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COUNTING SUBGRAPHS IN SOMEWHERE DENSE GRAPHS*

MARCO BRESSANT, LESLIE ANN GOLDBERG!, KITTY MEEKS$, AND MARC ROTH Y

Abstract. We study the problems of counting copies and induced copies of a small pattern
graph H in a large host graph G. Recent work fully classified the complexity of those problems
according to structural restrictions on the patterns H. In this work, we address the more challenging
task of analysing the complexity for restricted patterns and restricted hosts. Specifically we ask
which families of allowed patterns and hosts imply fixed-parameter tractability, i.e., the existence
of an algorithm running in time f(H) - |G|9(") for some computable function f. Our main results
present exhaustive and explicit complexity classifications for families that satisfy natural closure
properties. Among others, we identify the problems of counting small matchings and independent
sets in subgraph-closed graph classes G as our central objects of study and establish the following
crisp dichotomies as consequences of the Exponential Time Hypothesis:

e Counting k-matchings in a graph G € G is fixed-parameter tractable if and only if G is
nowhere dense.
e Counting k-independent sets in a graph G € G is fixed-parameter tractable if and only if
G is nowhere dense.
Moreover, we obtain almost tight conditional lower bounds if G is somewhere dense, i.e., not nowhere
dense. These base cases of our classifications subsume a wide variety of previous results on the
matching and independent set problem, such as counting k-matchings in bipartite graphs (Curtica-
pean, Marx; FOCS 14), in F-colourable graphs (Roth, Wellnitz; SODA 20), and in degenerate graphs
(Bressan, Roth; FOCS 21), as well as counting k-independent sets in bipartite graphs (Curticapean
et al.; Algorithmica 19).

At the same time our proofs are much simpler: using structural characterisations of somewhere
dense graphs, we show that a colourful version of a recent breakthrough technique for analysing
pattern counting problems (Curticapean, Dell, Marx; STOC 17) applies to any subgraph-closed
somewhere dense class of graphs, yielding a unified view of our current understanding of the com-
plexity of subgraph counting.

Key words. counting problems, somewhere dense graphs, parameterised complexity theory

MSC codes. 68Q17, 68Q25, 68R10

1. Introduction. We study the following subgraph counting problem: given two
graphs H and G, compute the number of copies of H in G. For several decades this
problem has received widespread attention from the theoretical community, leading
to a rich algorithmic toolbox that draws from different techniques [50, 3, 10, 40] and
to deep structural results in parameterised complexity theory [28, 18]. Since it was
discovered that subgraph counts reveal global properties of complex networks [46, 47],
subgraph counting has also found several applications in fields such as biology [2, 57]
genetics [59], phylogeny [41], and data mining [60]. Unfortunately, the subgraph
counting problem is in general intractable, since it contains as special cases hard
problems such as CLIQUE. This does not mean however that the problem is always
intractable; it just means that it is tractable when the pattern H is restricted to certain
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graph families. Identifying these families of patterns that are efficiently countable has
been a key question for the last twenty years. A long stream of research eventually
showed that, unless standard conjectures fail, subgraph counting is tractable only for
very restricted families of patterns [28, 23, 14, 20, 39, 45, 18, 55, 30].

To circumvent this “wall of intractability”, in this work we restrict both the
family of the pattern H and the family of the host G. Formally, given two classes
of graphs H and G, we study the problems #SUB(H — G), #INDSUB(H — G), and
#HoM(H — G), defined as follows. For all of them, the input is a pair (H, G) with
H € H and G € G. The outputs are respectively the number of subgraphs of G
isomorphic to H, denoted by #Sub(H — G), the number of induced subgraphs of G
isomorphic to H, denoted by #IndSub(H — G), and the number of homomorphisms
(edge-preserving maps) from H to G, denoted by #Hom(H — G). Our goal is to
determine for which H and G these three problems are tractable. To formalize what
we mean by tractable, we adopt the framework of parameterized complexity [22]: we
say that a problem is fixed-parameter tractable, or in the class FPT, if it is solvable
in time f(|H|) -|G|°M for some computable function f (see Section 2 for a complete
introduction). For instance, we consider as tractable a running time of 20U . |G|
but not one of |G|OUHD . This captures the intuition that H is “small” compared
to G, and is the main theoretical framework for subgraph counting [28]. Thus, the
goal of this work is understanding the fixed-parameter tractability of #SUB(H — G),
#INDSUB(H — G), and #HoM(H — G) as a function of % and G. Moreover, when
those problems are not fixed-parameter tractable we aim to show that they are hard
for the complexity class #W/1], which can be thought of as the equivalent of NP for
parameterized counting.

We first briefly discuss which properties of G are worthy of attention. When G
is the class of all graphs, it is well known that each of the three problems is either
FPT or #W][1]-hard depending on whether certain structural parameters of # (such
as treewidth or vertex cover number) are bounded. Thus, when G is the class of all
graphs, the problem is solved. However, when G is arbitrary, no such characterization
is known. This is partly due to the fact that “natural” structural properties related
to subgraph counting are harder to find for G than for H; subgraph counting algo-
rithms themselves usually exploit the structure of H but not that of G (think of tree
decompositions). There is however one deep structural property that, if held by G,
yields tractability: the property of being nowhere dense, introduced by Nesettil and
Ossona de Mendez [48]. In a nutshell G is nowhere dense if, for all € Ny, its members
do not contain as subgraphs the r-subdivisions of arbitrarily large cliques; it can be
shown that this generalizes several natural definitions of sparsity, including having
bounded degree or bounded local treewidth, or excluding some topological minor. In
a remarkable result, NeSetfil and Ossona de Mendez proved:!

THEOREM 1.1 (Theorem 18.9 in [49]). If G is nowhere dense then #HOM(H —
G), #SUB(H — G), and #INDSUB(H — G) are fized-parameter tractable and can be
solved in time f(|H|) - [V (G)|*t°M) for some computable function f.

Thus the case of nowhere dense G is closed, and we can focus on its complement —
the case where G is somewhere dense. Hence the question studied in this work is:
when are #SUB(H — G), #INDSUB(H — §), and #HoM(H — §) fixed-parameter
tractable, provided G is somewhere dense?

n the realm of decision problems, an even more general meta-theorem is known for first-order
model-checking on nowhere dense graphs [36].
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1.1. Our Results. We prove dichotomies for #SUB(H — G), #INDSUB(H —
G), and #HOoM(H — G) into FPT and #W][1]-hard cases, assuming that G is some-
where dense. It is known [56] that a fully general dichotomy is impossible even
assuming that G is somewhere dense; thus we focus on the natural cases where H
and/or G are monotone (closed under taking subgraphs) or hereditary (closed under
taking induced subgraphs). Our dichotomies are expressed in terms of the finiteness
of combinatorial parameters of  and G, such as their clique number or their induced
matching number. Existing complexity dichotomies for subgraph counting are based
on using interpolation to evaluate linear combinations of homomorphism counts [18].
This technique has been exploited for families of host graphs that are closed under
tensoring — the closure is used to create new instances for the interpolation. The host
graphs in our dichotomy theorems do not have this closure property. Nevertheless, we
obtain a dichotomy for all somewhere dense classes using a combination of techniques
involving graph fractures and colourings.

The rest of this section presents our main conceptual contribution (Section 1.1.1),
gives a detailed walk-through of our complexity dichotomies (Section 1.1.2, Sec-
tion 1.1.3, Section 1.1.4), provides some context (Section 1.2), and overviews the
techniques behind our proofs (Section 1.3). For full proofs of our claims see Section 2
onward.

Basic preliminaries.. We concisely state some necessary definitions and obser-
vations which are given in more detail in Section 2. We denote by U the class of
all graphs. We denote by w(G),a(G),5(G), and m(G) respectively the clique, in-
dependence, biclique, and matching number of a graph G. The notation extends to
graph classes by taking the supremum over their elements. Induced versions of those
quantities are identified by the subscript ing (for instance, mj,g denotes the induced
matching number). G" denotes the r-subdivision of G, and F x G denotes the tensor
product of F and G. All of our lower bounds assume the Exponential Time Hypothe-
sis (ETH) [38]; and most of them rule out algorithms running in time f(k)-n°(*/1ogk)
for any function f, and are therefore tight except possibly for a O(log k) factor in the
exponent.? All of our #W/[1]-hardness results are actually #W/[1]-completeness re-
sults; this holds because #SUB(H — G), #INDSUB(H — G), and #HoM(H — G) are
always in #W/[1] due to a characterisation of #W/[1] via parameterised model-counting
problems (see [29, Chapter 14]).

1.1.1. Simpler Hardness Proofs for More Graph Families. Our first and
most conceptual contribution is a novel approach to proving hardness of parameter-
ized subgraph counting problems for somewhere-dense families of host graphs. This
approach allows us to significantly generalize existing results while simultaneously
yielding surprisingly simpler proofs.

The starting point is the observation that proving intractability results for param-
eterized counting problems is discouragingly difficult, as it often requires tedious and
involved arguments. For instance, after Flum and Grohe conjectured that counting k-
matchings is #W[1]-hard [28], the first proof required nine years and relied on sophis-
ticated algebraic techniques [15]. This partially changed in 2017 when Curticapean,
Dell and Marx [18] showed how to express a subgraph count #Sub(H — G) as linear
combination of homomorphism counts ) ap - #Hom(F — G). They showed that
computing this linear combination has the same complexity as computing the hardest
term #Hom(F — G) such that ap # 0. A similar claim holds for induced subgraph

2This O(logk) gap is not an artifact of our proofs, but a consequence of the well-known open

problem “Can you beat treewidth?” [43, 44].
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counts as well. Thanks to this technique one can prove intractability of several sub-
graph counting problems, including for instance the problem of counting k-matchings.?
These hardness results ultimately yielded complexity dichotomies for general subgraph
counting problems, including notably #SUB(H — G) and #INDSUB(H — G) when G
is the class of all graphs.

The technique of [18] does not work for proving hardness of #SUB(H — G) and
#INDSUB(H — G) when G # U. Indeed, one caveat of that technique is that the
family of host graphs G must satisfy certain conditions. One of those conditions is
that G is closed under tensoring, i.e., that G x G’ € G for all G € G and all G’ € U.
The reason is that the interpolation relies on evaluating, say, Sub(H — G x G;) for
several carefully chosen graphs G;, with the goal of constructing a certain invertible
system of linear equations; for this to yield a reduction towards counting patterns
in graphs from G, it is crucial that G x G; € G for all such G; (Section 1.3 gives
a concrete example using the problem of counting k-matchings). This is why the
technique of [18] works smoothly for G = U; closure under tensoring holds trivially in
that case. But many other natural graph families G are not closed under tensoring,
including somewhere dense ones (for instance, the family of d-degenerate graphs for
any fixed integer d > 2). Until now, this has been the main obstacle towards proving
hardness of subgraph counting for arbitrary somewhere dense graph families. The
central insight of our work is that this obstacle can be circumvented in a surprisingly
simple way. Using well-established results from the theory of sparsity, we prove the
following claim, which we explain in detail in Section 1.3:

FEvery monotone and somewhere dense class of graphs is closed
under vertex-colourful tensor products of subdivided graphs.
Ignoring for a moment its technicalities, this result allows us to lift the interpola-
tion technique via graph tensors to any monotone somewhere dense class of host
graphs, including for instance the aforementioned class of d-degenerate graphs. In
turn this yields complexity classifications for #HoM(H — G), #SUB(H — G), and
#INDSUB(H — G) that subsume and significantly strengthen almost all classifications
known in the literature (see below). Moreover, our approach yields simple and almost
self-contained proofs, helping understand the underlying causes of the hardness.

1.1.2. The Complexity of #Sub(H — G). This section presents our results
on the fixed-parameter tractability of #SUB(H — G). We start by presenting a
minimal* family #H for which hardness holds: the family of all k-matchings (or 1-
regular graphs). In this case we also denote #SUB(H — G) as #MATCH(G). In the
foundational work by Flum and Grohe [28], #MATCH(U) was identified as a central
problem because of the significance of its classical counterpart (counting the number
of perfect matchings); a series of works then identified #MATCH(I/) as the minimal
intractable case [15, 20, 18]. In this work, we show that #MATCH(G) is the minimal
hard case for every class G that is monotone and somewhere dense:

THEOREM 1.2. Let G be a monotone class of graphs® and assume that ETH holds.
Then #MATCH(G) is fized-parameter tractable if and only if G is nowhere dense.

3In the field of database theory a similar technique expressing answers to unions of conjunctive
queries as linear combinations of answers of conjunctive queries was independently discovered by
Chen and Mengel [11].

4Minimal means that, for every class H', #SUB(H' — G) is intractable if and only if the monotone
closure of H’ includes H. The same holds for #INDSUB with “monotone” replaced by “hereditary”.

5We emphasize that we do not need our classes to be computable or recursively enumerable.
This is due to the assumed closure properties of the classes.

4
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More precisely, if G is nowhere dense then #MATCH(G) can be solved in time f(k) -
V(@) for some computable function f; otherwise #MATCH(G) is #W][1]-hard
and cannot be solved in time f(k) - |G|°F/198%) for any function f.

Theorem 1.2 subsumes the existing intractability results for counting k-matchings
in bipartite graphs [20], in F-colourable graphs [56], in bipartite graphs with one-
sided degree bounds [19], and in degenerate graphs [9]. It also strengthens the latter
result: while [9] establishes hardness of counting k-matchings in ¢-degenerate graphs
for k + ¢ as a parameter, Theorem 1.2 yields hardness for d-degenerate graphs for
every fixed d > 2.6 Additionally, we show that Theorem 1.2 cannot be strengthened to
achieve polynomial-time tractability of #MATCH(G) for nowhere dense and monotone
G, unless #P = P.

As a consequence of Theorem 1.2 we obtain, for hereditary H, an exhaustive and
detailed classification of the complexity of #SUB(H — G) as a function of invariants
of G and H. .

THEOREM 1.3. Let H and G be graph classes such that H is hereditary and G is
monotone. Then the complexity of #SUB(H — G) is exhaustively classified by Table 1.

G s. dense G s. dense

G n. dense g(sg.)dincsxc; w@) <o  w(G) < oo
B(G) =00  B(G) <0
m(H) < oo P P P p
ming(H) =00  FPT hard hard hard
Ming (H) < o0 ; ;
Bina(H) = 06 P hard hard P
Otherwise P hard? P P
TABLE 1

The complexity of #SUB(H — G) for hereditary H and monotone G. Here “hard”
means #W|1]-hard and, unless ETH fails, without an algorithm running in time f(|H|) -

GeWVUEDI/1og VDD - pardt 7 means the same, but without an algorithm running in f(|H|)-
GV anD

Note that the unique fixed-parameter tractability result in Table 1 is a “real” FPT
case: we can show that, unless P = #P, it is in FPT but not in P. We point out
that the contributions in this work are the hardness results in the third and fourth
column, that is, for the cases in which G is somewhere dense, but not the class of all
graphs. (For monotone G, w(G) = oo implies that G is the class of all graphs.)

From the classification of Theorem 1.3 one can derive interesting corollaries. For
example, when H and G are monotone one has essentially the same classification of
the case G = U: only the boundedness of the matching number of H (or equivalently,
of its vertex-cover number) counts [20].

THEOREM 1.4. Let H and G be monotone classes of graphs and assume that ETH
holds. Then #SUB(H — G) is fized-parameter tractable if m(H) < oo or G is nowhere
dense; otherwise #SUB(H — G) is #W]J1]-complete and cannot be solved in time

SThe class of all d-degenerate graphs is somewhere dense for all d > 2.

5
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f(H]) - |G|0(|V(H)|/10g(\V(H)D) for any function f.

We conclude by remarking that Table 1 and the proofs of its bounds suggest the
existence of three general algorithmic strategies for subgraph counting:

1. If G is nowhere dense (first column of Table 1), then one can use the FPT
algorithm of Theorem 1.1, based on Gaifman’s locality theorem for first-order
formulas and the local sparsity of nowhere dense graphs (see [49]).

2. If m(H) < oo (first row of Table 1), then one can use the polynomial-time
algorithm of Curticapean and Marx [20], based on guessing the image of a
maximum matching of H and counting its extensions via dynamic program-
ming.

3. All remaining entries marked as “P” are shown to be essentially trivial. Con-
cretely, we will rely on Ramsey’s theorem to prove that minor modifications
of the naive brute-force approach yield polynomial-time algorithms for those
cases.

1.1.3. The Complexity of #IndSub(H — G). In the previous section we
proved that, when G is somewhere dense, k-matchings are the minimal hard family of
patterns for #SUB(H — G). In this section we show that k-independent sets play a
similar role for #INDSUB(H — G). Let #INDSET(G) = #INDSUB(Z — G) where 7 is
the set of all all independent sets (or 0-regular graphs). We prove:

THEOREM 1.5. Let G be a monotone class of graphs and assume that ETH holds.
Then #INDSET(G) is fixed-parameter tractable if and only if G is nowhere dense.
More precisely, if G is nowhere dense then #INDSET(G) can be solved in time f(k) -
V(@) for some computable function f; otherwise #INDSET(G) cannot be solved
in time f(k) - |G|°*/198k) for any function f.

This result subsumes the intractability result for counting k-independent sets in bi-
partite graphs of [17]. It also strengthens the result of [9], which shows #INDSET(G) is
hard when parameterized by k + d where d is the degeneracy of G. More precisely, [9]
does not imply that #INDSET(G) is hard when G is the class of d-degenerate graphs,
for any d > 2. In contrast to this, Theorem 1.5 proves such hardness for every d > 2.
Finally, we point out that the FPT case of Theorem 1.5 is not in P unless P = #P.

As consequence of Theorem 1.5, when # is hereditary (and thus in particular
monotone) we obtain:

THEOREM 1.6. Let H and G be classes of graphs such that H is hereditary and G
is monotone. Then the complexity of #INDSUB(H — G) is exhaustively classified by
Table 2.

1.1.4. The Complexity of #Hom(H — G). Finally, we study the parameter-
ized complexity of #HOM(H — G). We denote by tw(H) the treewidth of a graph H.
Informally, graphs of small treewidth admit a decomposition with small separators,
which allows for efficient dynamic programming. In this work we use treewidth in a
purely black-box fashion (e.g. via excluded-grid theorems); for its formal definition
see [22, Chapter 7]. We prove:

This manuscript is for review purposes only.



G n. dense Q(sg.)dinzg w(G) < oo
a(g) = o0
|H| < oo P P P
a(H) =00 FPT hardf hard
Otherwise P hard? P
TABLE 2

The complezity of #INDSUB(H — G) for hereditary H and monotone G. Here “hard”
means #W|1]-hard and, unless ETH fails, without an algorithm running in time f(|H|) -

|G eV DI/ g VDD - 4hardt 7 means the same, but without an algorithm running in f(|H|)-
|G|O(\V(H)|)‘

THEOREM 1.7. Let H and G be monotone classes of graphs.

1. If G is nowhere dense then #HOM(H — G) is fized-parameter tractable and
can be solved in time f(|H|) - |V (G)]*+°M) for some computable function f.

2. If tw(H) < oo then #HOM(H — G) is solvable in polynomial time, and if
a tree decomposition of H of width t is given, then it can be solved in time
HIOW . |V(G) [+

3. If G is somewhere dense and tw(H) = oo then #HOM(H — G) is #W][1]-
hard and, assuming ETH, cannot be solved in time f(|H|)-|G|°®™U ) for any
function f.

(The nowvel part is 3.; we included 1. and 2. to provide the complete picture.)

Unfortunately, in contrast to #SUB and #INDSUB, we do not know how to extend
Theorem 1.7 to hereditary H. We point out however that for hereditary H the finite-
ness of tw(#) cannot be the correct criterion: if H is the set of all complete graphs
and G is the set of all bipartite graphs, then H is hereditary and tw(#H) = oo, but
#HoM(H — G) is easy since |V(H)| < 2 or #Hom(H — G) = 0. More generally, the
complexity of #HOM(H — G) appears to be far from completely understood for arbi-
trary classes H. In fact, it has been recently posed as an open problem even for specific
monotone and somewhere dense G such as the family of d-degenerate graphs [9, 4].
There is some evidence that the finiteness of induced grid minors is the right criterion
for tractability [9].

In what follows we provide a detailed exposition of our proof techniques, starting
with a brief summary of the state of the art.

1.2. Related Work. The general idea of using interpolation as a reduction
technique for counting problems dates back to the foundational work of Valiant [61].
Roughly speaking, the key to interpolation is constructing a system of linear equations
that is invertible and thus has a unique solution. For example, in the classic case of
polynomial interpolation (where one has to infer the coefficients of a univariate poly-
nomial given an oracle that evaluates it) the system corresponds to a Vandermonde
matrix, which is nonsingular and thus invertible. In the case of linear combinations
of homomorphism counts, an invertible system of linear equations can be construc-
ted via graph tensoring arguments, as proven implicitly by works of Lovész (see e.g.
[42, Chapters 5 and 6]). It was then discovered by Curticapean et al. in [18] that
these interpolation arguments could be extended to subgraph and induced subgraph

7
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counts, by showing that those counts may be expressed as linear combinations of ho-
momorphism counts. Using this fact, they proved that interpolation through graph
tensoring applies to a wide variety of parameterised subgraph counting problems.
However, their technique fails when one restrict the class of host graphs G, see the
discussion in Section 1.1.1; our work shows how to circumvent this obstacle.

The idea of using graph subdivisions for proving hardness results appeared in
the context of linear-time subgraph counting in degenerate graphs [5, 6, 4]. For
example, [5] observed that counting triangles in general graphs, which is conjectured
not to admit a linear time algorithm, reduces in linear time to counting 6-cycles in
degenerate graphs by subdividing each edge once (which always yields a 2-degenerate
graph). Our work makes heavy use of graph subdivisions as well, although in a more
sophisticated fashion. This is not surprising since, for each d > 2, the class of d-
degenerate graphs constitutes an example of a monotone somewhere dense class of
graphs.

1.3. Overview of Our Techniques. The present section expands upon Sec-
tion 1.1.1 and gives a detailed technical overview of our proofs of hardness for #SUB(H —
G) and #INDSUB(H — G) (Section 1.3.1) and for #HoM(H — G) (Section 1.3.2).
The main contribution of our work is these hardness proofs. The upper bounds hold
from (simple adaptations of) previous work.

1.3.1. Classifying Subgraph and Induced Subgraph Counting. We start
by analysing a simple case. Recall that a graph family G is somewhere dense if, for
some 7 € Ny, for all £ € N there is a G € G such that K| is a subgraph of G. From
this characterization it is immediate that, if G is somewhere dense and monotone,
then it contains the r-subdivisions of every graph. In turn, this implies that detecting
subdivisions of cliques in G is at least as hard as the parameterised clique problem [27].
Since the parameterised clique problem is W[1]-hard, we deduce that #SUB(H — G)
and #INDSUB(H — G) are intractable when H = {KJ, : k,r € N} and G is monotone
and somewhere dense. Unfortunately, it is unclear how to extend this approach to
arbitrary H, since the elements of H are not necessarily r-subdivisions of graphs that
are hard to count. To show how this obstacle can be overcome, we will focus on
#SUB(H — G) when H is the class of k-matchings, M = {M}, : k € N}; in other
words, on the problem of counting k-matchings, #SUB(M — G). This problem will
turn out to be the minimal hard case for #SUB(H — §), and its analysis will contain
the key ingredients of our proof. The proof for #INDSUB(H — G) will be similar.

Let us start by outlining the hardness proof of #SUB(M — G) when G = U, by
using the interpolation technique discussed in Section 1.2. From [18], we know that
for every k € N there is a function ay : Y — Q with finite support such that, for every
Gel,

(1.1) #Sub(My — G) = ay(H) - #Hom(H — G)
H

where the sum is over all isomorphism classes of all graphs. By a classic result of
Dalmau and Jonsson [23], computing #Hom(H — G) is not fixed-parameter tractable
for H of unbounded treewidth, unless ETH fails. Hence, if we could use (1.1) to show
that an FPT algorithm for computing #Sub(M}, — G) yields an FPT algorithm for
computing #Hom(H — G) for some H whose treewidth grows with k, we would
conclude that computing #Sub(My — G) is not fixed-parameter tractable unless
ETH fails. This is what [18] indeed prove. The idea is to apply (1.1) not to G,
but to a set of carefully chosen graphs Gl, ceey G, such that the counts #Hom (M, —

8
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312 Gl), ..., #Hom(M}, — ég) can be used to solve a linear system and infer #Hom(H —
313 Q) for all H appearing on the right-hand side of (1.1).

314 Let us explain this idea in more detail. Suppose we had an oracle for #SuB(M —
315 U), so that we could quickly compute #Sub(M};, — G) for any desired G. Let £ be the
316  size of the support of ay, which is finite and thus a function of k, and let {G;};=1,.. ¢
317 be a set of graphs such that each G; has size bounded by a function of k. It is a
318 well-known fact that, for all graphs H, G, G/,

319 (1.2) #Hom(H — G x G') = #Hom(H — G) - #Hom(H — G').
320 By combining (1.1) and (1.2), for each i = 1,..., ¢ we obtain

(1.3)
321 #Sub(My — G x G;) = > ap(H) - #Hom(H — G;) - #Hom(H — G) = > by - Xu,
H

, H
322 a (H)#0

where b, := #Hom(H — G;) and Xy := ax(H) - #Hom(H — G). Now, we can
compute #Hom(H — G;) in FPT time since |G;| is bounded by a function of k,
and we can compute #Sub(M; — G x G;) using the oracle. Therefore, in FPT
326 time we can compute a system of ¢ linear equations with the Xy as unknowns. By
327 applying classical results due to Lovész (see e.g. [42, Chapter 5]), Curticapean et al.
328 [18] showed that there always exists a choice of the G;’s such that this system has a
329 unique solution. Hence, using those G;’s one can compute #Hom(H — G) in FPT
330 time for all H with ax(H) # 0. In particular, one can compute #Hom(F), — G) where
331 Fj is any k-edge graph of maximal treewidth, since [18] also showed that ax(H) # 0
332 for all H with |E(H)| < k. This gives a parameterized reduction from #HoM(F — U)
333 to #SUB(M — U), where F is the class of all maximal-treewidth graphs F. Since
334 #HoM(F — U) is hard by [23], the reduction establishes hardness of #SUB(M — U)
335 as desired.

336 Our main question is whether this strategy can be extended from U to any mono-
337 tone somewhere dense class G. This it not obvious, since the argument above relies
338 on two crucial ingredients that may be lost when moving from U to G:

339 (1.1) We need to find a family of graphs F = {F}, | k € N} such that #HoM(F — G)
340 is hard and, for all k € N, ag(Fy) # 0.

W W w
NN N
Ut o W

341 (I.2) We need to find graphs G; such that G x G; € G. This is necessary since
342 the argument performs a reduction to the problem of counting #Sub(M}, —
343 G x G;), and is not straightforward since G x G; may not be in G even when
344 both G, G; are.

345 It turns out that both requirements can be satisfied in a systematic way. First, we
346 study #SUB(H — §G) in some carefully chosen vertex-coloured and edge-coloured
347 version. It is well-known that the coloured version of the problem is equivalent in
348 complexity (in the FPT sense) to the uncoloured version; so, to make progress, we
349 may consider the coloured version. Next, coloured graphs come with a canonical
350 coloured version of the tensor product which satisfies (1.2), so we can hope to apply
351 interpolation via tensor products in the colorful setting, too. The introduction of
2 colours in the analysis of parameterised problems is a common tool for streamlining
3 reductions that are otherwise unnecessarily complicated (see e.g. [20, 51, 26, 30]). The
4 technical details of the coloured version are not hard, but cumbersome to state; since
5 here we do not need them, we defer them to Section 2. Let us now give a high-level
56 explanation of how we achieve (I.1) and (I1.2).
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For (I.1), we let F be the class of all r-subdivisions of a family & of regular ex-
pander graphs. A simple construction then allows us to reduce #HoM(E — U), which
is known to be hard, to #HOM(]:' — U"), where U is the set of all r-subdivisions of
graphs. As noted above U" C G, hence #HOM(]} — G) is hard. We will show in the
coloured version that for each graph Fj, € F with k edges, ax(Fy) # 0 (see the proof
of Lemma 4.6). Thus, (I.1) is satisfied.

For (I1.2) we construct, for each k, a finite sequence of coloured graphs G1,Ga, ...
satisfying the following two conditions: the system of linear equations given by (the
coloured version of) (1.3) has a unique solution, and the coloured tensor product
between each G; and any coloured graph in U" is in G. Concretely, we choose as G;
the so-called fractured graphs of the r-subdivisions of the expanders in €. Fractured
graphs are obtained by a splitting operation on a graph and come with a natural
vertex colouring. They have been introduced in recent work on classifying subgraph
counting problems [51] and we describe them in Section 2.1.

Together, our resolutions of (I.1) and (I.2) yield a colourful version of the frame-
work of [18] that applies to any monotone somewhere dense class of host graphs. As a
consequence we obtain that #HoM(E — U), the problem of counting homomorphisms
from expanders in £ to arbitrary hosts graphs, reduces in FPT time to #SUB(M — G)
whenever G is monotone and somewhere dense. Since #HOM(E — U) is intractable,
this proves the hardness of #SUB(M — G) for all monotone and somewhere dense G,
as stated in Theorem 1.2. From this result we will then be able to prove our general
classification for #SUB(H — G) (Theorem 1.3) by combining existing results and
Ramsey-type arguments on H and G.

This concludes our overview for #SUB(H — G). The proofs for #INDSUB(H —
G) are similar, but instead of #SUB(M — §), they use as a minimal hard case
#INDSET(G), the problem of counting k-independent sets in host graphs from G.

1.3.2. Classifying Homomorphism Counting via Wall Minors. The proof
of our dichotomy for #HOM(H — G) for monotone H and G (Theorem 1.7) requires
us to establish hardness when G is somewhere dense and tw(#H) = co. Recall that our
solution of (I.1) relied on a reduction from (the coloured version of) #HoM(E — U)
to (the coloured version of) #HoM(F — U"), where & is a family of regular expander
graphs, F is the class of all r-subdivisions of graphs in &£, and U" is the class of r-
subdivisions of all graphs. Since for all monotone somewhere dense classes G there is
an 7 such that U™ C G, we would be done if we could make sure that every monotone
class of graphs of unbounded treewidth H contains F as a subset. Unfortunately, this
is not the case. As a trivial example, H could be the class of all graphs of degree at
most 3 while £ is a family of 4-regular expanders.

To circumvent this problem, we use a result of Thomassen [58] to prove that, for
every positive integer r, every monotone class of graphs H with unbounded treewidth,
and every wall Wy, i, the class H contains a subdivision of Wy, ;, in which each edge is
subdivided a positive multiple of r times. Now, the crucial property of the class of all
walls W := {W}, ;. | k € N} is that #HoM(W — U) is intractable by the classification
of Dalmau and Jonsson [23]. Refining our constructions based on subdivided graphs,
we are then able to show that #HoM(W — U) reduces to #HoM(H — G) whenever
‘H is monotone and of unbounded treewidth, and G is monotone and somewhere dense.
Theorem 1.7 will then follow as a direct consequence.

2. Preliminaries. We denote the set of non-negative integers by Ny, and the
set of positive integers by N. Graphs in this work are undirected and without self-
loops unless stated otherwise. A subdivision of a graph G is obtained by subdividing

10
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Fic. 1. A fractured graph Qfic from [51]. Left: a vertezx v € V(Q) with incident edges
Eg(v) ={e,0,0,0,0,0}. Right: the splitting of v in Qfo for a fracture o where the partition oy of
Eq(v) consists of the two blocks By = {e,®,8}, and Bz = {0, e,0}.

each edge of G arbitrarily often. Given a graph G and r € Ny, we write G” for the
r-subdivision of G, i.e., the graph obtained from G by subdividing each edge r times
(so that it becomes a path of 7 + 1 edges). Note that G° = G. (The graph G"~*
is also called the “r-stretch of G” in the literature). Given a graph G and a vertex
v € V(G), we write Eg(v) := {e € E(G) | v € e} for the set of edges incident to
v. Furthermore, given A C E(G), we write G[A] for the graph (V(G), A). Given a
subset of vertices S C V(G), we write G[S] for the subgraph of G induced by the
vertices in S, that is, G[S] := (5,{e € E(G) | e C S}). An “induced subgraph” of G
is a subgraph induced by some S C V(G).

A homomorphism from a graph H to a graph G is a mapping ¢ : V(H) — V(G)
which is edge-preserving, that is, {u,v} € E(H) implies {¢(u),o(v)} € E(G). We
write:

Hom(H — G) for the set of all homomorphisms from H to G,

SurHom(H — @) for the set of all surjective homomorphisms from H to G,
Sub(H — G) for the set of all subgraphs of G isomorphic to H, and
IndSub(H — G) for the set of all induced subgraphs of G isomorphic to H.

2.1. Coloured Graphs and Fractures. Let H be a graph. Following standard
terminology, we refer to an element of Hom(G — H) as an H -colouring of the graph G.
An H-coloured graph is a pair (G, c) where G is a graph and ¢ an H-colouring of G.
We say that (G, ¢) is a surjectively H-coloured graph if ¢ € SurHom(G — H).

Given two H-coloured graphs (F,cr) and (G, ¢g), a homomorphism from (F, cp)
to (G, cq) is a mapping ¢ € Hom(F' — G) such that cg(p(v)) = cp(v) for each
v € V(F)." We write Hom((F,cr) — (G, cg)) for the set of all homomorphisms from
(F,cr) to (G, cq).

Following the terminology of [51], we define a fracture of a graph H as a |V (H)|-
tuple p = (py)vev (m) Where p, is a partition of the set Ex(v) of edges of H incident
to v. Now, given a fracture p of H, we obtain the fractured graph Hfp from H
by splitting each vertex v according to the partition p,. Formally, the graph Hfp
contains a vertex vP for each vertex v € V(H) and block B € p,, and we make v?
and u?" adjacent if and only if {v,u} € E(H) and {u,v} € BN B’. An illustration is
provided in Figure 1.

The following H-colouring of a fractured graph is used implicitly in [51].

DEFINITION 2.1. Let H be a graph and p a fracture of H. We denote by c, :
V(H#p) — V(H) the function that maps vB to v for each v € V(H) and B € p,.

"We remark that in previous work [51], homomorphisms between H-coloured graphs are called
“colour-preserving” or, if FF = H, “colour-prescribed”. Since we will work almost exclusively in
the coloured setting in this work, we will just speak of homomorphisms and always provide the
H-colourings explicitly in our notation.

11
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OBSERVATION 2.2. For each H and p, ¢, is an H-colouring of Hf p.

2.2. Graph Classes, Invariants and Minors. We use symbols F,G,H to
denote classes of graphs, and we denote by U be the class of all graphs. A graph
invariant is a function g : U — Ny such that g(G) = g(H) whenever G and H are
isomorphic. An invariant g is bounded on a graph family H if there exists B € Ny
such that g(H) < B for all H € H, in which case we write g(H) < oo; otherwise we
say ¢ is unbounded on H and write g(H) = co. Our statements involve the following
invariants.

DEFINITION 2.3 (Graph Invariants). For any graph G define:

e the independence number a(G), i.e., the size of the largest independent set of
G

e the clique number w(G), i.e., the size of the largest complete subgraph of G

o the biclique number B(G), i.e., the largest k such that G contains a k-by-k
biclique as a subgraph, and its induced version, the induced biclique number
ﬁind(G)

e the matching number m(G), i.e., the size of a mazimum matching of G, and
its induced version, the induced matching number ming(Q)

We denote by tw(G) the treewidth of a graph G. We omit the definition of treewidth
as we rely on it in a black-box manner; the interested reader can see e.g. Chapter 7
of [22]. For any k € N the k-by-k grid graph By, depicted in Figure 2, is defined by
V(Bx) = [k]* and E(By) = {{(i,5), (¢",5)} : ,5,7. 5 € k], [i —¢'| + | —j'| = 1}. Tt
is well known that tw(H) = k, see [22, Chapter 7.7.1].

We make use of the following two consequences of Ramsey’s Theorem for an
arbitrary class of graphs H. The first one is immediate, and the second one was
established by Curticapean and Marx in [20].

THEOREM 2.4. If |H| = oo then max(a(H),w(H)) = .
THEOREM 2.5. If m(H) = oo then max(w(H), Sind(H), ming(H)) = 0.

A class of graphs is hereditary if it is closed under vertex deletion, and is monotone
if it is hereditary and closed under edge deletion. In other words, hereditary classes
are closed under taking induced subgraphs, and monotone classes are closed under
taking subgraphs.

To present the different notions of graph minors used in this paper in a unified
way, we start by introducing contraction models.

DEFINITION 2.6 (Contraction model). A contraction model of a graph H in a
graph G is a partition {V1,...,Vi} of V(G) such that G[V;] is connected for each
i € [k] and that H is isomorphic to the graph obtained from G by contracting each
G[V;] into a single vertex (and deleting multiple edges and self-loops).

Recall that a graph F' is a minor of a graph G if F can be obtained from G by
deletion of edges and vertices, and by contraction of edges; equivalently, F' is a minor
of G if F' is a subgraph of a graph that has a contraction model in G. In this work,
we will also require the subsequent stricter notion of minors.

DEFINITION 2.7 (Shallow minor [48]). A graph F is a shallow minor at depth d
of a graph G if F is a subgraph of graph H that has a contraction model {V1, ..., Vi}
in G satisfying the following additional constraint: for each i € [k] there is a vertex
x; € V; such that each vertex in V; has distance at most d from x;. Given a class of
graphs G, we write GVd for the set of all shallow minors at depth d of graphs in G.

12
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Observe that the shallow minors at depth 0 of G are exactly the subgraphs of G,
and the shallow minor of depth |V (G)| are exactly the minors of G. For this reason,
the notion of a shallow minor can be considered an interpolation between subgraphs
and minors. Furthermore, having introduced this notion, we are now able to define
somewhere dense and nowhere dense graph classes.

DEFINITION 2.8 (Somewhere dense graph classes [48]). A class of graphs G is
somewhere dense if w(GVd) = oo for some d € Ny, and is nowhere dense if instead
w(gGvd) < oo for all d € Ny.

We use the following characterisation of monotone somewhere dense graph classes.®

LEMMA 2.9 (Remark 2 in [1]). Let G be a monotone class of graphs. Then G is
somewhere dense if and only if there exists r € Ny such that G" € G for all G € U.

2.3. Parameterised and Fine-Grained Complexity. A parameterized count-
ing problem is a pair (P, k) where P : {0,1}* — N and & : {0,1}* — N is comput-
able. For an instance x of P we call x(x) the parameter of x. An algorithm A is
fixed-parameter tractable (FPT) w.r.t. a parameterization & if there is a computable
function f such that A runs in time f(k(z)) - |z|°®) on every input z. A parame-
terized counting problem (P, k) is fixed-parameter tractable (FPT) if there is an FPT
algorithm (w.r.t. k) that computes P.

A parameterized Turing reduction from (P, k) to (P’, k") is an algorithm A equipped
with oracle access to P’ satisfying the following constraints:

(A1) A computes P
(A2) Ais FPT w.r.t. k
(A3) there is a computable function g such that, on input x, each oracle query z’
satisfies that «'(z') < g(k(x)).
We write (P,x) <FPT (P’ k') if a parameterized Turing reduction from (P, k) to
(P, k') exists.

The parameterized counting problem #CLIQUE asks, on input a graph G and
k € N, to compute the number of k-cliques in G; the parameter is k. As shown by Flum
and Grohe [28], #CLIQUE is the canonical complete problem for the parameterized
complexity class #W][1]. In particular, a parameterized counting problem (P, k) is
called #WT[1]-hard if #CriQUE <FPT (P k). We omit the technical definition of
#W]1] via weft-1 circuits (see Chapter 14 of [29]), but we recall that #W/[1]-hard
problems are not FPT unless standard hardness assumptions fail (see below). We
define the problems studied in this work. As usual H and G denote classes of graphs.

DEFINITION 2.10. #HOM(H — G), #SUB(H — G), #INDSUB(H — G) ask, given
H e H and G € G, to compute respectively #Hom(H — G), #Sub(H — G), and
#IndSub(H — G). The parameter is |H|.

For example, #SUB(H — G) = #CLIQUE when H is the class of all complete graphs
and G the class of all graphs. The following result follows immediately from an
algorithm for counting answers to Boolean queries in nowhere dense graphs due to
Nesetfil and Ossona de Mendez [49].

THEOREM 2.11 (Theorem 18.9 in [49]). If G is nowhere dense then #HoM(H —
G), #SUB(H — G), and #INDSUB(H — G) are fized-parameter tractable and can be
solved in time f(|H|) - [V (G)|*t°M) for some computable function f.

81t is non-trivial to pinpoint the first statement of Lemma 2.9 in the literature: Dvordk et al.
[27] attribute it to Nesetfil and de Mendez [48], who provide an implicit proof. The first explicit
statement is, to the best of our knowledge, due to Adler and Adler [1].
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In an intermediate step towards our classifications, we will rely on a coloured
version of homomorphism counting.

DEFINITION 2.12. #cP-HOM(H — G) asks, given H € H and a surjectively’ H-
coloured graph (G,c) with G € G, to compute #Hom((H,idy) — (G, c)), where idg
denotes the identity on V(H). The parameter is |H|.

It is well known that #cp-HOM(H — U) reduces to the uncoloured version via
inclusion-exclusion. The same holds for #cpP-HoM(H — G), too, if G is monotone.
Formally:

LEMMA 2.13 (see e.g. Lemma 2.49 in [53]). If G is monotone then #cp-HoM(H —
G) <FPT #Hom(H — G). Moreover, on input H € H and (G,c) with G € G, every
oracle query (H',G') in the reduction satisfies H = H and G’ C G.

An implicit consequence of the parameterized complexity classification for counting
homomorphisms due to Dalmau and Jonsson [23] establishes the following hardness
result for #CcP-HOM; an explicit argument can be found e.g. in Chapter 2 in [53].

THEOREM 2.14 ([23]). If H is recursively enumerable and tw(H) = oo then
#cp-HoM(H — U) is #WI1]-hard.

Finally, all running-time lower bounds in this paper are conditional on ETH:

DEFINITION 2.15 ([38]). The Exponential Time Hypothesis (ETH) asserts that
3-SAT cannot be solved in time exp(o(n)) where n is the number of variables of the
input formula.

Chen et al. [12, 13] showed that there is no function f such that #CLIQUE can be
solved in time f(k) - |G|°*) unless ETH fails. This in particular implies that #W][1]-
hard problems are not FPT unless ETH fails. Marx [43] strengthened Theorem 2.14
into:1°

THEOREM 2.16 ([43]). If H is recursively enumerable and tw(H) = oo then

tw(H

)
#cp-HOM(H — U) cannot be solved in time f(|H]) - |G|O(1OE*W(H>) for any function f,
unless ETH fails.

The question of whether the (logtw(H))~! factor in the above lower bound can be
omitted can be considered the counting version of the open problem “Can you beat
treewidth?” [43, 44].

3. Counting Homomorphisms. This section is devoted to the proof of our di-
chotomy theorem for #HOM(H — G), Theorem 1.7. We start by showing a reduction
from #cp-HoMm(H — U) to counting colour-prescribed homomorphisms between sub-
divided graphs. While the proof is straightforward, the reduction will turn out useful
for the more involved cases of #SUB(H — G) and #INDSUB(H — G). Theorem 1.7
will be an immediate consequence of Theorem 2.11 and Theorem 3.6 below.

To begin with, let ¢ € SurHom(G — H) and let » € Ny. Define the following
canonical homomorphism ¢” from G" to H". For each u € V(G), set ¢"(u) = c(u).
For any edge e = {uy,us} € E(G), let uy,ws, ..., w,, uz be the corresponding path in
G". Let ¢ = {v1,v2} = {c(u1),c(uz)} — note that ¢’ € E(H) as ¢ € Hom(G — H)

9n previous works (e.g. in [51]), the definition of #cpP-HoM(H — G) did not require the H-
colouring to be surjective. However, one can always assume surjectivity, since #Hom((H,idg) —
(G, ¢)) = 0 if ¢ is not surjective. We decided to make the surjectivity condition explicit in this work.

10More precisely, Marx established the bound for the so-called partitioned subgraph problem.
However, as shown in [55], the lower bound immediately translates to #cp-HOM(H — U).

14

This manuscript is for review purposes only.



o Or Ot
RCERS I |
N =

(@8] (S
| |
SN w

3]
ot

v Ot Ot Ot

wt
oo

— and let vy, x1,...,x,,v2 be the corresponding path in H”. Then, set ¢"(w;) := x;
for each i € {1,...,r}. It is easy to see that ¢" is a surjective H"-colouring of G".
Furthermore:

LEMMA 3.1. For every surjectively H-coloured graph (G,c) and every r € Ny,
(3.1) #Hom((H,idy) — (G, ¢)) = #Hom((H",idgr) — (G",c"))

where idy and idy- are the identities on respectively V(H) and V(H").

Proof. We define a bijection b : Hom((H,idg) — (G,¢)) — Hom((H",idgr) —
(G",c")). Let ¢ € Hom((H,idg) — (G, ¢)). For every v € V(H) let b(p)(v) = ¢(v).
For every {vi,v2} € E(H) and every i € [r], if us = ¢(v1) and us = ¢(vs), and
if z; and w; are the i-th vertices on the paths respectively between v; and wve in
H" and between u; and ug in G”, then let b(p)(z;) = w;. It is easy to see that
b(p) € Hom((H",idgr) — (G™,c")) and that b is injective. To see that b is surjective
as well, note that for every ¢" € Hom((H",idy~) — (G",c")) its restriction ¢ |y (g
to V(H) satisfies " |y gy € Hom((H,idg) — (G, c)) and b(¢" |y (m)) = ¢"-

3.1. Warm-up: Minor-closed Pattern Classes. Using the characterisation
of somewhere dense graph classes in Lemma 2.9, and known lower bounds for counting
homomorphisms from grid graphs, we obtain as an easy consequence the following
complexity dichotomy:

THEOREM 3.2. Let H be a minor-closed class of graphs and let G be a monotone
and somewhere dense class of graphs.

1. If tw(H) < oo then #HOM(H — G) € P. Moreover, if a tree decomposition
of H of width t is given, then #HoM(H — G) can be solved in time |H|O() -
V(G|

2. If tw(H) = oo, then #HOM(H — G) is #W]l]|-hard and, assuming ETH,
cannot be solved in time f(|H|) - |G]°®™U) for any function f.

Proof. The tractability result is well known [24, 23], so we only need to prove the
hardness part. Recall that B denotes the k-by-k grid; see Figure 2 for a depiction of
By. Let B:= {H | k € N}. It is known that #cp-HoM(H — U) is #W/[1]-hard and,
unless ETH fails, cannot be solved in time f(k) - |G|°*) for any function f (see [16,
Lemma 1.13 and 5.7] or [53, Lemma 2.45]). As tw(Hj) = k, the lower bound above
can be written as f(k) - |G|o®(Bx)),

Let (B, (G, ¢)) be the input to #cp-HoM(B — U). Since G is somewhere dense
and monotone, by Lemma 2.9 there is r € Ny such that G contains the r-subdivision
of every graph and thus, in particular, G". Moreover, since tw(#H) = oco and H is
minor-closed, by the Excluded-Grid Theorem [52] H contains every planar graph and
thus in particular Hj. Clearly, B, G" and ¢" can be computed in polynomial time.
Moreover, by Lemma 3.1,

#Hom((By, idm, ) — (G, ¢)) = #Hom((H}, idm;) — (G, ")) .

Hence #cp-Hom(B — U) <FPT 4tcp-Hom(H — G). Since #cp-Hom(H — G) <FPT
#HoM(H — G) by Lemma 2.13, we conclude that #HoM(H — G) is #W][1]-hard.
For the conditional lower bound, observe that both reductions used above preserve
the treewidth of the pattern (the first because treewidth is invariant under edge sub-
division,'* the second by Lemma 2.13). O

HTor example, this invariance is in Exercises 7.7 and 7.13 in [22].

15

This manuscript is for review purposes only.



F1G. 2. The wall Wy 5 (left) and the grid By (right).

3.2. Monotone Pattern Classes. The strengthening of Theorem 3.2 to mono-
tone pattern classes can be done by reduction from counting homomorphisms from a
class of well-known graphs called walls.

DEFINITION 3.3 (Walls). Let k,¢ € N. The wall of height k and length ¢, denoted
by Wy, ts the graph whose vertex set is {vm» :1<i<k1<j <L} and whose edge
set contains:

o {v;;,vijp1} foralll<i<kandl<j<{l—-1,

o {vi1,vi411} and {v; ¢, vip10} forall1 <i<k-—1

o {v;j,vi41,} foralll1 <i<k—1and1<j</{ such thati+ j is even.
Figure 2 depicts Wy 5 as an example. We let W := {W}, ;, | k € N} be the class of all

walls.
The following structural property of large walls is due to Thomassen.

LEMMA 3.4 (Proposition 3.2 in [58]). For every k,r € N, there exists h(k,r) € N
such that every subdivision of Wiy r) n(k,r) contains as a subgraph a subdivision of
Wi, in which each edge is subdivided a (positive) multiple of r times.

12

The final ingredient of our proof for the classification of monotone pattern classes
is given by Lemma 3.5, which is an immediate consequence of Lemma 2.9.

LEMMA 3.5. Let G be a monotone and somewhere dense class of graphs. There
exists r € Ny such that the following holds. Let G be any graph and let G' be any
graph obtained from G by subdividing each edge a (positive) multiple of r times. Then
G’ is contained in G.

Proof. We show that the claim holds for the r € Ny given by Lemma 2.9. For this
r, Lemma 2.9 guarantees that for every graph H, H" € G. Now let G be any graph
and label its edges e1,...,e,,. Let G’ be any graph obtained from G by subdividing
each edge a (positive) multiple of r times. Then there exist dy, ..., d,, € N such that,
for each i € [m), the edge e; is subdivided d;r times. Now let G be the graph obtained
from G by subdividing, for each ¢ € [m], the edge e; just d; times. It is immediate
that G’ = G". Thus, by Lemma 2.9 and our choice of r, we have that G’ € G. O

We are now ready to establish the main result of this section.

THEOREM 3.6. Let H be a monotone class of graphs and let G be a monotone and
somewhere dense class of graphs.
1. If tw(H) < oo then #HoM(H — G) € P. Moreover, if a tree decomposition
of H of width t is given, then #HOM(H — G) can be solved in time |H|°M) .
V(G

12Note that walls are called grids in [58].
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2. If tw(H) = oo, then #HOM(H — G) is #W]1]-hard and, assuming ETH,
cannot be solved in time f(|H|) - |G|°®™H) for any function f.

Proof. The tractability result is well known [24, 23], so we only need to prove
point 2. To this end, we will reduce from #cp-Hom(W — U). Walls clearly have
grid minors of linear size, that is, there is a function h € ©(k) such that Wy, ; con-
tains By as a minor. Furthermore, it is well-known that #cpP-HoM is minor-
monotone (see e.g. [16, Lemma 5.8] or [53, Lemma 2.47]), hence #cp-HoM(H —
U) <FPT ep-HoMm(W — U). Moreover the reduction is tight, in the sense that the
lower bound for #cpP-HOM(EH — U) shown in the proof of Theorem 3.2 transfers to
#cp-HoM(W — U); hence #cp-HoM(W — U) is #W]1]-hard and, assuming ETH,
it cannot be solved in time f(k) - |G|°®™(Wk.r)) for any function f.

Let us now construct the reduction #cp-HoM(W — U) <FPT #cp-Hom(H — G).
Let r € Ny as given by Lemma 3.5. We use the fact that tw(H) = oo implies that
‘H contains as minors all planar graphs; that is, for every planar graph F' there is a
graph H € H such that F is a minor of H [52]. In particular, H contains all walls
Wik as minors. A graph J is said to be a “topological minor” of a graph H if there
is a subdivision of J that is isomorphic to a subgraph of H. Since walls have degree
at most 3, the fact that H contains all walls as minors implies that it also contains
all walls as topological minors (see e.g. [25, Proposition 1.7.3]).

Now let Wy and (G,c) be an input instance of #cp-HOM(W — U). Let
e1,...,e¢ be the edges of Wy ;. in arbitrary order. By Lemma 3.4, every subdivi-
sion of Wi,k r),n(k,r) contains as a subgraph a subdivision of W, ;. in which each edge
is subdivided a (positive) multiple of r times. Since H contains Wi, j, as a topological
minor, there is a subdivision of Wy, that is isomorphic to a subgraph W’ of a graph
in H. Since H is monotone, there are W’ € H and di,...,d; € Ny such that W’ is
obtained from Wy, ; by subdividing e, precisely d;r times for each i € [¢].

We will now construct from (G, ¢) a graph G’ and a surjective homomorphism ¢
from G’ to W’. For each edge e = {u,v} of G we proceed as follows. Since ¢ €
Hom(G — Wy k), then {c(u), c(v)} = e; for some i € [¢]. By the definition of W, e;
was replaced by a path c(u), x1,...,2q,r, c(v). Hence, we replace the edge e in G by
a path u, wy,ws, ..., wq,,, v, where the w; are fresh vertices. Furthermore, we extend
the colouring ¢ to the colouring ¢’ by setting ¢/(w,) := x; for each j € [d;r]. Since ¢
is surjective, so is ¢/. Also,

#Hom (Wi i, idw, ) = G,¢) = #Hom((W',idw) — (G', ).

By querying the oracle for #cp-HOM(H — G) on the instance (W', idw-), (G',))
we can thus conclude our reduction. This immediately implies #W]/1]-hardness of
#cp-HoM(H — G). For the conditional lower bound, we observe that W’ has the
same treewidth as W, j, since it is a subdivision of W, ;, and that the size of (G’, ') is
clearly bounded by f(k) - |G|°") — note that the f depends on H which is, however,
fixed. A reduction to the uncoloured version via Lemma 2.13 completes the proof. O

Theorem 1.7 follows immediately from Theorem 2.11 and Theorem 3.6. We conclude
with a remark.

REMARK 3.7. A strengthening of Theorem 3.6 to hereditary pattern classes H is
not possible. Suppose for instance that H contains all complete graphs and G is the
class of all bipartite graphs. Although H is hereditary and of unbounded treewidth, and
G 1is monotone and somewhere dense, it is easy to see that #HOM(H — G) is trivial,
since we can always output zero if H € H has at least 3 vertices. When it comes
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to a sufficient and necessary condition for tractability in case of hereditary classes
of patterns, we conjecture that induced grid minor size might be the right candidate.
However, even for very special cases, such as classes of degenerate host graphs (which
are somewhere dense and monotone), it is still open whether induced grid minor size
is the correct answer [9]. Thus, we leave the classification for hereditary classes of
patterns as an open problem for further research.

4. Counting Subgraphs. This section is devoted to the proofs of Theorem 1.2,
Theorem 1.4, and Theorem 1.3. We begin in Section 4.1 by analysing the problem of
counting k-matchings in somewhere dense host graphs, and proving Theorem 1.2; this
is the most technical part. We then move on to prove Theorem 1.4 and Theorem 1.3
in Section 4.2.

4.1. Counting Matchings: Proof of Theorem 1.2. A k-matching in a graph
Gisaset M C E(G) with |[M| =k and e; Nex = @ for all e; # e5 in M. In other
words, a k-matching in G is a set of k£ pairwise non-incident edges of G. Given a
class of graphs G, the problem #MATCH(G) asks, on input k£ € N and a graph G € G,
to compute the number of k-matchings in G; the parameter is k. We remark that
#MATCH(G) = #SUB(M — G) where M is the set of all 1-regular graphs. The
goal of this section is to prove that #MATCH(G) is hard whenever G is monotone and
somewhere dense, i.e., the hardness part of Theorem 1.2.

Before moving on, let us pin down some definitions and basic facts. Our analysis
relies on the following “coloured” version of the graph tensor product, as in [51]:

DEFINITION 4.1. Let H be a graph, and let (G1,c¢1) and (G2, co) be H-coloured
graphs. The tensor product (G1,c1) X (Ga,c2) is the H-coloured graph (G, ¢) defined
by:

(T.Z) V(G) = {(’l)h’UQ) S V(Gl) X V(Gg) | 01(1)1) = 02(1}2)}.

(T2) {(u1,u2),(v1,v2)} € E(GQ) if and only if {u1,vn1} € E(G1) and {us,ve} €
E(Gs).

(T3) &(vi,v2) = c1(v1) (equivalently by (T1), é(vi,v2) = ca(v2)) for all (vi,v2) €
V(G).

The crucial property of the tensor product is given by:'3

LeMMA 4.2 ([51]). If H is a graph and (F,cp), (G1,¢1), (Ge,c2) are H-coloured
graphs, then

#Hom((F, CF) — (G1,C1)X(G2,Cg)) = #Hom((F, CF) — (Gl,cl))-#Hom((F, CF) — (G2702)) .

The final ingredient we need is the non-singularity of a certain matrix whose
entries count homomorphisms between fractured graphs. Formally, let H be a graph.
The square matrix My has its rows and columns indexed by the fractures of H, and
its entries satisfy:

(4.1) My(p, o] := #Hom((H#p,c,) = (H¥0,¢5)),

where ¢, and ¢, are the canonical H-colourings of the fractured graphs H#p and Hfo
(see Definition 2.1 and Observation 2.2). By ordering the columns and rows of My
along a certain lattice, the following property was established in previous work.'

13Proofs of Lemma 4.2 and Lemma 4.3 can also be found in Section 3.1 in an earlier version [54]
of [51].
14See Footnote 13.
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LeMMA 4.3 ([51]). For each graph H, the matriz My is nonsingular.

If G is closed under uncoloured tensor productsl5, then the hardness result can
be achieved by applying the reduction of [18] verbatim. However, that reduction fails
if G is not closed under uncoloured tensor products, and this closure property is very
restrictive. Consider for example the class G of square-free graphs, i.e., graphs that
do not contain the 4-cycle Cy as a subgraph. Then G is clearly monotone and, since it
contains the 3-subdivision of every graph, it is also somewhere dense by Lemma 2.9.
However, G is not closed under (uncoloured) tensor products: the path on 2 edges P>
is in G, but Py x P5 ¢ G since it contains a Cy.

The main insight of this section is a weakened closure property for monotone and
somewhere dense graph classes, established in the lemma below. Combined with the
characterisation of somewhere dense graph classes via r-subdivisions (Lemma 2.9),
this property implies that any monotone and somewhere dense class is closed under
tensor products of subdivisions of coloured graphs.

LEMMA 4.4. Let r € Ny, let H be a graph without isolated vertices, and let (G, c)
be an H-coloured graph on n vertices, and let p be a fracture of H". Then (G",c") X
(H"Bp,cp) is a subgraph of the r-subdivision of a complete graph of order O(kn),
where k = |E(H)| and the constants in the O() notation depend only on r.

Proof. Let T = (G",c") x (H"#p,c,); see Figure 3 for an example. The claim
follows from Claims 1, 2, and 3 below, with Claim 3 applied to F =T.

Claim 1. |V(T)| = O(kn). Straightforward since G” is a subgraph of K.

Claim 2: if x and y are distinct vertices of T of degree at least 3, then the length of
any simple path from x to y is a multiple of r + 1.

To prove this, recall that T is H"-coloured by ¢ from Definition 4.1, and that
V(H") can be partitioned into V/(H) and a set S of kr fresh subdivision vertices. Let
(u,v) be a vertex of T such that é(u,v) = s ¢ V(H), that is, (u,v) is coloured with a
subdivision vertex s. We show that (u,v) has degree at most 2 in T. Let s; and sz
be the two neighbours of s in H". By the construction of (G",¢"), u has exactly two
neighbours in G”, say u; and us. Furthermore, ¢"(u;) = s1 and ¢"(uz) = s2. Since s
has degree 2 in H", there are only two cases for p;.

15The adjacency matrix of the tensor product of two uncoloured graphs G and F is the Kronecker
product of the adjacency matrices of G and F'.
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e Case 1: ps = {B} where B = {{s,51},{s,s2}}. In this case s? is the only ver-
tex of H/p that is coloured by ¢, with s. Since é(u,v) = s implies ¢,(v) = s,
we conclude that v = s®. Hence (u,v) has exactly two neighbours in T,
(ul,s?l) and (uQ,s2BQ), where By and By are the blocks of ps, and ps, con-
taining respectively {s, s1} and {s, s2}.

e Case 2: p, = {B, B’} where B = {{s,s1}} and B’ = {{s,s2}}. In this case
sB and sB are the only two vertices of H#p that are coloured by ¢, with s.

Since é(u,v) = s implies ¢, (v) = s, we conclude that v € {s7,s5'}. Assume
that v = SB; the other case is symmetric. Then the only neighbour of (u, )
in T is (u1,s7"), where By is the block of p,, that contains the edge {s, s}.

We conclude that the only vertices (u,v) of degree at least 3 in T satisfy é(u,v) €

V(H), implying that ¢"(u) € V(H) and thus, by the definition of ¢, that u € V(G),

hence u is not a subdivision vertex. The claim follows since the length of every simple

path between two non-subdivision vertices u; and ug in G” is a multiple of (r + 1),

and since T can be obtained from (G",¢") by splitting vertices.

Claim 3: if F'is a graph where the length of any simple path between two vertices
of degree at least 3 is a multiple of (r + 1), then F is a subgraph of the r-subdivision
of a complete graph of order O(|V(F)]).

Note first that we can deal with each connected component of F' separately.
Furthermore, the claim is clearly true if F' is just a path (of any length). For what
follows we can hence assume that F' is connected and not isomorphic to a path. We
say that a path P in F is extendable if its internal vertices have degree 2, one endpoint
sp (the “startpoint”) has degree 1, and the other endpoint has degree at least 3. If P
has length ¢p, then its extension length is the smallest ¢}, € Ny such that {p + ¢} is a
multiple of 7+ 1. Let F’ be the graph formed from F' by considering every extendable
path P and adding a new length-f/» path from sp (adding ¢ fresh vertices to make
up this path). Observe that, for every pair of non-isolated vertices ' and v’ of F’,
if both ' and v’ have degree not equal to 2, then the length of every simple path
from u' to v’ in F’ is a multiple of (r + 1). Therefore F’ is a subgraph of the r-
subdivision of a complete graph of order at most O(|V(F")|) = O(|V (F)|), where the
constants depend only on r. Moreover F' is by construction a subgraph of I, which
this concludes the proof of the claim. ]

To establish the hardness of #MATCH(G), we first consider an edge-coloured ver-
sion. Let G be a graph and k € N. A k-coloring of E(G) is a map ¢ : E(G) —
{1,...,k}. A matching M C E(G) is edge-colorful under if for every colour in
{1,...,k} there is precisely one element of M with that colour.

DEFINITION 4.5 (#COLMATCH(G)). Let G be a class of graphs. The problem
#COLMATCH(G) asks, on input k € N, a graph G € G, and a k-coloring ¢ of E(G), to
compute the number of edge-colorful k-matchings in G. The problem is parameterised
by k.

LEMMA 4.6. Let G be a monotone somewhere dense class of graphs. Then the
problem #COLMATCH(G) is #W][1]-hard and, assuming ETH, cannot be solved in
time f(k) - |G[°F/1°8 %) for any function f.

Proof. Let H be a class of 3-regular expander graphs. Both the treewidth and
the number of edges of the elements of H grow linearly in the number of vertices; that
is, |E(H)| € ©(|V(H)]|) and tw(H) € ©(|[V(H)|) for all H € H (see, e.g., [37]). Hence
theorems 2.14 and 2.16 imply that #cp-HOM(H — U) is #W][1]-hard and, assuming
ETH, cannot be solved in time f(|H|) - |G|°IHI/1g1H]) for any function f. We will
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now show that #cp-HoM(H — U) <FPT #CoLMATCH(G).

Let H € H and (G, ¢) be the input of #cp-HOM(H — U). By Lemma 2.9, there is
r € Ny such that G” € G for all G € Y. Construct then H" and (G", ¢"), which clearly
takes polynomial time. Let k = |E(H")|; clearly k¥ € O(]H|) where the constants
depend only on r. Now, by Lemma 3.1,

#Hom((H,idy) — (G,¢)) = #Hom((H",idgy+) — (G, ")) .

Next, we view surjectively H"-coloured graphs (GZ&) also as edge-coloured graphs
where every edge e = {u, v} is mapped to the colour {é(u),é(v)}. This allows us to
invoke the results of [51] and deduce what follows.*°

First, there is a unique function a from fractures of H" to rationals such that, for
every surjectively H"-coloured graph (G, &), the number of edge-colourful k-matchings
of (G,¢) is:

(4.2) " alp) - #Hom((H" £p,c,) — (G.€))

p

where the sum is over all fractures of H”. Additionally, a satisfies:

(4.3) a(M) = [ (1)@ (deg(v) - 1),

veEV(HT)

where T is the coarsest fracture, that is, for each v € V(H") the partition T, only
contains a singleton block (and therefore H"#T = H"). In particular, it is easy to see
that

a(T) = x2VEI £,

Now let o be a fracture of H”. Considering (4.2) with (G,é) = (G",¢") x
(H"fo,c,) and applying Lemma 4.2, the number of colorful k-matchings in (G, ¢") X
(H"fo,c,) equals:

(44) Y alp) - #Hom((H #p,c,) — (G7,c)) - #Hom(H' £p,c,) — (H' £, c,))

By Lemma 4.4, (G",¢") x (H" {0, c,) is a subgraph of the r-subdivision of a complete
graph, which is in G by our choice of r. Since G is monotone this implies (G", ") X
(H"fo,c,) € G, too. Hence, if we have an oracle for #COLMATCH(G), then we can
compute the value of (4.4), while #Hom((H"#p,c,) — (H"#0,c,)) can obviously be
computed in a time that is a function of |H| and r. Thus, by letting coeff(p) := a(p) -
#Hom((H"#p,c,) — (G",¢")), in FPT time we obtain a system of linear equations
with unknowns coeff(p) and whose matrix is Myr, see (4.1). By Lemma 4.3 My~ is
nonsingular, hence by solving the system we can retrieve:

coeff(T) = a(T)-#Hom((H T, c1) = (G", ")) = a(T)-#Hom((H",idgr) — (G",c")).

Since a(T) # 0, we can divide by a(T) and recover #Hom((H",idg+) — (G",c")) as
desired. This concludes the parameterized reduction to #COLMATCH(G) and proves
the thesis. ]

161n [51], the number of edge-colourful k-matchings of G is denoted by #ColEdgeSub(®,k — G),

where @ is the graph property of being a matching. The identities (4.2) and (4.3) are immediate
consequences of Lemma 4.1 and Corollary 4.3 in [51] (see also Lemma 3.1 and Corollary 3.3 in an
earlier version [54] of [51]).

21

This manuscript is for review purposes only.



865

866
867
868
869
870
871

872

882
883
884
885
886
887
888
889
890

With the hardness results for #COLMATCH(G) above, we can finally obtain our
complexity dichotomy for #MATCH(G). First, we prove:

THEOREM 4.7. Let G be a monotone somewhere dense class of graphs. Then
H#MATCH(G) is #W([1]-hard and, assuming ETH, cannot be solved in time f(k) -
|G|o/ 108 k) for any function f.

Proof. A well-known application of inclusion-exclusion (see, e.g., [16, Lemma 1.34])
yields a parameterized reduction from #COLMATCH(G) to #MATCH(G’) that pre-
serves the parameter, where G’ is the class of all subgraphs of G. By monotonicity
G’ = G, so the claim of Lemma 4.6 holds for #MATCH(G), too. 0

Finally, we obtain:

COROLLARY 4.8 (Theorem 1.2, restated). Let G be a monotone class of graphs
and assume that ETH holds. Then #MATCH(G) is fized-parameter tractable if and
only if G is nowhere dense. In particular, if G is nowhere dense then #MATCH(G)
can be solved in time f(k) - |[V(G)]**°0) for some computable function f; otherwise
H#MATCH(G) cannot be solved in time f(k) - |G|°*/1°8%) for any function f.

Proof. Immediate from Theorem 2.11 and Theorem 4.7. O

REMARK 4.9. Unless #P = P, Corollary 4.8 / Theorem 1.2 cannot be strength-
ened to achieve polynomial time tractability of #MATCH(G) for nowhere dense and
monotone G. Let indeed G be the class of all Kg-minor-free graphs. Then G is clearly
monotone, and since it does not contain the subdivisions of cliques larger than 7, it is
also nowhere dense by Lemma 2.9. However, as shown recently by Curticapean and
Xia [21], counting perfect matchings (i.e., k-matchings with k = n/2) in Kg-minor-
free graphs is #P-hard.

4.2. Counting Subgraphs: Proofs of Theorems 1.3 and 1.4. Equipped
with our hardness results for counting k-matchings, we move towards proving hardness
for counting subgraphs.

THEOREM 4.10 (Theorem 1.3, restated). Let H and G be graph classes such that
‘H is hereditary and G is monotone. Then Table 3 exhaustively classifies the complexity

of #SUB(H — G).

Proof. Let us first show that the cases for H and G in Table 3 are exhaustive and
mutually exclusive. For G this is straightforward. For H, the first row and the rest
are mutually exclusive and exhaustive, since rows 2, 3 and 4 all imply m(#H) = oo. To
see that rows 2, 3, and 4 are mutually exclusive and exhaustive for m(#) = oo, note
that in that case Theorem 2.5 implies that at least one of ming(H), Bind(H) and w(H)
is unbounded.

Let us now prove the entries of Table 3. The first row is due to Curticapean and
Marx [20], and the FPT result in the first column follows from Theorem 2.11. The
intractability results in the second row follow from Theorem 4.7 and the fact that
Mind(H) = oo implies that H contains all matchings (since H is hereditary). For the
second column, note that w(G) = co and G being monotone implies that G = U; the
dichotomy of Curticapean and Marx [20] then applies again.'” Next, we prove the

17The tight conditional lower bounds in the second column follow from the fact that the respective
entries subsume counting k-cliques in arbitrary graphs, and counting k-by-k bicliques in bipartite
graphs. The tight bound of the former was shown in [12, 13], and the tight bound of the latter
was implicitly shown in [20], and explicitly in [26]; while [26] studies induced subgraphs in bipartite
graphs, we note that all bicliques in a bipartite graph must be induced.
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G s. den G s. dense G s. dense
G n. dense w(sg) i 22 w(G) < oo w(G) < o0
B(G) = o0 B(G) < oo
m(H) < oo P P P P
ming(H) = 00 FPT hard hard hard
Mind (H) < o0 i i
Bina(H) = 06 P hard hard P
Mind (H) < o0
Bind(H) < 00 P hard? P P
w(H) =00
TABLE 3

The complexity of #SUB(H — G) for hereditary H and monotone G (Theo-
rem 1.3). P and FPT stand respectively for polynomial-time tractability and fized-parameter
tractability, hard means #W/[1]-hard and without an algorithm running in time f(|H|) -

|G|V ED e VEDD for any function f unless ETH fails, and hard" means the same but

with a lower bound of f(|H|) - |GI°WWID  The FPT entry cannot be strengthened to P
unless P = #P, see Remark 4.12.

remaining entries.

e Row 3, Column 3: if 5(G) = Bind(H) = oo then #SUB(H — G) is hard. Since H
is hereditary, it contains all bicliques. Since G is monotone, it contains all bipartite
graphs. Hence #SUB(H — §) is at least as hard as counting k-by-k bicliques in
bipartite graphs, which is known to be hard [20].18

e Row 3, Column 4: if mijng(H),w(G), B(G) < oo then #SUB(H — §) is in polynomial
time. Let (H,G) be the input of #SUB(H — G). If w(H) > w(G) or Bina(H) >
B(G), then we can output 0. We can thus restrict the problem to those H such that
w(H) < w(G) and Bind(H) < B(G). Recall that ming(H) < ming(H) < oco. By the
contrapositive of Theorem 2.5, there is a monotonically increasing function R such
that:

m(H) < R(ming(H),w(H), Bind(H)) < R(ming(H), w(G), B(9)) < o0,

where the second inequality holds by monotonicity of R and the third one by the
boundedness of all three arguments. We therefore obtain polynomial time as in the
first row.

e Row 4, Columns 3 and 4: if mijng(H), Bind(H),w(G) < oo, then #SUB(H — G) is in
polynomial time. Let (H,G) be the input of #SUB(H — G). If w(H) > w(G) then
we output 0, hence we can assume that w(H) < w(G). Similarly to the previous case,
we then obtain polynomial time since

m(H) < R(ming(H), w(H), fina(H)) < R(ming(H), w(G), fina(H)) < .

e Rows 3 and 4, Column 1: #SUB(H — §) is in polynomial time. We show that
w(G),B(G) < oo; then the same arguments used for Rows 3 and 4 of Column 4

18See Footnote 17 for the tight conditional lower bound.
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apply. Suppose by contradiction that max(w(G),5(G)) = co. Since G is monotone, if
w(G) = oo then G contains (the 0-subdivision of) every clique, and if §(G) = oo then
G contains all bipartite graphs and thus the 1-subdivision of every clique. In any case
Lemma 2.9 implies that G is somewhere dense, contradicting the assumptions. 0

Theorem 1.4 follows immediately.

COROLLARY 4.11 (Theorem 1.4, restated). Let H and G be monotone graph
classes and assume that ETH holds. Then #SUB(H — G) is fixed-parameter tractable
if m(H) < oo or G is nowhere dense; otherwise #SUB(H — G) is #W][1]-complete
and cannot be solved in time f(|H|) - |G|V DI/ 10e(IVEDD) for any function f.

Proof. If H is monotone then H is hereditary and Theorem 1.3 applies. The union
of the first row and the first column of Table 3 yield the tractable case; the union of
the remaining entries yield the intractable case and the lower bounds. ]

We conclude this section with a remark.

REMARK 4.12. Let H and G be the classes of graphs of degrees bounded by 2 and
3, respectively. Then #SUB(H — G) subsumes the #P-hard problem of counting
Hamiltonian cycles in 3-reqular graphs. Since both classes are monotone (and thus
also hereditary), since mipg(H) = oo, and since classes of bounded degree graphs are
nowhere dense (see e.g. [36]), this shows that the FPT entry in Table 3 cannot be
strengthened to P unless #P = P.

5. Counting Induced Subgraphs. This section is devoted to the proofs of
Theorem 1.5 and Theorem 1.6. We begin in Section 5.1 by analysing the problem of
counting independent sets and proving Theorem 1.5; this is the most technical part.
We then prove Theorem 1.6 in Section 5.2.

5.1. Counting Independent Sets: Proof of Theorem 1.5. Given a class
of graphs G, the problem #INDSET(G) asks, on input k¥ € N and a graph G € G, to
compute the number of independent sets of size k (also called k-independent sets) in
G. In this section we prove hardness results for #INDSET(G) and leverage them to
#INDSUB(H — G). To this end we will rely on subgraphs induced by sets of edges;
they play a role similar to that of fractured graphs in Section 4. Given a graph F
and a set A C E(F), we denote the subgraph (V(F), A) by F[A]. For what follows
observe that, for any A C E(F), the identity function on V(F'), which we denote
by idp, is a surjective F-colouring of F[A]. Now recall Definition 4.1. We start with
the following simple variation of Lemma 4.4.

LEMMA 5.1. Let r € Ny, let H be a graph without isolated vertices, let G be an
H -coloured graph, and let A C E(H"). Then (G",c") x (H"[A],idy~) is a subgraph of
Kiva-

Proof. Let n = |V(G)|. First, note that (G",c") x (H",idgr) = (G",¢c"), and by
construction (G",c") is a subgraph of K. Next, for every A C E(H") the graph
(G",c") x (H"[A],idg~) is obtained from (G",c") by deleting edges — specifically, for
every e = {u,v} € E(H")\ A, delete from G” all edges between vertices coloured with
u and vertices coloured with v. Thus (G",c¢") x (H"[A],idgyr) is a subgraph of K,
too. O

Recall that #COLMATCH(G), the problem of counting edge-colourful k-matchings,
was the key subproblem in the hardness proofs for #SUB(H — G) — see Section 4.1.
In the case of #INDSUB(H — G), the key subproblem turns out to be that of counting
vertex-colourful independent sets. Let G be a graph and let ¢: V(G) — {1,...,k} be

24

This manuscript is for review purposes only.



960

961
962
963
964
965
966
967
968

969

985
986
987
988
989
990
991
992

993

994

995

a coloring of V(G). A set U C V(G) is vertez-colorful if for every colour in {1,...,k}
there is precisely one element of U with that colour.

DEFINITION 5.2 (#COLINDSET(G)). Let G be a class of graphs. The problem
#COLINDSET(G) asks, on input k € N, a graph G € G, and a k-coloring ¢ of V(G),
to compute the number of vertex-colorful k-independent sets in G. The problem is
parameterised by k.

Our goal is to show that #COLINDSET(G) is intractable whenever G is monotone
and somewhere dense. As for #COLMATCH(G) in Section 4.1, the reduction relies on
solving a system of linear equations. Let H be a graph. The square matrix Ny has
its rows and columns indexed by the subsets of E[H], and its entries satisfy

(5.1) NylA, B] = #Hom((H[A],idy) — (H[B],idg)).

Similarly to the matrix My in Section 4.1, the following was established in prior work:
LEMMA 5.3 ([26]). For each graph H, the matrix Ny is nonsingular.
We are now able to establish intractability of #COLINDSET(G).

LEMMA 5.4. Let G be a monotone somewhere dense class of graphs. Then the
problem #COLINDSET(G) is #W|1]-complete and, assuming ETH, cannot be solved
in time f(k) - |G|°*/1°8k) for any function f.

Proof. The proof is similar to that of Lemma 4.6. First, since G is monotone
and somewhere dense, by Lemma 2.9 there exists r € Ny such that G" € G for every
G € U. Second, let H be a class of 3-regular expander graphs. By theorems 2.14
and 2.16, #cp-HoM(H — U) is #W]1]-hard and assuming ETH cannot be solved in
time f(|H|) - |G|eUHI/1og[HD for any function f. We show a parameterized reduction
from #cp-HoM(H — U) to #COLINDSET(G).

Let (H,(G,c)) be the input to #cp-HOM(H — U). Our reduction starts by
constructing H” and (G",¢"), which by Lemma 3.1 satisfy

#Hom((H,idy) — (G, c)) = #Hom((H',idgr) — (G7,c").

Let k = |V (H")|; clearly k € O(|H|) since r is a constant independent of H. Our goal
is to use the oracle for #COLINDSET(G) to compute #Hom((H",idgr) — (G",c")).
From now on we view surjectively H”-coloured graphs (G, é) also as vertex-coloured
graphs with colouring é. This allows us to invoke [26, Lemma 8] and obtain what
follows.'?

First, there is a unique function & from subsets of E[H"] to rationals such that,
for every surjectively H"-coloured graph (G,¢), the number of vertex-colourful k-
independent sets in (G, &) equals

(5.2) > a(A) - #Hom((H'[A],idur) — (G, 7)),
A

where the sum is over all subsets of E[H"]. Additionally,

(5.3) G(B(H™) = % #0,

19Tn [26] the number of colourful k-independent sets in a surjectively H"-coloured graph G is
denoted by #cp-IndSub(® — g G), where ® is the graph property of being an independent set.
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where y is the so-called alternating enumerator for the graph property of being an
independent set — we omit the definition since the only property needed for y is it
being easily computable and non-zero (see [26]).

Now consider (5.2) with (G, &) = (G”,¢") x (H"[B],idg-) and apply Lemma 4.2.
We deduce that the number of vertex-colourful k-independent sets in (é, ¢) is

Zd(A) - #Hom((H"[A],idg-) = (G", ")) - #Hom((H"[A],idgr) — (H"[B],idg+)).
A

By Lemma 5.1, for every B C E(H") of H" the graph (G",c") x (H"[B],idgr) is a
subgraph of the r-subdivision of a complete graph; by the monotonicity of G and by
the choice of r this implies (G", ¢")x (H"[B],idgr) € G, see Lemma 2.9. Thus, as in the
proof of Lemma 4.6, by using an oracle for #COLINDSET(G) we can construct in FPT
time a system of linear equations whose matrix Ng- is nonsingular by Lemma 5.3.
Since a(E(H™)) # 0 by (5.3), solving this system enables us to compute

#Hom((H"[E(H")),idgr) = (G",c")) = #Hom((H",idgr) — (G",c")),
concluding the proof. ]

With the above hardness results for # COLINDSET(G), we can finally prove complex-
ity dichotomies for its non-coloured counterpart #INDSET(G). We start by porting
Lemma 5.4 from #COLINDSET(G) to #INDSET(G).

THEOREM 5.5. Let G be a monotone somewhere dense class of graphs. Then
#INDSET(G) is #WI1]|-hard and, assuming ETH, cannot be solved in time f(k) -
|G|o/ 108 k) for any function f.

Proof. Almost identical to the proof of Theorem 4.7: when G is monotone,
#COLINDSET(G) can be reduced in FPT time to #INDSET(G) via inclusion-exclusion
while preserving the parameter (see, for instance, [16, Lemma 1.34]), and the claim
then follows by Lemma 5.4. O

We can finally prove Theorem 1.5 as a simple corollary.

COROLLARY 5.6 (Theorem 1.5, restated). Let G be a monotone class of graphs
and assume that ETH holds. Then #INDSET(G) is fized-parameter tractable if and
only if G is nowhere dense. In particular, if G is nowhere dense then #INDSET(G)
can be solved in time f(k) - |V(G)|*T°M) for some computable function f; otherwise
#INDSET(G) cannot be solved in time f(k) - |G|°*F/198 %) for any function f.

Proof. Immediate by Theorem 2.11 and Theorem 5.5. ]
We conclude with a remark.

REMARK 5.7. Corollary 5.6 cannot be strengthened to polynomial-time tractability
of #INDSET(G) when G is nowhere dense and monotone, unless #P = P: graphs of
degree at most 3 form such a class, yet counting independent sets in them is #P-
hard [35].

5.2. Counting Induced Subgraphs: Proof of Theorem 1.6. Equipped with
our complexity dichotomy for #INDSET(G), we can now prove our complexity di-
chotomies for #INDSUB(H — G). First, we consider the case that H is monotone.

COROLLARY 5.8. Let H and G be monotone graph classes and assume that ETH
holds. Then #INDSUB(H — G) is fized-parameter tractable if H is finite or G is
nowhere dense; otherwise #INDSUB(H — G) is #W/[1]-complete and cannot be solved
in time f(|H|) - |G|oUVED/ os(VED) for any function f.

26

This manuscript is for review purposes only.



G nowhere dense G somewhere dense g somewhere dense
w(G) = o0 w(g) <o
a(G) = oo
H finite P P P
_ #W/1]-hard #W|1]-hard
o(H) = o0 FPT not in f(k) - n°®) not in f(k) - nok/logk)
a(H) < oo P #W]/1]-hard p
w(H) =00 not in f(k) . notk)
TABLE 4

The complezity of #INDSUB(H — G) for hereditary H and monotone G. P and FPT
stand respectively for polynomial-time tractability and fized-parameter tractability, and hard

means #W(1]-hard and without an algorithm running in time f(k) - n°*/1080) for any
function f unless ETH fails, where k = |V(H)| and n = |V(G)|. The FPT entry cannot be
strengthened to P unless P = #P, see Remark 5.7.

1040 Proof. If H is finite then #INDSUB(H — G) is clearly in polynomial time (and
1041 thus fixed-parameter tractable) since the brute-force algorithm runs in time O(|G|#1).
1042 If G is nowhere dense then the fixed-parameter tractability follows by Theorem 2.11.
1043 Finally, if H is monotone and infinite then it contains all independent sets, and thus
1044  #INDSUB(H — G) subsumes #INDSET(G); in which case Theorem 5.5 yields the
1045 lower bound for somewhere dense G. O

1046 Next, we consider the case that H is hereditary. We obtain a refined complexity
1047 classification that subsumes the one of Corollary 5.8 and yields Theorem 1.6.

1048 THEOREM 5.9 (Theorem 1.6, restated). Let H and G be graph classes such that H
1049 is hereditary and G is monotone. Then Table 4 exhaustively classifies the complexity

1050 of #INDSUB(H — G).

1051 Proof. The cases for G and H in Table 4 are mutually exclusive and exhaustive
52 by Ramsey’s Theorem (Theorem 2.4). Let us then prove the entries of Table 4.

53 The first row holds since for finite H the brute-force algorithm runs in polynomial
54 time, and the FPT result follows from Theorem 2.11. For the intractability results in
55 the second column, note that since G is monotone and infinite then G = U/, and since H
1056 is hereditary, the cases a(H) = oo and w(H) = oo subsume respectively #INDSET(U)
57 and #CLIQUE(U). Both are canonical #W/1]-hard problems and cannot be solved in
58 time f(k) - n°*) unless ETH fails [12, 13].2° The intractability results in the third
59  column follows from Theorem 5.5 since H being hereditary and a(H) = oo imply that
1060  #INDSUB(H — G) subsumes #INDSET(G).

1061 It remains to prove the first and the third entry of the third row. Note that both
1062 entries assume w(G) < oo and a(H) < oo. Let then (H, Q) be the input. If w(H) >
1063 w(G) then we can immediately return 0. Otherwise |V (H)| < R(w(G),a(H)) < oo,
1064 where R is Ramsey’s function (see Theorem 2.4), and the brute-force algorithm runs
1065 in polynomial time. O

20The lower bound in [12, 13] applies to counting k-cliques, and we note that counting k-cliques
and counting k-independent sets are interreducible by taking the complement of the host.
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6. Outlook. Due to the absence of a general dichotomy [56], the following two
directions are evident candidates for future analysis.

Hereditary Host Graphs.. Is there a way to refine our classifications to hereditary
G? While such results would naturally be much stronger, we point out that a classi-
fication of general first-order (FO) model-checking and model-counting in hereditary
graphs is wide open. Concretely, even if H = U, it currently seems elusive to ob-
tain criteria for hereditary G which, if satisfied, yield fixed-parameter tractability of
#SUB(H — G), #INDSUB(H — G), and #HoM(H — G) and which, if not satisfied,
yield #W[1]-hardness of those problems. In a nutshell, the problem is that there are
arbitrarily dense hereditary classes of host graphs for which those problems, and even
the much more general FO-model counting problem, become tractable; a trivial ex-
ample is given by G being the class of all complete graphs. See [31, 33, 34] for recent
work on specific hereditary hosts and [32, 7] for general approaches to understand FO
model checking on dense graphs.

Arbitrary Pattern Graphs.. Can we refine our classifications to arbitrary classes of
patterns H, given that we stay in the realm of monotone classes of hosts G? We believe
this question is the most promising direction for future research. While a sufficient
and necessary criterion for the fixed-parameter tractability of, say #SUB(H — G),
must depend on the set of forbidden subgraphs of G, we conjecture that the structure
of monotone somewhere dense graph classes is rich enough to allow for an explicit
combinatorial description of such a criterion. In fact, such criteria have already been
established for some specific classes of host graphs, e.g. bipartite graphs [20] and
degenerate graphs [9].
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