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Abstract. In this paper we derive a variety of functional inequalities for general
homogeneous invariant hypoelliptic differential operators on nilpotent Lie groups.
The obtained inequalities include Hardy, Sobolev, Rellich, Hardy-Littllewood-Sobo-
lev, Gagliardo-Nirenberg, Caffarelli-Kohn-Nirenberg and Heisenberg-Pauli-Weyl
type uncertainty inequalities. Some of these estimates have been known in the
case of the sub-Laplacians, however, for more general hypoelliptic operators almost
all of them appear to be new as no approaches for obtaining such estimates have
been available. The approach developed in this paper relies on establishing inte-
gral versions of Hardy inequalities on homogeneous Lie groups, for which we also
find necessary and sufficient conditions for the weights for such inequalities to be
true. Consequently, we link such integral Hardy inequalities to different hypoellip-
tic inequalities by using the Riesz and Bessel kernels associated to the described
hypoelliptic operators.
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1. Introduction

In this paper we are interested in developing approaches that allow one to derive
a variety of functional inequalities for general homogeneous invariant hypoelliptic
differential operators on nilpotent Lie groups. Inequalities of such type are important
by themselves but also play an important role in wider analysis, in particular in view
of the seminal results of Rothschild and Stein [36] linking the analysis of hypoelliptic
differential operators on nilpotent (Lie) groups to differential operators on manifolds.

To give an idea of the obtained results and to put them in perspective we start
by describing a collection of some of the obtained inequalities in the setting of sub-
Laplacians on stratified (Lie) groups (homogeneous Carnot groups).

1.1. Hardy-Sobolev-Rellich inequalities on stratified Lie groups. Hardy in-
equalities on stratified groups are extremely well investigated topic, with different
versions of such inequalities known, also with best constants. While we can not pos-
sibly give a comprehensive bibliography for it here, we can refer to the recent book
[37] for the literature reviews of the subject for the horizontal norm and for norms
given in terms of the fundamental solutions of the sub-Laplacian, respectively.

However, the starting point for the investigation of this paper is the following
version of the Hardy inequality recently obtained by Ciatti, Cowling and Ricci [6].
Let G be a stratified group of homogeneous dimension Q and let L be a sub-Laplacian
on G. Let | · | be homogeneous norm on G. We refer to Section 2 for more details of
this classical setting.

Let 1 < p < ∞ and let Tγf := | · |−γL−γ/2f with 0 < γ < Q/p. Then, as it was
shown in [6, Theorem A], the Hardy inequality for the fractional order operator Lγ/2

can take the following form: the operator Tγ extends uniquely to a bounded operator
on Lp(G), and we have

∥Tγ∥Lp(G)→Lp(G) ≲ 1 + Cγ +O(γ2). (1.1)

We also refer to [6] for the history of (1.1).
Among other things, in this paper we extend the boundedness in (1.1) to the setting

of general homogeneous invariant hypoelliptic differential operators taking place of
the operator L. Moreover, we extend such estimates to the range of Lp−Lq estimates
as well as give their critical versions in the case of γ = Q/p.
Let us list some of such results still in the simplified setting of the sub-Laplacians.

First we observe that by combining (1.1) with Sobolev inequalities for the sub-
Laplacian, we have the following extended version of (1.1):

• (Hardy-Sobolev-Rellich inequalities on stratified groups) Let 1 < p ≤
q < ∞ and 0 < a < Q/p. Let 0 ≤ b < Q and a

Q
= 1

p
− 1

q
+ b

qQ
. Then there

exists a positive constant C such that∥∥∥∥∥ f

|x|
b
q

∥∥∥∥∥
Lq(G)

≤ C∥(−L)
a
2 f∥Lp(G) (1.2)

holds for all f ∈ L̇p
a(G).

Here the space L̇p
a(G) is the homogeneous Sobolev space over Lp of order a, based

on the sub-Laplacian L. The theory of such spaces has been extensively developed
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by Folland [19]. Consequently, more general results of this paper yield the following
new version of the critical case of (1.2) for a = Q/p:

• (Critical Hardy inequality for a = Q/p on stratified groups) Let 1 <
p < r < ∞ and p ≤ q < (r − 1)p′, where 1/p+ 1/p′ = 1. Then there exists a
positive constant C = C(p, q, r, Q) such that∥∥∥∥∥∥∥

f(
log
(
e + 1

|x|

)) r
q |x|

Q
q

∥∥∥∥∥∥∥
Lq(G)

≤ C(∥f∥Lp(G) + ∥(−L)
Q
2pf∥Lp(G)) (1.3)

holds for all f ∈ Lp
Q/p(G).

Thus, (1.3) gives the critical case of the Hardy type inequalities in [6, Theorem A].
Actually, in Section 3 we obtain all of the above inequalities for more general

hypoelliptic operators on more general nilpotent groups, namely, on graded (Lie)
groups. As far as we are aware there are no other Hardy type inequalities known on
graded groups in the literature.

Note that the explicit best constants and explicit extremal functions to these in-
equalities are still an open problem, although some constants in their non-explicit
form for these and other inequalities in this paper can be described in terms of the
ground states of certain nonlinear PDEs and extremals of variational problems, see
[42] and [44].

1.2. Hardy-Sobolev-Rellich inequalities on graded Lie groups. The setting
of graded groups as developed by Folland and Stein [24] allows one to work efficiently
with higher order hypoelliptic operators, contrary to only sub-Laplacians appearing
on stratified groups.

We assume now that G is a nilpotent Lie group with a compatible dilation struc-
ture, i.e. a homogeneous (Lie) group. We refer to Section 2 for a precise (well-known)
definition. Let Q be the homogeneous dimension of G and let | · | be a homogeneous
quasi-norm on G. Let R be a positive left-invariant homogeneous hypoelliptic invari-
ant differential operator on G of homogeneous degree ν. Such operators are called
Rockland operators. For instance, for the Heisenberg group, the sub-Laplacian and
its powers are Rockland operators. If G is a stratified group with a basis X1, . . . , Xn

of the first stratum g1, then the operators

R = (−1)m
n∑

j=1

ajX
2m
j , aj > 0,

are positive Rockland operators for any m ∈ N, yielding the sub-Laplacian for m = 1.
More generally, for any graded group G ∼ Rn with dilation weights ν1, . . . , νn and a
basis X1, . . . , Xn of the corresponding Lie algebra g satisfying

DrXj = rνjXj, j = 1, . . . , n, r > 0,

the operator

R =
n∑

j=1

(−1)
ν0
νj ajX

2
ν0
νj

j , aj > 0, (1.4)
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is a Rockland operator of homogeneous degree 2ν0, where ν0 is any common multiple
of ν1, . . . , νn. There are other examples of Rockland operators that can be adapted
to special selections of vector fields generating the Lie algebra in a suitable way, such
as for example the vector fields from the first stratum on the stratified groups. We
can refer to [20, Section 4.1.2] for many other examples and a detailed discussion of
Rockland operators.

In particular, the existence of such an operator is equivalent to the condition that
the group is graded, and such operators can be characterised in terms of the represen-
tation theory of the group by the celebrated result of Helffer and Nourrigat [28]. We
note that examples of graded groups include Rn, the Heisenberg group, and general
stratified groups. Again, for brevity, we refer to Section 2 for precise definitions.

Therefore, results for Rockland operators on graded groups can be viewed as the
most general differential results in the setting on nilpotent Lie groups. As far as we
know, none of the inequalities we now describe are known in such settings.

From now on we let R be a positive Rockland operator, that is, a positive left-
invariant homogeneous hypoelliptic invariant differential operator on G of homoge-
neous degree ν. Its powers Ra are understood through the functional calculus on the
whole of G, extensively analysed in [20, 21].

We start with the following analogue of (1.2), which we also call the Hardy-Sobolev-
Rellich inequalities since it contains the classical Hardy, Rellich and Sobolev inequal-
ities:

• (Hardy-Sobolev-Rellich inequalities on graded groups) Let 1 < p ≤
q < ∞ and 0 < a < Q/p. Let 0 ≤ b < Q and a

Q
= 1

p
− 1

q
+ b

qQ
. Then there

exists a positive constant C such that∥∥∥∥∥ f

|x|
b
q

∥∥∥∥∥
Lq(G)

≤ C∥R
a
ν f∥Lp(G) (1.5)

holds for all f ∈ L̇p
a(G).

In particular, for q = p we obtain the general hypoelliptic family of the Hardy in-
equalities: ∥∥∥∥ f

|x|a

∥∥∥∥
Lp(G)

≤ C∥R
a
ν f∥Lp(G), 1 < p <∞, 0 < a < Q/p. (1.6)

In particular, for a = 1 and a = 2 we obtain the hypoelliptic versions of Hardy
and Rellich inequalities, respectively, which in this form are new already on the
stratified groups since the operator R does not have to be a sub-Laplacian and can
be of any order. At the same time, for b = 0, (1.5) gives an alternative proof of the
Sobolev inequality obtained in [21]:

∥f∥Lq(G) ≤ C∥R
a
ν f∥Lp(G), 1 < p < q <∞, a = Q

(
1

p
− 1

q

)
. (1.7)

The homogeneous and inhomogeneous Sobolev spaces L̇p
a(G) and Lp

a(G) based on
the positive left-invariant hypoelliptic differential Rockland operator R have been
extensively investigated in [21] and [20, Section 4.4] to which we refer for the details
of their properties. In these works, the authors generalised to graded groups the
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Sobolev spaces based on the sub-Laplacian on stratified groups analysed by Folland
in [19].

As a consequence of (1.5), we also get the following Heisenberg-Pauli-Weyl type
uncertainty principle for general homogeneous invariant hypoelliptic differential op-
erators:

• (Uncertainty type principle on graded groups). Let 1 < p ≤ q < ∞
and 0 < a < Q/p. Let 0 ≤ b < Q and a

Q
= 1

p
− 1

q
+ b

qQ
. Then there exists a

positive constant C such that

∥R
a
ν f∥Lp(G)∥|x|

b
q f∥Lq′ (G) ≥ C

∫
G
|f(x)|2dx (1.8)

holds for all f ∈ L̇p
a(G), where 1/q + 1/q′ = 1.

As in the stratified case, we have the following critical case of Hardy-Sobolev-Rellich
inequalities:

• (Critical Hardy inequality for a = Q/p on graded groups). Let 1 <
p < r < ∞ and p ≤ q < (r − 1)p′, where 1/p+ 1/p′ = 1. Then there exists a
positive constant C = C(p, q, r, Q) such that∥∥∥∥∥∥∥

f(
log
(
e + 1

|x|

)) r
q |x|

Q
q

∥∥∥∥∥∥∥
Lq(G)

≤ C∥f∥Lp
Q/p

(G) (1.9)

holds for all f ∈ Lp
Q/p(G).

Similarly to (1.9) was investigated in the Euclidean setting in [32].

1.3. Caffarelli-Kohn-Nirenberg and Gagliardo-Nirenberg inequalities on gra-
ded Lie groups. First, let us recall the classical Caffarelli-Kohn-Nirenberg inequal-
ity [9]:

Theorem 1.1. Let n ∈ N and let p, q, r, a, b, d, δ ∈ R such that p, q ≥ 1, r > 0,
0 ≤ δ ≤ 1, and

1

p
+
a

n
,
1

q
+
b

n
,
1

r
+
c

n
> 0 (1.10)

where c = δd+ (1− δ)b. Then there exists a positive constant C such that

∥|x|cf∥Lr(Rn) ≤ C∥|x|a|∇f |∥δLp(Rn)∥|x|bf∥1−δ
Lq(Rn) (1.11)

holds for all f ∈ C∞
0 (Rn), if and only if the following conditions hold:

1

r
+
c

n
= δ

(
1

p
+
a− 1

n

)
+ (1− δ)

(
1

q
+
b

n

)
, (1.12)

a− d ≥ 0 if δ > 0, (1.13)

a− d ≤ 1 if δ > 0 and
1

r
+
c

n
=

1

p
+
a− 1

n
. (1.14)

The techniques developed in this paper also allow us to derive general hypoelliptic
versions of Caffarelli-Kohn-Nirenberg and weighted Gagliardo-Nirenberg inequalities.
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• (Caffarelli-Kohn-Nirenberg inequalities on graded groups). Let 1 <
p, q < ∞, δ ∈ (0, 1] and 0 < r < ∞ with r ≤ q

1−δ
for δ ̸= 1. Let 0 < a < Q/p

and β, γ ∈ R with δr(Q − ap − βp) ≤ p(Q + rγ − rβ) and β(1 − δ) − δa ≤
γ ≤ β(1− δ). Assume that r(δQ+p(β(1−δ)−γ−aδ))

pQ
+ (1−δ)r

q
= 1. Then there exists

a positive constant C such that

∥|x|γf∥Lr(G) ≤ C
∥∥R a

ν f
∥∥δ
Lp(G)

∥∥|x|βf∥∥1−δ

Lq(G)
(1.15)

holds for all f ∈ L̇p
a(G).

In the Euclidean case G = (Rn,+) with Q = n, if the conditions (1.10) are not
satisfied, then the inequality (1.15) is not covered by Theorem 1.1. So, this actually
also gives an extension of Theorem 1.1 with respect to the range of parameters. Let
us give an example:

Example 1.2. If 1 < p = q = r < n, a = 1, R = −∆ and γ = β(1 − δ) − δ, then
(1.15) takes the form

∥|x|γf∥Lp(Rn) ≤ C
∥∥∥(−∆)

1
2f
∥∥∥δ
Lp(Rn)

∥∥|x|βf∥∥1−δ

Lp(Rn)
. (1.16)

Here, we can take e.g. β ≤ −n/p or γ ≤ −n/p so that the conditions (1.10) are not
satisfied, then the inequality (1.16) is not covered by Theorem 1.1.

We refer to [38] for the related analysis on stratified groups, [40] and [39] on ho-
mogeneous groups, namely, for Caffarelli-Kohn-Nirenberg type inequalities in terms
of parameters but with radial derivative operator or horizontal gradient instead of
Rockland operators.

We note that for β = γ = 0, inequality (1.15) also recovers the Garliardo-Nirenberg
inequality (5.9) (see Remark 5.8), that is

∥f∥Lr(G) ≤ C
∥∥R a

ν f
∥∥δ
Lp(G)

∥f∥1−δ
Lq(G) (1.17)

for all f ∈ L̇p
a(G) ∩ Lq(G), previously established in [41] with an application to the

global-in-time well-posedness of nonlinear damped wave equations related to Rock-
land operators on graded groups (see also [45] for nonlinear heat equations), where
a > 0, 1 < p < Q/a, 1 < q ≤ r ≤ pQ/(Q−ap) and δ = (1/q−1/r)(a/Q+1/q−1/p)−1.

We also refer to [4] for another type of Garliardo-Nirenberg inequality involving
Besov norms on graded groups.

In [42] and [44] the best constant in the Gagliardo-Nirenberg inequality (1.17) with
q = p and its critical version (a = Q/p) and the Sobolev inequality with inhomoge-
neous norm are expressed in the variational form as well as in terms of the ground
state solutions of the nonlinear Schrödinger equation.

1.4. Integral Hardy inequalities on homogeneous Lie groups. The described
hypoelliptic Hardy-Sobolev-Rellich inequalities and their critical versions on graded
groups follow from the following integral versions of Hardy inequalities that we can
establish in the setting of general homogeneous groups. For example, we can obtain

the Hardy-Sobolev-Rellich inequalities (1.18) by taking T
(1)
a in the following result to

be the Riesz kernel of a positive Rockland operator. Similarly, we obtain its critical

versions by taking T
(2)
a in (1.20) to be a combination of Riesz and Bessel kernels.



HYPOELLIPTIC FUNCTIONAL INEQUALITIES 7

Thus, let now G be a homogeneous group of homogeneous dimension Q, equipped
with any fixed homogeneous quasi-norm | · |. Then we have the following results:

• (Integral Hardy inequality on homogeneous groups) Let 1 < p ≤ q <
∞ and 0 < a < Q/p. Let 0 ≤ b < Q and a

Q
= 1

p
− 1

q
+ b

qQ
. Assume that

|T (1)
a (x)| ≤ C1|x|a−Q for some positive C1 = C1(a,Q). Then there exists a

positive constant C = C(p, q, a, b) such that∥∥∥∥∥f ∗ T (1)
a

|x|
b
q

∥∥∥∥∥
Lq(G)

≤ C∥f∥Lp(G) (1.18)

holds for all f ∈ Lp(G).
• (Critical integral Hardy inequality on homogeneous groups) Let 1 <
p < r < ∞ and p ≤ q < (r − 1)p′, where 1/p + 1/p′ = 1. Assume that for
a = Q/p and for every N > Q we have

|T (2)
a (x)| ≤ C2

{
|x|a−Q, for x ∈ G\{0},
|x|−N , for x ∈ G with |x| ≥ 1,

(1.19)

for some positive C2 = C2(a,Q). Then there exists a positive constant C =
C(p, q, r, Q) such that∥∥∥∥∥∥∥

f ∗ T (2)
Q/p(

log
(
e + 1

|x|

)) r
q |x|

Q
q

∥∥∥∥∥∥∥
Lq(G)

≤ C∥f∥Lp(G) (1.20)

holds for all f ∈ Lp(G).

In the proof of (1.18) and (1.20) the following characterisation of weighted integral
Hardy type inequalities plays an important role. In fact, the following results provide
the characterisation of pairs of weights for the integral versions of Hardy inequalities
to hold. For brevity, we only indicate the type of the obtained results referring to the
corresponding theorems for precise characterising conditions.

• (Integral Hardy inequality for p ≤ q on homogeneous groups) Let
{ϕi}2i=1 and {ψi}2i=1 be positive functions on G, and 1 < p ≤ q < ∞. Then
we have(∫

G

(∫
B(0,|x|)

f(z)dz

)q

ϕ1(x)dx

) 1
q

≤ C3

(∫
G
(f(x))pψ1(x)dx

) 1
p

(1.21)

and(∫
G

(∫
G\B(0,|x|)

f(z)dz

)q

ϕ2(x)dx

) 1
q

≤ C4

(∫
G
(f(x))pψ2(x)dx

) 1
p

(1.22)

hold for all f ≥ 0 a.e. on G if and only if Ai(ϕi, ψi) < ∞, i = 1, 2, where
{Ai}2i=1 are given in (3.3)-(3.4).

• (Integral Hardy inequality for p > q on homogeneous groups) Let
{ϕi}4i=3 and {ψi}4i=3 be positive functions on G, and 1 < q < p < ∞ with
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1/δ = 1/q − 1/p. Then we have(∫
G

(∫
B(0,|x|)

f(z)dz

)q

ϕ3(x)dx

) 1
q

≤ C5

(∫
G
(f(x))pψ3(x)dx

) 1
p

(1.23)

and(∫
G

(∫
G\B(0,|x|)

f(z)dz

)q

ϕ4(x)dx

) 1
q

≤ C6

(∫
G
(f(x))pψ4(x)dx

) 1
p

(1.24)

hold for all f ≥ 0 if and only if Ai(ϕi, ψi) < ∞, i = 3, 4, where {Ai}4i=3 are
given in (3.22)-(3.23).

• (Weighted Hardy-Sobolev type inequality on homogeneous groups)
Let ϕ5, ψ5 be positive weight functions on G and let 1 < p ≤ q < ∞. Then
there exists a positive constant C such that(∫

G
ϕ5(x)|f(x)|qdx

)1/q

≤ C

(∫
G
ψ5(x)|R|x|f(x)|pdx

)1/p

(1.25)

holds for radial functions f with f(0) = 0 if and only if A5(ϕ5, ψ5) < ∞,
where A5 is given in (3.69) and R|x| :=

d
d|x| is the radial derivative.

We note that Hardy, Rellich and other related inequalities with respect to the radial
derivative R|x| have been investigated in [37] and [43].

1.5. Weighted Hardy-Littlewood-Sobolev inequalities. Let us give another il-
lustration of the method of applying inequalities on homogeneous groups to obtain
the corresponding hypoelliptic inequalities. First, in this paper we show that the
integral Hardy inequalities (1.18) and (1.20) imply the following weighted versions of
Hardy-Littlewood-Sobolev inequalities, still on general homogeneous groups:

• (Weighted Hardy-Littlewood-Sobolev, or Stein-Weiss inequalities
on homogeneous groups) Let 0 < λ < Q and 1 < p, q < ∞ be such
that 1/p + 1/q + (α + λ)/Q = 2 with 0 ≤ α < Q/p′ and α + λ ≤ Q, where
1/p + 1/p′ = 1. Then there exists a positive constant C = C(Q, λ, p, α) such
that ∣∣∣∣∣

∫
G

∫
G

f(x)g(y)

|x|α|y−1x|λ
dxdy

∣∣∣∣∣ ≤ C∥f∥Lp(G)∥g∥Lq(G) (1.26)

holds for all f ∈ Lp(G) and g ∈ Lq(G).
• (Critical Hardy-Littlewood-Sobolev inequalities on homogeneous groups)
Let 1 < p < ∞, 1 < q ≤ p′ < (r − 1)q′ and q < r < ∞, where 1/p+ 1/p′ = 1

and 1/q + 1/q′ = 1. Let T
(2)
Q/p(x) be as in (1.19). Then there exists a positive

constant C = C(p, q, r, Q) such that∣∣∣∣∣∣∣
∫
G

∫
G

f(x)g(y)T
(2)
Q/q(y

−1x)(
log
(
e + 1

|x|

)) r
p′ |x|

Q
p′

dxdy

∣∣∣∣∣∣∣ ≤ C∥f∥Lp(G)∥g∥Lq(G) (1.27)

holds for all f ∈ Lp(G) and g ∈ Lq(G).
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Consequently, similar to the outline of Section 1.4, by working with Riesz kernels
of positive Rockland operators, we subsequently obtain the following hypoelliptic
differential versions of Hardy-Littlewood-Sobolev inequalities:

• (Weighted Hardy-Littlewood-Sobolev inequalities on graded groups).
Let 1 < p, q < ∞, 0 ≤ a < Q/p and 0 ≤ b < Q/q. Let 0 < λ < Q,
0 ≤ α < a + Q/p′ and 0 ≤ β ≤ b be such that (Q − ap)/(pQ) + (Q − q(b −
β))/(qQ) + (α+ λ)/Q = 2 and α+ λ ≤ Q, where 1/p+ 1/p′ = 1. Then there
exists a positive constant C = C(Q, λ, p, α, β, a, b) such that∣∣∣∣∣

∫
G

∫
G

f(x)g(y)

|x|α|y−1x|λ|y|β
dxdy

∣∣∣∣∣ ≤ C∥f∥L̇p
a(G)∥g∥L̇q

b(G) (1.28)

holds for all f ∈ L̇p
a(G) and g ∈ L̇q

b(G).
• (Critical Hardy-Littlewood-Sobolev inequalities on graded groups).
Let 1 < p, q < ∞, 0 ≤ a < Q/p, 0 ≤ β ≤ b < Q/q. Q(1/p + 1/q − 1) + β −
a − b ≥ 0, max{ Qq

Q−bq+βq
, pq(a+b−β+2Q)−Q(p+q)

pq(Q+a)−Qq
} < r < ∞. Then there exists a

positive constant C = C(p, q, a, b, β, r, Q) such that∣∣∣∣∣∣∣∣
∫
G

∫
G

f(x)g(y)BQ/q(y
−1x)(

log
(
e + 1

|x|

)) r(pQ−Q+ap)
pQ |x|a+

Q
p′ |y|β

dxdy

∣∣∣∣∣∣∣∣ ≤ C∥f∥L̇p
a(G)∥g∥L̇q

b(G) (1.29)

holds for all f ∈ L̇p
a(G) and g ∈ L̇q

b(G), where BQ/p is the Bessel kernel from
(2.7).

Certainly, the Hardy-Littlewood-Sobolev inequalities is a very classical subject going
back to Hardy-Littlewood [26], [27] and Sobolev [50]. In the setting of homogeneous
groups, it was established by Folland and Stein [23] on the Heisenberg group, and
its sharp constants were also investigated in [29] and [18] in the Euclidean and in
the Heisenberg group settings. As for the logarithmic Hardy-Littlewood-Sobolev
inequalities we can refer to e.g. [10], [30], [5] and the recent paper [15] as well as the
references therein. In the appendix in Section 6 we note a simple equality between
best constants in certain Hardy-Littlewood-Sobolev and Sobolev inequalities.

The organisation of the paper is as follows. In Section 2 we briefly recall the
necessary concepts of homogeneous Lie groups and fix the notation. In Section 3 we
introduce the weighted integral Hardy inequalities and in Section 4 we apply them
to obtain the Hardy-Littlewood-Sobolev inequalities on homogeneous groups. The
Hardy-Sobolev-Rellich and Caffarelli-Kohn-Nirenberg inequalities on graded groups
are established in Section 5. In the appendix in Section 6 we breifly discuss the best
constants in certain Hardy-Littlewood-Sobolev and Sobolev inequalities.

The authors would like to thank Fulvio Ricci for a valuable discussion.

2. Preliminaries

Following Folland and Stein [24, Chapter 1] and the recent exposition in [20, Chap-
ter 3] let us recall that a family of dilations of a Lie algebra g is a family of linear
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mappings of the following form

Dλ = Exp(A lnλ) =
∞∑
k=0

1

k!
(ln(λ)A)k,

where A is a diagonalisable linear operator on g with positive eigenvalues. We also
recall that Dλ is a morphism of g if it is a linear mapping from g to itself satisfying
the property

∀X, Y ∈ g, λ > 0, [DλX,DλY ] = Dλ[X, Y ],

where [X, Y ] := XY − Y X is the Lie bracket. Then, a homogeneous group G is a
connected simply connected Lie group whose Lie algebra is equipped with a morphism
family of dilations. It induces the dilation structure on G which we denote by Dλx
or just by λx.

We call G a graded Lie group if its Lie algebra g admits a gradation

g =
∞⊕
i=1

gi,

where the g1, g2, ..., are vector subspaces of the Lie algebra g, all but finitely many
equal to {0}, and satisfying

[gi, gj] ⊂ gi+j ∀i, j ∈ N.

Every graded Lie group is also a homogeneous group with the dilation structure
induced by the commutator relations.

The triple G = (Rn, ◦, Dλ) is called a stratified group if it satisfies the conditions:

• For some natural numbers N = N1, N2, ..., Nr with N + N2 + . . . + Nr = n,
the following decomposition Rn = RN × . . .×RNr is valid, and for each λ > 0
the dilation Dλ : Rn → Rn defined by

Dλ(x) = Dλ(x
′, x(2), . . . , x(r)) := (λx′, λ2x(2), . . . , λrx(r))

is an automorphism of the stratified group G. Here x′ ≡ x(1) ∈ RN and
x(k) ∈ RNk for k = 2, . . . , r.

• Let N be as in above and let X1, . . . , XN be the left invariant vector fields on
the stratified group G such that Xk(0) =

∂
∂xk

|0 for k = 1, . . . , N . Then

rank(Lie{X1, . . . , XN}) = n,

for each x ∈ Rn, that is, the iterated commutators of X1, . . . , XN span the
Lie algebra of the stratified group G.

Note that the left invariant vector fields X1, . . . , XN are called the (Jacobian)
generators of the stratified group G and r is called a step of this stratified group
G. For the expressions for left invariant vector fields on G in terms of the usual
(Euclidean) derivatives and further properties see e.g. [20, Section 3.1.5].

As usual we always assume that G is connected and simply connected. If we fix a
basis {X1, . . . , Xn} of g adapted to the gradation, then by the exponential mapping
expG : g → G we obtain points x ∈ G:

x = expG(x1X1 + . . .+ xnXn).



HYPOELLIPTIC FUNCTIONAL INEQUALITIES 11

Let A be a diagonalisable linear operator on the Lie algebra g with positive eigenval-
ues. Then, a family of linear mappings of the form

Dr = Exp(A lnr) =
∞∑
k=0

1

k!
(ln(r)A)k

is a family of dilations of the Lie algebra g. Each Dr is a morphism of g, that is, Dr

is a linear mapping from the Lie algebra g to itself with the following property

∀X, Y ∈ g, r > 0, [DrX,DrY ] = Dr[X, Y ],

where [X, Y ] := XY − Y X is the Lie bracket. We can always extend these dilations
through the exponential mapping to the group G by

Dr(x) = rx := (rν1x1, . . . , r
νnxn), x = (x1, . . . , xn) ∈ G, r > 0, (2.1)

where ν1, . . . , νn are weights of the dilations. The sum of these weights

Q := TrA = ν1 + · · ·+ νn

is called the homogeneous dimension of G. Recall the fact that the standard Lebesgue
measure dx on Rn is the Haar measure for G (see, e.g. [20, Proposition 1.6.6]). The
continuous non-negative function

G ∋ x 7→ |x| ∈ [0,∞)

satisfying the following properties:

• |x−1| = |x| for any x ∈ G,
• |λx| = λ|x| for any x ∈ G and λ > 0,
• |x| = 0 if and only if x = 0,

is called a homogeneous quasi-norm on G.
In the sequel we will need the following well-known facts, see e.g. [20, Proposition

3.1.38 and Theorem 3.1.39]:

Proposition 2.1. Let G be a homogeneous Lie group and let | · | be an arbitrary
homogeneous quasi-norm on G. Then there exists a constant C0 such that

|xy| ≤ C0(|x|+ |y|) (2.2)

holds for all x, y ∈ G. At the same time, there always exists a homogeneous quasi-
norm | · | on G which satisfies the triangle inequality

|xy| ≤ |x|+ |y| (2.3)

for all x, y ∈ G.

The quasi-ball centred at x ∈ G with radius R > 0 can be defined by

B(x,R) := {y ∈ G : |x−1y| < R}.
There exists a (unique) positive Borel measure σ on the sphere

S := {x ∈ G : |x| = 1}, (2.4)

such that for all f ∈ L1(G) there holds∫
G
f(x)dx =

∫ ∞

0

∫
S

f(ry)rQ−1dσ(y)dr. (2.5)
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We denote by Ĝ the unitary dual of G and by H∞
π the space of smooth vectors for

a representation π ∈ Ĝ. If the left-invariant differential operator R on G, which is
homogeneous of positive degree, satisfies the following condition:

(Rockland condition) for every representation π ∈ Ĝ, except for the trivial
representation, the operator π(R) is injective on H∞

π , that is,

∀υ ∈ H∞
π , π(R)υ = 0 ⇒ υ = 0,

then the left-invariant differential operator R is called a Rockland operator. Here,
π(R) := dπ(R) is the infinitesimal representation of the Rockland operator R as of
an element of the universal enveloping algebra of G.

Different characterisations of the Rockland operators have been obtained by Rock-
land [34] and Beals [3]. We refer to [21] and [20, Chapter 4] for an extensive pre-
sentation about Rockland operators and for the theory of Sobolev spaces on graded
groups, and refer to [12] for the Besov spaces on graded Lie groups.

By Helffer and Nourrigat [28], we know that one can also define Rockland operators
as left-invariant homogeneous hypoelliptic differential operators on G, since this is
equivalent to the Rockland condition.

Since we will deal with the Riesz and Bessel potentials, let us recall them on graded
groups, and prove some useful estimates. Let R be a positive Rockland operator of
homogeneous degree ν. Then, the operators R−a/ν for {a ∈ R, 0 < a < Q} and
(I + R)−a/ν for a ∈ R+ are called Riesz and Bessel potentials, respectively. If we
denote their kernels by Ia and Ba, then we have

Ia(x) :=
1

Γ
(
a
ν

) ∫ ∞

0

t
a
ν
−1ht(x)dt (2.6)

for 0 < a < Q with a ∈ R, and

Ba(x) :=
1

Γ
(
a
ν

) ∫ ∞

0

t
a
ν
−1e−tht(x)dt (2.7)

for a > 0, where Γ denotes the Gamma function, and ht is the heat kernel associated
to the positive Rockland operator R. We refer for more details to [20, Section 4.3.4].

Before using Ia(x) and Ba(x), we recall the following results:

Theorem 2.2 ([20, Theorem 4.2.7]). Let R be a positive Rockland operator on a
graded Lie group G. Let | · | be a fixed homogeneous quasi-norm. Let ht be a heat
kernel associated with the Rockland operator. Then each ht is Schwartz and we have

∀s, t > 0 ht ∗ hs = ht+s, (2.8)

∀x ∈ G, r, t > 0 hrνt(rx) = r−Qht(x), (2.9)

∀x ∈ G ht(x) = ht(x−1), (2.10)∫
G
ht(x)dx = 1. (2.11)

Moreover, we have

∃C = Cα,N,ℓ > 0 ∀t ∈ (0, 1] sup
|x|=1

|∂ℓtXαht(x)| ≤ Cα,N t
N (2.12)

for any N ∈ N0, α ∈ Nn
0 and ℓ ∈ N0.
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Lemma 2.3 ([20, Lemma 4.3.8]). Let R be a positive Rockland operator on graded
Lie group G and let ht be its heat kernel as in Theorem 2.2. Let | · | be a homogeneous
quasi-norm and α ∈ Nn

0 be a multi-index. Then for any real number a with 0 < a <
(Q+ [α])/ν there exists a positive constant C such that∫ ∞

0

ta−1|Xαht(x)|dt ≤ C|x|−Q−[α]+νa. (2.13)

Replacing a by a/ν and putting α = 0 in Lemma 2.3, and using the representation
(2.6) for Ia(x), we obtain

Lemma 2.4. Let | · | be a homogeneous quasi-norm. Let 0 < a < Q and a ∈ R. Then
there exists a positive constant C = C(Q, a) such that

|Ia(x)| ≤ C|x|−(Q−a). (2.14)

Now let us prove the following useful lemma for Ba, which may be not optimal
(for example, the exponential decay is known on Rn, see [1]), but sufficient for our
purposes.

Lemma 2.5. Let | · | be a homogeneous quasi-norm. Let 0 < a < Q and a ∈ R. Then
there exists a positive constant C = C(Q, a) such that

|Ba(x)| ≤ C

{
|x|−(Q−a), for x ∈ G\{0},
|x|−N , for x ∈ G with |x| ≥ 1

(2.15)

for every N .

Proof of Lemma 2.5. We split the integral in (2.15) as follows

Ba(x) =
1

Γ
(
a
ν

) ∫ ∞

0

t
a
ν
−1e−tht(x)dt

=
1

Γ
(
a
ν

) ∫ |x|ν

0

t
a
ν
−1e−tht(x)dt+

1

Γ
(
a
ν

) ∫ ∞

|x|ν
t
a
ν
−1e−tht(x)dt

=: J1(x) + J2(x).

(2.16)

To estimate J1 using the property of homogeneity of ht in (2.9), we calculate

|J1(x)| =

∣∣∣∣∣ 1

Γ
(
a
ν

) ∫ |x|ν

0

t
a
ν
−1e−t|x|−Qh|x|−νt

(
x

|x|

)
dt

∣∣∣∣∣
≤ 1

Γ
(
a
ν

) |x|−Q

(
sup

|y|=1,0≤t1≤1

|ht1(y)|

)∫ |x|ν

0

t
a
ν
−1dt

=
ν

aΓ
(
a
ν

) |x|a−Q

(
sup

|y|=1,0≤t1≤1

|ht1(y)|

)
≤ C|x|a−Q,

(2.17)

where we have used that sup
|y|=1, 0≤t1≤1

|ht1(y)| is finite by (2.12).
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Now we estimate J2. A direct calculation gives that

|J2(x)| =

∣∣∣∣∣ 1

Γ
(
a
ν

) ∫ ∞

|x|ν
t
a
ν
−1e−tht(x)dt

∣∣∣∣∣
≤ 1

Γ
(
a
ν

) ∫ ∞

|x|ν
t
a
ν
−1t−

Q
ν |h1(t−

1
ν x)|dt

≤ 1

Γ
(
a
ν

)∥h1∥L∞(G)

∫ ∞

|x|ν
t
a
ν
−1−Q

ν dt

≤ C|x|a−Q,

(2.18)

where we have used that ∥h1∥L∞(G) is finite since h1 is Schwartz. Combining (2.16),
(2.17) and (2.18), we obtain (2.15).

On the other hand, when |x| ≥ 1, using that h1 is Schwartz, one has for every N
that

|J1(x)| ≲
∫ |x|ν

0

t
a−Q
ν

−1e−th1

(
t−

1
ν x
)
dt

≲ |x|−N

∫ |x|ν

0

t
a−Q+N

ν
−1e−tdt

≲ |x|−N

∫ ∞

0

t
a−Q+N

ν
−1e−tdt

≲ |x|−N ,

(2.19)

and, again using the first line in (2.19), and that h1 is Schwartz, we get

|J2(x)| ≲
∫ ∞

|x|ν
t
a−Q
ν

−1e−tdt ≲
∫ ∞

|x|ν
t
a−Q−N

ν
−1dt, (2.20)

showing that Ba(x) is rapidly decreasing at ∞. Combining (2.16), (2.19) and (2.20),
we obtain (2.15) for |x| ≥ 1. □

3. Weighted integral Hardy inequalities on homogeneous Lie groups

In this section we introduce various types of weighted Lp − Lq inequalities for the
Hardy operator on homogeneous groups for different ranges of indices 1 < p, q <∞.
We obtain necessary and sufficient condition on weights for such inequalities to be
true. Subsequently, we apply them (Theorem 3.1) to obtain an integral Hardy in-
equality on general homogeneous groups which will be crucial for the further inves-
tigation of this paper. For a version of this result on more general metric measure
spaces with polar decomposition see also [46].

Theorem 3.1. Let G be a homogeneous Lie group of homogeneous dimension Q. Let
{ϕi}2i=1 and {ψi}2i=1 be positive functions on G, and let 1 < p ≤ q < ∞. Then the
inequalities(∫

G

(∫
B(0,|x|)

f(z)dz

)q

ϕ1(x)dx

) 1
q

≤ C3

(∫
G
(f(x))pψ1(x)dx

) 1
p

(3.1)
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and (∫
G

(∫
G\B(0,|x|)

f(z)dz

)q

ϕ2(x)dx

) 1
q

≤ C4

(∫
G
(f(x))pψ2(x)dx

) 1
p

(3.2)

hold for all f ≥ 0 a.e. on G if and only if, respectively, we have

A1 := sup
R>0

(∫
{|x|≥R}

ϕ1(x)dx

) 1
q
(∫

{|x|≤R}
(ψ1(x))

−(p′−1)dx

) 1
p′

<∞ (3.3)

and

A2 := sup
R>0

(∫
{|x|≤R}

ϕ2(x)dx

) 1
q
(∫

{|x|≥R}
(ψ2(x))

−(p′−1)dx

) 1
p′

<∞. (3.4)

Moreover, if {Ci}4i=3 are the smallest constants for which (3.1) and (3.2) hold, then

Ai ≤ Ci ≤ (p′)
1
p′ p

1
qAi, i = 3, 4. (3.5)

Remark 3.2. In the abelian case G = (Rn,+) and Q = n, if we take q = p > 1 and
ϕ1(x) = |B(0, |x|)|−p and ψ1(x) = 1 in (3.1), then we have A1 = (p− 1)−1/p and(∫

Rn

∣∣∣∣ 1

|B(0, |x|)|

∫
B(0,|x|)

f(z)dz

∣∣∣∣p dx) 1
p

≤ p

p− 1

(∫
Rn

|f(x)|pdx
) 1

p

, (3.6)

where |B(0, |x|)| is the volume of the ball B(0, |x|). The inequality (3.6) was obtained
in [8].

Proof of Theorem 3.1. We prove (3.1)⇔(3.3), the case (3.2)⇔(3.4) can be proved
similarly.

First, we show (3.3)⇒(3.1). Then, using polar coordinates on G and denoting
r = |x|, we write∫

G
ϕ1(x)

[∫
B(0,r)

f(z)dz

]q
dx

=

∫ ∞

0

∫
S

rQ−1ϕ1(ry)

[∫ r

0

∫
S

sQ−1f(sy)dσ(y)ds

]q
dσ(y)dr.

(3.7)

Setting

g(r) =

{∫
S

∫ r

0

sQ−1(ψ1(sy))
1−p′dsdσ(y)

}1/(pp′)

, (3.8)

and using Hölder’s inequality, we calculate∫ r

0

∫
S

sQ−1f(sy)dσ(y)ds =

∫
S

∫ r

0

s(Q−1)/pf(sy)(ψ1(sy))
1/pg(s)s(Q−1)/p′

×
(
(ψ1(sy))

1/pg(s)
)−1

dsdσ(y)

≤
(∫

S

∫ r

0

sQ−1
[
f(sy)(ψ1(sy))

1/pg(s)
]p
dsdσ(y)

)1/p

×
(∫

S

∫ r

0

sQ−1
[
(ψ1(sy))

1/pg(s)
]−p′

dsdσ(y)

)1/p′

.

(3.9)
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If we define U, V and W1 by

U(s) =

∫
S

sQ−1
(
f(sy)(ψ1(sy))

1/pg(s)
)p
dσ(y), (3.10)

V (r) =

∫ r

0

∫
S

sQ−1
(
(ψ1(sy))

1/pg(s)
)−p′

dσ(y)ds, (3.11)

W1(r) =

∫
S

rQ−1ϕ1(ry)dσ(y), (3.12)

for s, r > 0, respectively, then plugging (3.9) into (3.7) we obtain∫
G
ϕ1(x)

(∫
B(0,r)

f(z)dz

)q

dx ≤
∫ ∞

0

W1(r)

(∫ r

0

U(s)ds

)q/p

(V (r))q/p
′
dr. (3.13)

Now we need to use the following continuous version of Minkowski’s inequality (see
e.g. [14, Formula 2.1]): Let θ ≥ 1. Then for all f1(x), f2(x) ≥ 0 on (0,∞), we have∫ ∞

0

f1(x)

(∫ x

0

f2(z)dz

)θ

dx ≤

(∫ ∞

0

f2(z)

(∫ ∞

z

f1(x)dx

)1/θ

dz

)θ

. (3.14)

Using this with θ = q/p ≥ 1 on the right-hand side of (3.13), we get∫
G
ϕ1(x)

(∫
B(0,r)

f(z)dz

)q

dx

≤

(∫ ∞

0

U(s)

(∫ ∞

s

W1(r)(V (r))q/p
′
dr

)p/q

ds

)q/p

. (3.15)

In order to simplify the right-hand side of above, denoting

T (s) :=

∫
S

sQ−1(ψ1(sy))
1−p′dσ(y),

and using (3.8), (3.11), the integration by parts, (3.3) and (3.12) we compute

V (r) =

∫
S

∫ r

0

sQ−1(ψ1(sy))
1−p′

(∫ s

0

∫
S

tQ−1(ψ1(tw))
1−p′dσ(w)dt

)−1/p

dsdσ(y)

=

∫ r

0

T (s)

(∫ s

0

T (t)dt

)−1/p

ds = p′
∫ r

0

d

ds

(∫ s

0

T (t)dt

)1/p′

ds

= p′
(∫ r

0

T (s)ds

)1/p′

= p′
(∫ r

0

∫
S

sQ−1(ψ1(sy))
1−p′dσ(y)ds

)1/p′

≤ p′A1

(∫ ∞

r

sQ−1

∫
S

ϕ1(sw)dσ(w)ds

)−1/q

= p′A1

(∫ ∞

r

W1(s)ds

)−1/q

.
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Similarly, applying the integration by parts and (3.3), we have from above

∫ ∞

s

W1(r)(V (r))q/p
′
dr

≤ (p′A1)
q/p′
∫ ∞

s

W1(r)

(∫ ∞

r

W1(s)ds

)−1/p′

dr

= (p′A1)
q/p′p

(∫ ∞

s

W1(r)dr

)1/p

= (p′A1)
q/p′p

(∫ ∞

s

∫
S

rQ−1ϕ1(ry)dσ(y)dr

)1/p

≤ (p′A1)
q/p′pA

q/p
1

(∫ s

0

rQ−1

∫
S

(ψ1(ry))
1−p′dσ(y)dr

)−q/(p′p)

= Aq
1(p

′)q/p
′
p(g(s))−q,

(3.16)

where we have used (3.8) in the last line. Putting (3.16) in (3.15) and recalling (3.10),
we obtain

∫
G
ϕ1(x)

(∫
B(0,r)

f(z)dz

)q

dx ≤
(∫ ∞

0

U(s)Ap
1(p

′)p−1pp/q(g(s))−pds

)q/p

= Aq
1(p

′)q/p
′
p

(∫ ∞

0

U(s)(g(s))−pds

)q/p

= Aq
1(p

′)q/p
′
p

(∫ ∞

0

∫
S

sQ−1(f(sy))pψ1(sy)dσ(y)ds

)q/p

= Aq
1(p

′)q/p
′
p

(∫
G
ψ1(x)(f(x))

pdx

)q/p

,

(3.17)

yielding (3.1) with C3 = A1(p
′)1/p

′
p1/q.

Now it remains to show (3.1)⇒(3.3). For that, we take f(x) = (ψ1(x))
1−p′χ(0,R)(|x|)

with R > 0 to get

(∫
G
ψ1(x)(f(x))

pdx

)1/p(∫
|x|≤R

(ψ1(x))
1−p′dx

)−1/p

=

(∫
|x|≤R

(ψ1(x))
1−p′dx

)1/p(∫
|x|≤R

(ψ1(x))
1−p′dx

)−1/p

= 1. (3.18)
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Consequently, by (3.1) we have

C = C

(∫
G
ψ1(x)(f(x))

pdx

)1/p(∫
|x|≤R

(ψ1(x))
1−p′dx

)−1/p

≥
(∫

G
ϕ1(x)

(∫
|z|≤|x|

f(z)dz

)q

dx

)1/q (∫
|x|≤R

(ψ1(x))
1−p′dx

)−1/p

≥
(∫

|x|≥R

ϕ1(x)

(∫
|z|≤|x|

f(z)dz

)q

dx

)1/q (∫
|x|≤R

(ψ1(x))
1−p′dx

)−1/p

=

(∫
|x|≥R

ϕ1(x)dx

)1/q (∫
|z|≤R

(ψ1(z))
1−p′dz

)1/p′

. (3.19)

Combining (3.18) and (3.19), we obtain (3.3) with C ≥ A1. □

Now we show the case q < p of Theorem 3.1. For a (later) version of this result on
metric measure spaces see also [47].

Theorem 3.3. Let G be a homogeneous Lie group of homogeneous dimension Q.
Let {ϕi}4i=3 and {ψi}4i=3 be positive functions on G, and let 1 < q < p < ∞ with
1/δ = 1/q − 1/p. Then the inequalities(∫

G

(∫
B(0,|x|)

f(z)dz

)q

ϕ3(x)dx

) 1
q

≤ C5

(∫
G
(f(x))pψ3(x)dx

) 1
p

(3.20)

and (∫
G

(∫
G\B(0,|x|)

f(z)dz

)q

ϕ4(x)dx

) 1
q

≤ C6

(∫
G
(f(x))pψ4(x)dx

) 1
p

(3.21)

hold for all f ≥ 0 if and only if, respectively, we have

A3 :=

∫
G

(∫
G\B(0,|x|)

ϕ3(z)dz

)δ/q (∫
B(0,|x|)

(ψ3(z))
1−p′dz

)δ/q′

(ψ3(x))
1−p′dx <∞

(3.22)
and

A4 :=

∫
G

(∫
B(0,|x|)

ϕ4(z)dz

)δ/q (∫
G\B(0,|x|)

(ψ4(z))
1−p′dz

)δ/q′

(ψ4(x))
1−p′dx <∞.

(3.23)

Proof of Theorem 3.3. We show (3.20)⇔(3.22), the case (3.21)⇔(3.23) can be proved
similarly.

First, we prove (3.22)⇒(3.20). Denote

W2(r) :=

∫
S

rQ−1ϕ3(ry)dσ(y) (3.24)

and

G(s) :=

∫
S

sQ−1h(sy)(ψ3(sy))
1−p′dσ(y) (3.25)
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for h ≥ 0 on G. Then using polar coordinates on G, we calculate∫
G
ϕ3(x)

(∫
B(0,|x|)

h(z)(ψ3(z))
1−p′dz

)q

dx

=

∫ ∞

0

∫
S

rQ−1ϕ3(rw)dσ(w)

(∫ r

0

∫
S

sQ−1h(sy)(ψ3(sy))
1−p′dσ(y)ds

)q

dr

=

∫ ∞

0

W2(r)

(∫ r

0

G(s)ds

)q

dr

= q

∫ ∞

0

G(s)

(∫ s

0

G(r)dr

)q−1(∫ ∞

s

W2(r)dr

)
ds

= q

∫
S

∫ ∞

0

sQ−1h(sy)(ψ3(sy))
1−p′

(∫ s

0

∫
S

rQ−1h(rw)(ψ3(rw))
1−p′dσ(w)dr

)q−1

×
(∫ ∞

s

W2(r)dr

)
dsdσ(y)

= q

∫
S

∫ ∞

0

sQ−1h(sy)(ψ3(sy))
(1−p′)( 1

p
+ q−1

p
+ p−q

p
)

×

(∫
S

∫ s

0
rQ−1h(rw)(ψ3(rw))

1−p′drdσ(w)∫
S

∫ s

0
rQ−1(ψ3(rw))1−p′drdσ(w)

)q−1

×

((∫
S

∫ s

0

rQ−1(ψ3(rw))
1−p′drdσ(w)

)q−1(∫ ∞

s

W2(r)dr

))
dsdσ(y).

Here, using Hölder’s inequality (with three factors) for 1
p
+ q−1

p
+ p−q

p
= 1 we get∫

G
ϕ3(x)

(∫
B(0,|x|)

h(z)(ψ3(z))
1−p′dz

)q

dx ≤ qK1K2K3, (3.26)

where

K1 =

(∫
S

∫ ∞

0

sQ−1(h(sy))p(ψ3(sy))
1−p′dsdσ(y)

)1/p

=

(∫
G
(h(x))p(ψ3(x))

1−p′dx

)1/p

,

(3.27)

K2 =

(∫
S

∫ ∞

0

sQ−1(ψ3(sy))
1−p′

(∫
S

∫ s

0
rQ−1h(rw)(ψ3(rw))

1−p′drdσ(w)∫
S

∫ s

0
rQ−1(ψ3(rw))1−p′drdσ(w)

)p

dsdσ(y)

) q−1
p

(3.28)
and

K3 =

(∫
S

∫ ∞

0

sQ−1(ψ3(sy))
1−p′

(∫
S

∫ s

0

rQ−1(ψ3(rw))
1−p′drdσ(w)

) (q−1)p
p−q

×
(∫ ∞

s

W2(r)dr

) p
p−q

dsdσ(y)

) p−q
p

. (3.29)
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We have for K2 that

K2 =

(∫
G

(ψ3(x))
1−p′

(
∫
B(0,|x|)(ψ3(z))1−p′dz)p

(∫
B(0,|x|)

(ψ3(z))
1−p′h(z)dz

)p

dx

) q−1
p

.

To apply (3.1) for K2 with q = p, f(x) = (ψ3(x))
1−p′h(x) and

ϕ1(x) =
(ψ3(x))

1−p′

(
∫
B(0,|x|)(ψ3(z))1−p′dz)p

, ψ1(x) = (ψ3(x))
(1−p′)(1−p),

we need to check the condition that

A1(R) =

(∫
|x|≥R

(ψ3(x))
1−p′

(∫
B(0,|x|)

(ψ3(z))
1−p′dz

)−p

dx

)1/p

×
(∫

|x|≤R

(ψ3(x))
1−p′dx

)1/p′

<∞ (3.30)

holds uniformly for all R > 0. Indeed, once (3.30) has been established, the inequality
(3.1) implies that

K2 ≤ C

(∫
G
(ψ3(x))

(1−p′)(1−p+p)(h(x))pdx

) q−1
p

= C

(∫
G
(h(x))p(ψ3(x))

1−p′dx

) q−1
p

.

(3.31)
To check (3.30), denoting S(s) =

∫
S
sQ−1(ψ3(sw))

1−p′dσ(w) and using the integration
by parts we compute

A1(R) =

(∫
S

∫ ∞

R

rQ−1(ψ3(rw))
1−p′

(∫ r

0

S(s)ds

)−p

drdσ(w)

)1/p(∫ R

0

S(s)ds

)1/p′

=

(∫ ∞

R

(∫ r

0

S(s)ds

)−p

S(r)dr

)1/p(∫ R

0

S(s)ds

)1/p′

≤

(
1

p− 1

(∫ R

0

S(s)ds

)1−p
)1/p(∫ R

0

S(s)ds

)1/p′

= (p− 1)−1/p <∞.

Next, for K3, taking into account 1
δ
= 1

q
− 1

p
= p−q

pq
and using (3.22), we have

K3 =

(∫ ∞

0

∫
S

(∫ ∞

s

W2(r)dr

)δ/q (∫
S

∫ r

0

rQ−1(ψ3(rw))
1−p′drdσ(w)

)δ/q′

×sQ−1(ψ3(sy))
1−p′dσ(y)ds

) p−q
p

=

(∫
G

(∫
G\B(0,|x|)

ϕ3(z)dz

)δ/q (∫
B(0,|x|)

(ψ3(z))
1−p′dz

)δ/q′

(ψ3(x))
1−p′dx

) p−q
p

= A
p−q
p

3 <∞.
(3.32)
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Now, plugging (3.27), (3.31) and (3.32) into (3.26), we obtain∫
G
ϕ3(x)

(∫
B(0,|x|)

h(z)(ψ3(z))
1−p′dz

)q

dx ≤ CA
p−q
p

3

(∫
G
(h(x))p(ψ3(x))

1−p′dx

) 1
p
+ q−1

p

,

which implies (3.20) after the setting h := fψp′−1
3 .

To show (3.20)⇒(3.22), as in the Euclidean case [14, Theorem 2.2] we put the
functions

fk(x) =

(∫
|z|≥|x|

ϕ3(z)dz

)δ/(pq)(∫
αk≤|z|≤|x|

(ψ3(z))
1−p′dz

)δ/(pq′)

×(ψ3(x))
1−p′χ(αk,βk)(|x|), k = 1, 2, . . . ,

instead of f(x) in (3.20) to get (3.22), where 0 < αk < βk with αk ↘ 0 and βk ↗ ∞
for k → ∞. □

Now we introduce another integral Hardy inequality.

Theorem 3.4. Let G be a homogeneous Lie group of homogeneous dimension Q. Let
| · | be an arbitrary homogeneous quasi-norm. Let 1 < p ≤ q < ∞ and 0 < a < Q/p.

Let 0 ≤ b < Q and a
Q

= 1
p
− 1

q
+ b

qQ
. Assume that |T (1)

a (x)| ≤ C1|x|a−Q for some

positive C1 = C1(a,Q). Then there exists a positive constant C = C(p, q, a, b) such
that ∥∥∥∥∥f ∗ T (1)

a

|x|
b
q

∥∥∥∥∥
Lq(G)

≤ C∥f∥Lp(G) (3.33)

holds for all f ∈ Lp(G).

Proof of Theorem 3.4. We split the integral into three parts:∫
G
|(f ∗ T (1)

a )(x)|q dx
|x|b

≤ 3q(M1 +M2 +M3), (3.34)

where

M1 :=

∫
G

(∫
{2|y|<|x|}

|T (1)
a (y−1x)f(y)|dy

)q
dx

|x|b
,

M2 :=

∫
G

(∫
{|x|≤2|y|<4|x|}

|T (1)
a (y−1x)f(y)|dy

)q
dx

|x|b

and

M3 :=

∫
G

(∫
{|y|>2|x|}

|T (1)
a (y−1x)f(y)|dy

)q
dx

|x|b
.

First, let us estimateM1. We can assume that | · | is a norm without loss of generality
because of the existence of a homogeneous norm (Proposition 2.1) and since replacing
the seminorm by an equivalent one only changes the appearing constants. Although
we could give a proof without this hypothesis, it simplifies the arguments below.
Then, by the reverse triangle inequality and 2|y| < |x| we have

|y−1x| ≥ |x| − |y| > |x| − |x|
2

=
|x|
2
, (3.35)
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which is |x| < 2|y−1x|. Taking into account this and that T
(1)
a (x) is bounded by a

radial function which is non-increasing with respect to |x|, we calculate

M1 ≤
∫
G

(∫
{2|y|<|x|}

|f(y)|dy
)q
(

sup
{|x|<2|z|}

|T (1)
a (z)|

)q
dx

|x|b

≤ C

∫
G

(∫
{2|y|<|x|}

|f(y)|dy
)q ( |x|

2

)(a−Q)q
dx

|x|b
.

(3.36)

In order to apply (3.1) for M1, let us check the condition (3.3), that is, that(∫
{2R<|x|}

(
|x|
2

)(a−Q)q
dx

|x|b

) 1
q (∫

{|x|<R}
dx

) 1
p′

≤ A1 (3.37)

holds for allR > 0. Indeed, taking into account a
Q
= 1

p
−1

q
+ b

qQ
, hence (a−Q)q−b+Q =

−Qq
p′

̸= 0, we have(∫
{2R<|x|}

(
|x|
2

)(a−Q)q
dx

|x|b

) 1
q (∫

{|x|<R}
dx

) 1
p′

≤ CR
Q
p′

(∫
{2R<|x|}

(
|x|
2

)(a−Q)q
dx

|x|b

) 1
q

≤ CR
Q
p′

(∫
{2R<|x|}

|x|(a−Q)q−bdx

) 1
q

≤ CR
Q
p′R

(a−Q)q−b+Q
q

≤ C,

(3.38)

since (a−Q)q − b+Q = −Qq
p′

̸= 0.

Thus, we have checked (3.37), then we can apply (3.1) for M1 to obtain

M
1
q

1 ≤ (p′)
1
p′ p

1
qA1∥f∥Lp(G). (3.39)

Now let us estimate M3. Without loss of generality, we may assume again | · | is the
norm. Then, similarly to (3.35) we note that 2|x| < |y| implies |y| < 2|y−1x|. Taking
into account this we obtain for M3 that

M3 ≤
∫
G

(∫
{|y|>2|x|}

(
|y|
2

)(a−Q)

|f(y)|dy

)q
dx

|x|b
.

To apply (3.2) for M3, we check the following condition:(∫
{|x|<R}

dx

|x|b

) 1
q

(∫
{2R<|x|}

(
|x|
2

)(a−Q)p′

dx

) 1
p′

≤ A2. (3.40)
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Taking into account Q ̸= ap, one gets(∫
{2R<|x|}

(
|x|
2

)(a−Q)p′

dx

) 1
p′

≤ C

(∫
{2R<|x|}

|x|(a−Q)p′dx

) 1
p′

≤ CRa−Q
p , (3.41)

that is, (∫
{|x|<R}

dx

|x|b

) 1
q

(∫
{2R<|x|}

(
|x|
2

)(a−Q)p′

dx

) 1
p′

≤ CRa−Q
p
+Q−b

q ≤ C,

since b < Q and a− Q
p
+ Q−b

q
= 0 due to a

Q
= 1

p
− 1

q
+ b

qQ
.

Thus, we have checked (3.40), then we can apply (3.2) for M3 to get

M
1
q

3 ≤ (p′)
1
p′ p

1
qA2∥f∥Lp(G). (3.42)

Finally, we estimate M2. We write

M2 =
∑
k∈Z

∫
{2k⩽|x|<2k+1}

(∫
{|x|⩽2|y|⩽4|x|}

|T (1)
a (y−1x)f(y)|dy

)q
dx

|x|b
.

Since |x| ⩽ 2|y| ⩽ 4|x| and 2k ⩽ |x| < 2k+1, we have 2k−1 ⩽ |y| < 2k+2. As in (3.35),
assuming | · | is the norm and using the triangle inequality, we have

3|x| = |x|+ 2|x| ≥ |x|+ |y| ≥ |y−1x|, (3.43)

which implies 0 ≤ |y−1x| ≤ 3|x| < 3 · 2k+1. If we denote Ĩa(x) := C1|x|a−Q, then

|T (1)
a (x)| ≤ Ĩa(x). Taking into account these, applying Young’s inequality (well-

known, see e.g. [20, Proposition 1.5.2]) for 1+ 1
q
= 1

r
+ 1

p
with r ∈ [1,∞] we estimate

M2 by

M2 ≤
∑
k∈Z

2−kb

∫
G
(([f · χ{2k−1⩽|·|<2k+2}] ∗ Ĩa)(x))qdx

=
∑
k∈Z

2−kb∥[f · χ{2k−1⩽|·|<2k+2}] ∗ Ĩa∥qLq(G)

≤
∑
k∈Z

2−kb∥Ĩa · χ{0⩽|·|<3·2k+1}∥qLr(G)∥f · χ{2k−1⩽|·|<2k+2}∥qLp(G)

= C1

∑
k∈Z

2−kb

(∫
|x|<3·2k+1

|x|(a−Q)rdx

) q
r

∥f · χ{2k−1⩽|x|<2k+2}∥qLp(G)

≤ C
∑
k∈Z

2−kb(3 · 2k+1)(
(a−Q)pq
pq+p−q

+Q) pq+p−q
p ∥f · χ{2k−1⩽|x|<2k+2}∥qLp(G)

= C
∑
k∈Z

2−kb(3 · 2k+1)b∥f · χ{2k−1⩽|x|<2k+2}∥qLp(G)

≤ C
∑
k∈Z

∥f · χ{2k−1⩽|x|<2k+2}∥qLp(G)

≤ C∥f∥qLp(G),

(3.44)

since (a−Q)pq
pq+p−q

+Q = bp
pq+p−q

> 0 and q ≥ p.
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Thus, (3.39), (3.42) and (3.44) complete the proof of Theorem 3.4. □

Remark 3.5. Let us now very briefly discuss an alternative proof of Theorem 3.4 by
using Schur’s test [22].

In the case q = p, we have b = ap from a
Q
= 1

p
− 1

q
+ b

qQ
. Let Saf := |x|−b/p(f∗|x|a−Q),

then S∗
ag := (|x|−b/pg) ∗ |x|a−Q, where (f, S∗

ag) = (Saf, g). Since the integral kernel
of Sa is positive, by Schur’s test we see that instead of proving the estimate

∥Saf∥Lp(G) ≤ A1/p′

a,p B
1/p
a,p ∥f∥Lp(G)

for all f ∈ Lp(G), it is enough to exhibit a positive function h and constants Aa,p and
Ba,p such that

Sa(h
p′)(x) ≤ Aa,p(h(x))

p′ and S∗
a(h

p)(x) ≤ Ba,p(h(x))
p

for almost all x ∈ G.
Let us take hc(x) := |x|c−Q with c > 0 and consider the convolution integrals

hp
′

c ∗ |x|a−Q and (|x|−b/phpc) ∗ |x|a−Q,

which arise in the computation of Sa(h
p′
c ) and S

∗
a(h

p
c). We see that the homogeneity

orders of hp
′

c and |x|−b/phpc are (c − Q)p′ and (c − Q)p − b/p, respectively. Then,
the homogeneity of hp

′
c ∗ |x|a−Q and (|x|−b/phpc) ∗ |x|a−Q are a − Q + (c − Q)p′ and

a−Q+ (c−Q)p− b/p, respectively. Therefore, these convolution integrals converge
absolutely inG\{0} if and only if 0 < (c−Q)p′+Q < Q−a and 0 < (c−Q)p−b/p+Q <
Q− a, that is,

max

(
Q

p
,
a

p
+
Q

p′

)
< c < Q− a

p′

since b = ap. This condition is true if 0 < a < Q/p.
Thus, we have obtained

∥|x|−b/p(f ∗ |x|a−Q)∥Lp(G) ≤ A1/p′

a,p B
1/p
a,p ∥f∥Lp(G),

where 0 < a < Q/p, 1 < p <∞, f ∈ Lp(G) and b = ap.

Taking into account this and |T (1)
a (x)| ≤ C|x|a−Q, we obtain∥∥∥∥∥f ∗ T (1)

a

|x|
b
p

∥∥∥∥∥
Lp(G)

≤ C

∥∥∥∥∥ |f | ∗ |T (1)
a |

|x|
b
p

∥∥∥∥∥
Lp(G)

≤ C∥|x|−b/p(|f | ∗ |x|a−Q)∥Lp(G) ≤ C∥f∥Lp(G). (3.45)

In the case q > p, the operator in (3.33) is dominated pointwise by

|x|−
b
q

((
|f | ∗Ka− b

q

)
∗K b

q

)
,

where Ka(x) = |x|−Q+a, and the above is the composition of g 7→ g ∗ Ka− b
q
, which

maps Lp into Lq, followed by h 7→ |x|−
b
q

(
h ∗K b

q

)
which falls in the q = p case.

Now we also show the critical case a = Q/p of Theorem 3.4.
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Theorem 3.6. Let G be a homogeneous Lie group of homogeneous dimension Q. Let
| · | be an arbitrary homogeneous quasi-norm and let 1 < p < r < ∞ and p ≤ q <
(r − 1)p′, where 1/p+ 1/p′ = 1. Assume that for a = Q/p we have

|T (2)
a (x)| ≤ C2

{
|x|a−Q, for x ∈ G\{0},
|x|−N , for x ∈ G with |x| ≥ 1,

(3.46)

for some positive C2 = C2(a,Q) and for every N > Q. Then there exists a positive
constant C = C(p, q, r, Q) such that∥∥∥∥∥∥∥

f ∗ T (2)
Q/p(

log
(
e + 1

|x|

)) r
q |x|

Q
q

∥∥∥∥∥∥∥
Lq(G)

≤ C∥f∥Lp(G) (3.47)

holds for all f ∈ Lp(G).

Proof of Theorem 3.6. Let us split the integral into three parts∫
G
|(f ∗ T (2)

Q/p)(x)|
q dx∣∣∣log (e + 1

|x|

)∣∣∣r |x|Q ≤ 3q(N1 +N2 +N3), (3.48)

where

N1 :=

∫
G

(∫
{2|y|<|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q ,
N2 :=

∫
G

(∫
{|x|≤2|y|<4|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q
and

N3 :=

∫
G

(∫
{|y|>2|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q .
First, let us estimate N1. Similar to (3.35) from 2|y| < |x| we get

|y−1x| ≥ |x| − |y| > |x| − |x|
2

=
|x|
2
, (3.49)

which is |x| < 2|y−1x|. Denote

|T (2)
a (x)| ≤ B̃a(x) := C2

{
|x|a−Q, for x ∈ G\{0},
|x|−N , for x ∈ G with |x| ≥ 1,

(3.50)

for every N > Q. Since T
(2)
Q/p(x) is bounded by B̃Q/p(x) which is non-increasing with

respect to |x|, then using (3.49) we get

N1 ≤
∫
G

(∫
{2|y|<|x|}

|f(y)|dy
)q
(

sup
{|x|<2|z|}

|T (2)
Q/p(z)|

)q
dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q
≤
∫
G

(∫
{2|y|<|x|}

|f(y)|dy
)q (

B̃Q/p

(x
2

))q dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q .
(3.51)
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To apply (3.1) for N1, we need to check the condition (3.3), that is, that∫
{2R<|x|}

(
B̃Q/p

(x
2

))q dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q
 1

q (∫
{|x|<R}

dx

) 1
p′

≤ A1 (3.52)

holds for all R > 0. In order to check this, let us consider two cases: R ≥ 1 and
0 < R < 1. Then, for R ≥ 1 using the second equality in (3.50) and N > Q, one
calculates

(∫
{2R<|x|}

(
B̃Q/p

(x
2

))q dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q
 1

q (∫
{|x|<R}

dx

) 1
p′

≤ CR
Q
p′

(∫
{2R<|x|}

(
B̃Q/p

(x
2

))q dx

|x|Q

) 1
q

= CR
Q
p′

(∫
{2R<|x|}

|x|−Nq−Qdx

) 1
q

≤ CR−NR
Q
p′

≤ C.

(3.53)

Now let us check (3.52) for 0 < R < 1. We write∫
{2R<|x|}

(
B̃Q/p

(x
2

))q dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q
=

∫
{2R<|x|<2}

(
B̃Q/p

(x
2

))q dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q
+

∫
{|x|⩾2}

(
B̃Q/p

(x
2

))q dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q . (3.54)

We note that the second integral on the right-hand side of (3.54) is integrable by the
second equality in (3.50). Then, using the first equality in (3.50) we get for the first
integral that ∫

{2R<|x|<2}

∣∣∣B̃Q/p

(x
2

)∣∣∣q dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q
≤
∫
{2R<|x|<2}

∣∣∣B̃Q/p

(x
2

)∣∣∣q dx

|x|Q

≤ C

∫
{2R<|x|<2}

|x|−Qq/p′−Qdx

≤ CR−Qq/p′ .
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It implies with (3.54) that∫
{2R<|x|}

∣∣∣B̃Q/p

(x
2

)∣∣∣q dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q
 1

q (∫
{|x|<R}

dx

) 1
p′

≤ C(R−Q/p′ + 1)RQ/p′ ≤ C

for any 0 < R < 1. Thus, we have checked (3.52), then applying (3.1) for N1 one gets

N
1
q

1 ≤ (p′)
1
p′ p

1
qA1∥f∥Lp(G). (3.55)

Now we estimate N3. Without loss of generality, we may assume again that | · | is the
norm. Similarly to (3.49) we obtain |y| < 2|y−1x| from 2|x| < |y|. Then, we have for
N3 that

N3 ≤
∫
G

(∫
{|y|>2|x|}

(
B̃Q/p

(y
2

))
|f(y)|dy

)q
dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q .
In order to apply (3.2) for N3, we need to check the following condition:∫

{|x|<R}

dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q
 1

q (∫
{2R<|x|}

(
B̃Q/p

(x
2

))p′
dx

) 1
p′

≤ A2. (3.56)

To check this, let us consider the cases: R ≥ 1 and 0 < R < 1. Then, for R ≥ 1 by
the second equality in (3.50), we get(∫

{2R<|x|}

(
B̃Q/p

(x
2

))p′
dx

) 1
p′

≤ C

(∫
{2R<|x|}

|x|−Np′dx

) 1
p′

≤ CR−N
p . (3.57)

Moreover, we have∫
{|x|<R}

dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q =

∫
{|x|< 1

2
}

dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q
+

∫
{ 1

2
⩽|x|<R}

dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q ,
and we note that the first summand on the right-hand side of above is integrable
since r > 1. For the second term, we get∫

{ 1
2
≤|x|<R}

dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q ≤
∫
{ 1

2
≤|x|<R}

dx

|x|Q
≤ C(1 + logR). (3.58)

Combining (3.57) and (3.58), we have for R ≥ 1 that∫
{|x|<R}

dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q
 1

q (∫
{2R<|x|}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′ dx) 1
p′

≤ CR−N
p (1 + logR)

1
q ≤ C.
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Now let us check the condition (3.56) for 0 < R < 1. We split the integral∫
{2R<|x|}

(
B̃Q/p

(x
2

))p′
dx =

∫
{2R<|x|<2}

(
B̃Q/p

(x
2

))p′
dx+

∫
{|x|⩾2}

(
B̃Q/p

(x
2

))p′
dx.

(3.59)
We note that the second integral on the right-hand side of above is integrable by the
second equality in (3.50). Then, using the first equality in (3.50) we get for the first
integral that∫

{2R<|x|<2}

(
B̃Q/p

(x
2

))p′
dx ≤ C

∫
{2R<|x|<2}

|x|−Qdx ≤ C log

(
1

R

)
,

which implies with (3.59) that∫
{2R<|x|}

(
B̃Q/p

(x
2

))p′
dx ≤ C

(
1 + log

(
1

R

))
. (3.60)

Since ∫
{|x|<R}

dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q ⩽ C

(
log

(
e +

1

R

))−(r−1)

,

and (3.60), and taking into account r > 1 and q < (r − 1)p′ we obtain that∫
{|x|<R}

dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q
 1

q (∫
{2R<|x|}

(
B̃Q/p

(x
2

))p′
dx

) 1
p′

⩽ C

(
log

(
e +

1

R

))− r−1
q

(
1 +

(
log

(
1

R

)) 1
p′
)

⩽ C.
(3.61)

Thus, we have checked (3.56), then applying (3.2) for N3 we obtain

N
1
q

3 ≤ (p′)
1
p′ p

1
qA2∥f∥Lp(G). (3.62)

Now let us estimate N2. We write

N2 =
∑
k∈Z

∫
{2k⩽|x|<2k+1}

(∫
{|x|⩽2|y|⩽4|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q .
Since the function

(
log
(

1
|x|

))r
|x|Q is non-decreasing with respect to |x| near the

origin, there exists an integer k0 ∈ Z with k0 ⩽ −3 such that this function is non-
decreasing in |x| ∈ (0, 2k0+1). We decompose N2 with k0 as follows

N2 = N21 +N22, (3.63)

where

N21 :=

k0∑
k=−∞

∫
{2k⩽|x|<2k+1}

(∫
{|x|⩽2|y|⩽4|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q
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and

N22 :=
∞∑

k=k0+1

∫
{2k⩽|x|<2k+1}

(∫
{|x|⩽2|y|⩽4|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

dx∣∣∣log (e + 1
|x|

)∣∣∣r |x|Q .
Let us first estimate N22. Since |x| ⩽ 2|y| ⩽ 4|x| and 2k ⩽ |x| < 2k+1, we have
2k−1 ⩽ |y| < 2k+2. Before starting to estimate N22, using (3.46), N > Q and q ≥ p,
let us show that∫

G
|T (2)

Q/p(x)|
r̃dx =

∫
|x|<1

|T (2)
Q/p(x)|

r̃dx+

∫
|x|≥1

|T (2)
Q/p(x)|

r̃dx

≤ C2

(∫
|x|<1

|x|−
Qq(p−1)
pq+p−q dx+

∫
|x|≥1

|x|−
Npq

pq+p−q dx

)
<∞,

(3.64)

where r̃ ∈ [1,∞) is such that 1 + 1
q
= 1

r̃
+ 1

p
.

Then, (3.64) and Young’s inequality (e.g. [20, Proposition 1.5.2]) for 1+ 1
q
= 1

r̃
+ 1

p

with r̃ ∈ [1,∞) imply that

N22 ⩽ C
∞∑

k=k0+1

∫
{2k⩽|x|<2k+1}

(∫
{|x|⩽2|y|⩽4|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

dx

⩽ C
∞∑

k=k0+1

∥[f · χ{2k−1⩽|·|<2k+2}] ∗ T
(2)
Q/p∥

q
Lq(G)

⩽ C∥T (2)
Q/p∥

q
Lr̃(G)

∞∑
k=k0+1

∥f · χ{2k−1⩽|·|<2k+2}∥qLp(G)

= C
∞∑

k=k0+1

(∫
{2k⩽|x|<2k+1}

|f(x)|pdx
) q

p

⩽ C

(∑
k∈Z

∫
{2k⩽|x|<2k+1}

|f(x)|pdx

) q
p

= C∥f∥qLp(G).

(3.65)

To complete the proof it is left to estimate N21. As in (3.49), assuming | · | is the
norm and using the triangle inequality, we have

3|x| = |x|+ 2|x| ≥ |x|+ |y| ≥ |y−1x|, (3.66)

where we have used |y| ⩽ 2|x|. Since
(
log
(

1
|x|

))r
|x|Q is non-decreasing in |x| ∈

(0, 2k0+1) and 3|x| ⩾ |y−1x|, we have

(
log

(
1

|x|

))r

|x|Q ≥

log

 1∣∣∣y−1x
3

∣∣∣
r ∣∣∣∣y−1x

3

∣∣∣∣Q .
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Then, these and (3.46) yield

N21 ≤ C

k0∑
k=−∞

∫
{2k≤|x|<2k+1}

(∫
{|x|≤2|y|≤4|x|}

|y−1x|−
Q
p′ |f(y)|dy

)q
dx(

log
(

1
|x|

))r
|x|Q

= C

k0∑
k=−∞

∫
{2k≤|x|<2k+1}

∫
{|x|≤2|y|≤4|x|}

|y−1x|−
Q
p′ |f(y)|((

log
(

1
|x|

))r
|x|Q

) 1
q

dy


q

dx

≤ C

k0∑
k=−∞

∫
{2k≤|x|<2k+1}

∫
{|x|≤2|y|≤4|x|}

|y−1x|−
Q
p′ |f(y)|((

log
(

1
|(y−1x)/3|

))r
|(y−1x)/3|Q

) 1
q

dy


q

dx.

Since |x| ≤ 2|y| ≤ 4|x| and 2k ≤ |x| < 2k+1 with k ≤ k0, we get 2k−1 ≤ |y| < 2k+2

and |y−1x| ≤ 3|x| < 3 ·2k0+1 ≤ 3/4 by (3.66) and k0 ≤ −3. Taking into account these
and setting

g(x) :=
χB 3

4
(0)(x)(

log
(

1
|x|

)) r
q |x|

Q
q
+Q

p′

,

we have for N21 that

N21 ≤ C

k0∑
k=−∞

∫
{2k≤|x|<2k+1}

∫
{|x|≤2|y|≤4|x|}

|f(y)|(
log
(

1
|y−1x|

)) r
q |y−1x|

Q
q
+Q

p′

dy


q

dx

≤ C

k0∑
k=−∞

∥[f · χ{2k−1≤|·|<2k+2}] ∗ g∥qLq(G).

Since p ≤ q < (r − 1)p′, we use Young’s inequality for 1 + 1
q
= 1

r̃
+ 1

p
with r̃ ∈ [1,∞)

to get

N21 ≤ C∥g∥q
Lr̃(G)

k0∑
k=−∞

∥f · χ{2k−1≤|·|<2k+2}∥qLp(G) ≤ C∥f∥qLp(G), (3.67)

provided that g ∈ Lr̃(G). Since
(

Q
q
+ Q

p′

)
r̃ = Q, rr̃

q
= rp′

p′+q
and q < (r − 1)p′, then

changing variables, we obtain

∥g∥r̃Lr̃(G) =

∫
B(0,3/4)

dx(
log
(
1
x

)) rp′
p′+q |x|Q

= C

∫ ∞

log( 4
3)

dt

t
rp′
p′+q

<∞.

Thus, (3.55), (3.62), (3.63), (3.65), (3.67) and (3.48) complete the proof of Theorem
3.6. □

As an application of Theorem 3.1, we can also obtain the following weighted Lp−Lq

differential Hardy-Sobolev type inequality with the radial derivative:
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Theorem 3.7. Let G be a homogeneous Lie group of homogeneous dimension Q. Let
ϕ5, ψ5 be positive weight functions on G and let 1 < p ≤ q < ∞. Then there exists a
positive constant C such that(∫

G
ϕ5(x)|f(x)|qdx

)1/q

≤ C

(∫
G
ψ5(x)|R|x|f(x)|pdx

)1/p

(3.68)

holds for all radial functions f with f(0) = 0 if and only if

A5 := sup
R>0

(∫
|x|≥R

ϕ5(x)dx

)1/q
(∫ R

0

(∫
S

rQ−1ψ5(ry)dσ(y)

)1−p′

dr

)1/p′

<∞,

(3.69)
where R|x| :=

d
d|x| is the radial derivative.

In the abelian case G = (Rn,+) and Q = n, (3.68) was obtained in [14] and in [49].

Proof of Theorem 3.7. If we denote f̃(r) = f(x) for r = |x| and

Φ(r) =

∫
S

rQ−1ϕ5(ry)dσ(y), Ψ(r) =

∫
S

rQ−1ψ5(ry)dσ(y),

then using f̃(0) = 0 we have(∫
G
ϕ5(x)|f(x)|qdx

)1/q

=

(∫
S

∫ ∞

0

rQ−1ϕ5(ry)|f̃(r)|qdrdσ(y)
)1/q

=

(∫ ∞

0

Φ(r)|f̃(r)|qdr
)1/q

=

(∫ ∞

0

Φ(r)

∣∣∣∣∫ r

0

Rrf̃(r)dr

∣∣∣∣q dr)1/q

≤ C

(∫ ∞

0

Ψ(r)
∣∣∣Rrf̃(r)

∣∣∣p dr)1/p

= C

(∫
G
ψ5(x)|R|x|f(x)|pdx

)1/p

if and only if the condition (3.69) holds by Theorem 3.1, namely by (3.1) and (3.3). □

4. Hardy-Littlewood-Sobolev inequalities on homogeneous Lie
groups

In this section we apply the integral Hardy inequalities from the previous section
to obtain the Hardy-Littlewood-Sobolev and logarithmic Hardy-Littlewood-Sobolev
type inequalities on homogeneous Lie groups. We also discuss the reversed Hardy-
Littlewood-Sobolev inequalities on general homogeneous Lie groups.

Now we start with the Hardy-Littlewood-Sobolev inequality (see [26], [27] and
[50]). We also refer to [23] for the case of the Heisenberg group and to [29] and [18]
for sharp constants of the Hardy-Littlewood-Sobolev inequality. Here, we investigate
the weighted Hardy-Littlewood-Sobolev inequalities on general homogeneous groups.

Theorem 4.1. Let G be a homogeneous Lie group of homogeneous dimension Q and
let | · | be an arbitrary homogeneous quasi-norm. Let 0 < λ < Q and 1 < p, q < ∞
be such that 1/p + 1/q + (α + λ)/Q = 2 with 0 ≤ α < Q/p′ and α + λ ≤ Q, where
1/p+ 1/p′ = 1. Then there exists a positive constant C = C(Q, λ, p, α) such that∣∣∣∣∣

∫
G

∫
G

f(x)g(y)

|x|α|y−1x|λ
dxdy

∣∣∣∣∣ ≤ C∥f∥Lp(G)∥g∥Lq(G) (4.1)
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holds for all f ∈ Lp(G) and g ∈ Lq(G).

Proof of Theorem 4.1. Let T
(3)
a (x) := |x|a−Q with 0 < a < Q/r for some 1 < r < ∞.

Then, using Hölder’s inequality we calculate∣∣∣∣∣
∫
G

∫
G

f(x)g(y)

|x|α|y−1x|λ
dxdy

∣∣∣∣∣ =
∣∣∣∣∣
∫
G
f(x)

(g ∗ T (3)
Q−λ)(x)

|x|α
dx

∣∣∣∣∣
≤ ∥f∥Lp(G)

∥∥∥∥∥g ∗ T
(3)
Q−λ

|x|α

∥∥∥∥∥
Lp′ (G)

.

(4.2)

Note that the conditions α + λ ≤ Q and 1/p + 1/q + (α + λ)/Q = 2 imply q ≤ p′,
while 0 < λ < Q, α < Q/p′ and 1/p+ 1/q + (α + λ)/Q = 2 give

0 < Q− λ = Q−Q

(
2− 1

p
− 1

q

)
+ α < Q−Q

(
2− 1

p
− 1

q

)
+
Q

p′
= Q/q.

Since we have 1 < q ≤ p′ < ∞, 0 ≤ αp′ < Q, 0 < Q − λ < Q/q and (Q − λ)/Q =
1/q − 1/p′ + α/Q, using Theorem 3.4 in (4.2) we obtain (4.1). □

Let us now introduce the critical case α = Q/p′ of the Hardy-Littlewood-Sobolev
inequality (4.1):

Theorem 4.2. Let G be a homogeneous Lie group of homogeneous dimension Q and
let |·| be an arbitrary homogeneous quasi-norm. Let 1 < p <∞, 1 < q ≤ p′ < (r−1)q′

and q < r <∞, where 1/p+1/p′ = 1 and 1/q+1/q′ = 1. Let T
(2)
Q/p(x) be as in Theorem

3.6. Then there exists a positive constant C = C(p, q, r, Q) such that∣∣∣∣∣∣∣
∫
G

∫
G

f(x)g(y)T
(2)
Q/q(y

−1x)(
log
(
e + 1

|x|

)) r
p′ |x|

Q
p′

dxdy

∣∣∣∣∣∣∣ ≤ C∥f∥Lp(G)∥g∥Lq(G) (4.3)

holds for all f ∈ Lp(G) and g ∈ Lq(G).

Proof of Theorem 4.2. By Hölder’s inequality we have∣∣∣∣∣∣∣
∫
G

∫
G

f(x)g(y)T
(2)
Q/q(y

−1x)(
log
(
e + 1

|x|

)) r
p′ |x|

Q
p′

dxdy

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
∫
G
f(x)

(g ∗ T (2)
Q/q)(x)(

log
(
e + 1

|x|

)) r
p′ |x|

Q
p′

dx

∣∣∣∣∣∣∣
≤ ∥f∥Lp(G)

∥∥∥∥∥∥∥
g ∗ T (2)

Q/q(
log
(
e + 1

|x|

)) r
p′ |x|

Q
p′

∥∥∥∥∥∥∥
Lp′ (G)

.

(4.4)

Since we have 1 < q < r <∞ and q ≤ p′ < (r − 1)q′, then by applying Theorem 3.6
we derive (4.3) from (4.4). □

Remark 4.3. Let us make some remarks concerning the reversed Hardy-Littlewood-
Sobolev inequality on homogeneous groups (see [16], [31] and [13] for the recent
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Euclidean analysis of such inequalities). Namely, let us look at the validity of the
inequality ∫

G

∫
G
f(x)|y−1x|λf(y)dxdy ≥ CQ,λ,p∥f∥θL1(G)∥f∥2−θ

Lp(G) (4.5)

for any 0 ≤ f ∈ L1 ∩ Lp(G) with f ̸≡ 0 and 0 < p < 1, where λ > 0 and θ := (2Q−
p(2Q + λ))/(Q(1− p)). When G = (Rn,+), hence Q = n, the case p = 2n/(2n + λ)
is investigated in [16] and [31], and the case p > n/(n+ λ) is studied in [13].

We show that in the case 0 < p ≤ Q/(Q + λ) the inequality (4.5) is not valid,
namely we show that (4.5) fails for any CQ,λ,p > 0. This is showed in the Euclidean
case in [7] when p < n/(n+ λ) and in [13] when p ≤ n/(n+ λ).

We consider

fε(x) := f(x) + Aε−Qh(x/ε),

for a non-negative function f with compact support and for a non-negative smooth
fuction h with the property

∫
G h(x)dx = 1, and for some A > 0. Suppose (4.5) holds

for some CQ,λ,p > 0. Putting this fε in the inequality (4.5), we obtain

CQ,λ,p ≤
∫
G

∫
G fε(x)|y

−1x|λfε(y)dxdy
∥fε∥θL1(G)∥fε∥

2−θ
Lp(G)

→
∫
G

∫
G f(x)|y

−1x|λf(y)dxdy + 2A
∫
G |x|λf(x)dx

(
∫
G f(x)dx+ A)θ(

∫
G(f(x))

pdx)(2−θ)/p
(4.6)

as ε → 0+, where we have used
∫
G fε(x)dx =

∫
G f(x)dx + A, and when ε → 0+ the

following facts ∫
G
(fε(x))

pdx→
∫
G
(f(x))pdx

and∫
G

∫
G
fε(x)|y−1x|λfε(y)dxdy =

∫
G

∫
G
f(x)|y−1x|λf(y)dxdy

+ 2A

∫
G

∫
G
f(x)|(ε−1y)−1x|λh(y)dxdy + A2ε−2Q

∫
G

∫
G
h
(x
ε

)
h
(y
ε

)
dxdy

→
∫
G

∫
G
f(x)|y−1x|λf(y)dxdy + 2A

∫
G
|x|λf(x)dx,

since
∫
G h(x)dx = 1. Note that we can take the limit as A→ +∞ in (4.6), since it is

valid for all A > 0. Then, when θ > 1, i.e., p < Q/(Q+ λ), taking A→ +∞ in (4.6)
we see that CQ,λ,p = 0. In the case θ = 1, that is, p = Q/(Q + λ), taking again the
limit as A→ +∞ in (4.6) we get

CQ,λ,p ≤
2
∫
G |x|λf(x)dx

(
∫
G(f(x))

pdx)1/p
. (4.7)

Now we show that the right-hand side of (4.7) goes to zero when R → ∞ if we put
there the function

fR(x) =

{
|x|−(Q+λ), for 1 ≤ |x| ≤ R,

0, otherwise,
(4.8)
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for any R > 1. Indeed, taking into account p = Q/(Q+ λ) we obtain from (4.7) that

CQ,λ,p ≤
2
∫
G |x|λfR(x)dx

(
∫
G(fR(x))

pdx)1/p
= 2(|S| logR)−λ/Q → 0 (4.9)

as R → ∞, where |S| is a Q−1 dimensional surface measure of the unit quasi-sphere
in G.

Thus, we have proved that the reversed Hardy-Littlewood-Sobolev inequality (4.5)
is not valid with any positive constant CQ,λ,p for 0 < p ≤ Q/(Q+ λ).

5. Hypoelliptic Hardy, Sobolev, Rellich, Caffarelli-Kohn-Nirenberg
and Hardy-Littlewood-Sobolev inequalities

In this section we obtain Hardy-Sobolev-Rellich inequality on graded groups, which
implies Hardy, Sobolev and Rellich inequalities on graded groups. Moreover, we
establish Caffarelli-Kohn-Nirenberg and Hardy-Littlewood-Sobolev inequalities, and
uncertainty type principle on graded Lie groups.

Since we have (2.14) for the Riesz kernel Iα from (2.6), taking T
(1)
a (x) = Ia(x) in

Theorem 3.4 and noting that R− a
ν f = f ∗ Ia by [20, Corollary 4.3.11], we obtain the

following Hardy-Sobolev-Rellich inequality:

Theorem 5.1. Let G be a graded Lie group of homogeneous dimension Q and let
R be a positive Rockland operator of homogeneous degree ν. Let | · | be an arbitrary
homogeneous quasi-norm. Let 1 < p ≤ q < ∞ and 0 < a < Q/p. Let 0 ≤ b < Q and
a
Q
= 1

p
− 1

q
+ b

qQ
. Then there exists a positive constant C such that∥∥∥∥∥ f

|x|
b
q

∥∥∥∥∥
Lq(G)

≤ C∥R
a
ν f∥Lp(G) (5.1)

holds for all f ∈ L̇p
a(G).

Remark 5.2. In the case b = 0, the inequality (5.1) implies the Sobolev inequality
on graded groups [20, Proposition 4.4.13, (5)]: Let 1 < p < q <∞ and 0 < a < Q/p
with a

Q
= 1

p
− 1

q
. Then there exists a positive constant C such that

∥f∥Lq(G) ≤ C∥R
a
ν f∥Lp(G) (5.2)

holds for all f ∈ L̇p
a(G).

Remark 5.3. In particular, for q = p from (5.1) we derive the general hypoelliptic
family of the Hardy inequalities:∥∥∥∥ f

|x|a

∥∥∥∥
Lp(G)

≤ C∥R
a
ν f∥Lp(G), 1 < p <∞, 0 < a < Q/p, (5.3)

for all f ∈ L̇p
a(G).

Remark 5.4. In the case q = p, the inequality (5.1) gives on graded groups the
Hardy inequality∥∥∥∥ f|x|

∥∥∥∥
Lp(G)

≤ C∥R
1
ν f∥Lp(G), 1 < p < Q, f ∈ L̇p

1(G), (5.4)
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when a = 1, and the Rellich inequality∥∥∥∥ f

|x|2

∥∥∥∥
Lp(G)

≤ C∥R
2
ν f∥Lp(G), 1 < p <

Q

2
, f ∈ L̇p

2(G), (5.5)

when a = 2.

Similarly, putting T
(2)
a (x) = Ba(x) in Theorem 3.6 and using (2.15) with the Bessel

kernel Ba from (2.7), by noting (I + R)−
a
ν f = f ∗ Ba by [20, Corollary 4.3.11], we

obtain the critical case a = Q/p of Theorem 5.1:

Theorem 5.5. Let G be a graded Lie group of homogeneous dimension Q and let
R be a positive Rockland operator of homogeneous degree ν. Let | · | be an arbitrary
homogeneous quasi-norm and let 1 < p < r < ∞ and p ≤ q < (r − 1)p′, where
1/p+ 1/p′ = 1. Then there exists a positive constant C = C(p, q, r, Q) such that∥∥∥∥∥∥∥

f(
log
(
e + 1

|x|

)) r
q |x|

Q
q

∥∥∥∥∥∥∥
Lq(G)

≤ C∥f∥Lp
Q/p

(G) (5.6)

holds for all f ∈ Lp
Q/p(G).

The Hardy-Sobolev-Rellich inequality (5.1) implies the following Heisenberg-Pauli-
Weyl type uncertainty principle for general homogeneous invariant hypoelliptic dif-
ferential operators:

Corollary 5.6. Let G be a graded Lie group of homogeneous dimension Q and let
R be a positive Rockland operator of homogeneous degree ν. Let | · | be an arbitrary
homogeneous quasi-norm. Let 1 < p ≤ q < ∞ and 0 < a < Q/p. Let 0 ≤ b < Q and
a
Q
= 1

p
− 1

q
+ b

qQ
. Then there exists a positive constant C such that

∥R
a
ν f∥Lp(G)∥|x|

b
q f∥Lq′ (G) ≥ C

∫
G
|f(x)|2dx (5.7)

holds for all f ∈ L̇p
a(G), where 1/q + 1/q′ = 1.

Proof of Theorem 5.6. Using Hölder’s inequality and (5.1), we have

∥R
a
ν f∥Lp(G)∥|x|

b
q f∥Lq′ (G) ≥ C

∥∥∥∥ f

|x|b/q

∥∥∥∥
Lq(G)

∥|x|
b
q f∥Lq′ (G) ≥ C

∫
G
|f(x)|2dx,

which is (5.7). □

As another consequence of Theorem 5.1, we also obtain a family of extended
Caffarelli-Kohn-Nirenberg inequalities on graded groups.

Theorem 5.7. Let G be a graded Lie group of homogeneous dimension Q and let
R be a positive Rockland operator of homogeneous degree ν. Let | · | be an arbitrary
homogeneous quasi-norm. Let 1 < p, q < ∞, δ ∈ (0, 1] and 0 < r < ∞ with r ≤ q

1−δ

for δ ̸= 1. Let 0 < a < Q/p and β, γ ∈ R with δr(Q−ap−βp) ≤ p(Q+ rγ− rβ) and
β(1 − δ) − δa ≤ γ ≤ β(1 − δ). Assume that r(δQ+p(β(1−δ)−γ−aδ))

pQ
+ (1−δ)r

q
= 1. Then

there exists a positive constant C such that

∥|x|γf∥Lr(G) ≤ C
∥∥R a

ν f
∥∥δ
Lp(G)

∥∥|x|βf∥∥1−δ

Lq(G)
(5.8)
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holds for all f ∈ L̇p
a(G).

Remark 5.8. We note that the conditions β = γ = 0, a > 0, 1 < p < Q/a,
1 < q ≤ r ≤ pQ/(Q − ap) and δ = (1/q − 1/r)(a/Q + 1/q − 1/p)−1 satisfy all the
conditions of Theorem 5.7. Indeed, δ = (1/q − 1/r)(a/Q + 1/q − 1/p)−1, r ≥ q and
Q−ap > 0 imply r ≤ q

1−δ
, while r ≤ pQ/(Q−ap) gives δr(Q−ap−βp) ≤ p(Q+rγ−rβ)

since β = γ = 0 and δ ≤ 1. In this case, δ = (1/q − 1/r)(a/Q + 1/q − 1/p)−1 and

β(1 − δ) − δa ≤ γ ≤ β(1 − δ) are equivalent to r(δQ+p(β(1−δ)−γ−aδ))
pQ

+ (1−δ)r
q

= 1 and

aδ ≥ 0, respectively. Thus, (5.8) recovers also the Gagliardo-Nirenberg inequality
previously obtained in [41] and [42] on graded groups

∥f∥Lr(G) ≤ C
∥∥R a

ν f
∥∥δ
Lp(G)

∥f∥1−δ
Lq(G) (5.9)

for all f ∈ L̇p
a(G) ∩ Lq(G).

We also note that when G = (Rn,+), Q = n and R = −∆, in the special case
p = q = 2 and a = 1, the inequality (5.9) essentially gives the classical Gagliardo-
Nirenberg inequality [25] and [33].

Note that another type of Garliardo-Nirenberg inequality involving Besov norms
on graded groups was obtained in [4].

Proof of Theorem 5.7. Case δ = 1. Notice that in this case, r(δQ+p(β(1−δ)−γ−aδ))
pQ

+
(1−δ)r

q
= 1 gives a

Q
= 1

p
− 1

r
− γ

Q
, which implies that the condition δr(Q − ap −

βp) ≤ p(Q + rγ − rβ) is equivalent to the trivial estimate pQ ≤ pQ. The condition
β(1−δ)−δa ≤ γ ≤ β(1−δ) gives −a ≤ γ ≤ 0, which implies r ≥ p with a

Q
= 1

p
− 1

r
− γ

Q
.

Taking into account these we see that (5.8) is equivalent to (5.1).
Case δ ∈ (0, 1). We write

∥|x|γf∥Lr(G) =

(∫
G
|x|γr|f(x)|rdx

) 1
r

=

(∫
G

|f(x)|δr

|x|r(β(1−δ)−γ)
· |f(x)|

(1−δ)r

|x|−βr(1−δ)
dx

) 1
r

.

Note that δ > 0, Q > ap and β(1 − δ) − γ ≥ 0 imply r(δQ + p(β(1 − δ) − γ −
aδ)) > 0, while δr(Q − ap − βp) ≤ p(Q + rγ − rβ), δ < 1 and r ≤ q

1−δ
give

pQ
r(δQ+p(β(1−δ)−γ−aδ))

≥ 1 and q
(1−δ)r

≥ 1, respectively. Then by using Hölder’s inequal-

ity for r(δQ+p(β(1−δ)−γ−aδ))
pQ

+ (1−δ)r
q

= 1, we obtain

∥|x|γf∥Lr(G) ≤

(∫
G

|f(x)|
δpQ

δQ+p(β(1−δ)−γ−aδ)

|x|
pQ(β(1−δ)−γ)

δQ+p(β(1−δ)−γ−aδ)

dx

) δQ+p(β(1−δ)−γ−aδ)
pQ (∫

G

|f(x)|q

|x|−βq
dx

) 1−δ
q

=

∥∥∥∥∥ f

|x|
β(1−δ)−γ

δ

∥∥∥∥∥
δ

L
δpQ

δQ+p(β(1−δ)−γ−aδ) (G)

∥∥∥∥ f

|x|−β

∥∥∥∥1−δ

Lq(G)

. (5.10)

We also note that the conditions δpQ
δQ+p(β(1−δ)−γ−aδ)

≥ δr > 0 and β(1 − δ) − γ ≥ 0

imply
δpQ

δQ+ p(β(1− δ)− γ − aδ)
· β(1− δ)− γ

δ
≥ 0, (5.11)
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while Q > ap and δ > 0 give

δpQ

δQ+ p(β(1− δ)− γ − aδ)
· β(1− δ)− γ

δ
< Q. (5.12)

Then, (5.11), (5.12) and

a

Q
=

1

p
− 1

δpQ
δQ+p(β(1−δ)−γ−aδ)

+
β(1−δ)−γ

δ

Q

with γ ≥ β(1− δ)− δa imply δpQ
δQ+p(β(1−δ)−γ−aδ)

≥ p, so that we can use Theorem 5.1

in (5.10) to obtain (5.8). □

Now we show the weighted improved Hardy-Littlewood-Sobolev/Stein-Weiss in-
equality on graded groups. Note that in this version we can put derivatives on the
right-hand side.

Theorem 5.9. Let G be a graded Lie group of homogeneous dimension Q and let
| · | be an arbitrary homogeneous quasi-norm. Let 1 < p, q < ∞, 0 ≤ a < Q/p
and 0 ≤ b < Q/q. Let 0 < λ < Q, 0 ≤ α < a + Q/p′ and 0 ≤ β ≤ b be such
that (Q − ap)/(pQ) + (Q − q(b − β))/(qQ) + (α + λ)/Q = 2 and α + λ ≤ Q, where
1/p + 1/p′ = 1. Then there exists a positive constant C = C(Q, λ, p, α, β, a, b) such
that ∣∣∣∣∣

∫
G

∫
G

f(x)g(y)

|x|α|y−1x|λ|y|β
dxdy

∣∣∣∣∣ ≤ C∥f∥L̇p
a(G)∥g∥L̇q

b(G) (5.13)

holds for all f ∈ L̇p
a(G) and g ∈ L̇q

b(G).

Proof of Theorem 5.9. We first prove it for a ̸= 0 and b ̸= 0. We want to use Theorem
4.1 on the left-hand side of (5.13) to get∣∣∣∣∣

∫
G

∫
G

f(x)g(y)

|x|α|y−1x|λ|y|β
dxdy

∣∣∣∣∣ ≤ C∥f∥Lp1 (G)

∥∥∥∥ g

|y|β

∥∥∥∥
Lq1 (G)

, (5.14)

where p1 := pQ
Q−ap

and q1 := qQ
Q−q(b−β)

. For this, let us check conditions of Theorem

4.1. Note that 0 < a < Q/p together with 1 < p < ∞ implies 1 < p1 < ∞, while
0 < b < Q/q and 0 ≤ β ≤ b give 1 < q1 <∞. We also note that 0 ≤ α < a+Q/p′ ⇒
0 ≤ α < Q/p′1 with p

′
1 = p1/(p1 − 1) and 2 = (Q− ap)/(pQ) + (Q− q(b− β))/(qQ) +

(α + λ)/Q = 1/p1 + 1/q1 + (α + λ)/Q. Thus, since we also have 0 < λ < Q and
α + λ ≤ Q, we obtain (5.14).

We have 1 < p < p1 < ∞, 0 < a < Q/p and a
Q

= 1
p
− 1

p1
since p1 = pQ

Q−ap
, then

applying the Sobolev inequality (5.2) on graded groups (or [20, Proposition 4.4.13,
(5)]) we get

∥f∥Lp1 (G) ≤ C∥f∥L̇p
a(G). (5.15)

Since Q−q(b−β) > 0 and Q−qb > 0 we have 0 ≤ βqQ
Q−q(b−β)

< Q, that is, 0 ≤ βq1 < Q

since q1 = qQ
Q−q(b−β)

. We also have b/Q = 1/q − 1/q1 + β/Q since q1 = qQ
Q−q(b−β)

and

1 < q ≤ q1 <∞. Then we can use (5.1), i.e.∥∥∥∥ g

|y|β

∥∥∥∥
Lq1 (G)

≤ C∥g∥L̇q
b(G). (5.16)
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Finally, putting (5.15) and (5.16) in (5.14), we obtain (5.13).
In the case a = 0, the inequalities (5.16) and (5.14) give (5.13).
When b = 0, we have β = 0 since 0 ≤ β ≤ b, then (5.14) with (5.15) implies

(5.13). □

Let us now discuss the critical case α = a+Q/p′ of the Hardy-Littlewood-Sobolev
inequality (5.13) on graded Lie groups.

Theorem 5.10. Let G be a graded Lie group of homogeneous dimension Q and let | · |
be an arbitrary homogeneous quasi-norm. Let 1 < p, q < ∞, 0 ≤ a < Q/p, 0 ≤ β ≤
b < Q/q. Q(1/p+1/q−1)+β−a−b ≥ 0, max{ Qq

Q−bq+βq
, pq(a+b−β+2Q)−Q(p+q)

pq(Q+a)−Qq
} < r <∞.

Then there exists a positive constant C = C(p, q, a, b, β, r, Q) such that∣∣∣∣∣∣∣∣
∫
G

∫
G

f(x)g(y)BQ/q(y
−1x)(

log
(
e + 1

|x|

)) r(pQ−Q+ap)
pQ |x|a+

Q
p′ |y|β

dxdy

∣∣∣∣∣∣∣∣ ≤ C∥f∥L̇p
a(G)∥g∥L̇q

b(G) (5.17)

holds for all f ∈ L̇p
a(G) and g ∈ L̇q

b(G), where BQ/p is the Bessel kernel from (2.7).

Proof of Theorem 5.10. As in the previous case, let us first show it for a ̸= 0 and
b ̸= 0. If we use Theorem 4.2 on the left-hand side of (5.17), then we obtain∣∣∣∣∣∣∣∣
∫
G

∫
G

f(x)g(y)BQ/q(y
−1x)(

log
(
e + 1

|x|

)) r(pQ−Q+ap)
pQ |x|a+

Q
p′ |y|β

dxdy

∣∣∣∣∣∣∣∣ ≤ C∥f∥Lp1 (G)

∥∥∥∥ g

|y|β

∥∥∥∥
Lq1 (G)

, (5.18)

where p1 := pQ
Q−ap

and q1 := qQ
Q−q(b−β)

. For this, we need to check conditions of

Theorem 4.2. Observe that 0 < a < Q/p and 1 < p < ∞ give 1 < p1 < ∞, while
0 < b < Q/q and 0 ≤ β ≤ b imply 1 < q1 < ∞. We also note that Q(1/p +
1/q − 1) + β − a − b ≥ 0, Q > bq, p, q > 1, a > 0 and β ≥ 0 yield q1 ≤ p′1, while

max{ Qq
Q−bq+βq

, pq(a+b−β+2Q)−Q(p+q)
pq(Q+a)−Qq

} < r < ∞ gives p′1 < (r − 1)q′1 and q1 < r < ∞
since Q− bq + βq > 0 and Qq(p− 1) + apq > 0. Thus, we obtain (5.18).
Since we have 1 < p < p1 <∞, 0 < a < Q/p and a

Q
= 1

p
− 1

p1
, then we can use the

Sobolev inequality (5.2) on graded groups (or [20, Proposition 4.4.13, (5)]) to get

∥f∥Lp1 (G) ≤ C∥f∥L̇p
a(G). (5.19)

Note that 0 ≤ βqQ
Q−q(b−β)

< Q due to Q − q(b − β) > 0 and Q − qb > 0, that is,

0 ≤ βq1 < Q since q1 = qQ
Q−q(b−β)

. Moreover, we have b/Q = 1/q − 1/q1 + β/Q

in virtue of q1 = qQ
Q−q(b−β)

and 1 < q ≤ q1 < ∞. Then, the Hardy-Sobolev-Rellich

inequality (5.1) yields ∥∥∥∥ g

|y|β

∥∥∥∥
Lq1 (G)

≤ C∥g∥L̇q
b(G). (5.20)

Finally, using (5.19) and (5.20) in (5.18) implies (5.17).
When a = 0 we obtain (5.17) from (5.20) and (5.18).
In the case b = 0, we have β = 0 since 0 ≤ β ≤ b, then (5.18) with (5.19) concludes

(5.17). □
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6. Appendix: On best constants in HLS and Sobolev inequalities

In this section we discuss the relation between the best constants of Sobolev and
Hardy-Littlewood-Sobolev inequalities on graded groups for certain families of pa-
rameters.

Since the homogeneous order of IQ−λ(y
−1x) (where Ia is the Riesz potential for a

positive Rockland operator R, see (2.6)) and |y−1x|−λ is −λ, then putting p = q,
f = g and λ = Q − 2a for 0 < a < Q/2 in (4.1) with α = 0 we obtain the following
version of the Hardy-Littlewood-Sobolev inequality on graded groups∣∣∣∣∫

G

∫
G
I2a(y

−1x)f(x)f(y)dxdy

∣∣∣∣ ≤ C∥f∥2
L

2Q
Q+2a (G)

(6.1)

for all f ∈ L
2Q

Q+2a (G).
Let CHLS be the best constant in (6.1). We show the relation between this constant

and the best constant CS in the Sobolev inequality (5.2) with p = 2Q/(Q + 2a),
0 < a < Q/2, and q = 2, that is, CS is the best constant in the ineqality

∥f∥L2(G) ≤ C∥f∥
L̇

2Q
Q+2a
a (G)

(6.2)

for all f ∈ L̇
2Q/(Q+2a)
a (G).

We note here that the Riesz potential Ia as well as homogeneous Sobolev spaces
norm in (6.2) above correspond to the particular fixed positive Rockland operator
R of homogeneous degree ν, and is defined by ∥f∥L̇p

a(G) = ∥R a
ν f∥Lp(G). While it is

known [20, 21] that these Sobolev spaces are independent of the choice of a positive
Rockland operator R, the best constants clearly depend on the precise expressions
of the norms.

Theorem 6.1. Let G be a graded Lie group of homogeneous dimension Q, and let
0 < a < Q/2. Then the Hardy-Littlewood-Sobolev (6.1) and Sobolev (6.2) inequalities
are dual. Moreover, we have the equality between their best constants,

CS = CHLS. (6.3)

Remark 6.2. In the Euclidean case, we refer to [29], [5], [17] for the best constant
in Hardy-Littlewood-Sobolev inequality, and refer to [35], [2], [51] and [29] for the
best constant in Sobolev inequality. We also note that according to our knowledge
the best constant in the Hardy-Littlewood-Sobolev inequality is not known yet on
general stratified groups (beyond the Heisenberg group). Indeed, in [18], Frank and
Lieb found the value of the best constant in the Hardy-Littlewood-Sobolev inequality
on the Heisenberg group, however, using |y−1x|−λ instead of the Riesz potential in
(6.1). Although the homogeneous functions | · |−λ and IQ−λ(·) are equivalent, the best
constant in the Hardy-Littlewood-Sobolev inequality does depend on the choice of
this weight. In our case, it is the use of the Riesz potential that implies the validity
of Theorem 6.1.

Remark 6.3. In [52], [11] and [42] the best constant in the Sobolev inequality with
inhomogeneous norm for the parameters different than those in (6.2) is expressed in
the variational form as well as in terms of the ground state solutions of the nonlinear
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Schrödinger equation when G is (Rn,+), the Heisenberg group, and a general graded
Lie group, respectively.

Proof of Theorem 6.1. Taking into account that R− a
ν f = f ∗ Ia (see [20, Corollary

4.3.11]), we rewrite the left-hand side of (6.1) as∣∣∣∣∫
G

∫
G
I2a(y

−1x)f(x)f(y)dxdy

∣∣∣∣ = ∣∣∣∣∫
G
f R− 2a

ν fdx

∣∣∣∣ = |(R− 2a
ν f, f)|

= |(R− a
ν f,R− a

ν f)| = ∥R− a
ν f∥2L2(G).

(6.4)

Putting (6.4) in (6.1), we arrive at

∥f∥L2(G) ≤ CHLS∥f∥
L̇

2Q
Q+2a
a (G)

. (6.5)

Since CS is best constant in (6.2), that is, CS is the best constant in (6.5), we have
CS ≤ CHLS. On the other hand, similarly, one can obtain (6.1) with the constant CS

from (6.2) using (6.4), which means that also CHLS ≤ CS. □
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