heaviside Θ
functions. However, when evaluated at cyclic arguments as in (2.38), this product only
contains a single Θ function. It can therefore be written in terms of a single bulk-to-bulk
propagator,

Gp1(t1, t2)Gp2(t2, t1) = 2Pp1Im(Kp1(t2))Gp2(t2, t1)Kp1(t1) + 2Pp2Im(Kp2(t1))Gp1(t1, t2)Kp2(t2)
− 4Pp1Pp2Kp1(t1)Im(Kp2(t1))Kp2(t2)Im(Kp1(t2)). (2.39)

This suggests that it should be possible to express the momentum integrand of (2.38)
using diagrams with at most one internal line (and therefore tree-level). In fact, it is
straightforward to verify that the three terms of (2.39) can be written as,

−

k1 k2

q1

q2

=
∫

q1q′
1

Pq1q′
1

 k1 q1 q′
1 k2

q2

+
∫

q2q′
2

Pq2q′
2

 k1 q′
2 q2 k2

q1



+
∫

q1,q2
q′

1,q′
2

Pq1q′
1
Pq2q′

2

 k1 q1 q′
2

 k2 q2 q′
1

 (2.40)

where again we have used coloured lines to denote the imaginary part of a propagator.
The identity (2.40) is another example of our tree theorem. It shows, as in the previous

example, that the time integrals appearing in the conventional expression for this loop
diagram (2.38) can be exchanged for suitable discontinuities of tree-level diagrams. The
qualitative difference with (2.33) is that now the loop consists of two lines, and we must
sum over cutting either/both of these lines. This need to sum over all possible cuts was
also found in the cutting rules previously developed in [106, 107].

The other distinct feature of a loop with more than one edge is that it can be oriented
in either of two ways (i.e. loop momenta can flow clockwise or anticlockwise around the
loop). This manifests as a second identity for the bulk-to-bulk propagator,

Gp1(t1, t2)Gp2(t2, t1) = 2Pp1Kp1(t2)Gp2(t2, t1)Im(Kp1(t1)) + 2Pp2Kp2(t1)Gp1(t1, t2)Im(Kp2(t2))
− 4Pp1Pp2Im(Kp1(t1))Kp2(t1)Im(Kp2(t2))Kp1(t2). (2.41)

which corresponds to cutting open the loop with the opposite orientation, producing an
identity which differs from (2.40) only in the colouring of the lines,26

−

k1 k2

q1

q2

=
∫

q1q′
1

Pq1q′
1

 k1 q1 q′
1 k2

q2

+
∫

q2q′
2

Pq2q′
2

 k1 q′
2 q2 k2

q1



+
∫

q1,q2
q′

1,q′
2

Pq1q′
1
Pq2q′

2

 k1 q1 q′
2

 k2 q2 q′
1

 . (2.42)

26If it seems that (2.42) is a trivial relabelling of (2.40), note that the two internal lines could correspond
to different fields.
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That there are two distinct ways of cutting open a loop into trees will turn out to be quite
general, and we show in subsection 2.2.2 below that this is tied to the existence of two
causal propagators (i.e. retarded/advanced).

Some comments about (2.40) and (2.42):

(i) It is instructive to compare with the simple expressions for a massless scalar on
Minkowski. The relevant tree-level diagram ψtree

3 was given in (2.10), and from it we
constructed the ψ4 exchange diagram (2.13) using the tree-level cutting rules. Now,
we can use both of those expressions as input for (2.40) or (2.42), which determines
the loop integrand to be,

k1 k2

q1

q2

= λ

ωk1 + ωk2

∫
q1,q2

(
1

ωk1 + ωk2 + 2ωq1
+ 1
ωk1 + ωk2 + 2ωq2

)
(2.43)

× δ̃3(k1 + q1 − q2)δ̃ (k2 − q1 + q2)
(ωk1 + ωq1 + ωq2)(ωk2 + ωq1 + ωq2)

.

This is consistent with explicitly performing the nested time integrals in (2.38), but
notice that using causality we required only ψtree

3 as an input (i.e. a single time
integral over only Kk’s).

(ii) To illustrate this result on a non-trivial background (and for a derivative interaction),
consider the interaction λ

3! π̇
3a(t) on a fixed de Sitter background. This is typically

the dominant source of primordial non-Gaussianity in the EFT of inflation [167]. At
tree-level, the seed wavefunction coefficient ψtree

3 is given by (2.19), and we used this
to construct the four-point exchange diagram in (2.22). Using these as the input
for (2.40) or (2.42) gives,

−

k1 k2

q1

q2

= λ2H2

4

∫
q

(3q1
k

− 3k4q1
(k + q1)5 + (q1 ↔ q2) (2.44)

+ F (q1, q2, q1 + q2)− F (q1, q2,−q1 + q2)− F (q1, q2, q1 − q2) + F (q1, q2,−q1 − q2)
)

where,

F (q1, q2, p) = k4q1q2
5(k + p)(k + q1 + q2) + (k + p)2 + 10(k + q1 + q2)2

(k + q1 + q2)3(2k + p+ q1 + q2)5 (2.45)

and we have omitted the overall δ̃3 (k1 + k2) and enforced |k1| = |k2| = k and
q2 = q1 + k. It is remarkable that this result can be obtained immediately from the
simple ψtree

3 in (2.19), without performing any further time integration.27

27Note that this differs from [106, (C.4)] by the additional contact terms in the second line, which are
discussed further in appendix D.3.
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(iii) Note that while the bulk-to-bulk propagators are symmetric in their arguments,
Gp(t1, t2) = Gp(t2, t1), this symmetry is not manifest in the identities (2.39) or (2.41).
However, if we consider the difference of these identities, for instance the difference
of (2.40) and (2.42), we find that it vanishes thanks to the non-trivial tree-level iden-
tity (2.30). The consistency of different one-loop cutting rules is therefore guaranteed
by the tree-level identities. This turns out to be a general pattern: the consistency
of cutting higher-loop diagrams is guaranteed by lower-loop identities. We describe
these consistency relations further in appendix D.2.

Finally, note that at this order in perturbation theory there is also a 1PI-reducible
diagram that contributes to ψ2,

k1 k2

0
q

=
∫

q

∫
t1,t2

λ1λ2Kk1(t1)Kk2(t1)G0(t1, t2)Gq(t2, t2)δ̃3(k1 + k2) . (2.46)

This can be expressed in terms of a tree-level diagram as in the one-vertex example us-
ing (2.32),

−
k1 k2

0
q

=
∫

qq′
Pqq′

 k1 k2 q′ q

0

 . (2.47)

In particular, note that the total one-loop correction sourced by this cubic interaction can
be written as,

−

k1 k2

q1

q2

−

k1 k2

0
q

=
∫

qq′
Pqq′

 k1 q q′ k2

+
k1 q′ q k2

+
k1 k2 q′ q



+
∫

q1,q2
q′

1,q′
2

Pq1q′
1
Pq2q′

2

 k1 q1 q′
2

 k2 q2 q′
1

. (2.48)

where the first line now contains all three exchange channels of ψtree
4 . Together with (2.33),

this establishes the relation (1.28) given in the introduction, which expresses the full ψ1−loop
2

coefficient in terms of ψtree
4 and ψtree

3 . So although we are deriving these identities by looking
at particular diagrams, they naturally apply to the entire wavefunction coefficient (at a
fixed order in perturbation theory).

Three-vertex loop. As a final example, we consider the one-loop diagram from three
λ
3!ϕ

3 vertices,

k1 k2 k3

q1

q3

q2
=
∫

q1q2q3

δ̃(k1 + q3 − q1)δ̃(k2 + q1 − q2)δ̃(k1 + q1 − q2) (2.49)

×
∫

t1t2
t3

λ3Kk1(t1)Gq1(t1, t2)Kk2(t2)Gq2(t2, t3)Kk3(t3)Gq3(t3, t1) .
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While a product of three Gp propagators generally introduces three Θ functions in the
integrand, for this particular cyclic identification of the arguments we find that only two Θ
functions are necessary. As in the above examples, this means that it is possible to expand
this product in terms of fewer bulk-to-bulk propagators. For instance,

Gq1(t1, t2)Gq2(t2, t3)Gq3(t3, t1) = 2Pq1Kq1(t1)Im(Kq1(t2))Gq2(t2, t3)Gq3(t3, t1) + 2 perm.
− 4Pq1Pq2Kq1(t1)Kq2(t2)Im(Kq1(t2))Im(Kq2(t3))Gq3(t3, t1) + 2 perm.
+ 8Pq1Pq2Pq3Kq1(t1)Kq2(t2)Kq3(t3)Im(Kq1(t2))Im(Kq2(t3))Im(Kq3(t1)), (2.50)

It is straightforward to verify that each of these seven terms corresponds to a particular
discontinuity of a tree-level Feynman-Witten diagram, and consequently (2.49) can be
written as,

−

k1 k2 k3

q1

q3

q2
=
∫

q1q′
1

Pq1q′
1


q′
1 k2 k3 k1 q1

q2 q3

+2 perm. (2.51)

+
∫

q1,q2
q′

1,q′
2

Pq1q′
1
Pq2q′

2

 q′
1 k2 q2


 q′

2 k3 k1 q1

q3

+2 perm.

+
∫

q1,q2,q3
q′

1,q′
2,q′

3

Pq1q′
1
Pq2q′

2
Pq3q′

3

 q′
3 k1 q1

 q′
1 k2 q2

 q′
2 k3 q3


where the permutations indicated correspond to the other ways of cutting the internal lines
of the loop. Note that if we fix the orientation of the loop as above, the disc is always
taken of the clockwise-most half-edge after the cut. Similarly to the two-vertex loop, the
triangle graph (2.49) loop can be oriented either clockwise or anticlockwise and there is
therefore a second cutting rule which corresponds to summing over all ways of cutting the
loop but instead taking the disc of the other (anticlockwise) half-edges after the cut. The
difference between these two cutting rules again vanishes thanks to a collinear tree-level
identity which generalises (2.30) to two internal edges.

Returning again to the example of λ
3!ϕ

3 on Minkowski — for which ψtree
3 was given

in (2.10) and used to bootstrap both the four- and five-point exchange diagrams, (2.13)
and (2.18) — we now see that this input can be used in (2.51) to completely determine the
loop momentum integrand for the triangle graph. For that example, (2.51) evaluates to,

k1 k2 k3

q1

q3

q2
= λ3

∫
q1q2q3

δ̃(k1 + q3 − q1)δ̃(k2 + q1 − q2)δ̃(k1 + q1 − q2) (2.52)

×
( 1
ωT e1e2e3

( 1
E3(kT + 2q3)

+ 1
E1(kT + 2q3)

)
+ 2 perm.

)
where ωT = ωk1 + ωk2 + ωk3 and we have introduced the partial energies,

e1 =ωk1 +ωq3 +ωq1 , e2 =ωk2 +ωq1 +ωq2 , e3 =ωk3 +ωq2 +ωq3 , (2.53)
E1 =ωk2 +ωk3 +ωq1 +ωq3 , E2 =ωk3 +ωk1 +ωq2 +ωq1 , E3 =ωk1 +ωk2 +ωq3 +ωq2 .

– 26 –



J
H
E
P
1
2
(
2
0
2
3
)
0
7
6

This agrees with the result from old-fashioned perturbation theory [109, 127], or from doing
the three nested time integrals in (2.49).

2.2.2 Proof of the general theorem at one loop

Having shown how a suitable expansion of bulk-to-bulk propagator products can be used
to express the momentum integrand of some simple one-loop diagrams in terms of cut tree-
level diagrams, the natural question is: how general is this phenomenon? In this subsection,
we show that in fact any one-loop diagram can be decomposed in terms of trees, and we
give an explicit expression for the cutting rule that achieves this.

Closed time-like curves. The general proof of our tree theorem rests on causality:
namely the free propagation described by the classical GR

p does not allow for closed time-
like curves. Specifically, GR

p is defined as the Green function for the classical equation
motion of the free theory with causal boundary conditions GR

p (t1, t2) = 0 if t2 > t1. For a
quadratic Lagrangian like (1.8), such a propagator can be explicitly constructed from the
mode functions and is given by (1.22). We reproduce this equation here for convenience,

GR
p (t1, t2) = 2PpIm

(
Kp(t1)K∗

p(t2)
)
Θ(t1 − t2) . (2.54)

The key observation that translates this causal propagator into cutting rules for loop dia-
grams comes originally from Feynman [136], who pointed out that a product of N retarded
propagators obeys,

N∏
a=1

GR
pa
(ta, ta+1) = 0 when tN+1 = t1 . (2.55)

This is simply a consequence of being unable to order t1 > t2 > . . . > tN+1 if the vertices
form a closed loop.

Propagator identities. Since we can write the bulk-to-bulk propagator (1.5) in terms
of the retarded propagator (1.22), Feynman’s identity (2.55) implies that the combinations,

Lp1...pN (t1, t2, . . . , tN ) ≡
N∏

a=1

(
Gpa(ta, ta+1)− 2PpaKpa(ta)Im(Kpa(ta+1))

)∣∣∣∣∣
tN+1=t1

(2.56)

all vanish identically. As in [106, 107], and described in appendix A, for every propagator
identity that relates different powers of Gp and Kp there is a cutting rule which relates
Feynman diagrams with different numbers of internal lines.

Cosmological tree theorem. To prove the tree theorem at one loop, consider the
general one-loop diagram composed of N interactions,

D = δ̃

(
N∑

a=1
ka

)∫
q1

[
N∏

a=1

∫
ta

λaKka(ta)Gqa(ta, ta+1)
]

(2.57)

where ka is the total momentum flowing into each vertex from the boundary, momentum
conservation at each vertex requires that qa − qa+1 = kb, and again we identify tN+1 = t1
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and qN+1 = q1 for notational convenience. λa is a vertex factor that can depend on each
momenta flowing into the vertex and also the time ta.

We can use the fact that (2.56) vanishes to write this diagram D as a sum over cuts.
More precisely, we “cut” a line by making the replacement,

Gqa(ta, ta+1) →
∫

q′
a

Pqaq′
a
Kqa(ta)Kq′a(ta+1) (2.58)

in (2.57), which corresponds diagrammatically to replacing an internal line with two exter-
nal half-edges. To formalise the sum over cuts, we will denote the set of internal lines that
make up the loop by I, and the set of lines which have been cut by C (with sizes |I| and
|C| respectively). Cutting the lines C in diagram D produces a new diagram DC , which
may no longer be connected. We use D(n)

C to refer to the connected subdiagrams of DC .
With that notation, the causal identity,[

N∏
a=1

∫
ta

Kka(ta)
]
Lp1...pN (t1, . . . , tN ) = 0 (2.59)

from (2.56) becomes the Cosmological Tree Theorem,

−D =
2|I|−1∑
C⊆I
C ̸={}

 |C|∏
a∈C

∫
qa q′

a

Pqaq′
a

∏
n

disc
{q′a}

[
D

(n)
C

]
. (2.60)

Eq. (2.60) is a more precise version of the schematic (1.27), and is the central result of this
work.

An example. The previous examples in subsection 2.2.1 follow immediately from the
general theorem (2.60) with |I| = 1, 2 and 3 internal lines.28 For instance, for the two-
vertex loop, we have two internal lines, labelled by I = {1, 2}, and therefore 3 cut diagrams,

D{1} =
k1 q1 q′

1 k2

p2

, D{2} =
k1 q′

2 q2 k2

p1

, D{1,2} =
k1 q1 q′

2

︸ ︷︷ ︸
D

(1)
{1,2}

k2 q2 q′
1

︸ ︷︷ ︸
D

(2)
{1,2}

.

Note that D{1} and D{2} are connected, while D{1,2} contains the two connected subdia-
grams indicated. Taking the discontinuities specified in (2.60) then reproduces the coloured
diagrams on the right-hand-side of (2.40).

Further identities. What about the other identities discussed in subsection 2.2.1? Well,
note that since (2.60) uses discontinuities with respect to the q′a only, it is sensitive to how
we have oriented the loop. Had we instead written each internal line as Gpa(ta+1, ta), then

28Note that |I| = 1 is somewhat subtle because it requires the evaluation of Θ(0). Given our definitions
of GR

p (t1, t2) in (1.22) and Gp(t, t) in (2.32), notice that GR
p (t, t) = 0 and hence the directed loop shown

in (1.26) indeed vanishes.
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applying the cuts as in (2.58) would have resulted in (2.60) with disc
{q′a}

replaced by disc
{qa}

(where the convention is that q′
a is the clockwise-most half-edge),

−D =
2|I|−1∑
C⊆I
C ̸={}

 |C|∏
a∈C

∫
qa q′

a

Pqaq′
a

∏
n

disc
{qa}

[
D

(n)
C

]
. (2.61)

At first sight, this may seem like a trivial re-labelling of (2.60), however it is a non-
trivial consequence of the fact that LpN ...p1(t1, tN , . . . , tN−1) also vanishes, which follows
from Feynman’s identity (2.55) for the advanced propagator. So the Cosmological Tree
Theorem for one-loop graphs is always, in effect, a pair of relations, which correspond to
cutting the loop open with either orientation.

In fact, comparing the two tree theorems, we see that,
2|I|−1∑
C⊆I
C ̸={}

 |C|∏
a∈C

∫
qa q′

a

Pqaq′
a

(∏
n

disc
{qa}

[
D

(n)
C

]
−
∏
n

disc
{q′a}

[
D

(n)
C

])
= 0 (2.62)

These integrands correspond to the tree-level colinear identities discussed at the end of
subsection 2.1.

The fact that the tree-level causality conditions guarantee consistency of the different
one-loop cutting rules turns out to be a general trend. Although we have presented a
general argument for one-loop graphs, it is straightforward to replace ∏aKka(ta) above
with any desired function of bulk-to-boundary and bulk-to-bulk propagators. Eq. (2.60)
is therefore a general result which can be applied to any closed loop within a diagram. In
appendix D.2 we give some examples at two loops. Since each loop can be oriented either
clockwise or anticlockwise, there can be several different ways to cut a two-loop diagram into
tree diagrams. The difference between these identities corresponds precisely to the one-loop
identities discussed in subsection 2.2.1 above. The general pattern is that the L-loop iden-
tities guarantee the consistency of the different ways of cutting open an L+1-loop diagram.

Including spin. So far we have focused on the application of the Cosmological Tree
Theorem to scalar fields. However, the underlying conditions (unitarity/causality of free
propagators) that we have used do not specify the mass or the spin of the field. Indeed, the
hermitian analyticity of the bulk-to-bulk propagators of spinning fields was proven in [107].
Our Cosmological Tree Theorem can therefore be applied more widely to fields of any spin.

To extend the Cosmological Optical Theorem from scalar to any other field content, all
that is required is to decorate the internal lines to account for all of the internal quantum
numbers which characterise each field. For instance, the tree theorem representation of the
two-point wavefunction coefficient becomes:

−2ψα1α2
k1k2

=
∑
λ1λ′

1

∫
q1q′

1

P λλ′

q1q′
1

disc
q′1

[
ψ

α1λ1λ′
1α2

k1q1q′
1k2

]
+
∑
λ2λ′

2

∫
q2q′

2

P
λ2λ′

2
q2q′

2
disc

q′2

[
ψ

α1λ2λ′
2α2

k1q′
2q2k2

]
+
∑
λ1λ′

1
λ2λ′

2

∫
q1q′

1
q2q′

2

P
λ1λ′

1
q1q′

1
P

λ2λ′
2

q2q′
2

disc
q′2

[
ψ

α1λ′
2λ1

k1q′
2q1

]
disc

q′1

[
ψ

α2λ2λ′
1

k2q2q′
1

]
. (2.63)
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where the superscript on each wavefunction coefficient indicates the intrinsic quantum
numbers of each field (e.g. the spin and helicity).

As a concrete example, consider the interaction, Lint = −1
2g(t)hij∂iϕ∂jϕ, between the

scalar ϕ and a metric fluctuation hij (in a transverse, traceless gauge). This produces a
contact diagram:

k2k1 kλ
3 =

∫
t
ig(t)V λ(k1,k2,k3)Kk1(t)Kk2(t)Kλ

k3(t) (2.64)

The vertex function V λ(k1,k2,k3) is proportional to the momentum of the scalar lines and
the polarisation tensor29 of the graviton with helicity λ,

V λ(k1,k2,k3) ∝ (k1)i(k1)jϵ
λ(k3)ij . (2.65)

This interaction leads to two different exchange diagrams — one with the exchange of a
graviton,

k1 k2 k3 k4

ps

(2.66)

=
∑
λ,λ′

∫
t1t2

ig(t1)g(t2)V λ(k1,k2,ps)Kk1(t1)Kk2(t1)Gλλ′
ps

(t1,t2)Kk3(t2)Kk4(t2)V λ′(k3,k4,−ps)

where the λ, λ′ indices are summed over, and one with the exchange of a scalar,

k1 kλ
2 kλ′

3 k4

ps

(2.67)

=
∫

t1t2
ig(t1)g(t2)V λ(k1,k2,ps)Kk1(t1)Kλ

k2(t1)Gps(t1, t2)Kλ′
k3(t2)Kk4(t2)V λ′(k3,k4,−ps)

where the indices are not summed (they are external kinematic data). The loop correction
to ψ2 from this interaction contains one graviton and one scalar as internal lines,

k1 k2

q1

q2

=
∑
λ,λ′

∫
t1t2

g(t1)g(t2) (2.68)

×
∫

q1q2

Kk1(t1)Gλλ′
q1 (t1, t2)Gq2(t1, t2)Kk2(t2)V λ(k1,q1,q2)V λ′(k2,−q1,−q2)

Since both Gλλ′ and P λλ′ are ∝ δλλ′ , we see that indeed (2.63) is satisfied by the above
four diagrams.

29The polarisation tensors ϵλ(k)ij are transverse, symmetric and traceless. They are also conjugate under
parity (ϵλ(k)ij)∗ = ϵ(−k)λ

ij . This leads to the vertex function V λ(k1,k2,k3) being hermitian analytic,
V λ(k1,k2,k3) = (V λ(−k1,−k2,−k3))∗. While not required for the tree theorem, which uses only disc’s,
this is crucial for other unitarity cutting rules that involve Disc operations.
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Comparison with OFPT. Finally, note that on a Minkowski background one can use
old-fashioned perturbation (OFPT) of the Lippmann-Schwinger equation to similarly ex-
press every wavefunction coefficient without the need for explicit time integrals. Let us close
this section by making some explicit comparisons between our Cosmological Tree Theorem
and the use of OFPT. There are three key differences between the two approaches:

(i) Different inputs. OFPT uses only ψ1 = 1/ωk as input, and builds all higher-point
coefficients by exploiting the time translation Ward identity of Minkowski. On the
other hand, the Cosmological Tree Theorem makes use of all cut diagrams, which
can be bootstrapped by unitarity and causality from all contact ψn.

(ii) Different terms. This is related to the different inputs: OFPT expands a diagram in
terms of ψ1, while the Cosmological Tree Theorem expands in a more varied basis
of ψcontact

n so often requires fewer terms overall. This is summarised in table 1. For
OFPT, the number of terms required is E!, where E being the number of edges.30 On
the other hand, explicitly performing the nested time integrals in what is traditionally
called time-orderd perturbation theory (TOPT) requires 3E terms (since each internal
propagator Gp(t1, t2) contains the 3 terms shown in (1.5)). The Cosmological Tree
Theorem is an improvement over both approaches when it comes to the number of
terms, since it decomposes the E edges loop into just 2E −1 terms that we can relate
to the discontinuity of different tree-level wavefunction coefficients.

(iii) Different applicability. OFPT becomes difficult beyond Minkowski (although see [91]
for recent progress), but the Cosmological Tree Theorem can be applied on any
time-dependent spacetime background. This makes it well-suited for computing cos-
mological correlators: for instance we show in section 3.2 below that it leads to a
simple expression for the one-loop integrand for the inflationary power spectrum in
the EFT of inflation.

3 Correlation functions

Having explored the consequences of causality for the wavefunction coefficients and derived
a number of useful identities — including the tree-level cutting rule (2.6), the colinear
identity (2.30) and the Cosmological Tree Theorem (2.60) for any loop diagram — we now
turn to the question of how these can be used to constrain inflationary observables. In
particular, we consider the equal-time correlation functions of a weakly coupled scalar field
ϕ on a generic time-dependent background. In the context of the EFT of inflation, this
background is quasi-de Sitter and ϕ represents the Goldstone of broken time translation:
its correlators are closed related to the comoving curvature perturbations which later re-
enter the horizon and ultimately seed the initial conditions for the Cosmic Microwave
Background and Large Scale Structure [167].

30This can be seen by induction: since the OFPT representation of a E edges diagram has E single-cut
subdiagrams, that have E−1 cut subdiagrams each, that have E−2 cut subdiagrams each, and so on. . . we
can follow this procedure until one reaches the single vertex diagram that is only 1/Ωk.
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OFPT TOPT
Cosmological
Tree Theorem

E = 1 1 1 1
E = 2 2 9 3
E = 3 6 27 7
E = 4 24 81 15

...
...

...
...

E E! 3E 2E − 1

Table 1. Number of terms in the different representations of a one-loop diagram with E internal
edges.

First, we briefly review the standard map from wavefunction to correlators via the
Born rule. Then in subsection 3.1, we show on general grounds (for any interactions and
spacetime background) that the Cosmological Tree Theorem implies a delicate cancella-
tion between different wavefunction contributions to cosmological correlators. This is the
cosmological analogue of the KLN theorem for amplitudes and cross sections, and in par-
ticular it leads to a complete cancellation of certain total energy singularities. Then in
subsection 3.2, we provide a simplified expression for the one- and two-point function in
any theory of massless fields at one-loop, exploiting this cancellation to remove all loops
and redundant terms which vanish in dimensional regularisation. Finally, we specialise
to the EFT of inflation and use this expression to evaluate the inflationary power spec-
trum. We give analogous simplified expressions for the one-loop corrections to primordial
non-gaussianity (the bispectrum) in appendix B.

From wavefunction to correlators. From the wavefunctional Ψ[ϕ], one can extract
any desired equal-time correlation function using the (functional version of the) Born rule,31

〈
Ω
∣∣∣ O (ϕ̂, iΠ̂) ∣∣∣Ω〉 =

∫
Dϕ Ψ∗[ϕ] O

(
ϕ,

δ

δϕ

)
Ψ[ϕ] (3.1)

which follows immediately from inserting a complete set of ϕ eigenstates to the left of the
operator O. The Dϕ represents a functional integral over all ϕk modes (this is not a path
integral, but rather an integral over all field configurations at a fixed time).

In practice, we evaluate (3.1) by treating any non-Gaussianity in Ψ[ϕ] as a small
perturbation. Concretely, we expand the wavefunction as in (1.3), namely,

Ψ[ϕ] = exp
( ∞∑

n=0

∫
k1...kn

ψk1...kn

n! ϕk1 . . . ϕkn

)
(3.2)

31We have implicitly normalised the state / wavefunctional so that ⟨1⟩ = 1. Without this condition, the
well-defined observables in this field theory are the ratios ⟨O⟩/⟨1⟩, which introduces an explicit normalisation
factor of 1/

∫
Dϕ|Ψ[ϕ]|2 on the right-hand-side. Diagrammatically, the role of this normalisation is to cancel

all vacuum bubble contributions.
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where ψ0 is simply an overall normalisation, and in perturbation theory we treat each
ψn ∼ O

(
gn−2
∗

)
, except for the tadpole ψ1 which ∼ O (g∗), where g∗ is a small power

counting parameter.
For instance, suppose we define the power spectrum of the full interacting theory via,

⟨Ω| ϕ̂kϕ̂k′ |Ω⟩ = Pk δ̃
3 (k + k′) (3.3)

where we use a caligraphic Pk to distinguish this from the free-theory power spectrum Pk.
A perturbative expansion of the Born rule (3.1) then fixes Pk in terms of the wavefunction
coefficients of the previous section. As is often the case with quadratic correlators (e.g. the
propagator), it is simpler to give the perturbative expansion for the inverse,

− δ̃
3 (k+k′)

Pk
=2Reψkk′ +

∫
qq′

Pqq′

(
Reψkk′qq′ +4Reψkk′qReψq′

)
(3.4)

+2
∫

q1q′
1

q2q′
2

Pq1q′
1
Pq2q′

2

(
Reψkq1q′

2
Reψk′q′

1q2
+Reψkk′q1

Reψq1q2q′
2

)
+O

(
g3
∗

)

where we have treated all ϕ̂ fields as indistinguishable (and hence ψn is a symmetric function
of its arguments).

Similar expansions can be given for all other n-point functions. The other correlator
we consider in the main text will be the one-point function,

⟨ϕ̂k⟩
Pk

= v δ̃ (k) (3.5)

where we have normalised by Pk in order to cancel various contributions which correspond
diagrammatically to corrections that only affect the propagation of a single leg as it prop-
agates to the boundary (i.e. diagrams of the form (B.2)). The Born rule (3.1) can be used
to determine v perturbatively in the non-Gaussianity,

v δ̃3 (k) = 2Reψk +
∫

qq′
Pqq′ Reψkqq′ +O

(
g3
∗

)
. (3.6)

Loop expansion. The rationale for the power counting ψn ∼ O(gn−2
∗ ) is that each

wavefunction coefficient stems from a weakly coupled Lagrangian of the form, gn−2
∗ L [g∗ϕ],

where g∗ ≪ 4π suppresses Feynman diagrams which contain loops. As a result, in the loop
expansion (1.11) of the wavefunction coefficients, we should treat,

ψL-loop
n ∼ O

(
g2L+n−2
∗

)
. (3.7)

Equations (3.4) and (3.6) then have expansions in g∗, for instance,

v = v(1) +O
(
g3
∗

)
, Pk = P(0)

k + P(2)
k +O

(
g4
∗

)
(3.8)

where P(0)
k = Pk is the free-theory power spectrum and P(2)

k is determined by ψ1−loop
2 , ψtree

4
and ψtree

3 ×ψtree
3 . Note that we have defined the free theory such that ψtree

1 = 0 and hence
the leading order v(1) is determined by ψtree

3 and ψ1−loop
1 .
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Notice that each n-point correlator starts at O
(
gn−2
∗

)
, so at leading order (i.e. O(g∗))

the only non-zero correlators are the one-loop correction to the vev and the tree-level
bispectrum. At next-to-leading order (i.e. O(g2

∗)), the non-zero correlators are the one-
loop correction to the power spectrum and the tree-level trispectrum. These are the objects
we focus on in the main text. At next-to-next-to-leading order (i.e. O(g3

∗)), the non-zero
correlators are the two-loop vev, the one-loop bispectrum and the tree-level five-point
function. We describe these in appendix B.

Finally, although we focus predominantly on ϕ correlators, since these give the largest
signal at the end of inflation, we have checked that similar conclusions can also be drawn
for mixed correlators which also contain the conjugate momenta Π.

3.1 IR singularities and the cosmological KLN theorem

Before analysing any particular n-point function, in this subsection we give a general argu-
ment about how the Cosmological Tree Theorem will affect a generic correlator. In short,
once our tree theorem replaces loop wavefunction diagrams with tree-level ones, it makes
manifest the cancellations that can take place between e.g. ψ1-loop

2 , ψtree
4 and ψtree

3 × ψtree
3

in the power spectrum. This generalises some of the important observations made recently
in [31] about which wavefunction singularities can appear in correlators.

Analytic structure of wavefunction. Earlier in section 2.1, we made use of the condi-
tion that tree-level Feynman-Witten diagrams for the Bunch-Davies initial state can only
have singularities when the total energy flowing into one or more vertices vanishes. The
idea is that, for a Bunch-Davies initial state, the bulk-to-boundary propagators appearing
in any contact diagram have the asymptotic behaviour,32

Kk1(t) . . .Kkn(t) ∼ eiωT t (3.9)

at large t. Integrating this from t = −∞ is what produces singularities when ωT → 0. Phys-
ically, this divergence corresponds to the interaction becoming long-lived: when there is no
longer any eiωT t to suppress the vertex in the far past, it gives an infinite contribution to
the wavefunction. Since these contact diagrams can be used to construct any tree-level ex-
change diagram, we similarly conclude that those will have singularities when the energy at
any vertex (or collection of vertices) vanishes.33 This typically occur in regions of parameter
space that are not observationally accessible: for instance when some of the ωk are negative.

Recently, [127] studied the analytic structure of the wavefunction on Minkowski, and
used old-fashioned perturbation theory to show that loop integrands similarly can only have
singularities when the total energy flowing into one or more vertices vanishes (the “energy
conservation condition”). As a result, a simple Landau analysis shows that ψn has branch

32On Minkowski, a massive field would have Ωk =
√
k2 +m2 in place of k in this expression. On a

quasi-de Sitter background, however, since k blueshifts in the far past any finite mass parameter becomes
negligible and the propagators scale like (3.9).

33The singularities when a collection of vertex energies vanish arise naturally in the bootstrap procedure
of section 2.1 from the matching of DR onto the unphysical singularities of DC : for instance the terms
1/E1(ωk3 +ωq) and 1/E1(ωk3 +ωk4 +ωk5 ) in (2.17) are producing from the single-vertex function E1 poles
which depends on the total energy of two or three vertices.
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points at certain “thresholds”: the minimum energy at which this energy conservation
condition can be met.

The Cosmological Tree Theorem can be used to extend this argument to other space-
time backgrounds. Thanks to (2.60), a general loop integrand can be decomposed into
tree-level diagrams, which have known singularities (when the total energy flowing into
one or more vertices vanishes). The subtlety is that (2.60) involves discontinuities that
change the sign of some energies and produce unphysical singularities, which ultimately
cancel one another in the final sum. Applying the energy conservation condition of [127]
directly to (2.60) will therefore produce a list of possible thresholds, but in practice we
expect several of them to cancel out. We leave a systematic study of these cancellations for
the future. For now, all we need is the idea that the singularities of a diagram arise when
the total energy flowing into one or more vertex vanishes. Together with the Cosmological
Tree Theorem, this is sufficient to demonstrate the cancellation of certain singular points
which takes place for equal-time correlators.

Tree-level singularities. At their first non-trivial order, equal-time correlators are de-
termined simply by tree-level wavefunction coefficients. There are three kinds of singular-
ities which can occur in these objects when a total or partial energy vanishes:

(i) Poles. As can be seen in the various examples of section 2, for massless fields on
both Minkowski and de Sitter there are generally poles in ψn whenever the energy
flowing into a connected set of vertices vanishes. On Minkowski, these poles are the
finite-time avatar of the energy-conserving δ-functions which appear in asymptotic
observables such as the S-matrix (indeed, pushing the wavefunction to t → +∞
would replace each simple pole with such a δ function). On de Sitter, the order of
the pole is fixed by dilation invariance.

(ii) Late-time logs. But poles are not the only kind of singularity that can appear at
tree-level. Unlike for amplitudes, which are always finite at tree-level (thanks to the
energy-conserving δ functions), when it comes to finite-time wavefunction coefficients
particular Feynman-Witten diagrams can diverge and require renormalisation even
at tree-level. This happens whenever the masses of the fields satisfy certain sum
rules, which leads to them persisting at arbitrarily late times (by contrast, the simple
poles above correspond to the early-time limit). For instance, for the cubic interac-
tion 1

3!a
4(t)ϕ3 in which each field has mass m2 = 2H2 (so that the total conformal

dimension 3∆ = 3 matches the spacetime dimension), the ψtree
3 coefficient

k1 k2 k3

=
∫ t0

−∞

dt

t
eikT t ∼ log(kT t0) (3.10)

and diverges as we approach the t0 = 0 conformal boundary. As discussed in [71,
104], these can be renormalised into the Boundary Operator Expansion (in the same
way that UV divergences in ordinary QFT are absorbed into the Operator Product
Expansion), which effectively replaces t0 → 1/µ with some sliding RG scale. This
is essentially the phenomenon of holographic renormalisation (see e.g. [168]), and

– 35 –



J
H
E
P
1
2
(
2
0
2
3
)
0
7
6

in the context of de Sitter is perhaps most usefully viewed in terms of dynamical
RG [22–24].

(iii) Massive branch cuts. The other way in which these simple poles become branch points
is for fields with non-zero mass. Even on Minkowski, if we consider the complex k

plane for massive fields we would encounter a branch point at k = −m rather than
a simple pole due to the square root in ωk =

√
k2 +m2. On de Sitter, we similarly

find branch cuts in the complex k plane whenever massive fields are involved. For
instance, consider the interaction 1

2a
4(t)ϕ2σ between two fields of mass m2 = 2H2

and one field of mass m2 = 9
4 + ν2. The corresponding ψtree

3 is,34

k1 k2 k3

∝
∫ 0

−∞
dt eik12t (−t)−1/2 H

(2)
iν (−k3t) ∝ Piν− 1

2

(
k12
k3

)
(3.11)

This Legendre function has a branch point at z = k12/k3 = −1, which conventionally
runs along the negative real axis to z = −∞.

Since we are primarily interested in corrections to inflationary correlators, which are dom-
inated by an approximately massless Goldstone mode, we will mostly focus on the pole
singularities (i). However, it is important to mention singularities (ii) and (iii) since these
would play an important role in future applications to the cosmological collider signals
produced by heavy states during inflation.

One-vertex loop. The first kind of cancellation which takes place due to our tree the-
orem is for loops containing a single vertex. These always appear together with a partner
contribution,

q +
∫

qq′
Pqq′

q q′

(3.12)

where the grey blob represents any particular set of other ψ diagrams and their complex
conjugates. The two terms in (3.12) are the in-in analogue of the virtual and real emis-
sion contributions to the inclusive cross-section in particle physics. By applying the tree
theorem, the one-loop virtual emission diagram can be replaced by a disc, so that (3.12)
becomes,

∫
qq′

Pqq′


q q′

− disc
q′


q q′ 

 =
∫

qq′
Pqq′

q q′

(3.13)

where the dotted line represents an analytic continuation of the corresponding energy.
Crucially, since a diagram can only contain singularities when the total energy flowing into

34While ψn ∼ tα0 for such fields near the boundary, one can extract the finite ψnt
−α
0 by a suitable

redefinition of the boundary operators in the theory [104], and this is what is shown in (3.11).
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a vertex vanishes, we see that this final diagram cannot contain any singularities which
depend on both q and ωblob, since the total energy at the shown vertex is ωq −ωq′ +ωblob =
ωblob (where ωblob is the total energy flowing into the blob from the boundary). As a
result, for massless fields this integral takes the simple form

∫
q Pq Poly(q) and such (“scale-

free”) integrals vanish in dimensional regularisation. This is perhaps the most striking
consequence of the tree theorem: it guarantees that the combination of real and virtual
emission shown in (3.13) exactly cancel when evaluated in dim reg. In the analogous
calculation of the inclusive cross-section, this cancellation is the so-called KLN theorem.
The fact that in-in correlators enjoy a “cosmological KLN theorem”, thanks to causality and
the tree theorem (2.60), explains why several recent calculations of equal-time correlation
functions have found a simpler analytic structure than the corresponding wavefunction
coefficients [31, 127].

Note that for massive fields, the cancellation shown in (3.13) still takes place
(leaving just a single analytically continued diagram with total energy ωblob), however the
resulting integral is no longer scale-free and need not vanish. For instance on Minkowski
2Pq = 1/

√
q2 +m2 and hence gives a finite integral (which ∼ md−1). On de Sitter,

contact diagrams with two heavy external legs typically ∼ P j

iν− 1
2
(z)

(
1− z2)j/2 where

z = −1 +
(
(q + q′)2 − ω2

blob
)
/(2qq′) and again z = −1 corresponds to the branch point:

so although q + q′ = 0 in (3.13) (and hence the branch point becomes simply ωblob = 0),
this function nonetheless produces a non-zero integral over q. However, note that in both
of these cases the kind of singularity which emerges from performing the loop integral
is the same as the singularity in ωblob already present in the tree-level integrand. This
is guaranteed by a simple Landau analysis: the only way to increase the order of the
singularity (e.g. to produce dilogs) from a singularity in the integrand is if this integrand
has a singular point that mixes ωblob and q. Since our tree theorem shows this cannot
happen, in effect it has shown that the analytic structure of the equal-time correlator
remains that of the tree-level wavefunction (even at loop-level).

Two-vertex loop. This KLN cancellation is not limited to loops with a single vertex. An
analogous cancellation takes place for loops containing two vertices, which always appear
together with three other contributions,

Re

 q1

q2

+∫
q1q′

1

Pq1q′
1
Re


q1 q′

1

q2

 (3.14)

+
∫

q1q′
1

Pq2q′
2
Re


q2 q′

2

q1

+∫q1q′
1

q2q′
2

Pq1q′
1
Pq2q′

2
2Re


q1 q′

2

Re


q′
1 q2

 .
As above, each gray blob represents a particular set of ψn diagrams (or their conjugates)
and we have added a hatched pattern to indicate that there could be different sets attached
to the left and right vertices. The first of these terms represents the “virtual” emission,
while the latter three terms represent the “real” emission. Again we notice the close parallel
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between extracting an in-in correlator from the wavefunction and extracting an inclusive
cross-section from an amplitude. Applying our tree theorem replaces the virtual one-loop
emission with disc’s of real tree-level emission,

∫
q1q′

1

Pq1q′
1

Re


q1 q′

1

q2

+
∫

q2q′
2

Pq2q′
2

Re


q′
2 q2

q1

 (3.15)

+
∫

q1q′
1

q2q′
2

Pq1q′
1
Pq2q′

2

2Re


q1 q′

2

Re


q′
1 q2



−Re

disc
q′

2


q1 q′

2

 disc
q′

1


q′
1 q2





where again the dotted line represents an analytic continuation to negative energy of that
particular field. The first line no longer vanishes for massless fields in dim reg, but it does
have a simpler singularity structure than the original wavefunction coefficients. Explicitly,
suppose that ωL and ωR are the total energies flowing into the left and right blobs from the
boundary. This integrand can have singularities when the energy at either vertex vanishes,
which would lead to singularities in ωL or ωR separately. But since the total energy flowing
into both vertices is independent35 of the loop momenta, we find that there is no thershold
in ωL + ωR. As a result, the integral on the first line of (3.15) cannot produce any branch
cut singularity in the total energy ωL + ωR if the tree-level diagram contains only poles
(and it cannot increase the order of the branch point if the tree-level diagram already
contains a branch cut). In the second line there is a partial cancellation between the
various disconnected diagrams, but the important observation is that these integrals also
cannot produce any singularity in the total ωL + ωR, since each disconnected factor can
only have singularities in ωL or ωR separately. So overall, we conclude that the virtual and
real emissions shown in (3.14) combine in such a way that all branch cut singularities in
ωL + ωR exactly cancel for massless fields. This is a direct consequence of causality and
the tree theorem. It also further strengthens the analogy with the KLN cancellation of IR
divergences in amplitudes: the KLN theorem often implies that the soft divergences ∼ 1/ω
in the amplitude will cancel out between the real and virtual contributions to the inclusive
cross-section, rendering the latter an IR-safe observable. Here we similarly find that while
the wavefunction may contain higher-order singularities as the total energy ωL + ωR → 0,
these are guaranteed to cancel out when computing an in-in correlator.

Three-vertex loop. This pattern of cancellations continues for loops with arbitrarily
many vertices. For instance, a loop with three vertices always comes with real emission

35Explicitly, the total energy flowing into both vertices is ωq1 − ωq′
1

+ ωL + ωR = ωL + ωR.

– 38 –



J
H
E
P
1
2
(
2
0
2
3
)
0
7
6

diagrams corresponding to the different ways of cutting the loop,

q1 q2

q3

+
3∑

perm.

∫
q1q′

1

Pq1q′
1

q1 q′
1

q2

q3

(3.16)

+ 2
3∑

perm.

∫
q1q′

1
q2q′

2

Pq1q′
1
Pq2q′

2

q1 q′
1 q2 q

′
2

q3

+ 2
∫

q1q′
1

q2q′
2

q3q′
3

Pq1q′
1
Pq2q′

2
Pq3q′

3

q′
3 q1 q′

1 q2 q′
2 q3

where the three gray blob represent any three particular sets of ψn diagrams and their
conjugates. Applying the tree theorem, we again find that the connected terms on the first
line combine to give,

3∑
perm.

∫
q1q′

1

Pq1q′
1

q1 q′
1

q2

q3

(3.17)

plus the disc of disconnected diagrams like those on the second line. As before, if ωL, ωC

and ωR denote the total energies flowing into the left-, central- and right-blob, we find that
the analytic continuation of the energy in (3.17) means that this integral cannot produce
branch cut singularities in the total ωL + ωC + ωR that were not already present in the
tree-level wavefunction36 i. It can, however, produce partial energy singularities in any
single ωi or pair ωi + ωj , as can the other disconnected diagrams.

Beyond one loop. Now we briefly discuss higher loop diagrams. In all of the preceding
diagrams, the grey blobs may contain further loops: this does not affect our argument
and in such cases the total energy singularity still cancels. The qualitative difference when
going to higher loops is the presence of overlapping loops such as,

(3.18)

The tree theorem for such two-loop diagrams is described in appendix D.2. We find that
the same pattern of KLN cancellations continues for these higher loop corrections. For

36The argument is the same as before: only the combination of all three vertices could produce the required
threshold, but the total energy flowing into all three vertices is independent of the loop momentum.
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instance, the diagram on the left always appears with the following terms,

1
3 + 2

3

3∑
perm.

∫
q3q′

3

Pq3q′
3

q1

q2

q3 q′
3

(3.19)

+ 1
3

3∑
perm.

∫
q1q′

1
q2q′

2

Pq1q′
1
Pq2q′

2

q1 q′
1q′

2 q2

q3

Once we apply the tree theorem the remaining connected terms all take the same tree-level
form but with different analytic continuations of the external legs. Once combined, we
find that the only terms which survive have two pairs of identified external energies with
opposite signs, so that again the total energy flowing into both vertices is independent of
the loop momenta. An explicit example of this can be found in appendix B for the two-loop
field vev v(3).

Our main conclusion from this general discussion may be stated as:

Cosmological KLN theorem (Massive fields): Any total-energy branch
point produced in the wavefunction by loop integration will not appear in the
corresponding equal-time correlation functions.

In particular, since for massless fields (with derivative interactions) the only tree-level
singularities in the wavefunction are poles, we have a stronger corollary in that case,

Cosmological KLN theorem (Massless fields): Equal-time correlation
functions may only have poles in the total energy.

Our argument above uses unitarity and causality to prove this theorem in perturbation
theory for all one-loop diagrams with up to three vertices, and it also holds true in all of
the other examples we have checked.

Note although we have focussed on what happens in dimensional regularisation (where
various scale-free integrals vanish), this KLN theorem also applies to other regularisation
schemes. For instance, with a hard cut-off, integrals of the form

∫
q Pq Poly(q,ΩT ) will not

vanish, but rather produce a polynomial Poly(Λ, ωT ), which is also free of branch cuts at
ωT = 0 for massless fields.

3.2 Some examples

Following our general discussion, we now focus on some specific examples to better illustrate
the cancellations and their physical/computational significance.

One-loop vev. The simplest example of the above KLN cancellation is for the one-point
function (3.5), i.e. the vacuum expectation value (vev) of the field, v. Note that we have
defined the free theory such that v = 0 in the absence of any interactions (so that physically,
ϕ represents the fluctuations around the classical trajectory). At next-to-leading order in
g∗, a cubic interaction can produce corrections to v via “tadpole” diagrams. In practice,
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these should be renormalised away by redefining ϕ → ϕ − v, which introduces an extra
step into the renormalisation process (which can mix e.g. the bispectrum into the power
spectrum). Happily, the Cosmological Tree Theorem proves that this is not necessary: at
least for massless fields at one loop order.

To see this explicitly, consider the loop expansion of (3.6),

v(1) δ̃3 (k) = Re

 k

q
+
∫

qq′
Pqq′

k q q′
 . (3.20)

Applying the tree theorem produces simply,

v(1) δ̃3 (k) = Re

∫
qq′

Pqq′
k q q′

 . (3.21)

Finally, we invoke the “energy conservation condition” to determine the location of any
singular points in this diagram. Since the total energy flowing into this vertex is indepen-
dent of the loop momenta q, we conclude that the only singular points in the integrand
come from Pq. Since these singular points are independent of k, this loop integral does not
introduce any kinematic branch points beyond those already present in ψ3. For instance,
for a massless scalar on both Minkowski and de Sitter (1.7), since Pq is simply a power of
q this integral vanishes in dim reg.

One-loop power spectrum. The next simplest example would be the one-loop correc-
tion to the power spectrum, given by expanding (3.4) to O

(
g2
∗
)
. Doing so produces terms

built from the following 7 diagrams,

, , , , , ,

(3.22)
These organise into the combinations (3.12) and (3.14). Applying the tree theorem, we
find that all of the (3.12) pairs of terms will vanish in dim reg for a massless scalar, and
the (3.14) terms combine to give,

P(2)
k

PkPk
δ̃3 (k + k′) = ∫

q1q′
1

Pq1q′
1

Re

 k1 q1 q′
1 k2

q2

+
∫

q2q′
2

Pq2q′
2

Re

 k1 q′
2 q2 k2

q1


+
∫

q1q′
1

q2q′
2

Pq1q′
1
Pq2q′

2
2Re

[
k1 q1 q′

2

]
Re
[

q′
1 q2 k2

]
(3.23)

−
∫

q1q′
1

q2q′
2

Pq1q′
1
Pq2q′

2
Re
[
disc

q′
2

[
k1 q1 q′

2

]
disc

q′
1

[
q′
1 q2 k2

]]

The fact that the one-loop integrand from the power spectrum can be constructed from
just two diagrams — the exchange four-point and the contact three-point — is a great
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simplification compared with the seven diagrams in (3.22). Furthermore, since we have
argued that the exchange diagram can be effectively bootstrapped from the contact three-
point diagram, in practice the only time integral one needs to compute is that of ψtree

3 :
from that input alone, one can construct both the tree-level four-point exchange and the
entire loop integrand above.

For example, using the results (2.10) and (2.11) for these tree-level diagrams for a ϕ3

interaction on Minkowski, our simplified equation (3.23) produces,

P(2)
k

P 2
k

δ̃3 (k + k′) = δ̃3 (k + k′)
ωk + ωk′

∫
q

ωk + ωk′ + ωq1 + ωq2

2ωq1ωq2(ωk + ωq1 + ωq2)(ωk′ + ωq1 + ωq2)
, (3.24)

for a massless scalar, where q2−q1 = k and q denotes the remaining loop momentum. We
have checked that this agrees with performing a traditional in-in calculation (details can
be found in appendix C, cf. (C.12)). Notice that, as anticipated in section 3.1, there are no
singularities in this integrand in ωT = ωk + ωk′ thanks to the analytic continuation of the
external lines (beyond the ωT pole already present in the tree-level wavefunction). However,
note also that while the individual exchange terms in (3.23) also introduce singularities at
ωk′ +ωq2 −ωq1 and ωk −ωq2 +ωq1 , these singular points exactly cancel once combined with
the disc[ψtree

3 ] terms — there are therefore further cancellations taking place and leading
to an even simpler correlator than (3.23) would suggest.37

In this simple example, we can see these cancellations explicitly by performing the
loop momentum integrals in both (3.24) and its wavefunction counterpart (2.43). These
are given explicitly by,

P(2)
k

P 2
k

δ̃3 (k + k′) = δ̃3 (k + k′)
8π2(ωk + ωk′)

[
ωk′ log(k + ωk)− ωk log(k + ωk′)

ωk − ωk′
+ analytic

]
,

ψ1−loop
k1k2

= δ̃3 (k + k′)
8π2(ωk + ωk′)

[
ωk′ log(k + ωk)− ωk log(k + ωk′)

ωk − ωk′
+ analytic

]
(3.25)

− 1
16π2k

(1
2 log2

(
ωk + k

ωk′ + k

)
+ Li2

(
k − ωk

k + ωk′

)
+ Li2

(
k − ωk′

k + ωk

))
.

where “analytic” denotes terms which are analytic in both ωk and ωk′ , which we treat as
independent variables. As described in [127], the singular points in ψ1−loop

2 in this example
are at,

(i) ωk + ωk′ = 0,

(ii) ωk = −k,

(iii) ωk′ = −k.

We see that while the power spectrum has the same three singular points, it has a simpler
kind of singularity at each. In particular, (i) is a branch point in ψ2, but the cancellation

37In fact, if this observation were promoted to an assumption about the loop integrands of the Bunch-
Davis wavefunction, then one could proceed as in section 2.1 and fix the analytically continued exchange
diagrams appearing in (3.23) so that they cancelled the undesired singularities in the disc[ψtree

3 ] terms.
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between real and virtual contributions highlighted above has reduced this to a simple
pole in the power spectrum. Furthermore, the branch points at (ii) and (iii) “overlap” in
ψ2, but appear separately in the power spectrum. By overlap, we mean that when we
simultaneously approach both singular points, i.e. ωk = −k + ϵ and ωk′ = −k + ϵ′, the
power spectrum and wavefunction diverge like,

P(2) ∼ log (ϵ) + log
(
ϵ′
)
, ψ1−loop

2 ∼ log (ϵ) log
(
ϵ′
)
. (3.26)

The separation of overlapping singularities when passing from the wavefunction to the
equal-time correlation function also seems quite generic, and suggests that our KLN the-
orem could be extended in future to also encompass a simplification of other singularities
(beyond the total energy branch point).

Finally, once momentum conservation is imposed, the two-point function is special
in that ωk = ωk′ = ωT /2 and therefore branch points in either partial energy become
indistinguishable from branch points in the total energy. However, one virtue of writing
the wavefunction/correlators in terms of general ωk functions is that it is straightforward
to consider the analogous contribution to the 3-point function, in which ωk = ωk1 + ωk2

and ωk′ = ωk3 are no longer tied together by momentum conservation. So while our
KLN theorem above should be applied carefully when considering the on-shell two-point
function, it applies unambiguously to all higher-point correlators.

EFT of inflation. As our last example, we consider the effective field theory of inflation.
The leading correction to the power spectrum comes from a loop of two π̇3 interactions, and
the tree-level wavefunction coefficients from this interaction on a quasi-de Sitter inflationary
spacetime were given in (2.19) and (2.22). From these, our simplified expression (3.23)
immediately gives the loop integrand,

P(2)
k

P 2
k

=
∫

q

k2
1k

2
2

k5
T

[
−12qT+q1q2

(
2k2

T (kT+qT )(k2
T+2kT qT+4q2

T )
e3

Le
3
R

+6kT qT (kT+2qT )
e2

Le
2
R

+12qT

eLeR

)]

where we have adopted the shorthands,

eL = k + q1 + q2 , eR = k′ + q1 + q2 , kT = k + k′ , qT = q1 + q2 , (3.27)

Again we see that the only singular points depend on k and k′ individually, and that the
apparent singularities at k′+q2−q1 and k−q2+q1 in (3.23) have cancelled out. Performing
the remaining momentum integral (using e.g. the identities in [127]) reproduces the result
of [13] from a traditional in-in calculation. In fact, we find that complete off-shell expression
(treating ωk1 , ωk2 and k = |k1| = |k2| as independent) is given by,

P(2)
k

P 2
k

= − πPoly1(k, ωk1 , ωk2)
40(ωk1 − ωk2)4(ωk1 + ωk2)3 +

πPoly2(k, ωk1 , ωk2)log
(

ωk1
Λ

)
− (ωk1 ↔ ωk2)

120(ω2
k1

− ω2
k2
)5 (3.28)
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where:

Poly1(k,ωk1 ,ωk2)= 10k2ω2
k1
ω2

k2
(ωk1 +ωk2)4−5ω3

k1
ω3

k2
(3ω4

k1
+4ω3

k1
ωk2 +34ω2

k1
ω2

k2
+4ωk1ω

3
k2
+3ω4

k2
)

+k4(ω6
k1
−ω5

k1
ωk2 −21ω4

k1
ω2

k2
−6ω3

k1
ω3

k2
−21ω2

k1
ω4

k2
−ωk1ω

5
k2
+ω6

k2
) (3.29)

Poly2(k,ωk1 ,ωk2)= 4ω2
k1
ω3

k2
(9k4(5ω4

k1
+10ω2

k1
ω2

k2
+ω4

k2
)+45ω2

k1
ω2

k2
(5ω4

k1
+10ω2

k1
ω2

k2
+ω4

k2
)

−5k2(9ω6
k1
+55ω4

k1
ω2

k2
+31ω2

k1
ω4

k2
+ω6

k2
)) (3.30)

Indeed, we find that the power spectrum contains only partial energy branch cuts in ωk1

and ωk2 , unlike the wavefunction coefficients ψ1−loop
2 , which contains a dilogarithmic branch

cut in ωk1 + ωk2 .
Overall, the Cosmological Tree Theorem (2.60) for wavefunction coefficients can be

used to replace “virtual” (loop) contributions with additional “real” (tree) contributions
when computing equal-time correlators, and this makes manifest the various cancellations
which can take place in a scheme such as dim reg. This provides a simpler way to compute
the loop corrections to observable cosmological correlators from the wavefunction of the
Universe.

4 Discussion

To sum up, we have shown how non-relativistic causality — that free theory propagation
can be described by a retarded Green’s function — can be used to place perturbative
constraints on both the cosmological wavefunction and cosmological correlators. When
combined with recent cutting rule from unitarity and an analytic structure mandated by
the Bunch-Davies initial condition, this provides a new way to bootstrap tree-level exchange
diagrams from their simpler contact building blocks. At loop-level, causality and unitarity
naturally lead to a cosmological analogue of Feynman’s tree theorem which can replace any
closed loop in a Feynman-Witten diagram with a sum over cut diagrams. This Cosmological
Tree Theorem fixes the whole loop integrand of wavefunction coefficient, complementing
the recent unitarity cutting rules which fix only the discontinuity, and can be applied to
fields of any mass or spin with any unitarity interaction on any time-dependent spacetime
background. We have given several explicit examples of these constraints at both tree- and
loop-level for both Minkowski and de Sitter backgrounds. Applying the Cosmological Tree
Theorem to cosmological correlators leads to various cancellations between real and virtual
contributions which closely parallels the KLN theorem from scattering amplitudes. We
have therefore named this phenomenon the Cosmological KLN theorem, and have shown
that it leads to a greatly simplified expression for the one-loop power spectrum in terms of
just two tree-level Feynman-Witten diagrams. In particular, the loop integration may not
introduce any additional total energy singularities, and so the loop-level correlators have
the same analytic structure in ωT as the tree-level wavefunction.

Thanks to these results, any Feynman diagram (with an arbitrary number of edges and
loops) can now be expressed in terms of the tree-level single-vertex Feynman diagrams of the
theory. Once these have been determined (e.g. by performing a single time integral), there
is no need for any further time integration. For Minkowski scattering amplitudes, energy
conservation removes the need to do any time integration — here, we are showing that
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for the Bunch-Davies wavefunction on an arbitrary time-dependent background, unitarity
and causality remove the need to do all but one time integration. It would be interesting
to combine these results with other bootstrap techniques for the single-vertex diagrams,
which would remove the need for any time integration whatsoever.

There are a number of interesting directions to be explored in the future:

(i) Perturbative vs. non-perturbative. Wavefunction identities can be organised according
to whether they hold:

(a) for the full ψn coefficients of the interacting theory (i.e. sum over all Feynman
diagrams with n external legs),

(b) for the ψL-loop
n coefficients at a fixed order in the interactions (i.e. sum over all

Feynman diagrams with n external legs and L loops)
(c) for individual Feynman diagrams.

At present, very few relations of type (a) are known. The tree theorem presented
in this work, as well as the earlier cutting rules from perturbative unitarity in [106],
are of type (b). Further cutting rules, which involve any analytic continuation of the
internal line energies, are of type (c). It is always natural to ask, therefore, which
identities might be promoted to a more general (non-perturbative) type. One way
in which the Cosmological Tree Theorem might be extended to type (a) would be
to consider the causality constraints on the propagator of the full interacting theory:
for instance using an expansion like (A.2) developed in the appendix.

(ii) Landau analysis. As mentioned briefly in section 3.1, the Cosmological Tree Theorem
can provide new insights into the analytic structure of wavefunction coefficients in
curved spacetime. In essence, the analytic structure of loop diagrams should now be
determinable by the analytic structure of the tree-level diagrams (which is compara-
tively much easier to determine). In particular, this will mean that the branch points
of loop diagram are determined by the poles of its tree-level cut diagrams, analogous
to what was recently found for Minkowski [127].

(iii) UV/IR sum rules. This tree theorem is therefore an important step towards UV/IR
sum rules for cosmological spacetimes. At present, such relations are mostly limited
to subhorizon scattering amplitudes [124, 125, 169], which share many properties
of the Minkowski amplitude but are fundamentally disconnected from the horizon-
scale physics that we ultimately observe in the CMB (although see [126] for important
recent progress towards positivity bounds directly on correlation functions). Building
on these recent subhorizon applications of unitarity and causality [170–176], it would
be interesting to see the wavefunction emerge as a new object which shares enough
similarly with the Minkowski amplitude that it admits usable UV/IR relations and
yet remains firmly connected to the cosmological correlators that we actually measure.

(iv) Stronger causality conditions. On Minkowksi, the free propagators are also con-
strained by the future light-cone, i.e. t1 − t2 > |x1 − x2|, which is stronger than the

– 45 –



J
H
E
P
1
2
(
2
0
2
3
)
0
7
6

t1 − t2 > 0 condition used in this work. For amplitudes, this ultimately corresponds
to analyticity in the Lorentz-invariant p2 rather than the energy, and this is what
underpins the Kallen-Lehmann spectral representation and other relativistic disper-
sion relations. It would be interesting to explore whether such a stronger condition,
and corresponding spectral representation, can exists for wavefunction coefficients on
a cosmological background.
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Note added. In the final stages of preparing this manuscript, [115] appeared on the
arXiv, which discusses cutting rules from a different (polytope) perspective. It would be
interesting to investigate how the causality conditions and loop-level cutting rules presented
here could be recovered from the optical polytope of [115].

A Comparison with previous cutting rules

In this appendix, we give an short overview of the various cutting rules which follow from
unitarity (along the lines of [106, 107]) and from causality (this work).

General procedure. Throughout this work, we have introduced a number of different
“cutting rules” for the wavefunction coefficients: equations which relate diagrams with
different internal and external lines. All of these rules can be derived following the same
three-step procedure,

(i) Identify a combination of the propagators Gp and Kk (and their complex conjugates)
which vanishes thanks to unitarity or causality properties of the free theory,

(ii) Multiply this combination by any further function of Gp,Kk and vertex factors, and
then integrate over all time arguments,

(iii) Relate each term in the resulting identity to a Feynman-Witten diagram, invoking
the unitarity of the interacting theory (hermiticity of Hint) so that the discontinuity
operations may be used to convert between Gp,Kk and G∗

p,K
∗
k thanks to (1.13).

Free propagation. Step (i) of this procedure requires finding combinations of the prop-
agators that vanish identically. To achieve this, we introduce a useful representation for
Gp(t1, t2),

Gp(t1, t2) =
i

2
(
∆H

p (t1, t2) + i∆S
p (t1, t2)sign(t1 − t2)

)
(A.1)
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where we have split the two-point function into its symmetric/antisymmetric parts,

∆H
k (t1, t2)= ⟨ϕ=0|{ϕk(t1),ϕk′(t2)}|Ω⟩′ , ∆S

k (t1, t2)= ⟨ϕ=0| [ϕk(t1),ϕk′(t2)]|Ω⟩′ . (A.2)

where the prime denotes that a momentum-conserving δ̃ function has been removed. These
are the wavefunction analogues of the Hadamard and Schwinger functions. In particular,
the Schwinger function ∆S

k is closely related to the classical response of the field to applied
sources (more on this below), and in fact for the free theory it is insensitive to the choice
of in- and out- state thanks to the canonical commutation relations.38 The Hadamard
function ∆H

k , on the other hand, characterises quantum aspects of the propagation and
depends on the in- and out-state.39 Unitarity and causality of the free theory then imply
relations between ∆H

k ,∆S
k and the bulk-to-boundary propagator Kk, which lead to various

cutting rules.

Tree-level cutting rules. For example, the tree-level cutting rules of [106, 107] follow
from two particular properties of these Hadamard/Schwinger functions,

Im∆S
k (t1, t2) = 0, (U1)

Re∆H
k (t1, t2) = 4PkImKk(t1)ImKk(t2) (U2)

Eq. (U1) guarantees that the imaginary part of any product of N bulk-to-bulk propagators
will contain at most N − 1 factors of sign(t1 − t2), and can therefore be re-expressed in
terms of products of at most N − 1 bulk-to-bulk propagators. Eq. (U2) then allows us to
rewrite these reduced products in terms of Gp and Kk only. For instance, the combination,

Ip(t1, t2) ≡ ImGp(t1, t2)− 2PpImKp(t1)ImKp(t2) (A.4)

vanishes identically once (U1) and (U2) are imposed. Integrating this over time leads to a
cutting rule for any diagram containing at least one internal line: for instance,∫

tL,tR

Kk1(tL)Kk2(tL)Kk3(tR)Kk4(tR)Ips(tL, tR) = 0 (A.5)

corresponds to the diagrammatic identity,40

k1 k2 k3 k4

= −
∫

qq′
Pqq′

 k1 k2 q
 q′ k3 k4

 (A.6)

38This ∆S
k is therefore equal to the usual Schwinger function for the vacuum state, ∆̃S

k (t1, t2) =
⟨Ω| [ϕk(t1), ϕk′ (t2)]|Ω⟩′.

39For instance, the usual Hadamard function for the vacuum state,

∆̃H
k (t1, t2) = ⟨Ω| {ϕk(t1), ϕk′ (t2)}|Ω⟩′ = ∆H

k (t1, t2) + 2PkKk(t1)Kk(t2) , (A.3)

differs from (A.2) by a boundary term, and would give the usual Feynman propagator if used in (A.1) in
place of ∆H

p .
40Note that the momentum integral is trivially performed using the δ function in Pqq′ . Introducing

separate q and q′ labels for the cut line is simply a useful book-keeping device: particularly for later
identities in which we will perform further Disc operations on either the left- or right-hand side of the cut.
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As a second example, the combination

Ip1p2(t1, t2, t3)≡ Im(Gp1(t1, t2)Gp2(t2, t3))+4Pp1Pp2Im(Kp1(t1))Im(Kp1(t2)Kp2(t2))Im(Kp2(t3))
−2Pp1Im(Kp1(t1))Im(Kp1(t2)Gp2(t2, t3))−2Pp2Im(Gp1(t1, t2)Kp2(t2))Im(Kp2(t3))

also vanishes thanks to (U1) and (U2), and leads to cutting rules for any diagram containing
at least two internal lines. Similar cutting rules for an arbitrary tree-level diagram were
systematically developed in [106, 107], and also follow from (U1) and (U2).

Loop-level cutting rules. By contrast, the loop-level cutting rules of [106] follow in-
stead from exploiting the full two-point function,

⟨ϕ = 0| ϕ̂k(t1)ϕ̂k′(t2)|Ω⟩′ = 2PkKk(t2)ImKk(t1) (U)

as well as the identity,

∑
{nj}

N∏
j=1

sign(tj−tj+1)nj = 0

sum over all nj = 0 or 1 such that N −
∑

j

nj is even

 ,

(C1)
which holds whenever tN+1 = t1. Note that (U) fully specifies both ∆H

k and ∆S
k (and

hence implies both (U1) and (U2)). The identity (C1) is crucial because it guarantees that
a product of N bulk-to-bulk propagators whose arguments form a closed loop will contain
at most N − 1 factors of sign(t1 − t2), and hence can be re-expressed in terms of products
of at most N − 1 bulk-to-bulk propagators. For instance, the combination,

Rp1p2(t1, t2) ≡ 2Re (Gp(t1, t2)Gp2(t2, t1)) + 4Pp1Pp2Im(Kp1(t1)Kp2(t1))Im(Kp2(t2)Kp1(t2))
− 2Pp1Im(Kp1(t2)Gp2(t2, t1)Kp1(t1))− 2Pp2Im(Kp2(t1)Gp1(t1, t2)Kp2(t2)) (A.7)

vanishes identically once (U) and (C1) are imposed (the latter in this case is sign(t1 −
t2)sign(t2 − t1) = −1). Integrating this over time leads to a cutting rule for any diagram
containing a loop with two internal lines: for instance,∫

t1,t2
Kk1(t1)Kk2(t2)Rp1p2(t1, t2) = 0 (A.8)

corresponds to the diagrammatic identity,

−

k1 k2

q1

q2

=
∫

q1,q′
1

Pq1q′
1

 q1 k1 k2 q′
1

q2

+
∫

q2,q′
2

Pq2q′
2

 q′
2 k1 k2 q2

q1



+
∫

q1,q′
1

q2,q′
2

Pq1q′
1
Pq2q′

2

 q′
2 k1 q1

 q1 k2 q′
2

 (A.9)

Analogous cutting rules for the Disc of an arbitrary loop diagram were developed in [106],
and all follow from (U) and (C1).41

41Stated this way, it is clear why additional cutting rules can exist for loop-diagrams but not for trees:
because the identity (C1) only holds when the time arguments form a closed loop.
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New cutting rules. Since both the Im and Re part of the bulk-to-bulk propagators
appearing in a loop can be reduced to terms with fewer bulk-to-bulk propagators, the entire
complex loop diagram (without any discontinuity) must be expressible in terms of cut tree-
level diagrams. This could be achieved by straightforwardly applying the above identities:
for instance Rp1p2(t1, t2)+Ip1p2(t1, t2, t1) = 0 could be used to cut any Gp1(t1, t2)Gp2(t2, t1)
loop. However, we will show that a more elegant formulation of the loop-level cutting rules
follows from the identity,

N∏
j=1

Θ(tj − tj+1) = 0 , (C)

which holds whenever tN+1 = t1. For instance, the combination,

Lp1p2(t1, t2)≡Gp1(t1, t2)Gp2(t2, t1)+4Pp1Pp2Kp1(t1)Im(Kp2(t1))Kp2(t2)Im(Kp1(t2))
(A.10)

−2Pp1Im(Kp1(t2))Gp2(t2, t1)Kp1(t1)−2Pp2Im(Kp2(t1))Gp1(t1, t2)Kp2(t2) ,

vanishes identically thanks to (U) and (C). This leads to a diagrammatic cutting rule,

−

k1 k2

q1

q2

=
∫

q1q′
1

Pq1q′
1

 k1 q1 q′
1 k2

q2

+
∫

q2q′
2

Pq2q′
2

 k1 q′
2 q2 k2

q1



+
∫

q1,q2
q′

1,q′
2

Pq1q′
1
Pq2q′

2

 k1 q1 q′
2

 k2 q2 q′
1

 (A.11)

which goes beyond (A.9) because it captures both the real and imaginary part of the loop
diagram.

Note that (C) has assumed a particular orientation for the loop. The other orientation
(again with tN+1 = t1),

N∏
j=1

Θ(tj+1 − tj) = 0 , (C ′)

gives rise to a second identity (Lp2p1(t1, t2) = 0 in the preceding example), and hence a
second cutting rule, which differs from the first only in which momenta are held fixed in
the disc’s.

In fact, since Θ(t1 − t2) = 1
2 (1 + sign(t1 − t2)), the identities (C) and (C ′) are equiva-

lent to (C1) and a further identity,

∑
{nj}

N∏
j=1

sign(tj − tj+1)nj = 0

sum over all nj = 0 or 1 such that N −
∑

j

nj is odd

 .

(C2)
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This leads to one further set of cutting rules, which are quite distinct from all previous
examples in that they combine the same diagram with different collinear kinematics in
order to achieve a cut. For instance, the combination,

Cp1p2(t1,t2) (A.12)

≡ReGp1(t1,t2)Im
(
Kp2(t2)K∗

p2(t1)
)
−2ImKp1(t1)ImKp2(t2)ReKp1(t2)ReKp2(t1)−(p1↔p2).

vanishes once (U) and (C2) are imposed (the latter in this case is sign(t1−t2)+sign(t2−t1) =
0). When integrated against two bulk-to-boundary propagators as in (A.5), this leads to
the diagrammatic relation shown in (2.30). So while unitarity can fix only the Disc of
tree-level diagrams, causality imposes additional constraints on their Disc-less part.

Unitarity and causality. Property (U) (and hence also (U1) and (U2)) can be viewed
as unitarity of the free theory, since Hermiticity of the free Hamiltonian allows us to resolve
the identity using a complete basis of n-particle states,∑

n

⟨ϕ = 0|ϕ̂k(t)|n⟩⟨n|ϕ̂k′(t′)|Ω⟩ =
∫

p
⟨ϕ = 0|ϕ̂k(t)â†p|Ω⟩⟨Ω|âpϕ̂k′(t′)|Ω⟩ , (A.13)

since in the free theory ϕ̂k|Ω⟩ overlaps only with the 1-particle states. The matrix ele-
ments on the right-hand-side evaluate to

√
PkImKk(t) and

√
Pk′Kk′(t′) (up to an overall

unimportant phase), hence producing (U).42

The identities (C) and (C ′), on the other hand, are related to causality. Causality in
the classical sense: signals may not precede their sources. This amounts to the existence
of a retarded Green’s function,

GR
p (t1, t2) = Gp(t1, t2)− ⟨ϕ = 0|ϕ̂p(t1)ϕ̂p2(t2)|Ω⟩

′ = ∆S
p (t1, t2)Θ(t1 − t2) . (A.14)

which would describe the classical response of the field to an applied source, and for which
identity (C) implies,

N∏
j=1

GR
p (tj , tj+1) = 0 , (A.15)

whenever tN+1 = t1 and the arguments form a closed loop. Put another way: a closed
loop is forbidden by classical causality, since it requires the signal to propagate backwards
in time. This is ultimately the reason why loop-level Feynman diagrams are so tightly
constrained, and can be expressed in terms of tree-level diagrams. The identity (C ′) simi-
larly implies that the product of advanced propagators is zero for a closed loop. Since the
identities (C1) and (C2) are equivalent to (C) and (C ′), they too can be viewed as causality
conditions.

Finally, beyond unitarity of the free theory, all of the above cutting rules make use of
unitarity of the interactions. This is ultimately the condition that all vertex factors com-
mute with the discontinuity operations, so that we can extract the Im part of propagators
inside the diagram without changing the structure of any interaction vertex.

42There is another sense in which (U1) is related to unitarity: it follows from the canonical commutation
relation for [ϕk, Π̂k], which (by the Stone-von Neumann theorem) is what guarantees that the Hilbert spaces
at different times are unitarily related, i.e. that time evolution is implemented by a unitary operator.
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Identity follows from used to fix leads to cutting rules for

I=0 (U1) + (U2) Im(G1...GN ) Disc of any tree diagram, see [106, 107]

R=0 (U) + (C1) Re(G1...GN )loop Disc of any loop diagram, see [106]

L=0 (U) + (C) (G1...GN )loop any loop diagram, see (2.60)

L′=0 (U) + (C ′) (G1...GN )loop any loop diagram, see (2.61)

C=0 (U) + (C2) ∑N
perm.∆S

1G2...GN Disc of collinear tree diagrams, see (2.62)

Table 2. Summary of the various cutting rules considered in this section, and the different unitarity
((U) ⇒ (U1), (U2)) and causality ((C1), (C2) ⇔ (C), (C ′)) properties from which they folow.

Cosmological tree theorem. Altogether, the different propagator identities, their cor-
responding cutting rules and their underlying assumptions are listed in table 2. The cutting
rules stemming from (C)/(C ′) will turn out to be particularly useful, and so we have given
them a name: the Cosmological Tree Theorem. In particular, when applied to equal-time
correlation functions, these “tree theorem” identities immediately explain the cancellation
of certain singularities (see section 3). Furthermore, singling out the Cosmological Tree
Theorem seems natural because it is a complex relation (whereas the other cutting rules
reviewed here are purely real), and so it is a more efficient way of encoding the cutting
rules. Of course, since all of these rules follow in some way from the same (U) identity,
they are ultimately related to one another. For instance, in the examples given above, the
two complex relations Lp1p2(t1, t2) = 0 and Lp2p1(t1, t2) = 0 are actually related to the four
real relations {Rp1p2(t1, t2), Ip1p2(t1, t2, t1), Cp1p2(t1, t2), Ip(t)}, since,

Re [Lp1p2(t1, t2)+Lp2p1(t1, t2)] =Rp1p2(t1, t2)+2Re
(
Kp1(t1)K∗

p1
(t2)

)
Ip2(t2, t1)

+2Re
(
Kp2(t2)K∗

p2
(t1)

)
Ip1(t1, t2)

Im [Lp1p2(t1, t2)+Lp2p1(t1, t2)] = Ip1p2(t1, t2, t1)+ReGR
p1
(t1, t2)Ip2(t2, t1)+ReGR

p2
(t1, t2)Ip1(t1, t2)

Re [Lp1p2(t1, t2)−Lp2p1(t1, t2)] = 2Cp1p2(t1, t2) (A.16)
Im [Lp1p2(t1, t2)−Lp2p1(t1, t2)] = 2Im

(
Kp1(t1)K∗

p1
(t2)

)
Ip2(t2, t1)+2Im

(
Kp2(t2)K∗

p2
(t1)

)
Ip1(t1, t2)

irrespective of any connection43 between Gp and Kk.

Disc of the tree theorem. We remarked above (2.37) that existing loop-level cutting
rules immediately follow from taking discontinuities of the Cosmological Tree Theorem.
In addition to that one-vertex example, it is straightforward to show this for loops with
any number of vertices. For instance, consider the tree theorems (2.40) and (2.42) for the
two-vertex loop. Since the underlying propagator identity can be written as,

Re(Lp1p2(t1, t2)+Lp2p1(t1, t2))=Rp1p2(t1, t2)+∆H
p1(t1, t2)Ip2(t2, t1)+∆H

p2(t2, t1)Ip1(t1, t2) ,

the cutting rule which follows from L2 = 0, together with the unitarity condition I1 = 0,
is enough to reproduce the R2 = 0 cutting rule. In diagrammatic form, this amounts to

43In this equation we have used the shorthand, GR
p (t1, t2) = Gp(t1, t2) − 2Kp(t1)ImKp1 (t2).
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taking a Disc of (2.40) or (2.42):

−

k1 k2

q1

q2

=
∫

q1,q′
1

Pq1q′
1

 q1 k1 k2 q′
1

q2

+O(Iq2)

+
∫

q2,q′
2

Pq2q′
2

 q′
2 k1 k2 q2

q1

+O(Iq1) (A.17)

+
∫

q1,q′
1

q2,q′
2

Pq1q′
1
Pq2q′

2

 q′
2 k1 q1

 q1 k2 q′
2


which indeed reproduces (A.9). Similarly for the three-vertex loop, since the propagator
identity can be written as,

Re(Lp1p2p3(t1, t2, t3) + Lp3p2p1(t1, t3, t2))
= 2Rp1p2p3(t1, t2, t3) + ∆H

p1(t1, t2)Ip2p3(t2, t3, t1) + 2 Perm (A.18)

which corresponds to the diagrammatic relation,

−

k1 k2 k3

q1 q3

q3

=
∫

q1q′
1

Pq1q′
1


q1 k2 k3 k1 q′

1

q2 q3

+O (Iq2p3) + 2 perm. (A.19)

+
∫

q1q2
q′

1q′
2

Pq1q′
1
Pq2q′

2

 q′
2 k3 k1 q1

q3


 q′

1 k2 q2

+ 2 perm.

+
∫

q1q2q3
q′

1q′
2q′

3

Pq1q′
1
Pq2q′

2
Pq3q′

3

 q′
3 k1 q1

 q′
1 k2 q2

 q′
2 k3 q3

 .

This again reproduces the cutting rule for the Disc of this loop which were given in [106].
Since these rules require a Disc, they must invoke unitarity of the interacting Hamitonian
(to ensure that coupling constant are real, or at least commute with taking the Disc).

One might wonder whether the tree-level identities like (A.6) which follow from pertur-
bative unitarity can be reconstructed by subtracting the R-type identities from the Disc of
the tree theorem, for instance by subtracting (A.9) from (A.17)). This leads to an identity
which differs from (A.6) by an analytic continuation of the external energies. This turns
out to be a general feature: the difference between the R-type cutting rules of [106] and
the Disc of the Cosmological Tree Theorem is always proportional to the I-type tree-level
identities of [104, 105] with some of the external lines continued to negative energies.

B Non-Gaussianity at next-to-next-to-leading order

In this appendix we briefly describe primordial non-Gaussianity at next-to-next-to-leading
order (NNLO). By “order”, we are referring to the power of the small coupling g∗ which
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suppresses field insertions in the Lagrangian. For instance, the “leading-order” non-
Gaussianity is the tree-level bispectrum, which is O(g∗). In the main text we discuss
the next-to-leading order (NLO) effects at O(g2

∗), which includes the one-loop correction
to the power spectrum. Here, we discuss NNLO effects at O(g3

∗), namely the one-loop
bispectrum and the two-loop vev.

B.1 Bispectrum at one loop

Beyond the power spectrum (3.3), we can analogously extract higher-point correlation
functions from the wavefunction. The first of these is the bispectrum,44

⟨ϕ̂k1 ϕ̂k2 ϕ̂k3⟩
Pk1Pk2Pk3

= Bk1k2k3 δ̃
3 (k1 + k2 + k3) . (B.1)

Note that we normalise the bispectrum using the power spectrum Pq of the full interacting
theory. This normalisation leads to a convenient cancellation of all diagrams in which the
propagation of a single external leg to the boundary is modified, i.e. it removes all terms
of the form,

∫
qq′

Pqq′

q q′

(B.2)

where the left blob can have arbitrarily many external legs but the right blob may only
have the two external legs shown.

The bispectrum is related to the non-Gaussian wavefunction coefficients by the Born
rule (3.1). Expanding this perturbatively in g∗ gives,

Bk1k2k3 δ̃
3
( 3∑

a=1
ka

)
= 2Reψk1k2k3 +

∫
qq′

Pqq′
(
Reψk1k2k3qq′ + 4Reψq′Reψk1k2k3q

)
+ 2

∫
q1q′

1
q2q′

2

Pq1q′
1
Pq2q′

2

(
Reψq′

1q2q′
2
Reψk1k2k3q1 +

3∑
perm.

Reψk1q1q′
2
Reψk2k3q2q′

1

)

+ 4
∫

q1q′
1

q2q′
2

q3q′
3

Pq1q′
1
Pq2q′

2
Pq3q′

3
Reψk1q1q′

2
Reψk2q2q′

3
Reψk3q3q′

1
+O

(
g4
∗

)
. (B.3)

Each wavefunction coefficient can then be expanded in terms of Feynman-Witten diagrams,
and as a result one arrives at the expansion,

Bk1k2k3 = B(1)
k1k2k3

+ B(3)
k1k2k3

+O
(
g5
∗

)
(B.4)

44Strictly speaking, the full ⟨ϕ̂k1 ϕ̂k2 ϕ̂k3⟩ also contains disconnected contributions which ∼ δ̃(k1 +
k2)δ̃3(k3) and its permutations. One should therefore interpret the bispectrum (B.1) as the connected
part of the three-point function.
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where B(1) = 2Reψtree
3 is the tree-level part, and B(3) is determined by ψ1−loop

3 , ψtree
5 , ψtree

4
and ψtree

3 . The tree-level diagrams for ψ3 and ψ4 are given in (1.12), while for ψ5 they are,

ψtree
k1k2k3k4k5 =

15∑
perm.

k1 k2 k3 k4 k5

pL pR

+
10∑

perm.

k1 k2 k3 k4 k5

p12

+
k1 k2 k3 k4 k5

(B.5)
and for the 1-loop cubic coefficient they are,

ψ1−loop
k1k2k3

= 1
2

k1 k2 k3

q

(B.6)

+ 1
2

k2k1 k3

q
0

+ 1
2

3∑
perm.

k1 k2 k3

q1

q2

+ 1
2

3∑
perm.

k1 k2 k3

q

+

k1 k2 k3

q1

q3

q2
+ 1

2

3∑
perm.

k1 k2 k3

q1
q2

+ 1
2

3∑
perm.

k2k1 k3

q

0
.

Notice that the one- and two-vertex loops come with symmetry factors of 1/2 (more on
this in appendix C), while the three-vertex loop has a symmetry factor of 1.

Once the B(3) correction is written in terms of Feynman-Witten diagrams, we find that
they collect precisely into the groups identified in (3.12), (3.14) and (3.16). To be precise,
the diagrams can be organised according to which vertices they contain and whether the
external lines end on the same or different vertices. This leads to,

B(3)
k1k2k3

δ̃3 (k1 + k2 + k3) = I123 + I12|3 + I13|2 + I23|1 + I1|2|3 (B.7)

where the diagrams in I123 are all of the form (3.12), those in I12|3 and its permutations
are of the form (3.14), and those in I1|2|3 are of the form (3.16). Using our tree theorem
to replace all loop diagrams with tree-level diagrams then leads to the precise KLN can-
cellations between virtual and real emission described in section 3.1, and as a result there
are no new total energy branch points introduced by the integration over loop momenta.

In spite of these cancellations, there are still many tree-level diagrams required to
compute the bispectrum for general massive fields. However, if we focus on massless in-
ternal lines, then many of these diagrams become scale-free integrals and hence vanish in
dimensional regularisation. In that case, the only terms in (B.7) which give a non-zero
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contribution are,

I12|3 =

k1 k2 k3

q1

q2

+
2∑

perm.

k3 q1 q′
1 k1 k2

q2

+ 2
k3 q1 q′

2 q2 q′
1 k1 k2

+
k1 k2 k3

q1
q2

+
2∑

perm.

k1 k2 q1 q′
1 k3

k3 q2

+ 2
k1 k2 q1 q′

2

k3

q2 q′
1 k3

I1|2|3 = 2

k1 k2 k3

q1

q3

q2
+ 2

3∑
perm.

q′
3 k1 k2 k3 q3

q1 q2

(B.8)

+ 4
3∑

perm.

q′
3 k1 k2 q2

q1

q′
2 k3 q3

+ 4 q′
3 k1 q1 q′

1 k2 q2 q′
2 k3 q3

where we have omitted the Re which should be taken of every connected component,
and replaced each

∫
qq′ Pqq′ factor by a “contraction” of the corresponding qq′ pair in the

diagram.

Applying the tree theorem, we find that the one-loop correction to the bispectrum
from massless fields can be written in terms of just 5 tree-level diagrams,

, , , ,

(B.9)
which is just 2 more than the power spectrum. By contrast, the original (B.3) requires 13
separate Feynman-Witten diagrams (6 more than the power spectrum). In fact, applying
a bootstrap argument to fix the exchange diagrams in terms of contact diagrams, we can
actually construct the integrand for P(2) entirely from the single ψtree

3 contact diagram and
B(3) from the two contact diagrams shown in (B.9).
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The explicit relation between (B.9) and the one-loop bispectrum (B.7) is,

I12|3 =
∫

qq′
Pqq′

Re


k3 q′ q k1 k2

+ Re


k3 q q′ k1 k2


 (B.10)

+ 2
∫

q1q′
1

q2q′
2

Pq1q′
1
Pq2q′

2
Re

 k1 k2 q1 q′
2

Re
[

q2q′
1 k3

]

−
∫

q1q′
1

q2q′
2

Pq1q′
1
Pq2q′

2
Re

disc
q′1

[
q2q′

1 k3

]
disc

q′2

 k1 k2 q1 q′
2



+
∫

qq′
Pqq′

Re


k1 k2 q q′ k3

+ Re


k1 k2 q′ q k3




+ 2
∫

q1q′
1

q2q′
2

Pq1q′
1
Pq2q′

2
Re

 k1 k2 q1 q′
2

Re
[

q2q′
1 k3

]

−
∫

q1q′
1

q2q′
2

Pq1q′
1
Pq2q′

2
Re

disc
q′1

[
q2q′

1 k3

]
disc

q′2

 k1 k2 q1 q′
2




and its permutations, together with,

I1|2|3 =
3∑

perm.

∫
qq′

Pqq′Re


q′ k1 k2 k3 q

 (B.11)

+
3∑

perm.

2
∫

q2q′
2

q3q′
3

Pq2q′
2
Pq3q′

3
Re

 q′
3 k1 k2 q2

Re
[

q3q′
2 k3

]

−
3∑

perm.

∫
q2q′

2
q3q′

3

Pq2q′
2
Pq3q′

3
Re

disc
q′2

[
q3q′

2 k3

]
disc

q′3

 q′
3 k1 k2 q2




+4
∫

q1q′
1

q2q′
2

q3q′
3

Pq1q′
1
Pq2q′

2
Pq3q′

3
Re
[

q1q′
3 k1

]
Re
[

q2q′
1 k2

]
Re
[

q3q′
2 k3

]

−
∫

q1q′
1

q2q′
2

q3q′
3

Pq1q′
1
Pq2q′

2
Pq3q′

3
Re
[
disc

q′3

[
q1q′

3 k1

]
disc

q′1

[
q2q′

1 k2

]
disc

q′2

[
q3q′

2 k3

]]
.
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B.2 Field vev at two loops

To compute the vev (3.5) at next-to-next-to-leading order, we first expand the Born rule
up to O(g3

∗),

v δ̃3 (k) = 2Reψk +
∫

qq′
Pqq′ Reψkqq′ +

∫
q1q′

1
q2q′

2

Pq1q′
1
Pq2q′

2

1
4Reψkq1q′

1q2q′
2

+
∫

q1q′
1

q2q′
2

q3q′
3

Pq1q′
1
Pq2q′

2
Pq3q′

3

2
3Reψkq1q2q3Reψq′

1q′
2q′

3
+O

(
g4
∗

)
(B.12)

where note that the Pqq′ appearing in the next-to-leading order term is the full power
spectrum and should be expanded as in (3.4). Next, we expand each wavefunction coeffi-
cient as a series in the number of loops. This gives an expression for v(3) which depends
on ψ2−loop

1 , ψ1−loop
2 , ψ1−loop

3 , ψtree
5 , ψtree

4 and ψtree
3 . The corresponding tree-level diagrams

are given in (1.12) and (B.5), while the 1-loop diagrams are given in (B.6). The necessary
two-loop diagrams are,

ψ2-loop
k = 1

8

k

q1 q2

+ 1
4

k

q1 q2

+ 1
4

k

q1

q2

+ 1
6

k

q1 q2 q3

(B.13)

+ 1
4

k

qL qR

q1

q2

+ 1
8

k

0 0

q1 q2

+ 1
4

k

q1

0
q3

q2 .

We find that the terms in v(3) organise into the combinations (3.12), (3.14) and (3.16) for
the one-loop diagrams, as well as (3.19) for the two-loop diagrams. Expanding each loop
using the Cosmological Tree Theorem therefore leads to very many cancellations, and in
particular the only connected terms which remain are found to have pairs of energies which
are analytically continued so that there is no set of vertices whose total energy depends on
both the total external energy and the loop momenta. As a result, we find that while v(3)

could be non-zero even for a massless field, it does not contain any additional branch cuts
in k. Of course, once momentum conservation is imposed, in this example k is fixed to be
zero regardless. But when computing higher-point correlators, e.g. the P(4)

k correction to
the power spectrum, there will be a series of diagrams which resemble those above but with
the k leg split into a pair of legs carrying momentum k and k′. Since the KLN cancellation
takes place at finite k, it means that this subset of diagrams in such higher-point correlators
(for which the energy k + k′ is no longer set to zero) also do not introduce any additional
branch points.

C Wavefunction symmetry factors

In the literature, often single diagrams are considered so the overall normalisation is arbi-
trary. Here, when we compute in-in correlators in section 3, the relative coefficient between
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loop and tree diagrams matters (in particular, the cancellation of singularities in subsec-
tion 3.1 depends crucially on using the correct relative normalisation).

In this short appendix, we give three separate proofs that the correct symmetry factor
for the sunset diagram in (1.12) is 1/2: computing the Wick contractions directly, solving
the Schrödinger equation and comparing the Born rule with an explicit in-in calculation.
In each case, it is clear how the counting of symmetry factors should work for more general
diagrams.

From Wick contractions. The way symmetry factors are often introduced in the con-
text of amplitudes is through the Dyson series expansion of Û . The sunset diagram appears
naturally in the self energy for a scalar field at one loop with g

3!ϕ
3 interaction:

1
2
g2

3!2 ⟨ϕ̂(x)ϕ̂(y)ϕ
3(z1)ϕ3(z2)⟩ =

g2

2

∫
z1z2

∆(x− z1)∆2(z1 − z2)∆(z2 − y), (C.1)

where ∆(x1 − x2) is the Feynman propagator. The symmetry factor of 1/2 arises from
there being three different ways to contract the internal line with each vertex. There are
then two ways to contract the remaining internal lines. There is an overall factor of 2 to
account for the vertex permutation:

32 × 2× 2
3!22 = 1

2 (C.2)

In the case of the wavefunction, the analogous series expansion of Û inside (1.9) leads
to the same set of Wick contractions. Consequently, the symmetry factors appearing
in the wavefunctions coefficients are identical to those appearing in the usual amplitude
calculation.

From Schrodinger equation. We now turn to solving the Schrodinger equation,

i∂tΨ[ϕ] = ĤΨ[ϕ], (C.3)

where t is the time to which we have evolved the Bunch-Davies state. For the free Hamil-
tonian (1.8),45 the Schrodinger equation in momentum space becomes [104],

−∂tΓ[ϕ] =
1

2ad−1(t)

∫
p1p2

δ(p1 + p2)
(
δΓ[ϕ]
δϕp1

δΓ[ϕ]
δϕp2

− i
δ2Γ[ϕ]

δϕp1δϕp2

)
(C.4)

In order to discuss the symmetry factor of the sunset diagram we expand the phase (the
on-shell action) to quadratic order in the coupling g:

Γ[ϕ] = 1
2

∫
k1k2

ψ2(k1,k2)ϕk1ϕk2 δ̃(kT ) +
1
6

∫
k1k2k2

ψ3(k1,k2,k3)ϕk1ϕk2ϕk3 δ̃(kT )

+ 1
24

∫
k1k2k2k4

ψ4(k1,k2,k3,k4)ϕk1ϕk2ϕk3ϕk4 δ̃(kT ) (C.5)

45Including the interaction Hamiltonian Hint will only source the contact Feynman-Witten diagrams, but
does not affect the exchange or loop-type diagrams for which we wish to count the symmetry factor.
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Doing an expansion ψ2(k1,k2) = ψfree
2 (k1,k2)+ψ1−loop

2 (k1,k2)+ . . . leaves an Schrödinger
equation of the form:46

∂t(iψ1−loop
2 (k1,k2)f∗k1

(t)f∗k2
(t))

f∗k1
(t)f∗k2

(t) = − 1
2ad−1(t)

∫
q
ψ4(k1,k2,q,−q). (C.6)

where we have also used ψ′free
2 (k1,k2) = ad−1∂tlog(fk1(t)). This equation is solved by:

ψ1−loop
2 (k1,k2) =

g2

2

∫
q1q2

∫
t1t2

δ̃(q1 + q2 + k1)
ad+1(t1)ad+1(t2)

Kk1(t1)Kk2(t2)Gq1(t1, t2)Gq2(t1, t2)

ψ4(k1,k2,k3,k4) = ig2
∫

t1t2

1
ad+1(t1)ad+1(t2)

Kk1(t1)Kk2(t1)Gps(t1, t2)Kk3(t2)Kk4(t2)

+ 2 perm. (C.7)

since we have the useful relation [75, 104],

∂tGq(t1, t2) = −a1−d(t)Kq(t1)Kq(t2) (C.8)

for the derivative of the bulk-to-bulk propagator with respect to the boundary time. The
relative factor of 1/2 in (C.7) is the same symmetry factor we find in amplitudes for similar
diagrams.

From canonical quantisation. Finally, in the in-in calculation of cosmological cor-
relators one finds that the second order correction towards the expectation value of an
observable is:

⟨Ô⟩ = −
∫ τ

−∞
dτ2

∫ τ2

−∞
dτ1⟨[Ĥ(τ1), [Ĥ(τ2), Ô]]⟩, (C.9)

which can be rewritten as the sum of two terms:

⟨Ô⟩ = −2
∫ τ

−∞
dτ2

∫ τ2

−∞
dτ1

(
Re
(
⟨Ĥ(τ1)Ĥ(τ2)Ô⟩

)
− Re

(
⟨Ĥ(τ1)ÔĤ(τ2)⟩

))
. (C.10)

In order to fix the symmetry factor for the sunset diagram, we will focus on the two point
function ⟨ϕ̂k1 ϕ̂k2⟩ and the interaction g

3!ϕ
3. We do the calculation in Minkowski spacetime,

as the symmetry factor does not depend on the spacetime. From equation (C.10) we find
two terms contributing towards ⟨ϕ̂k1 ϕ̂k2⟩:

⟨ϕ̂k1 ϕ̂k2⟩ = δ(k1 + k2)g2
∫

q1q2

δ(q1 + q2 + k1) (I1 − I2) (C.11)

I1 = k1 + k2 + 2(q1 + q2)
16k1k2q1q2(k1 + k2)(k1 + q1 + q2)(k2 + q1 + q2)

I2 = k2 − k1
16k1k2q1q2(k1 − k2)(k1 + q1 + q2)(k2 + q1 + q2)

,

which leaves:

⟨ϕ̂k1 ϕ̂k2⟩ = g2δ(−k1 − k2)
∫

q1q2

2k + q1 + q2
16k3q1q2(k + q1 + q2)2 . (C.12)

This coincides with the calculation done in section 3.1 using the 1/2 symmetry factor for
the sunset diagram.

46This agrees with [106] once we account for the factor of 1/2 which is missing from the right-hand-side
of their equation (A.15).
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D Further identities

In this appendix we list a number of further identities that stem from the same conditions
of non-relativistic causality and unitarity of the free theory.

D.1 Symmetric version of the cutting rules and tree theorem

In the main text, we mostly focus on replacing the bulk-to-bulk propagators with retarded
propagators using the identity,

Gp(t1, t2) = GR
p (t1, t2) + 2PpKp(t1)ImKp(t2) . (D.1)

In a few places, we also made use of the advanced form of this identity,

Gp(t1, t2) = GR
p (t2, t1) + 2PpKp(t2)ImKp(t1) (D.2)

In each of these expressions, the t1 ↔ t2 symmetry on the left-hand-side is no longer
manifest once we introduce the retarded propagator. An alternative replacement is to use
the sum of (D.1) and (D.2). This will lead to diagrammatic identities with more terms,
but which preserve the exchange symmetries of the original diagram.

Tree-level. Applying this to a general tree-level exchange diagram produces,

D︷ ︸︸ ︷
=

D′
C︷ ︸︸ ︷

−1
2

∫
qq′

Pqq′


q′ q

+
q′ q



+ 1
2

 +


︸ ︷︷ ︸

D′
R

(D.3)

where this cut contribution D′
C and retarded contribution D′

R now have twice as many
terms as in the main text, but are manifestly symmetric under the exchange of the two
blobs. The bootstrap procedure we described in section 2.1 can be applied in the same
way to determine to D′

R. For instance, let us repeat the first example from section 2.1,

D =
k1 k2 k3 k4

D′
C = −1

2

∫
qq′

Pqq′

 k1 k2 q q′ k3 k4

+
k1 k2 q q′ k3 k4

 (D.4)

D′
R = +1

2

 k1 k2 k3 k4

+
k1 k2 k3 k4

 .
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D′
C is determined by ψtree

3 and its discontinuity (assumed known), while D′
R corresponds to,

D′
R = Ppsdisc

ps

[∫
t1t2

Kk1(t1)Kk2(t1)Kk3(t2)Kk4(t2)Kps(t1)K∗
ps
(t2)sign (t1 − t2)

]
. (D.5)

Rather than compute this explicitly, we can notice that since it takes the form
Pps disc

ps
[f(ps)], it must be an even function of ps. Demanding that it also cancels the

unphysical singularities in D′
C (and does not introduce any further unphysical singularities)

then fixes D′
R up to an analytic remainder. In the case of Minkowski, where ψtree

3 is given
by (2.10), this procedure leads to,

D′
C =

λ2δ̃3
(∑4

b=1 kb

)
2ELER

( 1
k3 + k4 − ps

+ 1
k1 + k2 − ps

)

⇒ D′
R =

λ2δ̃3
(∑4

b=1 kb

)
kT

( 1
p2

s − (k3 + k4)2 + 1
p2

s − (k1 + k2)2

)
, (D.6)

which indeed sum to the simple result (2.13).

Loop-level. In the main text we gave two versions of the Cosmological Tree Theorem,
which correspond to cutting the loop either clockwise or anticlockwise. Using the sum of
these two identities is sometimes useful, for instance to retain a manifest symmetry in all
external lines. For instance, instead of using the identity Lp1p2(t1, t2) = 0 given in (A.10),
a symmetric version of the tree theorem follows from Lp1p2(t1, t2) + Lp2p1(t1, t2): this has
twice as many terms as (2.40), but would be manifestly symmetric in k1 ↔ k2 if the two
external lines are indistinguishable.

We have noticed an intriguing feature of this symmetric form of the tree theorem. It
turns out that the various terms can always be combined in such a way that each term
contains exactly one imaginary part (and otherwise depends only on Kk(t) and Gp(t1, t2)
without any complex conjugation), and it therefore expresses each one-loop diagram as
a sum of single discontinuities of tree-level diagrams. For instance, the Lp1p2(t1, t2) +
Lp2p1(t1, t2) identity can be written as,

Gp1(t1, t2)Gp2(t1, t2) (D.7)
= P1Im(Kp1(t1))Kp1(t2)Gp2(t1, t2) + P1Im(Kp1(t2))Kp1(t1)Gp2(t1, t2)
+ P2Im(Kp2(t1))Kp1(t2)Gp1(t1, t2) + P2Im(Kp2(t2))Kp1(t1)Gp1(t1, t2)
+ iP1P2Im(Kp1(t1))Kp1(t2)Kp2(t1)Kp2(t2) + iP1P2Im(Kp1(t2))Kp1(t1)Kp2(t1)Kp2(t2)
+ iP1P2Im(Kp2(t1))Kp1(t2)Kp2(t1)Kp1(t2) + iP1P2Im(Kp2(t2))Kp1(t1)Kp2(t1)Kp1(t2)
− iP1P2Im(Kp1(t1)Kp2(t2))Kp2(t1)Kp1(t2)− iP1P2Im(Kp1(t2)Kp2(t1))Kp2(t2)Kp1(t1),
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which implies relations between wavefunction coefficients such as,

−4ψ1−loop
k1k2

=
∫

qq′
Pqq′

(
disc

q′

[
ψtree

k1k2qq′

]
+ 3 perm.

)
+
∫

q1q′
1

q2q′
2

Pq1q′
1
Pq2q′

2

(
disc

q′1

[
ψtree

k1q′
1q2
ψtree

k2q1q′
2

]
+ 3 perm. (D.8)

− disc
q′1q′2

[
ψtree

k1q′
1q2
ψtree

k2q1q′
2

]
+ 1 perm.

)
.

In practice, this way of writing the cutting rules is less useful because regrouping into
single discontinuities leads to a proliferation of terms. While the Cosmological Tree The-
orem (2.60) for a graph with E edges produces a sum of 2E − 1 terms, symmetrising and
then regrouping produces a single-Disc identity with 2(3E − 2E) terms (= 10 when E = 2
in the example above). This is always larger than both OFPT and TOPT (see table 1).

D.2 Higher loops

While most of our examples so far have been for one-loop diagrams, the Cosmological Tree
Theorem can be applied straightforwardly to higher loop graphs. The key observation is
that we can apply the tree theorem (2.60) to any closed loop within a diagram, even when
that diagram contains other loops. By recursively removing one loop at a time, (2.60)
can be used to reduce any arbitrary loop diagram into a sum of (momentum integrals of)
tree-level diagrams. While removing the loops in different orders can produce different
identities for any given diagram, these differ only by combinations which vanish thanks to
lower-order identities.

A two-loop example. Let us illustrate this with an example. Consider the following
two-loop correction to the power spectrum,

k1 k2

q1

q2

q3

. (D.9)

This diagram contains three different closed cycles which can be cut open using (2.40),
namely:

(a) the upper one-loop subgraph, Gq1Gq2 ,

(b) the lower one-loop subgraph, Gq2Gq3 ,

(c) the outer one-loop subgraph, Gq3Gq1 .

– 62 –



J
H
E
P
1
2
(
2
0
2
3
)
0
7
6

In all of these cases the resulting product expansion decomposes the integrand into one-loop
and tree level contributions. For instance, cutting the lower loop (b) produces,

−

k1 k2

q1

q2

q3

=
∫

q2q′
2

P
q2q′

2


k1 k2

q1

q′
2 q2

q3



+
∫

q3q′
3

P
q3q′

3


k1 k2

q1

q3 q′
3

q2

 (D.10)

+
∫

q2q′
2

q3q′
3

P
q2q′

2
Pq3q′

3

disc
q′2

disc
q′3

 q′
2 k1 q3 q2 k2 q′

3

q1

 .

Notice that we must take two consecutive discontinuities on the same wavefunction coeffi-
cient in order to extract the required imaginary parts. In one-loop diagrams, cutting any
pair of lines in the loop separates the diagram into two disconnected pieces and produces
a product of single discontinuities. For higher loops, if a diagram remains connected af-
fecting cutting two or more internal lines, then multiple discontinuities will appear in its
tree theorem representation. In general there can be up to C consecutive discontinuities
for each term with C cut lines.

To fully reduce this diagram to a sum of trees, we can now apply the tree theorem (2.40)
again to the remaining loops in (D.10). This will produce twice-cut diagrams (i.e. a six-
point exchange diagram) with two discontinuities and thrice-cut diagrams (i.e. a product
of four-point contact diagrams) with three discontinuities. Explicitly,

k1 k2

q1

q2

q3

=
∫

q′
2q′

3

Pq2q′
2
Pq3q′

3
disc

q′2

disc
q′3

 q′
2 k1 q′

3 q2 k2 q3

q1

 (D.11)

+
∫

q′
3q′

1

Pq3q′
3
Pq1q′

1
disc

q′3

disc
q′1

 q1 k1 q3 q′
1 k2 q′

3

q2


+
∫

q′
1q′

2

Pq1q′
1
Pq2q′

2
disc

q′1

disc
q′2

 q1 k1 q′
2 q′

1 k2 q2

q3


+
∫

q′
1q′

2q′
3

Pq1q′
1
Pq2q′

2
Pq3q′

3
disc

q′2

disc
q′3

 q′
2 k1 q1 q′

3

 disc
q′1

 q′
1 k2 q2 q3


+
∫

q′
1q′

2q′
3

Pq1q′
1
Pq2q′

2
Pq3q′

3
disc

q′2

disc
q′3

 q′
2 k1 q1 q3

 disc
q′1

 q′
1 k2 q2 q′

3


Note that this tree-level representation is not unique, since we could have started by

cutting any of the closed loops and used either orientation. Eq. (D.11) corresponds to

– 63 –



J
H
E
P
1
2
(
2
0
2
3
)
0
7
6

first cutting (b) clockwise and then cutting the remaining (c) anticlockwise and (a) clock-
wise. But there are 23 other possibilities. The consistency of these different expressions is
guaranteed by the one-loop tree theorem and the tree-level relation (2.30). Explicitly, the
difference between initially cutting loop (b) or loop (a) corresponds to,

Gq1(t1, t2)Lq2q3(t1, t2)− Lq1q2(t1, t2)Gq3(t1, t2) (D.12)
= 2Kq1(t1)Im(Kq1(t2))Lq2q3(t1, t2) + 2Im(Kq2(t1)K∗

q2(t2))Lq3q1(t2, t1)
− 2Kq3(t2)Im(Kq3(t1))Lq1q2(t1, t2),

and vanishes thanks to L2 = 0 for loop (c). Similarly, the difference between initially
cutting loop (b) or loop (a) with opposite orientation also vanishes thanks to L2 = 0.

Coincident times. Finally, we point out that many higher-loop diagrams can be viewed
as one-loop diagrams in which two or more vertices are identified. The consistency of
cutting such higher-loop diagrams in different ways follows automatically follows from the
consistency of cutting a one-loop diagram in either orientation (guaranteed by the tree-level
identity (2.30)).

To see this, it is useful to introduce a diagrammatic representation for the time inte-
grand. For instance, consider the following two-loop correction to the bispectrum,

k1 k2 k3

q1

q2

q3

q4

≡
∫

t1,t2,t3

k1 k2 k3

q1

q2

q3

q4
t1 t3

t2

, (D.13)

We can apply the tree theorem (2.42) to either the left or right loop, and with either
orientation. For instance, expanding the left loop using (2.40) gives,

k1 k2 k3

q1

q2

q3

q4
t1 t3

t2

=
∫

q′
1

Pq1q′
1

k1 k2 k3q1 q′
1

q2

q3

q4
t1 t3

t2
+
∫

q′
2

Pq2q′
2

k1 k2 k3q′
2 q2

q1

q3

q4
t1 t3

t2

+
∫

q′
1q′

2

Pq1q′
1
Pq2q′

2

 k1 q′
1 q2

t1




q′
1k2k3 k3

q3

q4
t2 t3

 (D.14)

The remaining loop can now be expanded, again with either orientation. There are therefore
four possible representations of this diagram in terms of only tree-level diagrams, which we
denote by:

(CC) Cut both loops clockwise, using Lq1q2(t1, t2)Lq3q4(t2, t3) = 0,

(CA) Cut the left (right) loop clockwise (anticlockwise), using Lq1q2(t1, t2)Lq4q3(t3, t2) = 0,

(AC) Cut the left (right) loop anticlockwise (clockwise), using Lq2q1(t2, t1)Lq3q4(t2, t3) = 0

(AA) Cut both loops anticlockwise, using Lq2q1(t2, t1)Lq4q3(t3, t2) = 0
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To show that these different representations must be equivalent, it suffices to notice
that this diagram can be constructed from a single four-vertex loop by identifying two
opposite vertices. We have already shown that the difference between cutting such a one-
loop diagram either clockwise or anticlockwise is given by,

Lq1q2q3q4(t1, t2, t3, t4)− Lq1q2q3q4(t2, t1, t4, t3) = 2Cq1q3q4q2(t1, t2, t3, t4) = 0 (D.15)

and vanishes thanks to (2.30). Diagrammatically, we can represent this as,

t1

t2

t3

t4

q1 q2

q3q4

− t1

t2

t3

t4

q1 q2

q3q4

= 2Cq1q2q3q4(t1, t2, t3, t4) = 0 (D.16)

where we do not include the external lines since this is a propagator identity which may
be used for any external lines. We therefore see that identifying t2 = t4 produces,

q1 q2

q3 q4

t1 t3
t2

−

q1 q2

q3 q4

t1 t3
t2

= 2Cq1q3q4q2(t1, t2, t3, t2) = 0 (D.17)

and guarantees that the (CC) and (AA) representations of the diagram (D.13) above are
equivalent. A relabelling of the momenta in (D.16) leads analogously to,

q1 q2

q3 q4

t1 t3
t2

−

q1 q2

q3 q4

t1 t3
t2

= 2Cq1q3q2q4(t1, t2, t3, t2) = 0 (D.18)

which guarantees that (AC) and (CA) are equivalent. Finally, (CC) and (AC) are equiva-
lent thanks to consistency of cutting a single two-vertex loop in either orientation, namely,

(Lq1p4(t1, t2)− Lq4p1(t2, t1))Lq2q3(t2, t3) = 2Cq1q2(t1, t2)Lq2q3(t2, t3) = 0 . (D.19)

D.3 Finite time and restricted integration regions

Finally, we discuss how the various propagator identities can be used to constrain other
objects, such as the wavefunction evaluated at a finite time or with local contributions
removed. This is straightforward mathematically: rather than integrate Ln = 0 over all
−∞ < t < 0 as in (2.59), we may instead integrate over any desired region R,[

N∏
a=1

∫
R
dtaKka(ta)

]
Lp1...pN (t1, . . . , tN ) = 0 . (D.20)

We will now describe three particularly interesting choices of R.
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Bulk wavefunction. Consider
∫

R dta =
∫ t
−∞ dta where t is a fixed time in the bulk.

In that case, the causal identity (2.59) implies a tree theorem for the bulk wavefunction
coefficients, ψn(t), which are the coefficients appearing in the Bunch-Davies wavefunction
at time t. The derivation from the main text is essentially unchanged, and for instance the
identity (1.28) for the quadratic wavefunction coefficient becomes,

−2ψ1-loop
k1k2

(t) =
∫

qq′
Pqq′ disc

q′

[
ψtree

k1k2qq′(t)
]

+
∫

q1q′
1

q2q′
2

Pq1q′
1
Pq2q′

2
disc

q′2

[
ψtree

k1q1q′
2
(t)
]

disc
q′1

[
ψtree

k2q2q′
1
(t)
]
. (D.21)

The cutting rules for Discψ1−loop
n (t) at a finite time follow from the conservation of the

total probability under this interacting time evolution [104, 106]. The finite-time tree
theorem, on the other hand, follows simply from the perturbative form of the Schrodinger
equation (C.4), in which both exchange and loop corrections source the time evolution of
the wavefunction phase equally (and so one can be traded for the other).

Boundary divergences. Now consider
∫

R dta = limt0→0
∫ t0
−∞ dta, where t0 is an in-

finitesimal cut-off which can be used to regulate otherwise divergent interactions. Since
the Cosmological Tree Theorem can be applied at any finite t, it also applies order-by-
order in t0: in particular, it can be used to express the late-time divergence of certain loop
diagrams in terms of the late-time divergence of their cut tree graphs. As an example,
consider a π4 interaction for a massless scalar field on de Sitter. The two- and four-point
wavefunction coefficients are given at late times by,

ψtree
k1k2k3k4(t0)=−(k3

1 +k3
2 +k3

3 +k3
4) log(−it0(k1+k2+k3+k4))

3H4 +O(1) (D.22)

ψ1−loop
k1k2

(t0)=
∫

q

(
k3

1 +k3
2 +2q3) log(−it0(k1+k2+2q))+

(
−k3

1 −k3
2
)
log(−it0(k1+k2))

6H2q3

+O(1) (D.23)

where we have focused on the logarithmic divergence as t0 → 0 (dropping local power-
law divergences which are trivially renormalised) and suppressed the overall momentum-
conserving δ function. One can verify that (D.22) indeed satisfies the tree theorem (D.21),
i.e. the one-loop integrand diverges at late-times in precisely the same way as the tree-level
four-point function.

In general, such a boundary divergence appears on de Sitter at particular “extremal”
values of the external masses such as ∑n

b=1 ∆±
b = d+2ℓ, where ∆±

b = d
2±
√

d2

4 −m2, d is the
number of spatial dimensions, and ℓ is an integer which counts the number of derivatives
in the interaction. For massless scalar fields, this condition is met for all n when ℓ = 0,
signalling that all πn interactions have such a logarithmic divergence as t0 → 0. Such
divergences can be renormalised using a suitable choice of boundary operators [71], related
to the original bulk fields via a Boundary Operator Expansion as described in [104]. Our
Cosmological Tree Theorem expresses this logarithmic divergence in terms of (a momentum
integral of) tree-level data, and it would be interesting to further explore the implications
of this for the BOE or for dynamical RG.

– 66 –



J
H
E
P
1
2
(
2
0
2
3
)
0
7
6

Local contributions and residuals. Finally, consider the integration region in which
coincident times have been removed. This allows us to apply the tree theorem to wavefunc-
tion coefficients in which certain local-type interactions have been removed. To be precise,
if a particular diagram D corresponds to the following time integral,

D ≡
∫ 0

−∞
dt1

∫ 0

−∞
dt2 D(t1, t2) (D.24)

then we define D̂ to be the same integral but with coincident points removed,

D̂ ≡
∫

ta<0
t1 ̸=t2

dt1dt2 D(t1, t2) . (D.25)

This definition is useful because the difference, which we refer to as the “residual” of the
diagram,

R [D] ≡ D − D̂ (D.26)

can often be written in terms of a simpler diagram in which internal lines have been
contracted.

As an example, consider the interaction a(t)
3! λπ̇

3 for a massless scalar field on de Sitter.
This contributes to ψtree

4 via the exchange diagram (1.10), which in this case is given by,

D ≡ iλ2
∫

t1t2

K ′
k1
(t1)K ′

k2
(t1)K ′

k3
(t2)K ′

k4
(t2)∂t1∂t2Gps(t1, t2)

H2t1t2
. (D.27)

One common method for performing this integral first assumes an ordering such as t1 > t2
and then symmetrises the result. This will neglect the equal-time contributions from the
δ(t1 − t2) functions inside ∂t1∂t2Gp(t1, t2) (from the derivatives acting on the Θ(t1 − t2)),
and corresponds to evaluating this time integral over the restricted domain R, namely:

D̂ = iλ2
∫

t1>t2

K ′
k1
(t1)K ′

k2
(t1)K ′

k3
(t2)K ′

k4
(t2)∂t1∂t2Gps(t1, t2)

H2t1t2
+ (t1 ↔ t2) . (D.28)

Another method is to integrate by parts (using that Gp(0, t) = 0),

D = iλ2
∫

t1t2
∂t1

(
K ′

k1(t1)K
′
k2(t1)

1
Ht1

)
Gps(t1, t2)∂t2

(
K ′

k1(t2)K
′
k2(t2)

1
Ht2

)
,

so that now there are no δ function contributions in the integrand. The difference between
these two methods is a simple total energy pole,

D − D̂ = − 24λ2k2
1k

2
2k

2
3k

2
4

(k1 + k2 + k3 + k4)5 (D.29)

which can be absorbed into a local interaction like π̇4. Diagrammatically, the residual of
this exchange diagram is therefore the contact diagram given by collapsing the internal line,

R[
π̇3 π̇3

k1 k2 k3 k4

qs ]=
k1 k2 k3 k4

π̇4

, (D.30)
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where the π̇4 vertex factor is λ2/4!. Similarly, the one-loop correction to ψ2 from this
interaction

k1 k2

q1

q2

= λ2
∫

q1q2

∫
t1t2

K ′
k1
(t1)∂t1∂t2Gq1(t1, t2)∂t1∂t2Gq2(t1, t2)K ′

k2
(t2)

H2t1t2
, (D.31)

contains coincident δ(t1 − t2) singularities, and whether or not these are included in the
integration region corresponds to the freedom to add a local π̇4 interaction (again with
coefficient λ2/4!),

R[
π̇3 π̇3

k1 k2

q1

q2

]= π̇4

k1 k2

q1

+ π̇4

k1 k2

q2

, (D.32)

= 3λ2H2

4

[∫
q1

(
k4q1

(k + q1)5 − q1
k

)
+
∫

q2

(
k4q2

(k + q2)5 − q2
k

)]
,

where in the second line we have written |k1| = |k2| = k and removed the overall
momentum-conserving δ-function.

Since we can apply the identity (D.20) on both integration domains (D.24) and (D.25),
we can apply the tree theorem to both D and D̂ separately. In particular, if we define ψ̂n as
the sum over all D̂ with n external lines (and which therefore differs from ψn only by the in-
clusion of coincident points in the time integrals), we have an analogous tree theorem for ψ̂2,

−2ψ̂1-loop
k1k2

=
∫

qq′
Pqq′ disc

q′

[
ψ̂tree

k1k2qq′

]
+
∫

q1q′
1

q2q′
2

Pq1q′
1
Pq2q′

2
disc

q′2

[
ψtree

k1q1q′
2

]
disc

q′1

[
ψtree

k2q2q′
1

]
,

(D.33)
where ψtree

3 does not require a hat since it only contains a single time integral (so there is
no coincident point to remove). If we subtract this from the tree theorem (1.28) for ψ2,
we find that the residuals obey a simple relation,

R
[
2ψ1−loop

k1k2
+
∫

qq′
Pqq′ disc

q′

[
ψtree

k1k2qq′

]]
= 0 (D.34)

where we have used that the R and disc operations commute. Comparing (D.30)
and (D.32), we see that the wavefunction of our previous π̇3 example indeed satisfies this
relation. Causality guarantees that this should hold more generally, for any interaction on
any time-dependent background.

Finally, note that in appendix C of [106] the above one-loop diagram from π̇3 × π̇3 was
computed without including the local contact contributions at t1 = t2, and hence differs
from the result (2.44) presented here. It was not necessary for [106] to include the residual
terms since they have vanishing discontinuity: for this particular diagram, DiscD = Disc D̂.
This is most easily seen from (D.32), which expresses the residual terms as simpler one-loop
diagrams, followed by our tree theorem, which expresses these one-vertex loops as contact
diagrams (which have vanishing Disc).
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E Cosmological loop-tree duality

Finally, we establish an explicit connection with the “loop-tree duality” (LTD), a modern
descendent of Feynman’s tree theorem. The main idea, due to Catani et al. [149], is that
any one-loop diagram can be written as a sum over single-cut (tree) diagrams, where a
diagram in which the line i is cut uses the modified propagator,

G̃i
j = Gj + ωi

jHj . (E.1)

For amplitudes, Hj ∼ KjK
∗
j , and for wavefunction coefficients Hj ∼ KjImKj (where the

time arguments are distinguished by going either clockwise or anticlockwise around the
loop).

The key to this construction is that the ωi
j coefficients obey the relations,

N∑
i

∏
j ̸=i

ωi
j = 1 , (E.2)

where N is any subset of the edges in the loop. For instance, [149] use ωi
j = Θ(q0

j − q0
i ),

where qj is the 4-momentum of the jth internal line, since it is not hard to show that energy
conservation then implies (E.2). For instance when N = 2,

ω2
1 + ω1

2 = Θ(k0) + Θ(−k0) = 1 (E.3)

where {+k,−k} are the momenta of the external lines. When N = 3,

ω3
1ω

3
2 + ω2

1ω
2
3 + ω1

2ω
1
3 = Θ(k0

1)Θ(−k0
3) + Θ(−k0

2)Θ(k0
3) + Θ(k0

2)Θ(−k0
1) = 1 (E.4)

since k0
1 + k0

2 + k0
3 = 0.

For instance, the LTD for the triangle graph follows from expanding,

G̃3
1G̃

3
2H3 + 2 perm. = G1H2H3

(
ω3

2 + ω2
3

)
+ 2 perm.

+H1H2H3
(
ω3

1ω
3
2 + ω2

1ω
2
3 + ω1

2ω
1
3

)
(E.5)

and then using (E.2) to set each ωi
j sum to unity.

So in order to use the LTD for the wavefunction, one needs to introduce a set of ωi
j

which obey (E.2). Since energy is no longer conserved, the Catani choice of Θ(q0
j − q0

i ) will
not satisfy (E.2). However, the spatial momentum in any fixed direction is conserved, so an
alternative modification of the propagator would be to introduce a fixed reference vector n̂
and use Θ

(
n̂ · (qj − qi)

)
instead. We have not explored this particularly thoroughly, and

it would be interesting to develop this direction further in future, particularly in light of the
recent progress which has been made in implementing the LTD both numerically [156–160]
and analytically for diagrams with up to five loops [177].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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