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A B S T R A C T

Music source separation is the task of separating musical sources from an au-
dio mixture. It has various direct applications including automatic karaoke
generation, enhancing musical recordings, and 3D-audio upmixing; but also
has implications for other downstream music information retrieval tasks
such as multi-instrument transcription. However, the majority of research has
focused on fixed stem separation of vocals, drums, and bass stems. While
such models have highlighted capabilities of source separation using deep
learning, their implications are limited to very few use cases. Such models
are unable to separate most other instruments due to insufficient training
data. Moreover, class-based separation inherently limits the applicability of
such models to be unable to separate monotimbral mixtures.

This thesis focuses on separating musical sources without requiring tim-
bral distinction among the sources. Preliminary attempts focus on the sepa-
ration of vocal harmonies from choral ensembles using time-domain models
with permutation invariant training. The method performs well but fails to
generalise across datasets mainly due to a lack of sizeable clean training data.
Recognising the challenge of obtaining sizeable, bleed-free data for ensem-
ble recordings, a new high-quality synthesised dataset "EnsembleSet" is pre-
sented which was used to train a monotimbral ensemble separation model
for string ensembles. Moreover, training a model using permutation invari-
ant training is found to be capable of separate mixtures of identical, distinct,
and unseen timbres as well. Although models trained on EnsembleSet can
separate mixtures from unseen real-world datasets, performance drops are
observed for out-of-domain test data. Subsequently improving cross-dataset
performance using fine-tuning is explored for time-domain and complex-
domain separation models. Further investigation into the performance of
these models with different training strategies and different musical contexts
is investigated to achieve a better understanding of the behaviour of these
timbre-agnostic separation models. The techniques developed in this work
are currently being utilised in the industry for vocal harmony separation
and also lay the groundwork for future exploration toward universal source
separation based on monophonic sound event separation.
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Part I

C O N T E X T

Placing Ensemble Separation in the context of existing research.



1
I N T R O D U C T I O N

This thesis investigates the use of deep-learning-based time-domain source

separation models applied for the purpose of separating musical sources

typically found in chamber ensembles, namely choirs, string, wind and brass

instruments. This is a relatively unexplored task, especially in the presented

approach which does not utilise any form of source-identity priors while

training these models. This work relies on significant advances made in deep-

learning-based source separation techniques while distinguishing itself from

the approaches typically utilised in music source separation.

This chapter outlines the motivations and aims for the work presented in

this thesis in Section 1.1, followed by the structure of this thesis in Section 1.2,

subsequently list the major contributions of this thesis in Section 1.3 and

finally lists the associated publications of this work in Section 1.4.

1.1 motivation, hypothesis and research questions

Music source separation is the task of separating distinct musical sources

from an audio mixture. While ideally a solution should be able to separate

any given instrument from a mixture, there are two main challenges. Firstly,

there are not enough bleed-free multitrack audio data available for a vast

majority of instruments. Moreover, current approaches rely on either sepa-

rating a given set of instrument classes or using a query-based separation ap-

proach, which limits their applicability to only being able to separate sources

of distinct classes. The majority of prior research focuses on the instrument

2



1.1 motivation, hypothesis and research questions 3

class-based separation of the most omnipresent instrument stems in popular

music i.e. drums, bass and vocals.

However, this formulation has some limitations. If a mixture consists of

multiple instances of the same instrument, they cannot be distinguished us-

ing this method and will be considered as a single stem. Restricting music

source separation to a class-based separation task would deem it impossible

to train a model to separate a mixture of the same instruments. While separat-

ing choral mixtures based on vocal registers as class labels has been explored

in other works, it has seen limited success. Current class-based source sep-

aration methods that rely on timbral features also suffer when a non-target

instrument sounds similar to one of the target classes (for example lead gui-

tars bleeding into vocal stems). Another limitation of their approach is that a

model is applicable only for separating the specific set of instruments it has

been trained for, which results in a lack of separation solutions for instru-

ments that are underrepresented in current music separation datasets.

On the other hand, in the domain of speech separation, models are capa-

ble of separating very similar-sounding sources, namely mixtures of multi-

ple speakers. Recent state-of-the-art speech separation results perform very

well for 2 speaker mixtures (Luo and Mesgarani, 2019; Subakan et al., 2021).

Moreover, these models are capable of simultaneously separating mixtures

of same-gendered and different-gendered speakers. This is achieved by per-

mutation invariant training objectives, where instead of training the models

with specific output channels for distinct source classes, the model is trained

to separate the sources regardless of which output channel a source gets

assigned to.

However, in speech mixtures, there are few inherent properties that are dif-

ferent in the context of musical mixtures. Firstly, the sources are statistically

uncorrelated, which is not the case in music. Musical sources usually play in

the same key creating significant harmonic overlap, and are also often tem-

porally synchronised. Secondly, speech mixtures typically consist of distinct
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speakers who have distinguishable vocal features, whereas musical mixtures

may include identical instruments playing in harmony or the same vocalist

singing multiple harmonies in a recording.

The primary questions this thesis aims to address are:

• Are deep learning models trained with permutation invariant training

capable of separating timbrally indistinguishable sources?

• Can harmonically correlated sources with high spectral overlap be sep-

arated using time-domain deep learning methods?

• Since bleed-free recordings for ensembles are very difficult to obtain, is

it possible to train music source separation models that perform reli-

ably on real-world chamber ensemble recordings using synthetic data?

While these uncertainties might deter the application of permutation in-

variant training to music source separation, the possibility of being able to

separate mixtures of similar-sounding instruments motivates this research.

However, on further research, it was discovered that training a model in a

permutation invariant fashion not only enables the separation of mixtures of

identical sources but also enables the separation of unseen sources. This the-

sis documents the experiments related to these findings which suggest that

it is possible to train timbre-agnostic separation models, with the constraint

that the sources are expected to be monophonic.

1.2 thesis structure

This section provides a structural skeleton of this thesis to guide the reader

through its contents.

Chapter 2 presents an overview of relevant source separation research. It

begins with the formal definition of the source separation problem and its
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various sub-tasks. It then presents the reader with a brief overview of classi-

cal approaches to solve the source separation problem. Subsequently, an in-

troduction to the various deep-learning based approaches that have been suc-

cessful across different source separation tasks in recent years is presented.

Finally, a survey of related works that tackle the ensemble separation prob-

lem is presented.

Chapter 3 presents EnsembleSet, a high-quality synthesised dataset consist-

ing of instrument renders of chamber ensemble music. This chapter elabo-

rates on the necessity of this dataset in the context of the research undertaken

in this thesis and subsequently details the process of generating this dataset.

It provides a detailed description of the contents of the dataset and can be

used as a guide for users of this dataset.

Chapter 4 presents the proposed method using time-domain source sepa-

ration architectures with permutation invariant training for musical ensem-

bles. Since these architectures were originally designed for speech separation,

the modifications and optimisation required to adapt them to work effec-

tively for high-sample rate musical mixtures are presented here.

Chapter 5 presents the ensemble separation experiments using the pro-

posed method. Firstly, the applicability of these models is tested for choral

music separation using existing datasets. Since these experiments were con-

ducted on a small dataset, the results were not generalisable. Subsequently,

experiments using EnsembleSet for chamber ensemble separation are pre-

sented, which present the first cross-dataset generalisable ensemble separa-

tion results. Finally, domain adaptation experiments are presented on ensem-

ble separation models pre-trained on EnsembleSet, which are subsequently

fine-tuned to real-world datasets.

Chapter 6 presents various analysis methods to understand the perfor-

mance of the presented ensemble separation models under different musi-

cal contexts. A novel measure to quantify the musical complexity of an en-

semble mixture is presented, and its impact on separation performance is
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investigated. The impact of training models with musically incoherent mix-

tures is also evaluated. The timbre-agnosticism of these models is explored

in an instrument-wise analysis of performance. Finally, the impact of pitch

overlaps amongst sources in the mixture is identified as detrimental to the

performance of these separation models and specific failure modes caused

by these are explored.

Chapter 7 summarises the findings of this thesis. The limitations and ad-

vantages of the proposed method are presented with an outlook on future

improvements possible in source separation based on the insights from this

thesis.

1.3 contributions

The contributions of this thesis can be categorised into three major parts:

A new dataset for chamber ensemble separation

• In Chapter 3, a new high-quality synthesised dataset for chamber en-

semble music is presented. This is the largest dataset of bleed-free high

quality chamber music currently available.

• The large size of this dataset, in combination with the multi-mic ren-

ders used as data augmentation enabled training the first generalisable

source separation model for chamber ensembles.

• Unlike previous synthesised datasets, models trained on this larger

synthesised dataset perform better than training on smaller real-world

datasets.

A novel approach to music source separation

• In Section 5.3, permutation invariant training of time-domain deep

learning models is shown to be effective at separating choral music
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mixtures. These models outperform other class-based separation ap-

proaches.

• In Section 5.4, it is shown that the proposed models are capable of

separating mixtures of identical sources.

• In Section 5.4 it is also shown that time-domain deep learning models

with permutation invariant training are capable of separating sources

of a variety of different timbres.

• In Section 5.5 it is observed that pre-training our proposed models

on chamber ensemble instrument mixtures from EnsembleSet and fine-

tuning them with vocal harmony separation data results in improved

vocal harmony separation as compared to training on vocal data alone.

This implies that the model is able to learn features from chamber en-

semble mixtures that are useful for separating vocal harmony mixtures

as well.

• In Section 6.4, it is shown that time-domain source separation models

trained on EnsembleSet behave in a timbre-agnostic fashion, and are ca-

pable of separating mixtures of rare/unseen instruments as well. More-

over, the separation quality of these instruments does not seem to be

correlated to their representation/distribution in the training dataset.

A better understanding of how TasNets work

• In Chapter 4 the optimisation process for adapting TasNets to work at

high sampling rates is presented. The impact of different training and

network hyperparameters are studied in the context of VRAM limita-

tions.

• In Chapter 4 a performance study of the proposed model for ensemble

separation tasks for 2, 3 and 4 sources is presented.

• In Section 6.2 a novel measure for quantifying the harmonic complex-

ity of an input mixture is proposed. In Section 6.2.3 the performance
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correlation of the proposed model and this harmonic overlap metric is

measured. A moderate negative correlation was found between the sep-

aration performance of our proposed model and the harmonic overlap

of a given input mixture.

• In Section 6.5, it is shown that pitch overlaps, crossovers and unisons

in a given input mixture significantly deteriorate the separation quality

achieved using our proposed model.

• Source confusion as a failure mode of our proposed model is identified,

where the source-channel assignment in the model output is found to

be inconsistent for input mixtures where the pitch trajectories of the

sources have crossovers.

• Unisons are identified as another failure mode of our proposed method,

where if the sources present in the input mixture are in unison, the

model fails to separate them.

• Based on these findings, it leads to the understanding that TasNet

based models trained with PIT are possibly separating sources based

on the onsets and pitch trajectories of constituent sources and not on

the basis of timbral characteristics of the sources.

1.4 associated publications

Portions of the work described in this thesis have been presented at peer-

reviewed international conferences and online repositories, as follows:

Peer-reviewed conference papers:

[i] S. Sarkar, E. Benetos, and M. Sandler, "Vocal Harmony Separation using

Time-domain Neural Networks" in Proceedings of INTERSPEECH 2021,

2021
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[ii] S. Sarkar, E. Benetos, and M. Sandler, “EnsembleSet: a new high quality

synthesised dataset for chamber ensemble separation”, in Proceedings of

the 23rd Int. Society for Music Information Retrieval Conf., Bengaluru, India,

2022.

[iii] S. Sarkar, L. Thorpe, E. Benetos, and M. Sandler, "Leveraging synthetic

data for improving chamber ensemble separation", in 2023 IEEE Work-

shop on Applications of Signal Processing to Audio and Acoustics (WASPAA),

New Paltz, NY, USA, 2023,. (Best Student Paper Award)

Extended abstracts:

[iv] S. Sarkar, E. Benetos, and M. Sandler, "Music Source Separation in the

Wild" in DMRN+14: Digital Music Research Network Workshop Proceed-

ings, 2019

[v] S. Sarkar, E. Benetos, and M. Sandler, "Choral Music Separation using

Time-domain Neural Networks" in DMRN+15: Digital Music Research

Network Workshop Proceedings, 2020

[vi] S. Sarkar, E. Benetos, and M. Sandler, "Monotimbral Ensemble Separa-

tion using Permutation Invariant Training" in Proceedings of the MDX

Workshop, ISMIR, 2021

Online repositories:

[vii] S. Sarkar, "MedleyDB dataloader for generating monotimbral mixtures",

uploaded to GitHub at

"https://github.com/saurjya/asteroid/data/medleydb_dataset.py", 2021

[viii] S. Sarkar, "Vocal Harmony Separation - audio examples", available at

"http://c4dm.eecs.qmul.ac.uk/ChoralSep/", 2021

[ix] S. Sarkar, E. Benetos, and M. Sandler, "EnsembleSet", dataset uploaded

to Zenodo at ”https://zenodo.org/record/6519024", 2022
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[x] S. Sarkar, E. Benetos, and M. Sandler, "EnsembleSet with MIDI annota-

tions", dataset uploaded to Zenodo at

”https://zenodo.org/record/7327175", 2022

[xi] S. Sarkar, "Music Ensemble Separation using EnsembleSet", uploaded

to GitHub as a fork of the "Asteroid" Project at

"https://github.com/saurjya/asteroid", 2022

[xii] S. Sarkar, "Music Ensemble Separation - audio examples", available at

"http://c4dm.eecs.qmul.ac.uk/EnsembleSet/", 2023

It should be noted that for all the above-mentioned works, the author is

the main contributor under the supervision of Dr. Emmanouil Benetos and

Prof. Mark Sandler. In the case of [iii], the author was assisted by Louise

Thorpe in preparing the instrument-wise analysis plots, of which Figure 17

and Figure 18 are presented in this thesis.



2
B A C K G R O U N D

In this chapter, a brief overview of how source separation models evolved

over recent years is presented and structured in a fashion where these meth-

ods are categorised based on their working principles. Due to the vast scope

of this research field, some of the sections that are not directly related to the

work presented in this thesis are described in limited detail.

Section 2.1 introduces the main source separation tasks of speech separa-

tion, music separation and speech enhancement. Section 2.2 describes the var-

ious reference-based evaluation metrics that are used for the task of source

separation, which are also used in this thesis. Section 2.3 - Section 2.7 detail

the evolution of source separation architectures across all source separation

tasks.

Section 2.3 presents preliminary approaches in the literature that utilise

spatial filtering to identify sources from multichannel mixtures. These meth-

ods rely on specific constraints in the spatial distribution of sources in the

mix or the distribution of microphones to be able to extract the sources from

them, which inevitably restrict the applicability of such models.

Section 2.4 discusses the initial methods introduced to be able to extract

sources from a mixture based on features identifying independent sources

present in a spectrogram which are not restricted by similar constraints and

used preliminary machine learning methods to identify these sources from a

spectrogram. However, due to their data-driven approach and the limitations

of simple machine learning tools, these methods do not produce generalis-

able results.

11
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Section 2.5 presents the methods based on magnitude spectrogram mask-

ing introduced after the advent of deep learning which is data-driven and

produces the first generalisable source separation tools which were subse-

quently presented as publicly available tools for music demixing. While these

methods work well, they were still limited by a lack of accurate phase esti-

mation resulting in an upper limit of how well they could perform.

Section 2.6 presents deep-learning based solutions that work directly on

time-domain audio signals in order to bypass the phase estimation problem

which has shown exceptional performance in the task of speech separation.

In particular, the methods described in Section 2.6.2 elaborate on the evolu-

tion of the particular methods that are used in this thesis.

Section 2.7 presents an alternative to time-domain processing as a solu-

tion to overcome the phase estimation problem, by predicting the complex-

domain spectrogram of the target sources. These methods have shown ex-

ceptional performance in music source separation and speech enhancement,

both of which problems rely heavily on the capability of these models to be

able to model the timbral characteristics of the target sources.

Section 2.8 - Section 2.10 present a few alternative training paradigms for

deep-learning based source separation solutions. Section 2.8 introduces the

training method that allows models to be trained in a class-agnostic fashion

which has been used successfully in conjunction with the methods presented

in Section 2.6.2 to achieve generalisable results for the task of speech separa-

tion. This is also the training objective that is used in this thesis in order to

achieve instrument-class agnostic ensemble separation. Section 2.9 presents

a brief mention of methods that use adversarial training for the tasks of mu-

sic separation as an alternative to using reference-based objective functions.

Section 2.10 provides an introduction to unique methods that have been pro-

posed to solve the universal source separation task with the expectation of

being able to separate any sound source either in an unsupervised fashion

or in a user query-based separation tool.



2.1 tasks in source separation 13

Section 2.11 introduces the datasets that are typically used in the context

of music separation, which also includes the descriptions of the evaluation

datasets used in this thesis.

Section 2.12 presents the evolution of music source separation as a task

through the lens of the various public source separation challenges/cam-

paigns. It presents the evolution of architectures described in Section 2.3 -

Section 2.7 in the context of these SiSEC challenges and the concurrent evo-

lution of the datasets presented Section 2.11.

Finally, Section 2.13 provides an overview of other works in the field

of choral and ensemble separation that have been presented by other re-

searchers recently, which have evolved in parallel to the work presented in

this thesis. Finally, Section 2.14 includes an overview and perspectives on the

overall research trends in source separation.

2.1 tasks in source separation

While all the models described later in this chapter have been presented as

generic source separation architectures, they are typically designed to tackle

one of three tasks: Speech separation, Speech Enhancement or Music Source

Separation. While speech separation deals with separating mixtures of con-

current speakers in a label-agnostic fashion, speech enhancement and music

separation are more similar as the models are trained to recognise and sep-

arate the target speech/musical sources based on modelling the timbre of

the target source and extracting it from a mixture based on the timbre of the

desired source class.
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2.1.1 Speech Separation

Speech separation is the task of separating a mixture containing multiple

speakers in a class-agnostic fashion. In this task, the models are not trained

using a class-based regression fashion, but instead either solved using permu-

tation invariant training (described in Section 2.8), or deep clustering (Her-

shey et al., 2016).

Here a multi-speaker mixture can be defined as a mixture of K speakers

as:

smixture(t) =
K

∑
k=1

sk(t) (1)

where each sk is the speech signal of the kth speaker. These separation models

are expected to be able to distinguish between speech from different speakers

without any prior about the timbral characteristics of the constituent speak-

ers.

2.1.2 Speech Enhancement

Speech enhancement is defined as the task of improving the perceptual qual-

ity and intelligibility of noisy speech by performing denoising and derever-

beration. The typical problem formulation provides a mixture/recording of

a single speaker in the presence of noise as smixture(t) ∈ R1×T of duration T

samples. This mixture can be decomposed into 2 stems sspeech(t), snoise(t) ∈

R1×T as:

smixture(t) = sspeech(t) + snoise(t) (2)

where the model is expected to be able to extract the speech from the mixture

without the noise.
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This may even be further extended to include dereverberation of the speech

and subsequently remove the noise. In this task reverberation is applied

by convolving the clean speech signal with a room impulse response (sRIR)

which may be synthetic or real. This formulation can be expressed as:

smixture(t) = sRIR(t)⊛ sspeech(t) + snoise(t) (3)

In this problem, often the input SNR of the noisy speech mixture can have

a direct impact on the difficulty of the enhancement task, thus often models

will report results for different levels of input noise, while some models are

in fact also specifically designed to tackle high input-SNR scenarios.

Similar to the music demixing task, the models trained for speech enhance-

ment typically learn the timbral distribution of speech to be able to extract

it from noisy mixtures. However, unlike music separation where the models

are trained to learn the timbral features of other target classes and separate

them simultaneously, speech enhancement often is trained to predict only

the speech signal and not the noise signal. This is due to the large variation

present in noise signals which does not result in performance improvement

if the model is trained to also learn the timbral characteristics of the noise

signal.

2.1.3 Music Source Separation

Music source separation or music demixing is the task of splitting a mixed

and mastered song into its constituent instrument stems. This task has typi-

cally focused on separating the vocals, bass and drum stems. The most basic

form of music separation as described by Hershey et al. (2016) can be de-
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fined as: a music mixture smixture(t) ∈ R1×T of duration T samples can be

decomposed into 2 stems svocals(t), saccompaniment(t) ∈ R1×T as:

smixture(t) = svocals(t) + saccompaniment(t) (4)

Here svocals(t), saccompaniment(t) are the isolated vocal and remaining accompa-

niment music signals respectively. The typical music separation task that is

currently considered as the mainstream task as presented in recent music

separation challenges such as Mitsufuji et al. (2022) is the task of decompos-

ing mixtures into 4 stems:

smixture(t) = svocals(t) + sbass(t) + sdrums(t) + sothers(t) (5)

Here the saccompaniment(t) signal from Equation 4 is further decomposed into

its constituent drums and bass instrument stems as sdrums(t) and sbass(t) re-

spectively. The mixtures described in Equation 4 and Equation 5 are of mixed

and mastered pop songs where each of the constituent stems are composite

stems which can be further decomposed as Equation 6:

saccompaniment(t) = sbass(t) + sdrums(t) + sothers(t) (6)

The deep learning solutions trained to solve this problem formulation

work in a class-based regression approach. These deep learning models typi-

cally are trained with a large variety of examples for each of the target classes,

and subsequently, the model learns to separate the target sources from the

mixture based on learning the timbral distribution for each class.

2.2 evaluation metrics

BSS-Eval: The Blind Source Separation Evaluation (BSS Eval) toolkit (Vin-

cent, Gribonval, and Févotte, 2006) decomposes the error between the target
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source and the extracted source into a target distortion component reflecting

spatial or filtering errors, an artefacts component pertaining to artificial noise,

and an interference component associated to the bleeding in of unwanted

sources. The salience of these components is quantified using three energy

ratios: source Image-to-Spatial distortion Ratio (ISR), Source-to-Artifacts Ra-

tio (SAR) and Source-to-Interference Ratio (SIR). A fourth metric, the Source-

to-Distortion Ratio (SDR), measures the global quality (all impairments com-

bined). It assumes the decomposition of a separated source ŝseparated into:

ŝseparated = starget + einterf + enoise + eartif (7)

where, einter f , enoise, earti f are respectively the interference, noise and artifact

error terms.

SDR := 10 log10

∥∥starget
∥∥2

∥einterf + enoise + eartif ∥2

= 10 log10

∥∥starget
∥∥2∥∥ŝseparated − starget

∥∥2

(8)

SIR := 10 log10

∥∥starget
∥∥2

∥einterf∥2 (9)

SNR := 10 log10

∥∥starget + einterf
∥∥2

∥enoise ∥2 (10)

SAR := 10 log10

∥∥starget + einterf + enoise
∥∥2

∥eartif ∥2 (11)

SI-SDR: The BSS − Eval metrics make a critical assumption that time-

invariant filters are considered allowed deformations to the target/reference
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signals. This justifies the transformations made in the sources by convolving

short FIR filters, for example, applying the room impulse response to create

a reverberated image. This however leads to a major problem, because the

space of signals achievable by convolving the source signal with any short

FIR filter is extremely large and includes perceptually widely different sig-

nals from the spatial image. Roux et al. (2019) proposes a new Scale-Invariant

Signal-to-Distortion Ratio that tries to address this problem by ensuring the

residual/error/noise in the signal to be orthogonal to the source/target by

rescaling (by factor β) the reference while comparing to the estimate.

SI − SDR := 10 log10

∥∥starget
∥∥2∥∥βŝseparated − starget

∥∥2 for β s.t. starget ⊥ (βŝseparated − starget)

(12)

PEASS: A perceptually-motivated adaptation of the BSS-Eval toolkit is

PEASS (Emiya et al., 2010) (Perceptual Evaluation method for Audio Source

Separation), which estimates the three distortion (target distortion, inter-

ference, artefacts) from auditory representations of the reference and ex-

tracted sources, which are then input to the PEMO-Q auditory model to

measure their salience. Emiya et al. (2011) presents an extension where a

neural-network trained on human data combines the resulting component-

wise salience features into four objective predictors: Target-related Perceptual

Score (TPS), Artifacts-related Perceptual Score (APS), Interference-related

Perceptual Score (IPS) and Overall Perceptual Score (OPS).

Neural Network based Reference-less Evaluation: In experimental situa-

tions, the reference sources are usually available for use in evaluating the

performance of a certain source separation approach. However, for practical

applications of source separation, the mixtures are available but the reference

source is not available. Most objective evaluation metrics rely on having the

reference source signal available and, thus are rendered useless to evaluate
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such scenarios. Moreover, some of these higher-level metrics can often be

calculated at utterance level and not frame level. In Grais et al. (2019), Neu-

ral networks using RNNs are used to predict such metrics from Emiya et al.

(2011) at the frame level.

2.3 spatially-informed source separation

Spatial information regarding individual sources in multichannel mixtures

can be utilised to separate sources, where they are non-identically mixed

to each channel. In the case of music, audio objects are routinely located at

different panning positions in the left-right stereo plane which has been ex-

ploited by techniques like DUET (Yilmaz, Rickard, and Yılmaz, 2004) and

ADRESS (Barry, Lawlor, and Coyle, 2004) for estimating a time-frequency

mask for each source that has a distinct position in the left-right stereo plane.

While both the previously mentioned methods use binary masking which

inherently introduces various artefacts (since sources are not sparse/non-

overlapping, further discussed in Section 2.5), PROJET (Fitzgerald, Liutkus,

and Badeau, 2016) utilises spatial projection hypothesis to allow soft-masking

while being computationally less intensive than multichannel Wiener filter-

ing (Liutkus and Badeau, 2015).

While these methods were some of the earliest ways of attempting to sep-

arate sources, beamforming is not well suited for music separation for two

reasons. Firstly, the number of sources in a musical mixture is typically far

greater in number than the number of recordings/channels available. Sec-

ondly, musical mixtures are typically not mixed in a physically constrained

fashion, i.e. the sources are panned artificially and often consist of many

stereo effects. Although beamforming is still quite relevant and used heavily

in speech separation (Luo et al., 2020), such methods typically rely on cap-

turing mixtures with fixed-geometry microphone arrays which are not viable

for mixed music.
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2.4 time-frequency masking using machine learning

The foundation of the modern approaches used for source separation was

laid down prior to the advent of deep learning using neural networks. While

the methods used were theoretically quite similar to the modern approaches,

the lack of sizeable datasets and hardware-accelerated computation limited

the ability of the following methods to produce generalisable source separa-

tion methods.

Independent Component Analysis (ICA) assumes that the individual source

components in an unknown mixture have the property of mutual statistical

independence, and this property is exploited to algorithmically identify the

latent sources. The joint probability density function is equal to the prod-

uct of marginal densities if individual source components are statistically

independent. The observed mixtures are expressed as products of a mixing

matrix and vectors of statistically independent signals. Sources are separated

by finding an inverse of the mixing matrix using only the observed mixture

and assuming statistical independence of the sources. While these methods

were applied to speech-related separation tasks, they are ill-suited for the

task of music separation since the fundamental assumption for statistical in-

dependence between musical sources may be invalid.

Nonnegative matrix factorisation (NMF) attempts to represent the fea-

tures of the sources via sets of basis functions and their respective activation

coefficients (Weninger et al., 2014). In both NMF and ICA, constituent sources

are modelled using determined magnitude or power spectrum elements,

which by definition are non-negative as seen in real sound sources. Un-

like ICA which utilises statistical independence, the NMF algorithm works

by minimising the reconstruction error. Time-frequency energy distribution

of sound sources is usually sparse, which means that most frequency bins

and most frames are usually inactive. Sparse spectrograms often have a

unique decomposition into nonnegative components, correlating to individ-
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ual sound sources in the mixture. Durrieu, David, and Richard (2011) pro-

posed an NMF-based multi-channel source separation model which achieved

state-of-the-art for the source-image estimation task on multichannel music

dataset in SiSEC 2011 (Araki et al., 2012).

Informed Source Separation covers a variety of methods where both the

sources and mixtures are known at a certain encoding stage. In this scenario,

certain additional information apart from the mixture observation is avail-

able to aid the separation task. This side-information may be in the form of

a specific source model (Ozerov, Vincent, and Bimbot, 2012; Durrieu, David,

and Richard, 2011) or be provided by a user (Smaragdis and Mysore, 2009)

or by a partial transcription of the musical sources. In some cases, side infor-

mation regarding the sources is encoded into the mixture file (Ozerov et al.,

2013). Other methods include side-information embedded into the mixture

imperceptibly using fingerprinting techniques (Liutkus et al., 2012).

2.5 time-frequency masking using deep learning

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks

(RNNs) have found immense success in the field of image processing and

natural language processing respectively, thus being able to leverage architec-

tures that have proven to be useful in these domains for use in audio-related

tasks has resulted in reasonable success. Such networks have achieved great

performance in various audio-related tasks:

• Sound Event Detection (Cakir et al., 2017; Adavanne, Pertila, and Virta-

nen, 2017)

• Audio Scene Classification (Xu et al., 2018; Hershey et al., 2017)

• Automatic Music Transcription (Sigtia, Benetos, and Dixon, 2016; Cong

et al., 2018)
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• Onset Detection (Schlüter and Böck, 2013)

• Automatic Speech Recognition (Graves, Mohamed, and Hinton, 2013;

Chiu et al., 2018)

• Speech Enhancement (Luo and Mesgarani, 2019; Pascual, Bonafonte,

and Serrà, 2017)

• Music Source Separation (Uhlich et al., 2017; Jansson et al., 2017)

For the purpose of source separation, these DNNs can be used to predict

dynamic time-frequency masks for each source, such that these masks when

applied on the input mixture will filter out a specific source from the mix-

ture (Grais et al., 2016). For time-frequency masking-based source separation

methods, the separation is usually accomplished by filtering the mixture us-

ing one of three filtering methods: binary masking, soft-masking and mul-

tichannel Wiener filtering (MWF) which also incorporates techniques from

spatial beamforming (Liutkus and Badeau, 2015).

2.5.1 Fully-connected Feed-forward Network

The first method to utilise deep learning for music source separation was

introduced by Uhlich, Giron, and Mitsufuji (2015). The proposed method

converts the input mixture waveform into a series of STFT frames with a

rectangular window. For each frame, a number of preceding and succeeding

(C) windows are used to generate the input vector. This concatenated vector

(of length 2C + 1) including additional contextual information is presented

to a series of fully connected layers followed by a ReLU activation function.

The training of this experiment was done in a sequential fashion where ad-

ditional layers were added, initialised and trained sequentially. This method

was used to train models to separate instruments in an instrument class-

based regression method. Two piano trios were used as an evaluation set, and
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the proposed method including Wiener filtering marginally outperformed

the based separation method using mel spectrogram by Spiertz and Gnann

(2009).

2.5.2 U-Net
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Figure 1: Magnitude spectrogram masking based U-Net singing voice separation
architecture by Jansson et al. (2017).

The U-net architecture (see Figure 1) was introduced for the purpose of

biomedical image segmentation in Ronneberger, Fischer, and Brox (2015).

Jansson et al. (2017) adapts this architecture for singing voice separation by

predicting a soft-mask to be multiplied with the time-frequency representa-

tion of the mixture to obtain the isolated sources. U-nets originally designed
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for image reconstruction could suffer from small pixel shifts without signifi-

cant deterioration in output quality. However, in the context of music separa-

tion, the mask predicted must be perfectly aligned to the input mixture. This

prompted the authors to add skip-connections between each corresponding

encoder and decoder layer. Two separate networks are trained to predict the

vocal and instrumental masks. This architecture was subsequently presented

as an open-source implementation in 2019 including additional instrument

stems in Spleeter (Hennequin et al., 2019). The pre-trained model they re-

leased has been spun off into various commercial applications of source sep-

aration including iZotope RX 8
1, Virtual DJ2, Acoustica3 and Spectral layers4.

The network architecture is largely leveraged from the generator archi-

tecture presented by Isola et al. (2017). In the given implementation, every

encoder layer consists of strided 2D convolution with stride of 2 and kernel

size 5 × 5, batch normalisation and leaky ReLU. The decoder layers mirror

the encoder layers by using strided deconvolution (transposed convolution)

and plain ReLU with skip connections from corresponding encoder layers.

The datasets used for both the original paper and Spleeter were not publicly

available.

2.5.3 Open-unmix

Improving on their previous work (described in Section 2.5.1), Uhlich et al.

(2017) revolutionised music source separation as it was the first solution that

showed generalisable results. This stride was a culmination of increased train-

ing data, a more standardised problem formulation which can be attributed

to SiSEC 2016 (see Section 2.12) and improvements in deep learning architec-

ture and training methods.

1 https://www.izotope.com/en/shop/rx-8-standard.html
2 https://www.virtualdj.com/stems/
3 https://acondigital.com/products/acoustica-audio-editor/
4 https://new.steinberg.net/spectralayers/
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It improves on their previous work by training an additional deep learn-

ing network, which is based on a stack of bi-directional LSTMs which process

each spectrogram frame sequentially. This in addition to the previously pro-

posed dense model utilising 2C+ 1 frames was used simultaneously for infer-

ence, by combining their predictions with a fine-tuned blending ratio. Addi-

tionally, this work introduced the random mixing augmentation method and

the use of multichannel Wiener filtering which greatly improved this model’s

performance. An open-source implementation of this model on pytorch was

subsequently released by Stöter et al. (2019).

2.5.4 DenseNet

The core idea of DenseNets proposed by Huang et al. (2017) is to have all

the outputs of preceding convolutional layers in a network be concatenated

and presented as the input to the subsequent convolutional layer. This was

leveraged for the task of audio source separation as it was considered that

subsequent layers in the model would progressively be able to utilise infor-

mation from previous layers to be able to reconstruct the source spectrogram

for subsequent masking/separation. The proposed method for Multi-scale

Multi-band DenseNet (Takahashi and Mitsufuji, 2017) combined the princi-

ple of sequential downsampling and upsampling with skip connections as in-

troduced by the U-Net, but here with additional feature connections between

layers. In addition, the method proposes to use distinct DenseNet stacks for

different frequency bands of the input spectrogram. This was eventually ex-

tended to D3Net (Takahashi and Mitsufuji, 2020) which introduced a multi-

dilated convolutional layer with multiple dilation factors within the same

layer. This was able to perform comparably to Spleeter and Open-unmix

with higher average performance on vocal separation.
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2.6 time-domain source separation

Even though the described solutions in Section 2.5 are considered as the

baseline for music source separation and do produce very impressive re-

sults, their performance is theoretically bounded by the imperfections intro-

duced due to the lack of phase information of the extracted sources. Thus

their maximum performance is always limited by the ideal ratio mask (IRM)

(Vincent, Gribonval, and Plumbley, 2007). Another fundamental drawback

of time-frequency masking approaches to source separation is that STFT is

a generic signal transformation which is not optimised to encapsulate the

most relevant features for a given instrument separation task Luo and Mes-

garani (2019). Moreover, successful separation in the time-frequency domain

requires a high-resolution frequency representation, which requires STFT cal-

culation with long temporal windows. This inherently is a trade-off with the

temporal accuracy of source separation, moreover increases the temporal av-

eraging of features which is determined by the window size (typically 46 ms

for music separation for a window size of 2048 samples at 44.1 kHz sampling

rate).

Initial studies have explored the feasibility of time-domain separation us-

ing ICA (Choi et al., 2005) and NMF (Yoshii et al., 2013), which struggled

to generalise and their performance was not comparable to their respective

spectrogram-based counterparts. Few recent works have explored the use of

deep learning for source separation in the time domain (Stoller, Ewert, and

Dixon, 2018b; Luo and Mesgarani, 2019; Shi et al., 2019). The common ap-

proach in all these models is to replace the STFT step for feature extraction

with a data-driven representation that is jointly optimised with an end-to-

end training paradigm Luo and Mesgarani (2019).
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2.6.1 Time-domain U-Nets

2.6.1.1 Wave-U-Net

Wave-U-Net (Stoller, Ewert, and Dixon, 2018b) is based on adapting the U-

net architecture (see Section 2.5.2) to 1-D convolutions to process audio sam-

ples in the time domain. The network consists of a contracting half and an

expanding half consisting of downsampling and upsampling blocks respec-

tively, with skip connections between each corresponding level with same

dimensionality. The downsampling structure computes increasingly higher-

level features at longer time scales resulting in multi-scale features used for

predicting the separated sources. Additionally, the implementation is able to

improve on the challenges faced in Jansson et al. (2017) by incorporating lin-

ear interpolation during upsampling instead of strided convolution to avoid

artefacts. The implementation is also able to utilise stereo inputs for separa-

tion and observe improvements.

2.6.1.2 Demucs

The Demucs architecture (Défossez et al., 2019) is similar to the Wave-U-Net

(Stoller, Ewert, and Dixon, 2018b) architecture with variations in the encoder

and decoder layer structures and an additional BLSTM layer at the end of the

bottleneck between the encoder and decoder layers. While in Wave-U-Net

the encoder and decoder layers are 1-D convolutional layers which down-

sample and upsample the latent space successively, the encoder and decoder

layers in Demucs additionally use a Gated Linear Unit (GLU) after the 1-D

convolution layer in each encoder and decoder layer. Similar to Wave-U-Net

there are skip connections between each corresponding encoder and decoder

layer. Unlike Wave-U-Net, this architecture uses transposed convolution for

upsampling and downsampling, instead of using linear interpolation.
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This was eventually extended to Hybrid Demucs by Défossez (2021) which

incorporates the use of both spectrogram and raw audio as input and has

a spectral and a temporal branch with shared layers allowing the model

to learn features in both representations. The outputs of the spectral and

temporal branches are then summed to generate the separated output. This

model was the winner of the Music Demixing Challenge 2021 (Mitsufuji et

al., 2021).

2.6.2 TasNets

Separated Audio 2

Separated Audio 1

Source 2
Mask

Source 1
Mask

Pseudo-inv
Decoder

Learned
Encoder

Input Audio

Learned
Representation

Separator Stack

Seperator units

X

X

Figure 2: General separation pipeline for learnable filterbank (TasNet) based audio
source separation models.

Recent advances in speech separation have shown great success in end-to-

end methods that transform the time domain signal to a non-negative real-
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valued, learned latent space to perform separation on. Such learned trans-

formations inherently capture the phase information within the latent repre-

sentation and thus do not require any explicit phase reconstruction, which

has been a long-standing challenge for STFT-based source separation algo-

rithms. These models usually comprise three parts (see Figure 2): an encoder

for estimating the mixture weight, a separation module to predict the mask

on this latent space of mixture weights and a decoder for reconstructing the

source waveform from the masked mixture weight representation. Luo and

Mesgarani (2018) introduced this method of end-to-end source separation for

multi-speaker speech mixtures, in conjunction with utilising Permutation In-

variant Training (PIT) (Yu et al., 2017). Subsequently, other works (Shi et al.,

2019; Luo, Chen, and Yoshioka, 2020) Zeghidour and Grangier (2020) further

explored new separation/masking modules and have since then produced

great leaps in separation performance for speech and universal audio sepa-

ration Wisdom et al. (2020) (described in Section 2.10).

2.6.2.1 LSTM-TasNet

The TasNet by Luo and Mesgarani (2018) attempts to bypass the phase pre-

diction problem of T-F masking methods by directly extracting features from

the raw audio as a time-series by learning an encoder based on a 1-D con-

volution layer which transforms the audio to a 2-D latent representation on

which the masking is performed and subsequently inverted back to the time-

domain audio by a pseudo-inverse 1-D convolution layer to transform the

masked 2-D representation back to 1-D audio. Since this method operates

using a 1-D convolution layer, unlike the STFT it can operate on arbitrarily

short filter lengths, thus allowing the model to mask at a much higher tem-

poral resolution than STFT domain masking as the latter are limited by the

window size of the STFT which is typically much larger than the filter length

used for the 1-D convolution filterbank encoder. It applies a series of LSTMs

to then learn the temporal relationships and predict a mask, however due
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to the short length of the 1-D filterbanks, the latent representation is much

longer than the STFT based representation which makes it challenging for

the LSTMs to incorporate information across long sequences.

2.6.2.2 Conv-TasNet

Conv-TasNet by Luo and Mesgarani (2019) is a fully-convolutional time-

domain audio source separation network for multi-speaker speech separa-

tion. ConvTasNet improves on the original TasNet by using a temporal convo-

lutional network (TCN) to calculate the masks instead of a stack of bidirectional-

LSTM blocks. This model is both significantly smaller than typical STFT

based models and also was able to surpass ideal time frequency masking

methods for separation in the frequency domain. This model is used in this

thesis for experiments is described in Section 5.3.

However, unlike the original TasNet, due to the nature of the dilated con-

volution based TCN stack, the receptive field of the separator stack is lim-

ited. The separator stack architecture/parameters have to be modified if the

length of learned the latent representation changes due to increase in sam-

pling rate, input segment length or reducing the encoder filterbank hop size.

This becomes a challenging network parameter optimisation task due it’s

implications on the GPU VRAM consumed by the model during training.

Further details regarding the implementation can be found in Section 4.3.1.1

and hyperparameter optimisation of this model is presented in Section 4.3.4.

2.6.2.3 DPRNN

Dual-path recurrent neural network (DPRNN) Luo, Chen, and Yoshioka

(2020) comprises of replacing the separator architecture of TasNet with a 2

level hierarchical (local-global) RNN structure (see Figure 9) allowing effec-

tive modelling of long sequences without increasing optimisation difficulty

drastically. The structure splits the input segments into smaller chunks and
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interleaves two RNNs, one at intra-chunk level and one at inter-chunk level.

The intra-chunk RNN first processes the smaller segments independently

and subsequently the inter-chunk RNN aggregates the information across

all the chunks allowing complete utterance level inference. Due to this, un-

like the TCN masking network in Conv-TasNet which has a limited recep-

tive field, DPRNN is able to fully utlise information across the input audio

segment and achieve superior performance with a smaller model size. This

model is used in this thesis for experiments described in Section 5.3. Further

details regarding the implementation can be found in Section 4.3.1.2 and

hyperparameter optimisation of this model is presented in Section 4.3.1.2.

2.6.2.4 DPTNet

Dual-path Transformer Network (DPTNet) Chen, Mao, and Liu (2020) is

based on a similar 2 level RNN based separator architecture as introduced

in DPRNN. It replaces the BLSTM layers in the separator architecture with

2 modified transformer attention heads (originally introduced by Vaswani

et al. (2017)) which are able to handle temporal relationships for long se-

quences more effectively. They achieve the state-of-the-art speech separation

performance with a small model size due to using the transformer encoder

network instead of the BLSTM in DPRNN. This model is utilised as the base-

line for all experiments described in Section 5.3, Section 5.4 and Section 5.5.

Further details regarding the implementation can be found in Section 4.3.1.2

and hyperparameter optimisation of this model is presented in Section 4.3.4.

2.6.2.5 SepFormer

SepFormer by Subakan et al. (2021) (extended by Subakan et al. (2023)) im-

proves on DPTNet by removing the recurrent unit in DPTNet’s feed-forward

network within the modified transformer unit with a simple feedforward

layer (shown in Figure 3), which makes training much more parallelisable
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Figure 3: Comparison of multi-head attention-based transformer blocks of DPTNet
and Sepformer.

and reduces the computational requirements for both training and inference.

Thus its performance is at par with DPTNet but with reduced resource util-

isation. This model may be considered the best-performing TasNet architec-

ture as of this work.

2.7 complex-domain source separation

Another approach to surpassing the glass ceiling introduced by the lack of

accurate phase estimation is to actually attempt to estimate the complex do-

main spectrogram of the target sources. Estimating the phase of constituents

of a mixture has been considered a significant challenge, thus preliminary

works (as described in Section 2.5) only focussed on the estimation of the

magnitude spectrogram as the training target. While a method for estimat-

ing phase by Griffin and Lim (1984) has been known, it involves significant
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computational expense. The methods discussed in this section propose es-

timating the complex spectrogram as the output representation to bypass

this problem. While a large variety of complex-domain separation methods

have been introduced in recent years, they can largely be categorised into

two groups based on whether they utilise real-valued operations or complex-

valued operations.

2.7.1 Real-valued Systems

This subsection describes source separation models capable of handling complex-

valued spectrograms, but rely on using only real-valued tensors within the

model.

2.7.1.1 Discretised phase classification

PhaseNet by Takahashi et al. (2018) proposes to treat the phase estimation

as a classification problem by discretising the phase space and designs a

DNN that predicts the phase for the target spectrogram independent of the

magnitude prediction. This is motivated by the fact that predicting the phase

as a regression problem is challenging due to the wrapping around of phase

to its principal value that lies within a typical range of (−π, π], which results

in the phase spectrogram having no clear structure. Thus casting the problem

as a classification problem in a discretised space results in an improvement

in SDR (defined in Section 2.2) performance and perceptual quality for both

Speech Enhancement and Music Source Separation tasks compared to the

use of mixture phase for signal reconstruction.

A similar idea by Le Roux et al. (2019) Phasebook uses a similar discrete

phase classification technique. Instead of treating the phase classification as

an independent problem to magnitude regression, it also treats magnitude
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estimation as a quantised classification technique and trains a DNN to pre-

dict both simultaneously.

2.7.1.2 MLP-based Complex Masking

The ideal ratio mask (IRM) which is the theoretical upper limit for deep-

learning methods presented in Section 2.5 is designed to accurately estimate

the magnitude response of a target from a mixture, while assuming the mix-

ture phase for the separated audio. Williamson, Wang, and Wang (2016) de-

fined the complex Ideal Ratio Mask (cIRM) and trained a DNN to simultane-

ously predict the real and imaginary components of the target spectrogram,

which resulted in improved perceptual quality for speech separation. The

cIRM can be defined as below, where S ∈ C represents the separated signal’s

complex spectrogram, M ∈ C represents the predicted complex-ratio mask

and Y ∈ C represents the input mixture’s complex spectrogram.

Sr + iSi = (Mr + iMi) · (Yr + iYi)

= (MrYr − MiYi) + i (MrYi + MiYr)
(13)

Complex numbers are represented here in the cartesian coordinate repre-

sentation such that given X ∈ C, it can be represented as X = Xr + iXi,

where Xr represents the real component of X and iXi represents the imagi-

nary component of X.

The DNN used in Williamson, Wang, and Wang (2016) was a simple MLP

with 3 hidden layers. The model takes as input a set of crafted features such

as MFCCs, cochleagram response and some high-level features extracted

from a 64-channel gammatone filterbank. For the output layer, the MLP pre-

dicts 2 vectors, one for the real mask, and the other for the imaginary mask.

This method does not involve any complex operations within the network

architecture. This was eventually extended by Tan and Wang (2019) treating
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the MLP layers as an encoder-decoder and inserting LSTM layers between

these MLP layers while the input and output of the model was the mixture

complex spectrogram and the cRM (complex Ratio Mask).

Deep-ResUNet by Kong et al. (2021) aims to achieve a cIRM-like mask

without solely relying on the estimated real and imaginary masks due to the

challenging unbounded nature of these masks. Instead, the model only takes

the magnitude spectrogram as an input to a very deep U-Net (> 100 layers)

and simultaneously predicts the magnitude spectrogram and a magnitude

mask and the real and imaginary masks for the separated output. These 2

real and imaginary mask predictions are then used in conjunction with the

input phase to predict the output phase spectrogram, and the magnitude

spectrogram is generated by combining the magnitude mask and the mag-

nitude spectrogram prediction. The work also compares their performance

with respect to DCUNet. It shows that the significantly deeper UNet struc-

ture significantly improves the separation performance for the music demix-

ing task, however at a significantly higher computational cost.

Band-split RNN by Luo and Yu (2023) operates on a similar paradigm

which involves predicting real and imaginary masks to be applied to the

complex mixture spectrogram directly. However, it also introduces a feature

extraction module that takes the complex spectrogram of the mixture X ∈

CF×T as input and splits it into K subband spectrograms Bi ∈ CGi×T, i =

1, ..., K. The real and imaginary parts of the sub-band spectrograms are then

concatenated and passed through a fully connected layer to generate the

latent representation. This latent representation is then processed similarly

to the masking stage of the dual-path RNN (as described in Section 2.6.2.3).

However, it must be noted that the separator stack and subsequently the

model size ( 50M parameters) for Band-split RNN is significantly larger than

the DPRNN stack as it uses up to twice as many repeat layers, and 4 times

as many hidden units.
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Band-Split RoPE Transformer by Lu et al. (2023) extends the band-split

RNN architecture to a DPTNet-like separator stack (described in Section 2.6.2.4).

It is the most recent state-of-the-art for music separation and the winner for

the Music Demixing track for the Sound Demixing Challenge 2023 (Fabbro

et al., 2023). However, it must be noted that this was achieved with an ex-

tremely compute-intensive model with more than 93.4 million parameters

(10x the parameter count of experiments presented in this work with DPT-

Net). This is attributed to it using 12 repeat layers (2x of our implementation)

and 8 heads for each transformer (2x of our implementation). This increased

complexity required 16 Nvidia A100-80GB GPUs for 4 weeks to train the

model (38x of our experiments).

2.7.2 Complex-domain Neural Networks

While all the previously mentioned techniques rely solely on real-valued neu-

ral networks to deal with complex spectrograms for source separation, few

attempts have been made to enable neural networks to be able to handle com-

plex numbers and operate in the complex domain directly. The first reported

attempt for true complex domain source separation was by Lee et al. (2017)

which reported limited success as network architectures were still primitive

MLPs at the time. The methods mentioned below are the only works that

have shown reasonable success at complex-domain source separation using

complex-domain neural networks.

2.7.2.1 DCUNet

Phase-aware Deep Complex U-Net by Choi et al. (2019) modifies the original

U-Net based separation solution (as described in Section 2.5.2) by replacing

all convolution blocks with complex convolution blocks. The model is also

modified to predict a cRM instead of a magnitude mask. A crucial difference
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introduced by complex ratio masking, is that the real and imaginary masks

predicted are not bounded, i.e. the mask values may be greater than zero.

This is due to the fact that the energy within the real and imaginary parts

would not be conserved but the RMS of the real and imaginary parts would.

Due to this, the authors propose to use the polar representation to predict

the cRM such that the magnitude mask output range for the network can

be bounded. They restrict the magnitude part of the predicted cRM to be

bounded between (0, 1] by using a hyperbolic tangent non-linearity and the

subsequent phase mask is extracted by dividing the predicted output by

its magnitude. This model is used as the complex-domain baseline for the

experiments described in Section 5.5.

2.7.2.2 DCCRN

Deep complex convolution recurrent network (DCCRN) (Hu et al., 2020)

utilises similar complex convolution layers as DCUNet but instead of a direct

regression U-Net based approach, it uses LSTMs to model temporal context

instead of stacked dilated convolutions. This results in significantly lower

(1/6th) trainable parameters without any performance compromise.

2.8 permutation invariant source separation

Permutation invariant training Yu et al. (2017) solves the problem of source-

label ambiguity in source separation. Label ambiguity occurs in source sep-

aration tasks with mixtures containing multiple sources of the same type/-

class (for example speech mixtures, singing choirs, string quartets). Although

one may be able to decompose such mixtures into classes like male/female

for speech, or soprano/alto/tenor/bass for music, such classifications are of-

ten not consistent and limits model training to very specific mixture combina-

tions. Using permutation invariant training, a model is able to separate mul-



2.8 permutation invariant source separation 38

Input Mixture Predicted Mask 2Predicted Mask 1

Source Separation
Model

Separated Source 1 Separated Source 2

Reference Source 1 Reference Source 2

Calculate loss for ALL permutations

Error
(assignment 1)

Error
(assignment 2)

Training Lossmin

X X

Permutation Invariant Training

Figure 4: Loss calculation for a mixture of 2 sources using permutation invariant
training.

tiple instances of similar sources. This method presents the reference sources

to the model as a set instead of an ordered list. For each loss calculation, per-

mutation invariant training computes the loss for each target-channel per-

mutation possible for the given segment, and considers the minimum loss

calculated across all such permutations (depicted in Figure 4). Given a loss-

function L comparing the difference between the predicted instrument signal

ŝi and target instrument signal si, the training objective L can be defined as

Equation 14, where {ŝi(t)}π denotes a given permutation order of the sepa-

rated outputs from all possible permutations for output-target assignments

ΠI .

L = argmin
π∈ΠI

L ({ŝi(t)}π , {si(t)}) (14)
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This has helped recent TasNet-based approaches in speech separation (dis-

cussed in Section 2.6.2) to make significant improvements compared to the

previous state-of-the-art approaches based on deep clustering (Hershey et al.,

2016).

Due to the nature of the PIT training criteria, the output-target assignment

may change across processing frames. This implies that for longer sequences,

if the output of one channel is concatenated across frames, the resulting au-

dio may have different sources present across different frames. This may be

improved by applying a speaker/source tracking algorithm across frames

and fixing source mismatches by swapping misaligned frames across chan-

nels as a post-processing step.

2.8.0.1 Variable Sources

Permutation invariant training works by comparing all possible permuta-

tions for a given number of sources. The knowledge of the number of sources

present in the mixture is crucial as it determines the number of output chan-

nels and thus the permutations possible. Thus, separate models need to be

trained for any given number of sources in the input mixture. Knowing the

number of sources in the mixture is often a challenge as the number of

sources present at any point may vary across a given input segment. More-

over, there should be an advantage in sharing knowledge across models de-

signed to separate different numbers of sources since the separation task

across different levels of polyphony is the same.

OR-PIT: Takahashi et al. (2019) suggests using one-and-rest permutation

invariant training where the model is trained to separate only one source

from the mixture at a time. Such a model may be applied recursively to

separate any number of sources present in the mixture. The loss function

also reduces the complexity of calculating all different permutations at each
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epoch, since only N permutations are possible while selecting 1 from N.

A2PIT: Luo and Mesgarani (2020) introduces Auxiliary Autoencoding Per-

mutation Invariant Training (A2PIT) where a model is trained for a maxi-

mum of sources that can be separated by it. For use cases where the mixture

contains a lesser number of sources than present in the mixture, the remain-

ing output channels are trained to reconstruct the original mixtures (like

an autoencoder). Their experiments prove that the performance of the sep-

aration improves in this case, as compared to training the model to predict

silences for the surplus output channels.

2.9 gan based source separation

In generative adversarial networks (GANs) (Goodfellow et al., 2014) a gener-

ator network is trained to produce samples from a given target distribution.

To train such a generator network, a discriminator network is employed to

distinguish between “real" samples from the actual distribution and “fake"

samples generated using the network. The generator is trained in such a man-

ner that it consistently takes feedback from the discriminator and tries to opti-

mise its output in order to fool the discriminator. For source separation, such

architectures have been employed with generators based on the usual source

separation algorithms, which can be either on TF domain or time domain

(Pascual, Bonafonte, and Serra, 2017; Fan, Lai, and Jang, 2018; Stoller, Ewert,

and Dixon, 2018a). In an adversarial training approach for source separation,

the discriminator acts like an intelligent loss function. Lately, parallels have

been drawn between discriminator architectures and neural network based

evaluation metrics (Fu, Liao, and Tsao, 2020). The discriminator might take

only the separated source vector as the input, or in some implementations, it
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uses both the source and mixture vectors as input (Stoller, Ewert, and Dixon,

2018a; Fan, Lai, and Jang, 2018).

2.10 universal sound separation

Universal sound separation unifies all the previous tasks and further extends

it by removing all known priors about a mixture. It is the task of separating

all constituent sounds of a mixture regardless of the number or the type of

these sound sources. While the definition of the task is very broad, different

approaches have been presented which aim to tackle this challenge with

some success and inherent limitations based on their approach, of which

some are discussed in this section.

Mix Invariant Training (MixIT) by Wisdom et al. (2020) presents an unsu-

pervised training method that enables universal source separation by extend-

ing permutation invariant training. It relaxes the permutation invariant train-

ing criteria by allowing the reference and output target assignment to be a

sum of a subset of the predicted outputs. Using this, the model can be trained

by presenting a mixture of mixtures as well as mixtures of isolated sources,

which enables it to be trained in an unsupervised or semi-supervised fashion

without requiring all training examples to be clean/isolated sound sources.

Hyperbolic Audio Source Separation by Petermann et al. (2023) proposes

to extend typical time-frequency masking based separation methods by ad-

ditionally computing a hyperbolic embedding for each time-frequency bin of

the mixture spectrogram. The embedding learnt for each time-frequency bin

in the mixture is classified using a hyperbolic soft-max layer which assigns it

to every hierarchical source class present in the bin (example: horns ⊂ brass

section ⊂ music). The hierarchical structure of class labels results in enabling

the separation of sources with unseen or ambiguous labels. Such a source

will likely be classified as one of the higher-level class labels and thus can
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be separated, as long as the interfering sources do not fall within the same

class.

Separate anything you describe by Liu et al. (2023) presents a language-

queried universal source separation method. The method consists of a language-

query encoder (QueryNet) and uses it to condition a time-frequency mask-

ing based source separation model (SeparationNet). The QueryNet takes the

natural language query and reduces it to a latent representation of fixed

length and dimensionality using the large-scale contrastive language-image

pre-trained model (CLIP) (Raffel, 2016) and large-scale contrastive language-

audio pre-trained model (CLAP) (Elizalde et al., 2023). The CLIP encoder

learns to map text embeddings to the same space as visual embeddings,

which is used by the authors to train the model on large-scale unlabelled

audio-visual data by only using the visual embeddings. They also utilise

CLAP which maintains a similar latent representation as CLIP, which pro-

vides better time-aligned text-audio context. However, CLAP alone is limited

by the diversity and scale of its training data due to lack of large labelled text-

audio training datasets. The SeparationNet used in this work is based on the

deep-ResUNet by Kong et al. (2021).

.

2.11 multi-track music datasets

Most modern solutions to audio source separation are based on deep-learning,

which requires bleed-free(isolated) source signals to train source separation

algorithms. This section provides an overview of various publicly available

datasets comprising bleed-free multitrack recordings of musical sources.
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2.11.1 Music Demixing Datasets

DSD100: Demixing Secrets Database (DSD100) was released as a part of

the MUS task for SiSEC 2016 (Liutkus et al., 2017). It contains four semi-

professionally produced stereo stems per track: vocals, drums, bass and oth-

ers which when summed up provide a realistic mix. This dataset was gener-

ated using multitracks from the ’Mixing Secrets’ Free Multitrack Download

Library. Along with the stems+mixture data, Python and MATLAB toolboxes

were also provided for streamlining the data pipeline.

MUSDB18: The MUSDB18 corpus (Rafii et al., 2017) was released for the

musical source separation (MUS) challenge from SiSEC 2018 (Stöter, Liutkus,

and Ito, 2018) and is effectively an extension of the DSD100 dataset. The

authors utilised additional multitracks from MedleyDB and other material

provided by Native Instruments. This dataset contains a total of 150 songs

with an overall duration of 10 hours. The design of the dataset is identical to

DSD100 in terms of the processing and representation of stereo stems.

2.11.2 Multi-track Music Datasets:

MedleyDB: MedleyDB (Bittner et al., 2014) is a dataset of royalty-free multi-

track music recordings with instrument activity annotations. The advantage

of MedleyDB over other multitrack datasets is the availability of both RAW

and STEM files and an accompanying YAML metadata file that contains the

hierarchical structure of the STEM and RAW tracks and other information

regarding the multitrack. The metadata consists of song-level metadata like:

artist, title, composer and bleed while the stem-level metadata contains the

instrument type.

Slakh: The Synthesised Lakh dataset(SLakh) by Manilow et al. (2019) was

published for music source separation research and is made up of high-
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quality rendering of instrumental mixtures. It uses the Lakh MIDI dataset

(LMD) (Raffel, 2016) to provide professional virtual instrument renders for

corresponding stems. The mixing procedure of this dataset follows using

preset effects on each patch (randomly assigned per instrument class) and

then normalising loudness across tracks using the algorithm defined by ITU-

R BS1770-4 (BS, 1770) with uniform gains on each track. However, mod-

els trained on this dataset have not resulted in generalisable performance

on real datasets. This could be due to the automated nature of their MIDI

score collection process and the randomised selection of rendering parame-

ters. This results in poor realism and diversity of their rendered instrument

tracks. Wrongly assigned instrument labels/program numbers in MIDI re-

sult in poor-quality audio renders.

URMP: The URMP dataset (Li et al., 2018) is a multi-modal multi-track

dataset comprising audio-visual recordings of 44 chamber ensemble pieces,

ranging from duets to quintets. Unlike most other multi-track datasets of

chamber ensembles, this dataset takes particular care to ensure that the indi-

vidual instrument recordings do not contain bleed. In order to achieve this,

each instrument was recorded in a separate take, subsequently, each of these

recordings was downmixed together with the other instruments with reverb.

Because this dataset was recorded for chamber music but with individual

takes for each performer, achieving perfect synchronisation and timbral co-

herence across the performers proved to be challenging during the creation

of this dataset. The recordings for the individual parts were conducted in an

anechoic sound booth. The microphone used for these recordings was an Au-

dio Technica AT2020 condenser microphone. The recordings were then man-

ually time-aligned, edited and remixed to be well-synchronised with other

performers.

TRIOS: The TRIOS dataset (Fritsch, 2012) is a set of 5 short recordings of

chamber ensemble trios. The dataset consists of multi-track recordings where

each performer was recorded in a separate take, thus resulting in bleed-free
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recordings. This dataset is also used for evaluation in some experiments in

this thesis.

2.11.3 Choral Music Datasets

Creating a bleed-free multitrack dataset of choral singing poses technical

challenges due to the simultaneous singing of multiple performers in a typi-

cal choir setting. While recording individual singers within the ensemble in

most datasets has been accomplished using highly directional microphones

to minimise leakage from other singers, this approach is not flawless and still

yields some degree of bleed.

The Choral Singing Dataset (CSD) (Cuesta et al., 2018) is an openly ac-

cessible multitrack dataset showcasing Western choral music. It encompasses

recordings of three songs in the SATB format, each performed in a distinct

language (Catalan, Spanish, and Latin). These performances feature a choir

comprising 16 singers, organised into four per section. Individual sections

of the choir were independently recorded, utilising microphones to capture

each singer’s voice distinctly. F0 trajectories and section-wise MIDI notes are

provided for each song. The total audio duration is approximately 7 minutes,

categorising it as a relatively small dataset. These recordings exhibit some

leakage from adjacent singers within the same section, thus making them

unsuitable for the work presented in this thesis.

The Dagstuhl ChoirSet (DCS) (Rosenzweig et al., 2020) is a dataset fea-

turing ensemble singing recordings of two songs in Latin and Bulgarian. Ad-

ditionally, the dataset incorporates a series of vocal exercises encompassing

scales, cadences, and intonation exercises. Recordings were made using com-

binations of handheld dynamic microphones, headset microphones, throat

microphones, and a stereo pair, capturing the performances of 13 singers

grouped into uneven SATB sections. All singers were recorded simultane-
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ously, resulting in high leakage in individual tracks. The total audio duration

spans approximately 55 minutes.

The Bach Chorales and Barbershop Quartet Dataset (BCBQ) is a commer-

cially available multitrack dataset employed in the experiments detailed in

(Schramm, Benetos, et al., 2017). Comprising 26 Bach Chorales and 22 Bar-

bershop Quartets performed by an SATB quartet, with one singer per part,

the total audio duration of BCBQ is approximately 104 minutes. Each singer

in the quartet was meticulously recorded in a professional setup, ensuring

the absence of inter-singer leakage in the recordings. BCBQ includes individ-

ual audio tracks for each singer, as well as the combined mixture of the four

voices. While the Bach Chorales songs involve 2 female and 2 male singers,

the Barbershop Quartets comprise of all 4 male singers. This dataset was

used for the choral separation experiments described in this thesis and is ac-

cessible at http://pgmusic.com. Due to the commercial nature of this dataset,

other works on choral music separation have not used this dataset and only

rely on the previously mentioned datasets which contain bleed, thus both

their performance is vastly limited by the same and their evaluation met-

rics presented also may not be directly comparable as their reference tracks

would include bleed.

MedleyVox by Jeon et al. (2023) is an evaluation dataset for vocal en-

sembles, constructed from the MedleyDB dataset. This dataset is created

based on the manual annotations released in this work, which allows select-

ing tracks from MedleyDB which have harmonised singing content without

bleed.

jaCappella by Nakamura et al. (2023) is a dataset of 35 vocal ensemble

pieces of Japanese children’s songs consisting of 6 vocal parts (SATB + lead

vocals + vocal percussion). This is a bleed-free dataset of 34 minutes includ-

ing music from various genres, although excluding choral music. This data

was released after the experiments related to choral music separation pre-

sented in this thesis were conducted, and thus are not included in this thesis.
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2.12 public evaluation campaigns for music separation

The Signal Separation Evaluation Campaign (SiSEC) (Vincent, Araki, and

Bofill, 2009) started in 2008 as a source separation challenge which was held

every 1-2 years, primarily focussed on speech and music separation. In this

section, the evolution of music separation research is presented in the context

of the music separation tasks that have been featured as a part of public

evaluation campaigns through the years. Subsequently, the parallel evolution

of multi-track music datasets is also presented.

SiSEC 2008: The original problem formulation of the SiSEC challenge de-

scribed the source separation problem as a 4 step problem, with different

entrants presenting solutions for each of the 4 sub-tasks mentioned below:

1. Source Counting

2. Mixing System Estimation

3. Source Signal Estimation

4. Source Spatial Image Estimation

The presented solutions for these sub-tasks were then evaluated in the

context of datasets consisting of different mixture scenarios. Although the

"Professionally produced music recordings" dataset was introduced as D4 in

SiSEC 2008 (Vincent, Araki, and Bofill, 2009), it was only presented as a small

test dataset of 2 recordings and was not seen as a standalone task in itself.

SiSEC2010 (Araki et al., 2010) expanded the music separation dataset to

5 full-length recordings as a test set. SiSEC 2010 also saw introduction of a

larger variety of test datasets (increased to 7 from 4), however this resulted

in dilution of number of solutions received for each of these datasets. This

prompted the discussion of considering the different test datasets as distinct

tasks for future SiSEC challenges.
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In SiSEC 2011 (Araki et al., 2012), the professionally produced music mix-

tures dataset (D3), was tied specifically to the task T3 - Source Spatial Im-

age Estimation. This was the first time the music separation task was for-

malised as a separate task, and saw unexpectedly high participation with an

increased interest in NMF-based techniques (described in Section 2.4).

SiSEC 2013 (Ono et al., 2013) expanded the professionally mixed music

dataset and included 20 stereo music pieces (8 pieces for training and 12

pieces for testing respectively). The 8 pieces in the training set are presented

as full-length stereo mixes of music sources, while the evaluation set con-

sisted to 20-second excerpts of mixed music. This challenge also saw surpris-

ingly high participation in the music separation task. Moreover, there was

a strong correlation observed between the performance of these systems on

the full-length training set and the 20-sec excerpt test set, indicating stable

performance of these music separation solutions.

SiSEC 2015 (Ono et al., 2015) saw the first significant jump in separation

quality for music separation with a deep-learning based solution by Uhlich,

Giron, and Mitsufuji (2015) (described in Section 2.5.1). This was in part

supported by the new dataset Mixing Secret Database (MSD100) released for

the music separation task, which consists of a 100 songs of various styles.

This dataset introduced a new formalism for the music separation task (as

described in Equation 5) where each song consists of 4 instrument stems:

drums, bass, vocals and "other accompaniments". Similar to previous SiSECs,

the music separation task attracted the most number of participants.

SiSEC 2016 (Liutkus et al., 2017) the MSD100 dataset was enhanced and

the Demixing Secrets Database (DSD100) was introduced. It was a revision of

the previous dataset, now including professionally mastered versions for the

drum, bass and vocal stems (as compared to unmastered instrument stem-

s/recordings in MSD100) such that the linear sum of these stems resulted

in more realistic mastered musical mixtures. This challenge again saw over-

whelming participation for the music separation task. This challenge for the
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first time reported that supervised systems consistently outperform blind

separation systems, and also reported deep-learning based separation meth-

ods with data augmentation techniques involving random track mixing (as

described in Section 2.5.3) to result in improved generalisability and state-of-

the-art performance.

SiSEC 2018: (Stöter, Liutkus, and Ito, 2018) introduced the MUSDB18

dataset (Rafii et al., 2017). In this challenge, it was observed that all solu-

tions based on deep-learning with additional training data consistently out-

perform all other systems. It is also reported in this challenge that very dif-

ferent deep-learning based solutions perform comparably and that the per-

formance difference seems to largely be associated with the use of larger

training datasets. The best-performing architecture for vocal separation (inde-

pendent of training data) in this challenge was found to be the Multi-dilated

DenseNet by Takahashi and Mitsufuji (2017) (described in Section 2.5.4).

Music Demixing Challenge 2021: The music separation task was even-

tually separated from the other speech challenges into its own task as the

Music Demixing Challenge in 2021 Mitsufuji et al. (2021), which focussed

on vocals, bass and drum stem separation as the main goal. This challenge

introduced MUSDB18-HQ (Rafii et al., 2019) as a new standardised training

dataset. It also addressed concerns of overfitting on the training dataset by

introducing an unseen test dataset MDXDB21. The best performing method

for this challenge (without use of additional training data) was reported to be

Hybrid-Demucs (described in Section 2.6.1.2). This challenge also introduced

the definition of stem-averaged SDRsong (defined in Equation 15) which may

be used as an objective measure to compare different deep-learning architec-

tures trained on the standardised training dataset MUSDB18-HQ and tested

on MDXDB21.

SDRSong =
1
4
(SDRBass + SDRDrums + SDROther + SDRVocals ) (15)
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System SDRSong SDRBass SDRDrums SDROther SDRVocals

Open-unmix (2016) 5.18 5.40 5.71 3.56 6.07

D3Net (2020) 5.80 5.74 6.18 4.30 6.97

Hybrid Demucs (2021) 5.81 6.48 6.44 3.96 6.37

Band-split RNN (2022) 6.142 5.628 6.534 4.425 7.983

Band-split RoPE* (2023) 9.965 11.153 10.269 7.075 11.363

IRM+MWF 9.78 9.39 9.59 8.84 11.30

Table 1: Comparison of state-of-the-art music separation architectures over the years
tested on the MDXDB21 dataset. All models were trained on MUSDB18-HQ,
except Band-split RoPE* which was trained on a larger private dataset. The
theoretical upper-limit for magnitude spectrogram masking-based solutions
with multi-channel Wiener filtering on this test dataset is also presented as
IRM+MWF.

Sound Demixing Challenge 2023: This was eventually further extended

to the Sound Demixing Challenge Fabbro et al. (2023) to include other tasks

such as Cinematic Demixing. The winner of the Music Demixing challenge

was the Band-split RoPE Transformer architecture by Lu et al. (2023) (de-

scribed in Section 2.7). However, it must be noted that the training data lim-

itation was removed for the main leaderboard in the Music Demixing Chal-

lenge 2023. Results for state-of-the-art models across the years which have

been benchmarked on the MDXDB21 test dataset are presented in Table 1.

While the numbers are indicative of the capabilities of these architectures,

it is noteworthy that the significant performance jump between Band-split

RNN and Band-split RoPE is largely due to the increased training data size

used for the latter. It’s also interesting to note that the parameter count of

the newer solutions is significantly larger (details in Section 2.7). However,

they do not report significant performance improvement unless the size of

the training dataset is also scaled accordingly.

2.13 ensemble separation

The work presented in this thesis involves the separation of multiple musi-

cal sources performing in harmony, including choirs and chamber ensembles.
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While this thesis approaches it in a class-agnostic fashion using a permutation-

invariant objective function, other works have approached this challenge in

different ways. This section outlines these alternative approaches.

2.13.1 Choral Music Separation

Choral singing is a form of ensemble vocalisation, which is seen in diverse

musical cultures worldwide. Termed vocal ensembles, these musical perfor-

mances involve multiple singers performing concurrently, often organised

into sections based on vocal range, collectively forming what is commonly

known as a choir. The prevalent Western choral configuration is the Soprano,

Alto, Tenor, and Bass (SATB) arrangement, encompassing four distinct sec-

tions. The prevalent structure in choral singing involves utilising distinct

male and female vocal ranges. Female singers adept at high pitches typi-

cally contribute to the soprano and alto sections, while male singers lend

their voices to the tenor and bass parts. Soprano singers occupy the 260–880

Hz vocal range, while those in the alto section cover the 190–660 Hz range.

The tenor and bass voices, associated with lower ranges, span 145 Hz–440 Hz

and 90–290 Hz, respectively. In the context of an SATB choir, the distribution

of these parts may involve four individual singers, each responsible for one

section, resulting in a quartet arrangement.

Gover and Depalle (2019) is the first work that investigated the task of

choral music separation. They attempted to overcome the challenges asso-

ciated with the lack of clean datasets by generating a synthesised choral

singing dataset. They subsequently approach the separation task as a class-

based regression task using Wave-U-Net (see Section 2.6.1.1). Using this

approach, they report good results on separation of 2 source mixtures of

the lowest and the highest registers (Soprano and Bass), however separat-

ing 4 source mixtures performed poorly. Moreover, since these models were

trained on synthesised data, they failed to produce results on real-world
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recordings of singers. This could be attributed to the nature of their synthe-

sised vocal dataset with limited realism. They subsequently present a score-

conditioned separation method by concatenating the score along with the ex-

tracted audio features to the Wave-U-Net architecture, which produced some

cross-dataset generalisability. This method heavily relies on well-aligned score

information to produce some level of F0-based filtering.

Petermann et al. (2020) uses the U-Net (as described in Section 2.5.2) as a

baseline for a class-based SATB choir separation and subsequently propose

a F0-conditioned separation method, that provides the F0 contours for each

of the sections along with the mixture audio as input. The F0-contours are

presented to the U-Net bottleneck via FiLM conditioning (Perez et al., 2018).

The work uses the Choral Singing Dataset (CSD) and a proprietary Spanish

choral singing dataset for these experiments. The data used in this work

consists of more than one singer per section SATB choirs (not a quartet) and

contains bleed.

In a study by Chandna et al. (2022), a survey of modern deep learning

techniques for source separation in the context of choral music is presented.

They find that models designed for music source separation are more apt

for the task compared to those intended for speech source separation. It is

important to note that the speech separation models were tested with a class-

based regression objective, and not with a permutation invariant objective

which they were originally designed for. They also find that waveform-based

models demonstrate comparable efficacy to models employing intermediate

representations such as spectrograms. In order to tackle the problem of bleed

present in choral music datasets, and subsequently bleed present in class-

based SATB separation methods, they propose a new method for separating

SATB choirs and then resynthesising solo singing voices. The synthesis is

based on extracted dynamics, pitch, and linguistic information derived from

the four-part separation.



2.13 ensemble separation 53

Jeon et al. (2023) work also utilised the class-agnostic separation method

proposed in this thesis and highlighted the challenges associated with uni-

son separation. The models trained in this work were trained using random

mixing of 400 hours of solo singing voice and speech data from 13 differ-

ent datasets. They segregated the vocal separation task into 3 unique tasks

of unison singing, duet and lead vs. backing vocal separation and reported

the applicability of PIT and class-based separation for each of these tasks.

Crucially, this work highlights that by using large-scale datasets, models are

able to perform vocal harmony separation without the need of musically

coherent training mixtures. This work also highlights the channel swap prob-

lem across processing frames for PIT-based models and subsequently deals

with it as a wav2vec (Baevski et al., 2020) based singer identification based

post-processing method. It must be noted that the channel swap problem dis-

cussed in this work is distinct from the observations reported in this thesis

in Section 6.6.2, where channel swaps within the same processing frame are

also observed.

2.13.2 Chamber Ensemble Separation

While no other work has explored the separation of mixtures of identical

instruments using deep learning prior to this thesis, Lin et al. (2021) have

tackled the separation of separation of harmonised sources. This work pro-

poses a zero-shot adaptation method and presents a multi-task separation,

transcription and synthesis model that enables score-informed separation of

harmonised chamber ensemble sources from the URMP dataset. Their work

utilises the spectrogram masking-based U-Net (described in Section 2.5.2) in

conjunction with a QueryNet branch comprising of 2 CNN blocks that al-

lows conditioning the model with the F0 of the target source. It also uses

the Griffin-Lim (Griffin and Lim, 1984) method to estimate the target phase,

which is known to be computationally expensive.
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2.14 discussion

The majority of the existing literature and proposed methods for performing

music source separation rely on the assumption that sources are defined by

their timbral characteristics. Hence models are trained to learn the timbral

characteristics of the target source in order to separate it. Even in speech sepa-

ration, the original deep-clustering based separation methods aim to extract

contrastive embeddings for various time-frequency regions in the mixture

spectrogram, which are likely to be able to distinguish speakers based on

their timbral characteristics. Meanwhile, the permutation invariant training

method in combination with TasNets does not explicitly constrain the model

to learn timbral characteristics by only focusing on optimising the separation

error.

However, prior to the work presented in this thesis, it was unknown whether

TasNets trained with PIT were somehow overfitting to specific acoustic/tim-

bral characteristics due to poor cross-dataset generalisability when trained

on the WSJ-0 dataset (Cosentino et al., 2020). TasNets are able to perform

exceptionally well and reach very high separation quality (up to 25 dB SDRi)

while maintaining relatively small network sizes (less than 10M parameters).

Meanwhile, state-of-the-art music separation architectures after U-Net and

open-unmix increased in model capacity very rapidly (exceeding 100M pa-

rameters) in order to achieve improved separation. Moreover, TasNets had

never been utilised successfully and did not perform comparably for the

music separation task (Défossez et al., 2019). This may suggest that TasNets

with PIT may fundamentally learn differently as compared to speech en-

hancement and music separation models which are expected to be able to

model the timbral characteristics of their target sources.

However, there was little understanding of what distinguishing features

are the TasNets learning when trained with PIT, due to their end-to-end na-

ture. Initial understanding suggested that they are able to generate a sparser
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latent representation as compared to the STFT on which masking is more

suitable and their higher temporal resolution of separation is the primary

contributing factor to their improved performance. Although these expla-

nations should also suggest TasNets should perform exceptionally well for

music separation, since both these factors should also work well for the mu-

sic separation task. This was not observed in experiments by Défossez et al.

(2019). The explanation for this was assumed that higher sampling rates used

in music separation make TasNets unsuitable for the task as their receptive

field/sequence length scales poorly as the sampling rate goes up. However,

this was not proven and is also difficult to experiment with as TasNets typi-

cally require significantly higher VRAM consumption to train, even though

their network sizes are relatively small.

In this thesis, the applicability of TasNets to music separation at high sam-

pling rates, while presenting a music separation task that fits the permuta-

tion invariant objective is tested in Chapter 4. In order to explore whether

TasNets do overfit to timbral/acoustic cues, a large synthesised dataset is

created and presented in Chapter 3. Chapter 5 explores the applicability of

TasNets to various music separation tasks, where it is observed that TasNets

not only are able to generalise to unseen datasets/acoustic scenarios when

trained on the synthetic dataset presented in Chapter 3, but are also able to

generalise well across a broad range of instrument timbres. Finally, Chapter 6

presents a series of evaluation and analysis experiments to identify what mu-

sical scenarios the TasNets find challenging to separate, which leads us to a

better understanding of how TasNets trained with PIT are able to separate

sources in a timbre-agnostic fashion.



Part II

T H E S E T U P

Setting up the building blocks to enable ensemble separation.



3
E N S E M B L E S E T: A N E W S Y N T H E S I S E D D ATA S E T O F

C H A M B E R E N S E M B L E S

3.1 introduction

Music source separation research has made great advances in recent years,

especially towards the problem of separating vocals, drums, and bass stems

from mastered songs. The advances in this field can be directly attributed

to the availability of large-scale multitrack research datasets for these men-

tioned stems. Tasks such as separating similar-sounding sources from an en-

semble recording have seen limited research due to the lack of sizeable, bleed-

free multitrack datasets. While specific sub-tasks in the speech-domain like

speech denoising, multi-speaker separation and dereverberation have been

thoroughly explored, music separation research has largely been focused on

the demixing challenge (Mitsufuji et al., 2021) aided by the popular MUSDB

dataset (Rafii et al., 2019). The demixing challenge is targeted at solving the

problem of separating vocals, bass, and drums from mixed and mastered

pop songs. This has greatly benefited the field by demonstrating that source

separation is indeed possible at a commercial scale with state-of-the-art deep

learning-based architectures. Unfortunately, this also has resulted in the re-

search towards this specific task to dwarf other problems that would also

fall under the umbrella of music source separation, to the extent that music

source separation has become synonymous with the task of separating vocal,

drums and bass stems from mastered songs.

57
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Training supervised source separation models typically require datasets

that provide clean target sources as a reference for the deep learning models

to learn from. While the majority of popular music can be recorded in sepa-

rate takes for different performers, with a reference metronome or a backing

track, ensembles are usually recorded together in the same take. This is due

to the fact that ensemble performers rely on being able to hear each other

during the performance to be able to synchronise perfectly. This raises the

problem that the majority of stems available from recording projects of mono-

timbral ensembles contain bleed1 from non-target sources (Rosenzweig et al.,

2020; Bittner et al., 2014). This becomes problematic for training models for

source separation due to the lack of clean ground truth as a target result

for the model (see Section 2.13). This lack of clean and sizeable datasets for

ensembles has affected the amount of research seen in this domain.

To overcome the challenge of bleed-free real recorded datasets for ensem-

bles, a novel dataset “EnsembleSet" is presented, which utilises a highly re-

alistic orchestral sample library by Spitfire Audio called "BBC Symphony

Orchestra" (BBCSO) (SpitfireAudio, 2019). This sample library was used to

render digital chamber ensemble scores from MIDI and MusicXML format

to 18 unique multi-mic recordings and 2 professional mixes. For this work,

the RWC Classical Music Database (Goto et al., 2002) and Mutopia (Praet-

zel, 2000) were used to source the chamber ensemble MIDI and MusicXML

(converted from lilypond) scores. It must be noted that MIDI data are not

ideal for capturing string, wind, and brass instrument scores as they do not

encapsulate articulation information. On the other hand, lilypond scores con-

tain minimal dynamics (velocity) information, which is essential for realistic

rendering using virtual instruments. In order to address these challenges,

expression maps from Dorico (Steinberg, 2016) were utilised, which is a

scorewriter software that enables automatic selection of articulation mode

for each note in the piece.

1 Sound picked up by a microphone from a source other than that which is intended.
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Section 3.2 describes the motivation and design considerations behind the

creation of the dataset "EnsembleSet" (Sarkar, Benetos, and Sandler, 2022)

for chamber ensemble separation. Section 3.3 a description of the chosen

BBC Symphony Orchestra library is provided, with details of the library’s

recording conditions and creative intent. Section 3.4 describes the sources

and the process of curation of the digital music scores used for generating

this dataset. Section 3.5 provides details about the data synthesis process

and the resulting audio renders. Section 3.6 gives an overview of the musi-

cal content present in the final dataset. Section 3.7 and Section 3.8 provide a

discussion regarding the utility of this dataset and its potential future appli-

cations.

3.2 motivation and design considerations

Existing synthesised datasets for source separation, such as Slakh2100 (Manilow

et al., 2019) are generated in an automated fashion, where both the source

MIDI data is scraped procedurally (Raffel, 2016) and subsequently rendered

in an automated fashion. While such datasets do benefit from their larger

size, models trained using such datasets suffer from poor cross-dataset gen-

eralisability, at least in the context of music source separation as reported in

Manilow et al. (2019). This can be attributed to a few factors listed below.

• Using low-quality synthesizers results in very low timbral variation

which often results in large deep-learning models overfitting to specific

characteristics of the synthesizer.

• The automated scraping of MIDI data results in incorrect program num-

bers for various instruments, which is difficult to detect and/or correct

as these datasets (LMD Raffel (2016)) don’t have paired audio data to

be able to detect such errors.
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• MIDI is not well suited to capture most non-percussive musical instru-

ments. Although almost all synthesizers do work with a piano-like in-

terface enabling the use of MIDI to render any instrument, these syn-

thesizers require careful control of additional parameters based on the

musical context to be able to render realistic audio.

• Typically the only additional information that can be consistently pro-

vided in MIDI data is velocity2, which was observed during our data

exploration to be very poor for most MIDI datasets for non-piano in-

struments. RWC Classical Music Database (Goto et al., 2002) was one

of the only sources found to have carefully mapped dynamics as note

velocities.

• Chamber ensemble instruments have many different nuanced playing

styles such as staccato, legato and tremolo. which are extremely chal-

lenging to render using MIDI data alone. The only information avail-

able in MIDI is the velocity and the distinction between strings and

pizzicato strings as separate program numbers.

The goal with this dataset was to be able to use the high-fidelity sample

library based BBCSO plugin to be able to create a highly realistic synthe-

sised dataset that is able to produce generalisable deep learning models. The

motivation for a synthesised dataset in this case was not only with the in-

tent to create a sizeable dataset, but also because finding clean stems from

real-world chamber music recordings is very difficult.

BBCSO was chosen because of the large timbral variety available in the plu-

gin, where every note can be rendered in various articulation styles and mul-

tiple mics. For example: in the legato articulation mode, every possible note

transition is recorded as a unique sample. Moreover, every note is recorded

with up to 5 unique takes, and during rendering one of the 5 takes is cho-

2 Velocity indicates how hard the key was struck when the note was played, which usually
corresponds to the note’s loudness
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sen in a round-robin fashion. This enables additional variety in the rendered

dataset which could be useful to train deep learning models.

We chose to focus our dataset to maximize the capabilities of the sam-

ple library in the context of permutation invariant training. While orchestral

scores had a much higher number of concurrent sources on average, each in-

dividual source in an orchestra often plays in a polyphonic fashion 3 which

would make it unsuitable for training deep learning models in a permutation-

invariant fashion. While the dataset could eventually be extended to include

orchestral scores as well, it was consciously chosen to be restricted chamber

ensembles, where each part is played by a single performer. Thus each part

is rendered as an individual performer/section leader (for eg: Violin 1 leader,

instead of Violins 1 section) instead of rendering an entire section with mul-

tiple players.

As the data rendering pipeline was unable to render certain instruments

(such as Piano) that are commonplace in chamber ensembles, such instru-

ments were filtered from the source symbolic data such that every piece

would have at least 2 sources that can be rendered using BBCSO, and at least

one of the sources should be a bowed instrument. While the process could

have also included rendering pieces that had 2 non-bowed instruments play-

ing together as well, at the time of rendering the dataset it was unknown

that monophonic separation would work in a timbre-agnostic fashion (dis-

cussed in Section 5.4), thus the dataset was focussed on bowed instruments,

primarily consisting of string quartets. Although it must be noted that there

were only 2 pieces available in Mutopia that could have been included with-

out the aforementioned restriction, this choice did not affect the dataset size

significantly.

3 different instruments within a single section play distinct notes instead of playing in unison
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3.3 how was the bbcso library created?

This section presents key takeaways from an interview conducted with Jake

Jackson, Recording Engineer at Maida Vale studios (who was also the record-

ing engineer for the Spitfire Audio BBCSO sample library) which is presented

in Section B.1.

The main intent for Spitfire Audio with the creation of the BBCSO library

was to record a sample library in the same setup that is used for professional

recording of film/game scores, such that it would have all the microphones

typically used in such projects. They also provide additional renders such

as spill mics and distant balcony and Atmos mics in order to futureproof

the library as growingly most audio projects are rendered/upmixed to im-

mersive/3D audio compatible formats. It includes all traditional room cap-

ture mic configuration such as decca tree, ambience, and also more dry and

closer perspective recording scenarios that use close mics for each performer

and section. The idea was to make available all possible perspectives to a

performer as a mix engineer might want. All the different mics accurately

represent the sonic image of a source from the given recording position, in-

cluding the time it takes for the sound from the source to arrive at each mic

without any correction. Performers in an orchestra actually play in a fashion

such that the sound from each source arrives at the conductor at the same

time, so performers at the back of the orchestra would actually anticipate the

beat and play slightly before the beat to compensate for the time it’d take for

the sound to travel to the conductor. Thus the time alignment of the instru-

ment midi onsets and actual sample time is aligned in a fashion such that

the sound from each source at the Mono mic (placed right above the head of

the conductor) arrives at the same time.
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3.4 collecting digital music scores

The first step to generating the dataset was to obtain digital music scores that

could be rendered using BBCSO. One of the fundamental principles of this

project was to maintain the realism of the synthesised dataset, thus choosing

clean and high-quality data sources was essential. As a starting point Kern

scores (Sapp, 2005) and RWC Classical music database (Goto et al., 2002)

were explored as sources for high-quality digital scores.

During the exploration, kern scores were found nonideal as all note events

were annotated with a constant velocity value, and the articulation informa-

tion was not preserved when converted to MIDI. Subsequently, RWC Classi-

cal Music database was investigated as a source, which was ideal as it had

very accurate velocity and time annotations for each note event. While these

MIDI scores lacked articulation information, they did have separate MIDI

tracks for pizzicato strings which was useful.

On further exploration, it was observed that some of the scores present

in RWC were for orchestral pieces while some were for chamber ensemble

pieces. The orchestral pieces consisted of polyphonic scores per section which

would require it to be split and rendered as individual sources, and also

opened up our first challenge i.e. which articulation should be used for as

default playback? Legato would be ideal but it only works for monophonic

scores, as it assumes that the performer is playing a sequence of single notes.

Subsequently, polyphonic sections were split into multiple monophonic

tracks. This resulted in the fundamental/lowest monophonic track being

consistently active but often with discontinuous melodies (if a lower har-

mony appears). While the higher harmonic tracks were mostly inactive with

sparse and seemingly random melodic content. Using a method to identify

the main melody from these polyphonic sections (and ignoring the harmon-

isation) could be useful, but that was determined to be a fairly challenging
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problem and beyond the scope of this work. Thus it was decided to restrict

the dataset to chamber ensemble scores. This resulted in the number of us-

able tracks from RWC being only 9 pieces.

The first version of this dataset used a few of the orchestra scores and

was presented at ISMIR 2021 at the sound demixing challenge workshop

where the dataset was commended for its realism. Based on feedback re-

ceived during this demo, Mutopia was suggested as a digital score source

and potentially Lilypond as a source format as it would preserve articulation

information. This expanded the scope of the dataset to include a much larger

library of ensemble scores through Mutopia (140 pieces). However, some of

the scores present in the Mutopia collection were orchestral pieces, which

had to be excluded due to the presence of polyphonic sections in their instru-

ment scores.

Knowing the limitations of PIT, it was decided to focus on chamber en-

semble scores exclusively. Including both Mutopia and RWC as sources, 81

scores (6 hours and 9 minutes duration) were collected which was sizeable

enough for a useful source separation training dataset. Another issue with

orchestra scores (apart from the polyphonic sections) was the poorly anno-

tated lilypond scores, many of which resulted in errors during conversion to

MIDI (66 out of 68 orchestral lilypond scores from Mutopia threw conversion

errors) and the effort required for cleaning these was much higher. Thus it

was decided to focus on rendering only the chamber ensemble pieces and

the 78 orchestra scores (68 from Mutopia, 10 from RWC) were set aside as

potential future work that could be released as OrchestraSet.

3.4.1 RWC Classical Music Database

The RWC Classical Music Database (Goto et al., 2002) consists of 50 public-

domain classical pieces performed by musicians and then manually tran-
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scribed to MIDI with high-quality tempo and velocity mapping. Since the

database only provides the final mix of these performances, its applications

are limited especially in the context of source separation. A subset of these

pieces that contain chamber ensembles were chosen as they can be rendered

using our method. The 9 selected pieces (1h 3m 34s)4 consist of 4 string

quartets, 2 clarinet quintets, 2 piano trios, and 1 piano quintet. It must be

noted that for the piano trios and quintets, only the string instrument parts

were rendered. Since MIDI files lack articulation information, the MIDI files

were augmented using Dorico5 to automatically add articulation modes in

the MIDI scores using keyswitches, which were then subsequently rendered

as multi-tracks on Reaper (Cockos, 2006).

3.4.2 Mutopia

The Mutopia Project (Praetzel, 2000) is a publicly sourced and manually ver-

ified free content sheet music library. The sheet music scores are manually

annotated from old scores that are now public domain, and digitally archived

using the lilypond format which can be converted to MusicXML and MIDI.

This library has a large collection of string ensembles, of which 71 pieces

were chosen (5h 5m 35s)2 including a variety of chamber ensembles primar-

ily composed of string quartets but also including other instruments such as

Trumpet, Horn, Oboe, Clarinet, Flute and Bassoon. Although all the lilypond

files come with their standard MIDI conversions, we utilise the lilypond to

MusicXML conversion python library LilyPond (2016), to preserve the ar-

ticulation information present in the lilypond files. For the files which suc-

cessfully converted to MusicXML, we import them to Dorico, where these

articulations are translated to keyswitches (described in Table 3) and ren-

dered to MIDI format which can then be utilised by the BBCSO plugin when

rendered on Reaper (Cockos, 2006).

4 Rendered duration in dataset.
5 https://www.steinberg.net/dorico/
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3.4.3 Data Cleaning

Many of the scores used to render this dataset contained instruments that

were absent (e.g., piano, vocals) in our sample library. Since the intent of

EnsembleSet is to generate realistic renders of instruments performing and

being recorded in the same physical space, we chose to remove the incom-

patible instruments as rendering them using other plugins will not be consis-

tent. While converting Mutopia based files using the lilypond to MusicXML

conversion tool, many files resulted in erroneous MusicXML files. For the

corrupted conversions, the source MIDI files made available in the database

were used as is and thus were unable to preserve articulation for those

pieces. For these pieces, the same articulation generation pipeline as the RWC

sourced files was used. For some other files where the errors were minor (in-

correct timing and track assignments), their corresponding MIDI files from

the source database were used to manually inspect and correct these Mu-

sicXML conversions.

3.5 data generation

3.5.1 BBC Symphony Orchestra

The BBCSO library was developed in partnership between BBC Studios and

Spitfire Audio, by capturing a full orchestra as sections as well as individ-

ual section leaders. Each instrument was recorded for each note in a variety

of articulation modes using multiple microphones placed at different posi-

tions in the room. For shorter notes multiple iterations were recorded which

are rendered in a round-robin fashion to simulate microtiming variations of

real performers. The sample library was recorded in the same fashion as

a film score would be recorded in a studio with a multi-microphone setup
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Figure 5: Recording configuration for the Spitfire Audio BBC Symphony Orchestra
sample library depicting the placement of individual microphones and
performers.

that enables the capture of each performer from different perspectives in

the room. This allows us to simulate high quality recordings of chamber en-

semble pieces from digital music scores, rendered using individual section

leaders.
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3.5.2 Microphone Renders

• Mono: An old-fashioned bi-directional (figure of 8) microphone posi-

tioned behind the conductor’s head for a close-to-realistic mono pickup.

The renders are upmixed to stereo based on the angle of performer

w.r.t. the conductor. This render can be downmixed to mono without

any phase artifacts.

• Leader: A condenser microphone placed close to the leader of each of

the string sections at instrument height. The renders are upmixed to

stereo based on the angle of performer w.r.t. the conductor. This render

can be downmixed to mono without any phase artifacts.

• Decca Tree: Three omnidirectional microphones are placed in the tradi-

tional Decca Tree arrangement, high above the conductor’s head. The

three microphones are panned hard left, centre and hard right in the

stereo render.

• Outriggers: Two omnidirectional microphones placed midway between

the orchestra at the same line and height as the Decca Tree. The two

microphones are panned hard left and hard right on the stereo render.

• Ambient: Two omnidirectional microphones placed towards the rear of

the room, higher than the outriggers. The two microphones are panned

hard left and hard right on the stereo render.

• Balcony: Two omnidirectional microphones placed at the very rear of

the hall, high up in the balcony. The two microphones are panned hard

left and hard right on the stereo render.

• Stereo Pair: Two Coles 4038 microphones placed in a stereo arrange-

ment close to the musicians at head height. The two microphones are

panned hard left and hard right on the stereo render.



3.5 data generation 69

• Mids: A stereo pair placed above the brass, woodwind and percussion

sections. These are used as a mid pickup between the Close and Tree

microphones. The two microphones are panned hard left and hard right

on the stereo render.

• Sides: Two omnidirectional microphones placed at the very edge of

the orchestra, in the same line as Decca Tree and Outriggers. The two

microphones are panned hard left and hard right on the stereo render.

• Atmos Front: Two omnidirectional microphones placed high above the

orchestra in the front. The two microphones are panned hard left and

hard right on the stereo render.

• Atmos Rear: Two omnidirectional microphones placed high above the

orchestra in the rear. The two microphones are panned hard left and

hard right on the stereo render.

• Close: The standard close microphones which are unique for each sec-

tion placed close to the performers. This render is panned as per the

position of the performer on stage w.r.t. the conductor. (3 microphones

per string section, each of the 3 microphone signals are downmixed to

stereo based on the angle of each of the microphones w.r.t. the conduc-

tor, for eg: violins section 1 close mics would be panned roughly -75

degrees, -72 degrees and -70 degrees w.r.t. conductor)

• Close Wide: The standard close microphones which are unique for

each section placed close to the performers. Unlike the default panning

of this render for whole sections which uses multiple mics panned wide

apart, this render is panned center in our case as we only render the

leaders of each section. (each mic of section panned hard left, center

and hard right)

• Spill String: These are all the close microphones from the Violin 1,

Violin 2, Viola, Cello, and Bass sections. These mics can be used to

simulate the bleed of any of the other sections being picked up from



3.5 data generation 70

the strings section mics. This render is a downmix of 15 mics where

each of the microphone signals is panned based on their position w.r.t.

the conductor.

• Spill Brass: These are all the close microphones from the Horn, Trum-

pet, Tuba, Trombone, and Bass Trombone sections. These mics can be

used to simulate the bleed of any of the other sections being picked up

from the brass section mics. This render is a downmix of 11 mics where

each of the microphone signals is panned based on their position w.r.t.

the conductor.

• Spill Woodwind: These are all the close microphones from the Clarinet,

Bassoon, Flute, and Oboe sections. These mics can be used to simulate

the bleed of any of the other sections being picked up from the wood-

wind section mics. This render is a downmix of 12 mics where each

of the microphone signals is panned based on their position w.r.t. the

conductor.

• Spill Percussion: These are all the close microphones from the Percus-

sion sections. These mics can be used to simulate the bleed of any of the

other sections being picked up from the Percussion section mics. This

render is a downmix of 10 mics where each of the microphone signals

is panned based on their position w.r.t. the conductor.

• Spill Full: These are all the close microphones from all the instrument

sections. These mics can be used to simulate how any instrument is

being picked up by the sum of all the close mics on stage. This render is

a downmix of 48 mics where each of the microphone signals is panned

based on their position w.r.t. the conductor.

Summarised details about individual microphone/mix setups can be found

in Table 2.
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No. Render Name Type # Mics Pan

1 Mono Bidirectional 1 Mono
2 Leader Unidirectional 1 Stage Pan
3 Decca Tree Omnidirectional 3 Stereo
4 Outriggers Omnidirectional 2 Stereo
5 Ambient Omnidirectional 2 Stereo
6 Balcony Omnidirectional 2 Stereo
7 Stereo Pair Coles 4038 2 Stereo
8 Mids Omnidirectional 2 Stereo
9 Sides Omnidirectional 2 Stereo
10 Atmos Front Omnidirectional 2 Stereo
11 Atmos Rear Omnidirectional 2 Stereo
12 Close Unidirectional 1 Stage Pan
13 Close Wide Unidirectional 1 Mono
14 Spill String Unidirectional 15 Stage Pan
15 Spill Brass Unidirectional 11 Stage Pan
16 Spill Woodwind Unidirectional 12 Stage Pan
17 Spill Percussion Unidirectional 10 Stage Pan
18 Spill Full Unidirectional 48 Stage Pan
19 Mix 1 Mix 12 Stage Pan
20 Mix 2 Mix + FX 12 Stage Pan

Table 2: List of available renders in EnsembleSet. It must be noted that the Leader
microphone is only available for string instruments.
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Switch Strings Horn & Trumpet Flute & Clarinet Oboe & Bassoon

C-1 Legato Legato Legato Legato
C#-1 Long Long Long Long
D-1 Long Con Sordino Staccatissimo Trill Major 2

nd Trill Major 2
nd

D#-1 Long Flautando Marcato Trill Minor 2
nd Trill Minor 2

nd

E-1 Spiccato Long Cuivre Staccatissimo Staccatissimo
F-1 Staccato Long Sforzando Tenuto Tenuto
F#-1 Pizzicato Long Flutter Marcato Marcato
G-1 Col Legno Multi-tongue Long Flutter Multi-tongue
G#-1 Tremolo Trill Major 2

nd Multi-tongue -
A-1 Trill Major 2

nd Trill Minor 2
nd - -

A#-1 Trill Minor 2
nd Long (muted) - -

B-1 Long Sul Tasto Staccatissimo (muted) - -
C0 Long Harmonics Marcato (muted) - -
C#0 Short Harmonics - - -
D0 Bartok Pizzicato - - -
D#0 Marcato - - -

Table 3: List of keyswitch-articulation mappings for different instruments.

3.5.3 Mixes

Apart from the individual microphone stems, the plugin also provides two

professionally mixed stems. Mix 1 is a general starting point for a Mix en-

gineer with a good balance of the commonly used microphones like Decca

Tree, Outriggers, Ambient, Balcony, Mids and Close mics. Mix 2 provides

a more intense sound with some added compression, EQ and reverb. These

stems are ideal to simulate the typical music separation scenario as the mixes

provided present a good simulation of an unmastered and a mastered mix

for an orchestral ensemble.

3.5.4 Articulation Automation

The BBCSO plugin allows rendering each note in a variety of articulations

that are particular to each instrument. We use Dorico which in case of im-

porting scores as MusicXML files, is capable of mapping articulations from

MusicXML to keyswitches in the -1 octave in MIDI. Alternatively, if articula-
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Figure 6: Articulation distribution across EnsembleSet

tions are unavailable, as is the case for importing scores as MIDI files, Dorico

automatically selects either staccato or long articulation based on individual

note lengths with a crossover at 187.5ms (16th note at 80bpm). The result-

ing distribution across different articulation styles is shown in Figure 6. The

list of keyswitches and articulation mappings for each of the instruments

available in EnsembleSet is shown in Table 3.

3.6 dataset contents

EnsembleSet contains a total of 498.5 hours of unique audio renders across

all instruments and mixes. The dataset contains a total of 6 hours and 9

minutes of multi-instrument, multi-mic data and is available on Zenodo6.

The resulting total active duration of each instrument in EnsembleSet can be

6 https://zenodo.org/record/6519024
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Figure 7: Polyphony distribution across EnsembleSet

seen in Figure 8. The dataset presented is focused around string ensembles,

and each of the 80 tracks presented in the dataset contains at least one string

instrument, while the majority of pieces comprise string quartets. Ensem-

bleSet also contains other woodwind and brass instruments, although their

distribution is rather sparse. The overall polyphony distribution across the

dataset is shown in Figure 7. Each song is also paired with its accompanying

MIDI file which was used to generate the renders, which also contains the

articulation information.

3.7 discussion

A large focus of this dataset was to generate large amounts of realistic cham-

ber ensemble mixtures for training ensemble separation models using permu-

tation invariant training. The assumption (based on experiments presented

in Section 6.3) behind maximising the size of the dataset was that random
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track mixing7 does not work for ensemble separation. On subsequent explo-

ration after the sizeable dataset was created, it was observed that random

mixing does in fact work for ensemble separation with PIT as well, although

it does not improve performance when average metrics are compared (dis-

cussed in Section 6.3.1). This raises the possibility of training high-quality

ensemble separation models by randomly mixing solo instrument perfor-

mance recordings, which bypasses the bleed in ground truth issue while

still being able to train on real-world recordings. While this could definitely

improve the generalisability of ensemble separation models for a variety of

timbres and recording conditions, Chapter 6 shows that the large variance

in our model’s performance is observed due to specific scenarios such as

synchronised onsets and pitch crossovers with staccato observed in real mix-

tures, which would be absent in randomised mixtures of solo performance.

It would be interesting to explore the impact of models trained on real but

randomised mixtures on the aforementioned scenarios since such scenarios

are indeed present in EnsembleSet. Potentially it may be found valuable to

7 musically incoherent mixtures using instrument stems from different pieces of music.
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train models with both the presented synthesised synchronised dataset and

real-world randomised mixtures from solo performances combined. Due to

the large size of this dataset including the multi-mic renders, the use of audio

effects as data augmentation was restricted to be applied on the fly during

model training. However, it must be noted that using realistic audio effects

using VST plugins could improve the real-world generalisability of models

trained using this dataset.

3.8 potential applications

The presented dataset not only contains high-quality multi-microphone ren-

ders of various instruments, but is also accompanied by the MIDI files that

were utilised for generating this dataset. This paired data can be utilised

for various tasks including multi-instrument transcription (Wu, Chen, and

Su, 2020), instrument recognition (Garcia et al., 2021), score-informed source

separation (Garcia et al., 2021), microphone simulation (Mathur et al., 2019),

and automatic mixing (Reiss, 2011).



4
M U S I C S O U R C E S E PA R AT I O N U S I N G TA S N E T S

4.1 introduction

Time-domain source separation models based on TasNets (Luo and Mes-

garani, 2018) are distinct from STFT-based source separation models by al-

lowing the model to learn a 1-D convolutional filter to transform 1-dimensional

time-domain audio to a 2-dimensional representation without using the Fourier

transform. Previous methods reliant on magnitude-spectrogram-based mask-

ing were effectively working under a theoretical performance limit deter-

mined by the lack of accurate phase estimation. This limit is known as the

Ideal-Ratio Mask, which represents the upper-bound of phase-agnostic mag-

nitude masking based methods by measuring the SNR of an estimated signal

assuming perfect magnitude spectrogram masking without accurate phase

estimation. These time-domain methods can be broadly categorized into 2

groups: based on learnable 1-D encoder/decoder filterbanks introduced by

Luo and Mesgarani (2018) or based on U-Net architectures, first used in

Stoller, Ewert, and Dixon (2018b) and subsequently improved on by Défossez

et al. (2019). More details about the details of these methods can be found in

Section 2.6. This work utilizes the TasNet (Luo, Chen, and Mesgarani, 2018)

based architectures Conv-TasNet (Luo and Mesgarani, 2019), DPRNN (Luo,

Chen, and Yoshioka, 2020) and DPTNet (Chen, Mao, and Liu, 2020) based on

their proven success with permutation invariant training (Yu et al., 2017) for

speech separation.

77
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Contributions of this chapter include a survey of TasNet-based networks

applied to high-fidelity music signals at 44.1 kHz which were originally de-

signed for speech separation at 8 kHz. The impact of different model struc-

tures and parameters is presented in the context of available GPU resources

for training such models. The network parameter optimisation explored in

this chapter acts as the baseline architecture for the experiments presented

in Chapter 5.

In this chapter, Section 4.2 first formulates the ensemble separation prob-

lem which enables use of PIT for music source separation. Section 4.3 dis-

cusses the intricacies of using TasNets for music source separation, establish-

ing the challenges associated with limited hardware capabilities and balanc-

ing various aspects of the architecture to make TasNets work at 44.1 kHz for

music separation effectively. Section 4.4 explores the performance of TasNets

with PIT for varying number of sources and discusses the utility of such

models for source separation considering the quality that is achieved with

different sized ensembles.

4.2 leveraging pit for chamber ensembles

The experiments in this thesis focus on the separation of chamber ensemble

mixtures from monaural recordings. Each of the stems that are extracted in

the music demixing task (as described in Section 2.1.3) can be further decom-

posed to obtain individual monophonic sources, for example, the vocals stem

svocals(t) can be decomposed to individual vocalists svn(t) as Equation 16

where each decomposed signal is a monophonic signal.

svocals(t) =
V

∑
v=v1

sv(t) (16)
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In other forms of music, especially in the context of typical chamber mu-

sic, the mixture can be composed of multiple monophonic instruments and

additional polyphonic (e.g.: piano, harpsichord) and percussive instruments

(e.g.: timpani, snare) as:

sensemble(t) =
I

∑
i=i1

si(t) + spolyphonic(t) + spercussion(t) (17)

While the individual monophonic instruments si(t) can be categorised

based on instrument type (such as violin, viola, cello, flute, trumpet, etc.) and

class (such as string section, woodwind section, brass section), considering

such instruments in a label agnostic fashion allows training source separa-

tion models in a permutation invariant fashion with the constraint that each

source is monophonic. In this thesis, the decomposition problem is defined

as Equation 18, where given a mixture consisting of N monophonic sources,

the model is trained to separate them into the constituent monophonic parts

si(t) for i ∈ I. In this formulation, mixtures are only considered to contain

monophonic sources, thus chamber ensemble mixtures with percussion or

polyphonic instruments are not considered. This task can then be solved in

a permutation-invariant fashion (see Section 2.8) as introduced by Yu et al.

(2017).

smixture(t) =
I

∑
i=i1

si(t) (18)

4.3 making tasnets work at 44 .1 khz

A disadvantage of learnable free-filterbanks as encoder/decoder pair with

respect to the FFT is the poor scalability of the 1-D convolution encoder layer

for higher sampling rates. In the case of FFT, the hop size and window size
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of the FFT can be scaled according to the sampling rate of the signal without

a significant increase in computational complexity1. On the other hand, Tas-

Nets (described in Section 2.6.2) introduce a tradeoff between temporal res-

olution and temporal context when choosing the filterbank hop and stride

length parameters. Lower hop lengths improve the temporal resolution of

the system, at the expense of longer sequences/limited receptive field for the

separation stack and higher VRAM consumption for training. The implica-

tions of these tradeoffs vary based on architecture, which are explored in the

subsequent sections.

Section 4.3.1 first presents the various TasNet architectures used in this

Thesis, and introduces their various network parameters and design consid-

erations. Section 4.3.3 describes the dependence of these network parameters

based on memory capacity restrictions for different GPUs, especially in the

context of dealing with high-sampling rate audio. Section 4.3.4 introduces

the various network and training parameters, establishing the trade-offs be-

tween memory consumption, training speed, model capacity and separation

performance. The experiments conducted during the optimisation process

are described in Section 4.3.5 and Section 4.3.6 and the data augmentation

techniques used for these experiments which are also included as the base-

line in the remaining experiments in this thesis are described in Section 4.3.7.

4.3.1 Architectures

The experiments described in this thesis primarily rely on using two TasNet-

based architectures (described in Section 2.6.2 and shown in Figure 2): Con-

vTasNet and DPTNet. Dual-path RNN (Luo, Chen, and Yoshioka, 2020) was

also explored but DPTNet was a similar architecture released soon after

DPRNN which showed improved performance compared thus subsequent

1 Due to the FFT algorithm reducing the computational complexity of the discrete Fourier
transform to O(N log(N)).
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experiments relied on DPTNet. While SepFormer by Subakan et al. (2021)

reports improved performance and efficiency as compared to DPTNet by re-

moving the recurrent operations present in DPTNet, an open-source imple-

mentation of SepFormer was not available until 2023 thus the experiments

presented in this thesis were limited to DPTNet. However, it can be assumed

that SepFormer-based experiments would show similar performance trends

as reported in this thesis.

4.3.1.1 ConvTasNet

The ConvTasNet architecture by Luo and Mesgarani (2019) improved upon

the original TasNet architecture by Luo and Mesgarani (2018) by keeping the

1-D convolution-based encoder/decoder layer but replaced the LSTM-based

separation stack with a TCN-based separation stack. The original LSTM-

based separation stack limited the capability of the model with shorter filter-

bank length/hop sizes as reducing the filter hop size significantly increases

the length of the latent representation as given by Equation 19, where L is the

length of the latent representation generated by the encoder determined by

Equation 19 where T is the duration of the training samples, Fs is sampling

rate and L f is the length of the filters in the encoder.

L =
2 × T × Fs

L f
(19)

To overcome the challenges associated with training LSTMs for long se-

quences, the authors Luo and Mesgarani (2019) suggest replacing the LSTM

stack with a dilated-TCN stack, where the dilation increases exponentially

until 2x−1 for the final xth layer of the TCN stack. While the TCN stack can

consistently extract temporal relationships within the receptive field of the

TCN-stack, this receptive field reduces as the sampling rate of the signal in-

creases, requiring either increasing the hop size of the filterbank or increasing
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the number of layers of the stack, thus increasing model size and computa-

tional complexity.

4.3.1.2 Dual-path RNN/Transformer
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Figure 9: Dual-path processing based architecture for DPRNN and DPTNet audio
source separation models.

An alternate approach to solve the vanishing gradients problem for long

sequences generated by the encoder/decoder filterbank was proposed by

Luo, Chen, and Yoshioka (2020) to convert the 2-D representation into a 3-

D representation by chunking the feature sequence into segments and then

stacking them (as shown in Figure 9). Once this has been done, the latent

features can be processed in an intra-chunk and inter-chunk fashion by having

different RNN heads operating on short-term and long-term features. This

was subsequently improved upon by Chen, Mao, and Liu (2020) by replacing
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the RNN with a modified transformer encoder architecture with a better

capacity to capture temporal relationships than bi-LSTMs.

For a given input sequence of length L, the chunking is performed such

that the length of the intra-chunk segment (S) and inter-chunk segment (K)

are evenly matched to maximize the effectiveness of each of the intra-chunk

and inter-chunk RNN such that S ≈ K, which results in Equation 20. This

results in the latent representation of the input sequence, and thus the com-

putational complexity of the separation stack to scale by O(
√

L) instead of

O(L).

K =
√

2L =

√
2 × 2 × T × Fs

Lf
(20)

This technique enables scaling TasNets to work effectively at higher sam-

pling rates (for reference: the computational complexity of FFT scales at

O(N log(N)).

4.3.2 Experimental Setup

For the presented optimisation experiments, models were trained to separate

4 part vocal harmony mixtures from the BCBQ datasets (see Section 2.11.3).

The songs present in the combined dataset were into 3 groups for training,

validation, and testing roughly in ratio 8:1:1 (since song lengths vary), mak-

ing sure that the test and cross-validation sets consist of songs (and not just

segments) that are unseen in the training set. Though the audio mixtures are

identical across the different test scenarios, the frame length used for eval-

uating the models was the same as their training configuration. The data

pre-processing involves activity detection on the monophonic vocal audio

files and identifying frames where all constituent sources are concurrently
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active for at least 10% of the frame length for 4 and 3 source mixtures, and

40% for 2 source mixtures. This was applied to prevent the model from being

trained on frames where less than the desired number of sources were active.

The models were trained using SI-SDR as the loss function with a permu-

tation invariant objective (see Section 5.3.3 for details). Models were trained

for 100 epochs with 0.0001 as the starting learning rate with a scheduler that

halves the learning rate if the validation loss doesn’t improve for more than

3 epochs and an early stopping condition with the patience of 5 epochs.

4.3.3 Hardware Limitations

TasNets typically require very high GPU VRAM during training as com-

pared to similar capacity FFT-based methods. This is largely due to the small

hop size of the encoder/decoder filterbank resulting in a significantly higher

number of decisions and backpropagations per second. Such models have

predominantly been trained on the highest grade GPUs typically available

in high-performance compute clusters (HPCs) such as Tesla P100, V100, and

most recently A100s. While TasNets have been trained on consumer-grade

GPUs such as NVIDIA RTX 2080s and 3090s for speech separation/enhance-

ment applications operating at 8 kHz, other reported uses of TasNets at 44.1

kHz (as reported by Défossez et al. (2019)) were also trained on Tesla V100s

(which were the highest VRAM GPUs available at the time).

Preliminary experiments using Conv-TasNet attempted on NVIDIA RTX

2080s (8GB VRAM) failed to converge due to models being limited to less

than 3 repeat units with 20 sample filter lengths resulting in a very low re-

ceptive field w.r.t. input segment length of the separation stack at a batch

size of 1. Subsequent experiments moved to use 4 x Tesla V100s (16GB)

with distributed-data-parallel backend resulting in the first convergent Conv-

TasNet model for vocal harmony separation by using parallel processing to

increase the effective batch size to 4. Experiments with both data-parallel
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and distributed-data-parallel packages resulted in a similar performance, but

distributed-data-parallel processing was chosen due to the flexible scalability

of the network and training parameters independent of the number of GPUs

available during training.

Subsequently, experiments with DPRNN and DPTNet showed robust scal-

ability across various input lengths without the receptive field constraints of

ConvTasNet. Experiments showed DPTNet and DPRNN to have very simi-

lar resource consumption both in terms of VRAM and speed with DPTNet

performing marginally better than DPRNN due to improved sequence mod-

eling, thus DPTNet was used as the baseline for all subsequent experiments.

Table 4 lists the results of various experiments with DPTNet compared with

the best-performing ConvTasNet model with similar resource consumption

using 8 x NVIDIA V100 (16GB) GPUs.

With the introduction of NVIDIA A100s in the late 2020s, per GPU VRAM

increased to 80GB which enabled exploring TasNets at the highest time res-

olution of 2 sample filter lengths. However, model performance is not only

dependent on the capability of the model but also on data size, diversity, and

training time. Training TasNets at the highest temporal resolution comes at

the expense of the total number of training iterations that can be achieved

within the limits of GPU run time. In the experiments described in this chap-

ter, we focus on the choral separation experiments described in Section 5.3,

as the train and test data for the task are of limited diversity, thus can be

used as a control experiment for optimizing the performance limits of a

model without the consideration of cross dataset generalisability. For sub-

sequent experiments described in Section 5.4 and Section 5.5, models with

lesser resource consumption were used as better cross-dataset performance

was achieved by reducing per iteration training time and allowing the model

to train for longer with more diverse data.
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4.3.4 Network Optimisation

4-source choral separation based on the Bach Chorales and Barbershop Quar-

tet datasets was used for the optimization experiments presented in this sec-

tion. The hyperparameter configurations presented in Table 4 and Table 5

used 8 x NVIDIA V100 GPUs with 16GB VRAM, while the configurations

presented in Table 6 used 4 x NVIDIA A100 GPUs with 80GB VRAM which

were not available during the previous experiments. The configurations pre-

sented in Table 4 compare models that are capable of fully utilising the avail-

able 16GB VRAM. Experiments presented in Table 5 show all different fil-

terbank and input segment length configurations possible on 16GB VRAM

GPUs without changing the model capacity. Experiments presented in Ta-

ble 6 utilise 4 NVIDIA A100 GPUs with 40GB VRAM, and present configura-

tions that maximise memory utilisation and network capacity while preserv-

ing small filterbank lengths. A result for 20GB VRAM consumption is also

presented in Table 6 as it allows having a batch size of 2 per GPU which dou-

bles the training speed. This was particularly useful in the context of time

limitations enforced on shared GPU clusters, where faster training speed

enabled the use of larger datasets such as EnsembleSet for experiments pre-

sented in Section 5.4 and Section 5.5.

The performance trends observed (shown in Table 4) were similar to the

observations presented by Luo and Mesgarani (2019) with certain differences

that may be attributed to the memory, data, and hardware limitations associ-

ated with high sampling rate processing using TasNets. The general trends

observed were:

• Number of filters: Increasing the number of filters present in the 1-D

encoder/decoder convolutional filterbank improves performance, but

results in diminishing returns for more than 64 filters. Increasing the

number of filters does not result in a significant impact on resource

consumption. This may be attributed to the fully connected layer bot-
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tleneck between the encoder and the separation stack, which results

in increasing the number of filters in the filterbank not affecting the

computational complexity of training the separation stack.

• Filter Length: Although in the original architecture, the filter length of

the 1-D encoder/decoder convolutional filterbank is always considered

to be twice the filter stride, it was observed that increasing filter length

to be 4 times than the filter stride resulted in performance improvement

without increasing computation time/memory. This may be attributed

to the increase in the local context available and improved waveshape

modeling at each convolution step without reducing the temporal res-

olution of predictions. While increasing the filter length may suggest

averaging of dynamics in the audio signal over the length of the filter,

given the time scales at which these filters operate the averaging oc-

curs over very short time periods (1.5 milliseconds for 64 sample filter

length @ 44100 Hz), where the signal composition may be considered

quasi-stationary.

• Filter stride: The stride length of the 1-D convolutional encoder/de-

coder filterbank was one of the parameters with the most significant

impact on performance and resource consumption. Reducing the stride

length inversely increases the VRAM consumption of the model per

training batch, as it increases the length of the latent representation

as per Equation 19. Simultaneously it increases the separation perfor-

mance of the model as the temporal resolution of the masked represen-

tation increases. Changing this parameter does not impact model size

or capacity, only impacts training time and VRAM consumption.

• Segment duration: The segment duration linearly increases the VRAM

consumption of the model per batch item during training. This is also

due to its linear impact on the sequence length of the latent represen-

tation as given by Equation 19. Increasing the input segment duration

improves model performance, especially for DPTNet as the temporal
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Table 4: Results for different models running on 16GB V100s

Model Stride Time (sec) Repeat SI-SDRi SDRi

ConvTasNet 10 5 6 10.71 dB 11.85 dB

DPTNet 10 5 6 10.91 dB 12.14 dB
DPTNet 8 10 2 9.30 dB 10.57 dB
DPTNet 4 5 2 10.2 dB 11.4 dB
DPTNet 2 2 2 10.05 dB 11.2 dB
DPTNet 1 2 2 10.53 dB 11.63 dB

context available to the model improves. For ConvTasNet the improve-

ment in performance with increased input segment duration is lim-

ited by the receptive field of the TCN stack. Changing this parameter

does not impact model size or capacity, only impacts training time and

VRAM consumption.

• Repeat units: The number of repeat units directly impacts the sepa-

ration performance of the model and the model size. Increasing the

number of repeat units linearly increases the model’s VRAM consump-

tion during training. Increasing the model capacity not only improves

the ability of the model to separate sources more effectively, but it also

improves the model’s capacity to generalize better although that is also

dependent on the diversity of training data presented to the model.

4.3.5 Temporal Context vs. Temporal Resolution

The length of the 2-D representation generated by the 1-D convolution fil-

terbank is dependent on both the input segment duration and the filterbank

hop size (1-D convolution stride length). Increasing the input segment du-

ration provides the model with more temporal context which typically re-

sults in a performance improvement, while also increasing the length of the

generated 2-D latent representation. Reducing the stride length of the filter-
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Table 5: Results for different temporal contexts and filterbank lengths

Model VRAM Stride Time (sec) Repeat SI-SDRi SDRi

DPTNet 16GB 8 10 2 9.30 dB 10.57 dB
DPTNet 16GB 4 5 2 10.2 dB 11.4 dB
DPTNet 16GB 2 2 2 10.05 dB 11.2 dB
DPTNet 16GB 1 2 2 10.53 dB 11.63 dB

bank increases the temporal resolution of the masking which results in im-

proved separation performance, but this too increases the length of the latent

representation. As the length of the 2-D latent representation increases, the

VRAM consumed per batch item increases, thus both these parameters need

to be balanced for optimal performance. It’s also worth noting that while in-

creasing the input segment length does not affect inference speed/resource

consumption, reducing the filterbank hop size does reduce the speed at in-

ference. Table 5 reports the results of experiments conducted to study the

trade-off between sequence length and filterbank size. It must be noted that

only 2 repeat units were used for these experiments, which is non-ideal for

separation performance as it significantly reduces the model capacity. It is

observed that increasing the temporal context beyond 5 seconds does not

result in any performance improvement, but reducing the temporal context

below 5 seconds does result in a performance drop.

4.3.6 Model capacity vs. Temporal Resolution

Further experiments were undertaken to optimise temporal context and res-

olution while simultaneously increasing the model capacity. Table 6 reports

results of models trained with different combinations of the three mentioned

parameters. It is observed that increasing the number of repeated separator

units in the separator stack has the most significant impact on separation per-

formance, followed by filterbank stride. Since it was observed that increasing
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Table 6: Results for different model capacities and filterbank lengths

Model VRAM Stride Time (sec) Repeat SI-SDRi SDRi

DPTNet 32GB 3 5 6 12.21 dB 13.16 dB
DPTNet 32GB 1 2 6 11.05 dB 12.31 dB
DPTNet 32GB 2 5 4 11.49 dB 12.47 dB
DPTNet 32GB 1 2 3 10.65 dB 11.85 dB

DPTNet 20GB 4 2.97 8 10.58 dB 12.04 dB

temporal context beyond 5 seconds did not improve performance, experi-

ments conducted here use shorter input segment durations. With resource

consumption and total training time in consideration, the final parameter

settings chosen for the majority of the experiments mentioned in Chapter 5

utilized the final configuration with 20GB per item memory consumption.

This allowed using a batch size of 4 per GPU with 80GB NVIDIA A100s

which resulted in quicker and more stable training of models. The dura-

tion of input segments was chosen to be 2.97 seconds (131072 samples at 44.1

kHz sampling rate) as data augmentations applied on the fly are significantly

sped up when utilizing input segments of 2n samples.

4.3.7 Data Augmentation

GPU-based data augmentations were applied on the fly using the torch-

audiomentations (Jordal, 2021) library. The order in which the targets are

presented during training was randomized at every iteration to ensure effec-

tive permutation invariant training. Each source is randomly pitch-shifted by

up to 2 semitones in either direction with a 50% likelihood, independently.

Similarly, a randomized gain is applied to each source in a range of -15 dB

to +5 dB with a 50% likelihood. Experiments conducted without these aug-

mentations failed to converge well and reported very poor results for unseen

songs even with the same singers present in training and test data.
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Table 7: Results of 2, 3 and 4 source DPTNet based separation models trained and
tested on Choral Mixtures.

Metric 2-source 3-source 4-source

SDRin 0.1949 -3.0593 -4.8173

SIRin 0.1949 -3.0593 -4.8173

SI-SDRin 0.0063 -3.3568 -5.2214

SDRout 17.5583 12.6603 7.2267

SIRout 25.6133 19.2468 11.6555

SARout 18.4744 13.9668 9.8893

SI-SDRout 16.8424 11.6020 5.3622

∆SDR 17.3634 15.7196 12.0440

∆SIR 25.4184 22.3061 16.4729

∆SI-SDR 16.8361 14.9588 10.5836

4.4 how many sources can you separate?

TasNets with PIT can be scaled to any number of sources without addi-

tional computational overhead. Separation models with identical architec-

tures (with additional output nodes for models with more sources) are com-

pared for separating 2, 3, and 4 source mixtures. The Bach Chorales and

Barbershop Quartet datasets (described in Section 2.11.3) are used for these

experiments with the same training, validation, and test split as used in the

experiments in Section 4.3.5 and Section 4.3.6.

Table 7 shows input, output, and improvement metrics for DPTNet models

trained for separating 2, 3, and 4 source mixtures of choral music. These mod-

els are trained with the same set of singers present in training and testing,

but the songs used in testing are unseen during training. The performance

reported here is a good representation of the performance difference of the

given model for each of 2, 3 and 4 source mixtures.

The first observation is the comparison of the output SDR values, where

a 5 dB performance degradation is observed as the number of sources to be
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separated is increased. This drop is caused by a combination of two factors.

Firstly, the input SDR (equivalent to SNR at input) of a given source in a

mixture of sources with equal loudness decreases as the number of sources in

the mixture increases since the sum of the energy of interfering sources will

increase as the number of interfering sources increases. Secondly, a reduction

in the ability of the model to extract the source from the mixture is observed,

which is reflected in the ∆SDR and ∆SI-SDR metrics. This implies that as

the input SNR of the target source in the mixture reduces, the ability of the

model to separate the source reduces.

This reduction in separation capability is reflected both in the capability of

the model to remove the interfering sources and the noise that is introduced

by the model during separation. While the reduction in SIR improvement

might not have a significant negative impact on the perceptual value of the

separated output, the significant increase in output SAR for mixtures of more

than 3 sources has a significant impact on the perceptual quality of the sepa-

rated output, as artifacts are strongly undesirable.

These observations help us understand the current state-of-the-art and the

applicability of source separation research in the real world. While the over-

arching desire for an ensemble separation model is to be able to extract any

given performer/section from a mixed chamber ensemble/orchestral record-

ing, the current capability of masking-based separation is limited by the loud-

ness of the target source in the input mixture. While source separation of

larger ensembles may have value for other downstream MIR tasks such as

transcription, using the separated audio stem from high-polyphony mixtures

or high input-SNR mixtures is as of yet not achievable.
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4.5 conclusion

This chapter presented an approach for handling music source separation in

a different format that is applicable to chamber music. It presented a prob-

lem formulation that lies at the intersection of the traditional music separa-

tion and speech separation problems and utilized vocal harmony separation

as a task to test the proposed formulation. The results presented in this chap-

ter only use average metrics across the entire test set, but the variation in

performance across different examples was quite high. Although the overall

variance/standard deviation for these experiments is not presented in this

chapter, Section 6.2.3 and Section 6.3 show the performance distribution in-

cluding confidence intervals for the 4 source vocal harmony separation task.

Experiments with different levels of polyphony were conducted to assess

the performance potential of TasNet models for vocal harmony separation,

which prior art suggested to be unsuitable for music separation. Results for 2

and 3 source separation presented minimal artifacts, while higher polyphony

resulted in significantly lower performance with sonic artifacts.

However, experiments presented in this chapter relied on a small dataset

of 90 minutes with limited diversity, thus the models fail to generalise to un-

seen singers/datasets. Using the architecture optimizations described in this

chapter, the following Chapter 5 discusses the applicability of such models

for vocal harmony separation in further detail in Section 5.3, extending it

to other monophonic chamber ensemble instruments in Section 5.4 and also

addresses the problem of poor cross-dataset generalisability in Section 5.5.
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E N S E M B L E S E PA R AT I O N U S I N G P E R M U TAT I O N

I N VA R I A N C E

5.1 introduction

Audio source separation aims to extract individual sound sources from a

digital audio mixture. Based on the constituents of the input mixture and

the target output, the problem definition can be further refined to specific

audio separation tasks like speech separation, speech enhancement, and mu-

sic source separation (Vincent, Virtanen, and Gannot, 2018). While specific

sub-tasks in the speech domain like speech denoising, multi-speaker sepa-

ration, and dereverberation have been explored, music separation research

has largely been focused on the demixing challenge (Mitsufuji et al., 2021)

aided by the popular MUSDB dataset (Rafii et al., 2019). The demixing chal-

lenge is targeted at solving the problem of the separation of vocals, bass, and

drums from mixed and mastered pop songs. This has greatly benefited the

field by demonstrating that source separation is indeed possible at a commer-

cial scale with state-of-the-art deep learning based architectures. The music

demixing challenge has shown successful separation of instruments with dis-

tinct spectro-temporal cues like vocals, drums, and bass.

In this chapter, a different area in music source separation is explored with

a focus on the separation of chamber ensembles, where the target sources

are harmonized have very high spectral overlap, and often contain multi-

ple sources with identical or very similar timbres. Separating ensembles is

an inherently challenging task as they combine challenging aspects of both

95
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speech and music separation. In chamber ensembles, the sources are found

to occupy similar frequency ranges, thus having label ambiguity similar to

the speech separation task (Hershey et al., 2016; Weng et al., 2015) due to

multiple sources belonging to the same instrument family. Meanwhile, they

are temporally and harmonically correlated (similar to sources in music sep-

aration task) which makes the separation problem more challenging due to

their musical structure which further increases their spectral overlap.

The problem of label ambiguity is also present in the multi-speaker speech

separation scenario, where training a model with class-based target-channel

assignment is difficult. Permutation invariant training was introduced as a so-

lution for this task by Yu et al. (2017) to enable speaker-independent speech

separation. Instead of solving the separation problem as a class-based re-

gression task, permutation invariant training allows a model to be trained to

minimize the separation error only, by not fixing a target-channel assignment

but allowing the model to assign any target to any output channel.

In this chapter, Section 5.2 introduces the motivation and utility of per-

mutation invariant training in the context of music separation. Section 5.3

presents preliminary experiments utilizing PIT for choral music separation.

While good results were achieved, the experiments suffered from lack of

sizeable training data, which resulted in poor cross-dataset performance. To

resolve this, the dataset presented in Chapter 3 was used in Section 5.4 to

train models that are able to separate mixtures of string instruments. Using

this larger dataset cross-dataset performance was improved, and it was also

observed that PIT based models could be extended to a variety of instrument

timbres. This was further explored in Section 5.5 which explores the timbre-

agnostic separation of monophonic instruments with further improvements

on real world performance using fine-tuning strategies.
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5.2 permutation invariant training for ensembles

5.2.1 Motivation

Typical approaches to source separation assume a class-based regression ap-

proach where different output channels of a deep learning model are ex-

pected to consistently be able to estimate the desired sound class from a

mixture. This approach has the limitation that different sources present in a

mixture should belong to distinct classes. While defining the classes as instru-

ment types in music works well, in speech the class-based approach quickly

fell out of favour to training models in a class-agnostic fashion using PIT

(described in further detail in Section 4.2). The primary modification intro-

duced by PIT was to make the model class-label assignment invariant, which

is obtained by calculating the best source-channel assignment (from all pos-

sible permutations) and then minimizing the error for the given assignment.

In the context of speech separation, this enables the model to learn separa-

tion based on acoustic cues that are speaker and language-invariant. With

the same motivation, PIT is used to enable the separation of sources based

on acoustic cues that are instrument/timbre invariant. This could enable the

model to be able to separate unseen instrument types which have been a

long-standing problem for music separation, especially due to limited data

availability for rarer instruments. This also enables our model to be able to

separate multiple instances of the same instrument, which has never been

achieved in music separation before.

5.2.2 Problem Definition

Models presented in this work were trained to separate mixtures of a given

number of monophonic musical sources regardless of the type of instrumen-
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t/source, unlike other music source separation tasks. Using a PIT objective

(described in Section 2.8) should enable a model to learn features that enable

it to separate sources from any given mixture regardless of its constituent

instrument timbres. This approach also enables the model to be able to sepa-

rate mixtures of identical instruments (eg: 2 violins), similar sounding instru-

ments (eg: violin+viola, or 2 singers), and also unseen instruments/sources.

Another advantage of using PIT is related to the amount of training data,

where (N
2 ) training examples can be generated from a piece with N concur-

rent sources which greatly improves the total number of unique and musi-

cally coherent training examples.

There are a few drawbacks to this problem formulation as well. Firstly,

there are some monophonic instruments (such as violins) where there are

rare instances of a performer playing multiple notes at an instance, in which

case the model is confounded since it expects the sources to be monophonic.

The second drawback is that due to the nature of PIT, each model is con-

strained to the number of instruments present in the mixture to be the num-

ber of output nodes of the model. Moreover, given that instrument assign-

ment is variable, it is not only unknown at inference which instrument is

present on which channel but also long-term consistency for instrument-

channel assignment is a concern as well. These issues are investigated in

detail in Chapter 6.

5.2.3 Models

Popular approaches to perform music source separation have typically relied

on magnitude spectrogram masking based methods (Stöter et al., 2019; Hen-

nequin et al., 2019), where the spectrogram of the mixture is provided as the

input to the model which subsequently predicts a mask that is applied on

the mixture spectrogram to suppress all non-target sources. Although magni-

tude spectrogram-based methods have consistently reported state-of-the-art
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results in music separation (Takahashi and Mitsufuji, 2020), the lack of accu-

rate phase estimation still proves to be the Achilles heel of this task.

Time-domain source separation models have surpassed this threshold in

the domain of speech separation, due to their ability to encapsulate phase in-

formation in the learnt filterbanks which removes the requirement of phase

reconstruction (Heitkaemper et al., 2020). Since Conv-TasNet (Luo and Mes-

garani, 2019), further developments on time-domain source separation (Luo,

Chen, and Yoshioka, 2020; Chen, Mao, and Liu, 2020; Zeghidour and Grang-

ier, 2020) methods have pushed speech separation performance far beyond

soft-masking based approaches for single-channel 2 and 3 speaker separation

tasks. Although music separation has seen some success with time-domain

approaches (Stoller, Ewert, and Dixon, 2018b; Défossez et al., 2019), these

approaches introduce time-domain processing in a direct regression fash-

ion to model musical sources, whereas popular speech separation models

work with a different encoder-masker-decoder philosophy with a signifi-

cantly smaller number of model parameters.

More recently, complex-domain spectrogram models such as DCUNet (Choi

et al., 2019) have shown great success in source separation and can perform

competitively to time-domain source separation models with much lesser

computational expense. This is mainly due to the difference in hop size be-

tween spectrogram-based and time-domain models. Time domain models

typically operate with really small hop sizes ranging between 1-16 samples

whereas spectrograms operate with hop sizes of 128-1024 samples, resulting

in a much lesser number of operations per second of audio. The majority

of experiments presented in this work use time-domain models but compar-

isons with a complex-domain separation model (Choi et al., 2019) are also

presented. Additional details about the implementations of the used models

are elaborated in Section 4.3.1.

In the presented experiments, ConvTasNet (described in Section 4.3.1.1)

was used for the initial experiments described in Section 5.3. The network pa-
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rameters1 were modified to accommodate for the higher sampling rate data

in this use case within the available GPU resources (NVIDIA RTX 2080). Sub-

sequently, the experiments were moved to larger high-performance compute

clusters (HPCs) which had GPUs with larger memory (NVIDIA Tesla V100s)

which enabled the utilization of more advanced network architectures. Sub-

sequently, experiments with DPRNN architecture (Luo, Chen, and Yoshioka,

2020) were explored which bypassed the receptive field limitation introduced

by the TCN stack in ConvTasNet (Luo and Mesgarani, 2019). Around the

same time DPTNet (Chen, Mao, and Liu, 2020) was released which presented

improvements over DPRNN by adding a transformer encoder with multi-

head attention in conjunction with the dual-path processing-based chunking

framework. Thus most of the subsequent experiments in Section 5.4 primar-

ily report results based on DPTNet. In Section 5.5, DPTNet (Chen, Mao, and

Liu, 2020) is used as a baseline for end-to-end free-filterbank based source

separation, and comparisons with the complex-domain model DCUNet (Choi

et al., 2019) were presented as a complex-domain spectrogram-based separa-

tion baseline. Some other complex domain separation models were also ex-

perimented with, namely DCCRNet (Hu et al., 2020) and LaSAFTNet (Choi et

al., 2021). DCCRNet models failed to converge on the given training pipeline

with the multi-mic augmentation, likely due to the model being originally

designed for source enhancement and dereverberation. LaSAFTNet-based ex-

periments did converge but were not directly comparable to the other base-

lines, as LaSAFTNet is a source label conditioned separation model which

alters the problem definition as it cannot accommodate mixtures of identical

instruments and cannot be trained in a permutation invariant fashion. De-

tails regarding the implementation and optimization of the TasNet models

are described in Chapter 4.

1 Complete model parameters and audio examples for each model can be found at:
http://c4dm.eecs.qmul.ac.uk/ChoralSep/.
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5.3 choral ensemble separation

5.3.1 Introduction

Choral music consists of a group of singers typically singing the same lyrics

but in different vocal styles and notes creating a polyphonic harmony. These

different vocalists are usually categorized into 4 parts by their singing style

and vocal registers (Shewan, 1979). These classes are often also used to iden-

tify parts of other musical ensembles such as brass sections. Such musical

ensembles consisting of sources with similar timbres can be defined as mono-

timbral ensembles. Polyphonic vocal recordings are an inherently challeng-

ing source separation task due to the melodic structure of the vocal parts and

the unique timbre of its constituents.

Two recent works (Petermann et al., 2020; Gover and Depalle, 2019) ex-

plore score-informed choral separation utilizing conditioned U-Net (Jansson

et al., 2017) and Wave-U-Net (Stoller, Ewert, and Dixon, 2018b) architectures.

While both models show reasonable success, it is difficult to compare the per-

formance of the two since (Petermann et al., 2020) is trained and evaluated on

real data with bleed, and (Gover and Depalle, 2019) utilizes synthesized vo-

cal choirs. The presented time-domain source separation models in Chapter 4

outperform the non-informed separation baselines presented in (Petermann

et al., 2020; Gover and Depalle, 2019). Moreover, the presented model per-

forms better than even the score-informed models presented in (Petermann

et al., 2020; Gover and Depalle, 2019).

Unlike current deep-learning based choral separation models where the

training objective is to separate constituent sources based on their class, mod-

els are trained using a permutation invariant objective in these experiments.

Using this state-of-the-art results were achieved for choral music separation.

In this section, a time-domain neural network architecture re-purposed from
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speech separation research was used to separate a capella mixtures. For these

experiments, four-part (soprano, alto, tenor and bass) a capella recordings

of Bach Chorales and Barbershop Quartets were used to train and test the

applicability of such models for vocal harmony separation.

Two different encoder-masker-decoder type TasNet based architectures

were adapted for vocal harmony separation. The task of Vocal Harmony Sep-

aration fits in a unique space between music and speech separation, where

challenging aspects of both tasks are combined. Sources present in choral

mixtures are often very similar with weak distinction between them thus

allowing the possibility of training them using permutation invariant train-

ing (Kolbæk et al., 2017) like speech separation models. Meanwhile, unlike

speech separation, the sources present in these mixtures are highly correlated

and synchronized to each other as they sing the same lyrics with unique

harmonizations. This poses a unique problem where there is minimal tim-

bral distinction between the sources and high temporal synchronization and

frequency overlap due to their musical structure. The implications of these

constraints on the training methods of these models are explored in Sec-

tion 6.2. While randomized mixing is a well-established data augmentation

technique used in music source separation (Uhlich et al., 2017), the impli-

cations of randomized mixing for choral separation experiments presented

here are explored in Section 6.3.1.

5.3.2 Data

There are very few clean datasets available for choral music, where isolated

ground truth for each source is present. This is especially challenging as

compared to other forms of music since choral singers typically perform

together and are rarely recorded in isolation (Ihalainen, 2008). It is known

that choral singers tend to perform much better when the entire choir per-

forms together in a physical space (Fischinger, Frieler, and Louhivuori, 2015),
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i.e. each singer can monitor themselves and the rest of the choir with every

participant making minor adjustments during performance (Dai and Dixon,

2017). This makes it very difficult to record each individual singer without

any bleed from the other sources. There is one publicly available dataset that

consists of 3 choral pieces performed by 16 singers (Cuesta et al., 2018), but

the recordings are not clean as all the sources are recorded simultaneously.

This causes the non-target sources to bleed into each of the recordings, re-

sulting in a noisy ground truth.

For the presented experiments, two datasets of a capella recordings without

bleed from (Schramm, Benetos, et al., 2017) were used, 26 songs from Bach

Chorales (BC) and 22 songs from Barbershop Quartets (BQ). The two datasets

combined have a total of 104 minutes of 4 parts: Soprano, Alto, Tenor, and

Bass (SATB) recordings, where BC contains 2 male (tenor and bass) and 2 fe-

male (Soprano and alto) vocalists, and BQ contains all 4 male vocalists. The

songs present in the combined dataset were split into 3 groups for training,

validation, and testing roughly in ratio 8:1:1 (since song lengths vary), mak-

ing sure that the test and cross-validation sets consist of songs (and not just

segments) that are unseen in the training set.

5.3.3 Training

The models based on Conv-TasNet and DPTNet were trained for 200 epochs

with early stopping given a patience of 30 epochs. SI-SDR by Roux et al.

(2019) (see Section 2.2 for more details) was used as the loss function as

shown in Equation 12 where x̄ is the predicted source and x is the tar-

get source. SI-SDR was used in a class-agnostic/permutation invariant (de-

scribed in Section 2.8) fashion where the pair-wise SI-SDR for each predicted

source w.r.t. each target source was computed, and then the prediction-target

assignments for the lowest cumulative SI-SDR was chosen for backpropagat-

ing the loss through the network.
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For the Conv-TasNet based model, the learning rate was initialized to 5e-3

with a scheduler that halves the learning rate if the validation loss (cross-

validation set of 2 unseen songs) does not improve for 3 consecutive epochs.

For the DPTNet-based model, the linear warmup followed by exponential

decay scheduler was used as presented in the original paper (Chen, Mao,

and Liu, 2020).

5.3.4 Results

Table 8 reports the performance of these models was evaluated on 4 un-

seen songs (9 minutes in total) from the Bach Chorales dataset (track names:

[BC032,BC049,BC057]) and Barbershop Quartet dataset (track name: [BQ041]).

It was observed that although the training and test sets are similar (due

to similar singing style and limited variety of vocalists), these models per-

form better than other non-informed separation models based on U-Net and

Wave-U-Net (Petermann et al., 2020) which were trained on a dataset of sim-

ilar duration and limited diversity (Cuesta et al., 2018). This non-informed

model performs at par with the state-of-the-art score-informed separation

models Conditioned U-Net (Petermann et al., 2020) and Conditioned Wave-

U-Net (Gover and Depalle, 2019). It must be noted that results from both

(Petermann et al., 2020; Gover and Depalle, 2019) were reported on different

datasets than the ones used in our experiments, thus it is difficult to make

conclusive performance comparisons on the reported results. Moreover, the

models trained were definitely overfitting to the limited data available and

did not perform well on unseen data. This was the motivation to eventually

generate EnsembleSet as described in Chapter 3 which enabled the experi-

ments described in Section 5.4 and Section 5.5.



5.4 monotimbral ensemble separation 105

Table 8: Results for 4-source Choral Music Separation w.r.t. other works in literature.
It must be noted that both (Petermann et al., 2020; Gover and Depalle, 2019)
use different datasets to train and evaluate their models and thus are not
directly comparable.

Model SIR SAR SDR

ConvTasNet +12.23 dB +9.27 dB +7.52 dB
DPTNet +14.42 dB +10.25 dB +8.61 dB

U-Net (Petermann et al., 2020) +9.30 dB +5.69 dB -
Wave-U-Net (Petermann et al., 2020) +7.07 dB +5.54 dB -
Wave-U-Net (Gover and Depalle, 2019) - - +5.4 dB
C-U-Net (Petermann et al., 2020) +12.08 dB +7.21 dB -
C-Wave-U-Net (Gover and Depalle, 2019) - - +8.1 dB

5.4 monotimbral ensemble separation

5.4.1 Introduction

In this section, a different area in music source separation is explored, with

a focus on the separation of chamber ensembles. In these chamber ensem-

bles, the target sources are harmonized and have very high spectral overlap

but are not as temporally synchronized as choral music. The music demix-

ing challenge has shown successful separation of instruments with distinct

spectro-temporal cues like vocals, drums, and bass (Stöter, Liutkus, and

Ito, 2018; Mitsufuji et al., 2021). The chamber ensemble separation problem

has two significant differences from the aforementioned task. Firstly, if the

sources in the mixtures are similar sounding (e.g., a mixture of a strings sec-

tion), it results in high spectral energy overlap. This is further compounded

by the fact that such sources often play in a very synchronized fashion while

harmonizing with each other. Secondly, often in such mixtures, there may be

multiple sources of the same instrument family present (such as a string en-

semble). Not only are the distinctions between timbres of instruments of the

same family often very similar and difficult to distinguish, but such monotim-
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bral ensembles may also contain multiple instances of the same instrument,

which makes it an unsuitable problem to be solved using class-based sepa-

ration methods (Hershey et al., 2016). The task of separating such mixtures

with constituent sources suffering from label ambiguity and high timbral

similarity can be called monotimbral ensemble separation.

There are some tasks that fit the definition of monotimbral separation that

have been explored recently. One is vocal harmony separation (Petermann

et al., 2020; Gover and Depalle, 2019; Sarkar, Benetos, and Sandler, 2021;

Chandna et al., 2022) which was discussed in Section 5.3. The only work

that aims to tackle the exact task mentioned in this section was a zero-shot

learning framework for simultaneous separation, transcription, and synthesis

of 2 source chamber ensemble mixtures from the URMP dataset (Lin et al.,

2021), where the task of separating mixtures of string instruments has been

tackled.

5.4.2 Data

EnsembleSet (Sarkar, Benetos, and Sandler, 2022), a multi-track chamber en-

semble music dataset (described in Chapter 3) was used for training. The

dataset’s 18 unique multi-mic recordings and 2 professional mixes were used

as data augmentation to avoid overfitting models to the synthesized dataset.

The total length of unique monophonic training data amounted to 498 hours

including the multi-microphone augmentations. The string quartet track RM-

C021 is excluded from the training and validation data and used as test data

to present as a baseline for the same dataset performance. The training and

validation data was generated by randomly choosing 90% of the remaining

dataset as training set and 10% as validation set.

Since the models are trained on synthetic data, real-world recordings from

the URMP dataset and TRIOS dataset (described in Section 2.11) are used
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for testing these models cross-dataset performance and real world general-

isability. 10% of tracks from URMP dataset were used as test data, and the

remaining dataset was split 9:1 to generated the train and validation data for

experiments presented in Table 10 and Table 11. For experiments involving

the TRIOS dataset, the entire dataset excluding the piano stems was used as

the test dataset.

5.4.3 Training

The Dual-path Transformer (DPTNet) based architecture using PIT was mod-

ified by altering the filterbank, scheduler, and other network parameters to

accommodate input segments at a sampling rate of 44.1kHz (described in

Section 4.3.1.2). The model takes 2.97 second input frames (131072 samples)

with 8 repeating separator units. Choosing a filter length of 32 samples with

a hop size of 4 samples for the encoder-decoder filterbank resulted in the best

results in these experiments. Utilizing a PIT loss for monotimbral ensembles

is particularly well suited, as this enables our model to be able to separate

any two monophonic instruments regardless of their instrument label.

The model was trained using all valid combinations of chamber ensemble

duets playing simultaneously from EnsembleSet (ES) amounting to about 53

hours of data. To achieve this a novel dataloader was implemented that mea-

sures instrument activity confidence for each instrument track and identifies

pairs of instrument segments where both the sources have some overlapping

activity in all possible combinations (for eg: a string quartet piece for 2 source

separation can be used as 6 different pairs of string duets).

The models were trained for 100 epochs with an early stopping patience

of 10 epochs. The learning rate is initialized to 5 × e−3 with a scheduler that

halves the learning rate if the validation loss does not improve for 3 epochs.

The models were trained on 4 x NVIDIA A100 GPUs using a distributed
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Metric All instruments Strings only

SI-SDR 9.059 9.213

SDR 11.368 11.211

SIR 17.507 14.361

SAR 17.598 16.617

Table 9: Comparing performance of DPTNet trained using all chamber ensembles
and only string ensembles from EnsembleSet, tested on string ensembles
from URMP dataset

data parallel back-end. Each epoch in the experiments took 40 minutes with

a batch size of 1 per GPU.

5.4.4 Beyond Monotimbral

Initial experiments using EnsembleSet were focussed on string ensembles,

where only mixtures of string instruments were presented during training

and were tested exclusively on mixtures of string instruments from the URMP

Datasets. Based on the prior art, it was unknown whether TasNet-based mod-

els with free-filterbanks were able to successfully model sources of different

timbral characteristics/waveshapes, as prior experiments with Music Source

Separation and ConvTasNet in (Défossez et al., 2019) reported significant

audio artefacts. However, it was observed that including non-string instru-

ments in the training set did not harm separation performance as seen in

Table 9. Although initially suspected to be due to the very limited amount of

wind and brass instrument data present in EnsembleSet (≤ 30 minutes), this

is explored further in Section 6.4.

Subsequently, EnsembleSet was used to train a source separation model

that is able to separate any chamber ensemble duet, regardless of instrument

family type (see Table 11). While the model was trained exclusively on a

synthesised dataset, its performance was evaluated on real-world data from

the URMP dataset (Li et al., 2018). The multi-mic renders that are available
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in EnsembleSet were used as a form of data augmentation by randomizing

the mix/mic(s) presented to the model at each epoch. In addition, other aug-

mentations including pitch shift and gain modulation were used to help the

model generalize better to unseen source/microphone configurations.

5.4.5 Separating Real-world Mixtures

Data augmentation is essential for cross-dataset generalisability, especially

given that the models were trained exclusively on synthesised data. Prior

work utilizing synthesised datasets such as (Manilow et al., 2019) has con-

sistently struggled to generalise well to unseen real-world data. To tackle

this challenge, torch-audiomentations (Jordal, 2021; Pariente et al., 2020) was

used for data augmentations such as gain modulation, channel swap, and

pitch-shifting by up to +/- 2 semitones. It must also be noted that the tem-

poral and harmonic integrity of the mixtures was maintained through all the

data augmentations. This is unlike the typical music separation data augmen-

tation pipeline where the constituent parts of the mixtures are randomized

across different songs at every epoch during training (Uhlich et al., 2017). The

URMP dataset (Li et al., 2018) was used to generate real examples for cross-

validation and testing in a similar fashion to our pipeline with EnsembleSet

resulting in 4.5 hours of 2 source mixtures.

5.4.5.1 Choice of Mic/Mix Renders from EnsembleSet

Given the wide variety of microphone placements and mix configurations

available in EnsembleSet, initially, the mono and Close microphones were

chosen for the experiments as these were the only single mic renders avail-

able in the dataset. With the assumption that these renders would result in

the most similar characteristics compared to the URMP dataset, the experi-

ments used EnsembleSet duet mixtures for training and cross-validation. Ini-
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Test Data EScv ES+URMPcv URMPcv

ES 13.24 dB 12.56 dB 14.21 dB
TRIOS 14.43 dB 13.62 dB 14.54 dB
URMP 9.29 dB 8.45 dB 9.15 dB

Table 10: SI-SDR performance of monotimbral ensemble separation models trained
on EnsembleSet with different validation datasets, tested on EnsembleSet,
TRIOS and URMP datasets.

tial experiments using single-mic data for training and cross-validation from

EnsembleSet performed poorly (SI-SDR < 3dB) when tested on the URMP

dataset. These trends were observed across various architectures.

Subsequently, the multi-mic renders of each instrument track were used

as data augmentation by randomly choosing one of the 20 renders for each

instrument for each training and cross-validation step. It was observed that

choosing different renders for training and cross-validation resulted in the

training not converging well and negatively affected performance even for

the same dataset test scenarios. It was also observed that using multi-mic

renders greatly improves cross-dataset performance for DPTNet. This is elab-

orated further with analysis across various models in Section 5.5.6.

5.4.5.2 Choice of cross-validation data

Initial experiments using single-mic renders from EnsembleSet also experi-

mented with different cross-validation data splits between EnsembleSet and

URMP with the goal of achieving better cross-dataset performance. It was

observed that the choice of different cross-validation sets did have varying

impacts on performance when tested across different datasets. Experiments

on the TRIOS dataset are included as an independent control test where

the test data is independent of the training and validation data. Table 10

shows that mixing data from EnsembleSet and URMP consistently reduced

performance for all test scenarios. This could be attributed to the significant

differences in acoustics and processing between URMP and EnsembleSet.
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5.4.6 Results

The presented baseline results based on the experiments described above

are compared to previous work conducted for a similar task as described

in (Lin et al., 2021). The results from Lin et al. (2021) are based on a zero-

shot learning + multi-task source-informed (MSI) separation model designed

to tackle the limitation of a very small training dataset. The model’s cross-

dataset evaluation performance is compared between the URMP Dataset and

EnsembleSet (ES) with the experiments from Lin et al. (2021) (presented in

Table 11).

The DPTNet model trained on URMP and tested on ES performs the worst,

which is expected since URMP is a very small dataset. This model is the only

model that performs poorer than the prior-art (MSI). This is expected as the

MSI model is trained and tested on the same dataset. It must be noted that

while both the MSI experiments and our experiments use the URMP dataset

as test set, the test sets are not identical, since our test set also includes

mixtures of the same instruments. Moreover, the MSI experiments perform

score-informed separation.

The other results simultaneously highlight the capability of the presented

DPTNet architecture, and the EnsembleSet dataset. It is seen that the model

trained and tested on URMP shows the highest SI-SDR, which is understand-

able since URMP dataset is so small, the model probably overfits. The model

that was both trained and tested on ES also reports a very high SI-SDR, likely

due to overfitting. While the slightly lower average SI-SDR may be attributed

to the larger test dataset size of ES, the difference is too small to make any

significant conclusions regarding the diversity of EnsembleSet and URMP.

However, both these results may be indicative of the upper limit of SI-SDR

performance achievable by the DPTNet architecture.
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Model Train Eval SDR SI-SDR

DPTNet URMP ES +6.29 dB +4.37 dB
DPTNet ES URMP +11.37 dB +9.06 dB
DPTNet ES ES +14.17 dB +12.87 dB
DPTNet URMP URMP +14.69 dB +13.24dB

MSI (Lin et al., 2021) URMP URMP +6.33 dB -

Table 11: 2-source Chamber Ensemble Separation results.

The DPTNet model trained on ES and tested on URMP shows significantly

higher performance as compared to the MSI experiments. This exhibits the

value of the synthesised dataset and shows that PIT-based DPTNet models

trained exclusively on synthetic data from ES are able to produce generalis-

able results on unseen real-world mixtures. It also exhibits the inherent capa-

bility of PIT-based DPTNet models, as it significantly outperforms the score-

informed MSI model even when its trained only on synthetic data, while the

MSI model was trained and tested on the same dataset.

5.5 domain adaptation for improving ensemble separation

5.5.1 Introduction

In this section, the experiments presented are based on separating mixtures

that contain any pair of monophonic instruments. The observations from

Section 5.4 show that DPTNet trained with PIT is able to generalise across a

range of instrument timbres. However, a drop in performance was observed

when models are trained and tested on different datasets. In this section, the

experiments are focussed on further exploration of what makes these models

generalise across timbres. Moreover, how far the performance of these mod-

els can these models be pushed both for unseen datasets and unseen tasks

(like vocal separation) using domain adaptation is explored.
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A similar data augmentation method as Section 5.4, enabled by the multi-

microphone renders available in EnsembleSet is used and its impact on

cross-dataset generalisability for time-domain and complex-domain separa-

tion models is evaluated. A pre-training strategy using synthetic data from

EnsembleSet followed by fine-tuning on real-world dataset URMP is pre-

sented for improving cross-dataset performance, which enables complex do-

main model DCUNet to perform comparably to time-domain models. These

complex domain models were unable to separate instrument mixtures from

unseen datasets in the previous experiments, which in Section 5.5.6 is shown

to be due to the subtle effect of the data augmentation on spectrograms,

as compared to raw/time-domain data. The impact of pre-training using

EnsembleSet for both same-domain tasks (chamber ensemble instruments

from URMP dataset) and cross-domain tasks (harmonized vocals from Bach

Chorales and Barbershop Quartet datasets) is explored.

It is found that fine-tuning using very limited amounts of target domain

data (from URMP) reports a 5.5 dB SI-SDR improvement compared to train-

ing on ES alone. It is also found that pre-training on ES improves DPTNets

SI-SDR performance on URMP dataset by 1.6 dB as compared to training

on URMP alone. Meanwhile, using almost half of the training data from

BCBQ (used experiments presented in Section 5.3) as fine-tuning data for do-

main adaptation, DPTNet models show almost 12 dB SI-SDR performance

improvement on choral separation as compared to training on ES only. More-

over, pre-training models on ES show an improvement of 1.1 dB SI-SDR than

training on BCBQ alone.

5.5.2 Data

The models presented here are pre-trained on synthetic data from Ensem-

bleSet (described in Chapter 3). To provide a baseline result to compare the

domain adaptation/finetuning experiments, the training and validation data
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used in these experiments for pre-training are the same as the training data

used in experiments presented in Section 5.4.

Since the models are pre-trained on synthetic data, real-world recordings

from the URMP dataset (described in Section 2.11) are used for the fine-

tuning experiments. For the fine-tuning experiments, only one piece (String

Quintet K515) of 3 min 45 sec duration was used for fine-tuning related

training and validation while the remaining dataset was used for testing the

performance of these fine-tuned models.

To study the transferability of features learned from chamber ensemble in-

struments to vocals, which have significantly different dynamics and modula-

tions compared to bowed and wind instruments, the Bach Chorales and Bar-

bershop Quartets (BCBQ) datasets (see Section 2.11.3) are used for domain-

adaptation experiments. For these experiments, half of the duration of the

dataset was used for training and validation for domain adaptation, while

the remaining half of the dataset was used for testing the domain-adapted

models. It must be noted that the amount of training data from BCBQ used

in these experiments is half of what is used in the experiments described in

Section 5.3.

5.5.3 Training

Two different baselines were chosen for the experiments, one for time-domain

end-to-end separation (DPTNet (Chen, Mao, and Liu, 2020)), and one for

complex domain separation (DCUNet (Choi et al., 2019)), both of which have

shown comparable results for speech separation using PIT.

The DPTNet models (9.9M parameters) as described in Section 2.6.2 are

used for experiments with URMP and Choral Music, respectively. The mod-

els are trained at 44.1 kHz except for experiments related to vocal harmony

mixtures, where the models are pre-trained at 22.05 kHz as the test dataset
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is bandlimited and training high-sample rate models with bandlimited data

has been reported to introduce noise in the separated output from the model

(Sarkar, Benetos, and Sandler, 2021).

DCUNet (7.7M parameters) builds upon the original U-Net by introducing

a phase-aware complex-valued masking framework (see Section 2.7 for more

details). The asteroid (Pariente et al., 2020) implementation of this model

with PIT is used as a baseline to compare and contrast with TasNet-based

experiments.

The models are trained with synchronized pairs of musical instruments.

The data pre-processing involves activity detection on the source monophonic

instrument audio files and identifying frames of 2.97 seconds (131072 sam-

ples at 44.1 kHz) where both instruments are concurrently active for at least

40% of the frame. The train-validation split is generated by randomly choos-

ing 10% of the training frames presented to the dataloader as validation set.

The input mixtures are generated by linearly downmixing the augmented

versions of our reference sources.

All of the models are trained at 44.1 kHz, except the experiments associ-

ated to vocal harmony separation which are trained and evaluated at 22.05

kHz. SI-SDR is used as the loss function with PIT. The DPTNet models are

trained for 100 epochs with early stopping patience of 10 epochs. The learn-

ing rate is initiated at 5× e−3 with a scheduler that halves the learning rate if

the validation loss does not improve for 3 epochs. The models are trained on

4 x NVIDIA A100 GPUs with a batch size of 3 per GPU using a distributed

data parallel backend.

5.5.4 Data Augmentation

Data augmentation is applied on-the-fly using torch-audiomentations (Jordal,

2021) and is applied across all the experiments, except using multi-mic ren-
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ders from EnsembleSet. Gain modulations are applied with a 50% random

chance to each of the sources in a mixture separately in the range of +5dB

to −15dB, pitch shift by up to ±2 semitones, followed by channel swaps for

the reference targets.

The experiments using EnsembleSet for training have the opportunity to

use the 20 unique microphone and mix configurations that are presented in

the dataset for each source. Since most of these renders are stereo and utilise

multiple microphones, they are downmixed to mono for the experiments.

This exposes the models to a good variety of recording and microphone con-

figurations which could improve the models’ cross-dataset generalizability.

To enable this, the dataloader selects one of the 20 available renders at ran-

dom at each training iteration and the data augmentation described before

is applied subsequently.

5.5.5 Fine-tuning/Pre-training

To enable the model to adapt to unseen acoustics and instruments, it is pro-

posed to use EnsembleSet with multi-mic augmentation as a pre-training

step before finetuning/re-training the model on limited test-domain data for

improved performance. For the pre-training stage, the same training configu-

ration as the EnsembleSet baseline experiments is used, where the train and

validation sets are generated with a random split and the model is trained

for 100 epochs with an early stopping patience of 5 epochs. Subsequently, the

learned model weights are used as the initial weights for re-training on target

domain data with a low learning rate of 1× e−6. For URMP cross-dataset per-

formance experiments, a single song from URMP dataset was used, and 10

songs each from BC and BQ datasets as the fine-tuning data while using the

remaining tracks as test data. No layers were frozen during this fine-tuning

stage due to the nature of joint optimization of the free-filterbank and the

separator stack in DPTNet.
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5.5.6 Impact of Microphone Augmentation

The DPTNet and DCUNet models were trained on EnsembleSet with and

without multi-mic augmentation and tested on EnsembleSet and URMP. Ta-

ble 12 shows the results of the models trained on EnsembleSet alone with

and without multi-render data augmentation and tested on a separate test

set from EnsembleSet and real-world data from URMP. It was observed

that both models suffer from overfitting and poor cross-dataset performance

when tested on URMP data when trained without using multi-mic augmen-

tation (MicAug). However, a significant improvement in cross-dataset per-

formance was observed when using multi-mic augmentation only on DPT-

Net, while DCUNet results do not show any noticeable difference. The per-

formance drop observed on evaluation on EnsembleSet for DPTNet models

trained with MicAug is because the same "Close" microphone configuration

was used for training and testing the without MicAug scenario. This shows

how the DPTNet model can overfit to a given microphone configuration.

The lack of improvement for DCUNet models could potentially arise from

the fact that the multi-mic renders for a given audio segment would result

in a much more drastic change in the signal when observed in the raw/time-

domain representation which only affects DPTNet. On the other hand, the

complex-domain spectrogram representation would show changes based on

microphone characteristics and phase differences, which are represented as

relative differences between the real and imaginary parts of the complex

spectrogram. It is however unclear, if the microphone augmentation fails to

improve complex-domain separation due to the nature of these relative differ-

ences in the real and imaginary representation of the complex domain being

difficult to capture for the DCUNet model’s encoder, or because DCUNet

models are inherently biased towards learning magnitude spectral features

(which don’t show significant difference across augmentations) due to the

bounded masking method which relies on estimating the magnitude mask
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as the bounded target and subsequently extracting the phase from the pre-

dicted bounded magnitude mask.

Table 12: Output SI-SDR for 2-source Chamber Ensemble Separation models trained
on EnsembleSet with and without multi-mic augmentation (MicAug),
tested on EnsembleSet (ES) and URMP.

Model Sample Rate MicAug ES URMP

DPTNet 22.05 kHz ✓ +13.67 dB +9.39 dB
DPTNet 22.05 kHz ✗ +18.39 dB +5.74 dB

DPTNet 44.1 kHz ✓ +13.24 dB +9.23 dB
DPTNet 44.1 kHz ✗ +18.84 dB +3.54 dB

DCUNet 44.1 kHz ✓ +14.43 dB +4.49 dB
DCUNet 44.1 kHz ✗ +14.43 dB +4.65 dB

5.5.7 Cross-dataset Performance

Table 13 shows the models’ evaluation results on cross-domain real-world

datasets after pre-training on EnsembleSet with and without fine-tuning. The

experiments demonstrate that pre-training using EnsembleSet leads to better

separation results for both chamber ensemble separation (tested on URMP

dataset) and vocal harmony separation (tested on BCBQ dataset). Interest-

ingly, even though choral singing is significantly different from chamber en-

semble instruments, pre-training on chamber ensembles provides a +1.08

dB performance improvement over training on harmonised vocal data alone.

While the SI-SDR achieved for vocal harmony separation is higher, it must be

noted that the vocal harmony separation experiments were run at 22.05 kHz

(instead of 44.1 kHz for other experiments) due to the band-limited nature

of the BCBQ datasets as noted in (Sarkar, Benetos, and Sandler, 2021).
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Table 13: SI-SDR for 2-source Ensemble Separation models trained on EnsembleSet
with fine-tuning on respective test datasets.

Model SR Train Test FT SI-SDR

DPTNet 22.05 kHz ES BCBQ ✗ 4.99 dB
DPTNet 22.05 kHz ES BCBQ ✓ 17.92 dB
DPTNet 22.05 kHz BCBQ BCBQ ✗ 16.84 dB

DPTNet 44.1 kHz ES URMP ✗ 9.23 dB
DPTNet 44.1 kHz ES URMP ✓ 14.87 dB
DPTNet 44.1 kHz URMP URMP ✗ 13.25 dB

DCUNet 44.1 kHz ES URMP ✗ 4.49 dB
DCUNet 44.1 kHz ES URMP ✓ 12.71 dB
DCUNet 44.1 kHz URMP URMP ✗ 10.61 dB

5.6 discussion

In this chapter, a completely new problem of ensemble separation was tack-

led and explored in a novel fashion using PIT. The observations presented

in this chapter shed light on the critical importance of sizeable, clean and di-

verse training data which in fact in most of the presented experiments has a

larger impact than the choice of the deep-learning separation model used. It

also highlights the interdependence of data, models and training paradigms,

and the fact that they cannot be evaluated independently. This observation

is clearly highlighted in the experiments related to multi-mic data augmen-

tation vs. generalisability (in Section 5.5.6) as its impact depended on the

model used and also varied based on the diversity of training data and the

relative domain shift in the test data.

Section 5.3 first investigates use of PIT to solve the choral separation prob-

lem. While using TasNets with PIT did perform very well, and arguably

outperformed other class-based methods. Direct comparisons were difficult

as no standard sizeable training data was available and all results reported

in this work and in the prior art were all trained and tested on very small
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datasets. With the introduction of EnsembleSet, Section 5.4 tackles the ensem-

ble separation problem with cross-dataset performance in mind and showed

reasonable success in separating string ensembles. Results from Section 5.4

suggested that models could in fact be timbre-agnostic, which was further ex-

plored in Section 5.5. The results presented in this chapter only use average

SI-SDR and SDR, but the variation in performance across different exam-

ples was quite high. Although the overall variance/standard deviation for

these experiments is not presented in this chapter, they are presented in an

instrument-wise fashion in Section 6.4 and across different musical contexts

in Section 6.5 for chamber ensemble separation.

The experiments presented in this chapter were the first in literature (Sarkar,

Benetos, and Sandler, 2021; Sarkar, Benetos, and Sandler, 2022) which showed

that deep learning models can in fact be trained in a permutation-invariant

fashion to be able to separate mixtures of monophonic instruments with both

high-timbral similarity and diversity simultaneously without a performance

tradeoff. This would be the first reported results suggesting source separa-

tion models might be able to operate in a timbre-agnostic fashion which is

significantly divergent from the current narrative presented in source sepa-

ration literature. This not only enables solving new source separation tasks

such as separating mixtures of the same instruments, but also opens up new

ways of training models for multiple instruments which can be useful for

instruments with limited data. In Chapter 6, this possibility is explored in

further detail and presents deep analyses of various instrument mixture sce-

narios and their impact on the performance of source separation models

trained with PIT.

Although the comparisons presented in Table 8 and Table 11 show that

PIT based methods seem to outperform other class-based separation meth-

ods, the metrics presented are not directly comparable. Presenting a non-PIT

baseline result using DPTNet in these experiments could shed light the spe-

cific impact of PIT. However, using a class-based training objective inherently
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requires changing the data and problem formulation as class-based methods

are only applicable for a given pre-defined instrument configuration. This

could be achieved by testing a DPTNet model on specific instrument pair

configuration, however, that drastically reduces the amount and diversity of

training data that is available. Due to these reasons, such a baseline was not

included in the ensemble separation results presented in this chapter.



6
D E E P E R I N S I G H T S I N T O E N S E M B L E S E PA R AT I O N

6.1 introduction

The experiments presented in previous chapters explore the applicability of

source separation models for a novel task in the context of music separation.

The previous chapters presented the typical metrics used in source separa-

tion, SDR, SIR, SAR, and SI-SDR (see Section 2.2 for definitions) as evaluation

metrics which compared the performance of the various models presented.

While the global average of such metrics is generally a good indicator of the

performance of these models, they are susceptible to many biases introduced

due to training data, training strategy, and evaluation data. Understanding

the real-world applicability of the proposed methods requires a careful anal-

ysis of the success and failure modes of these models, especially given that

the training used is synthesised and the test data is of limited diversity.

In this chapter, a deeper analysis of the performance of source separation

models presented in previous chapters is presented. First, a new measure

for the harmonic complexity of an input mixture is presented in Section 6.2.

The goal of this measure was to quantify the harmonic overlap present in

an input mixture and then this measure is compared with the separation

performance of the PIT-based separation models presented in Section 6.2.3.

Various methods of computing this score are suggested based on relevance

to known harmonic relationships between intervals, which are subsequently

tested against different training scenarios.

122
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Preliminary experiments based on choral separation in Section 6.3.1 sug-

gest that random mixing during training deteriorates the separation perfor-

mance in the context of choral separation. This is contrary to observations

reported in the music separation task by Uhlich et al. (2017). Subsequently,

this harmonic overlap metric is used along with the traditional source sepa-

ration metrics such as SDR and SI-SDR to investigate the impact of random

track mixing as a data augmentation method in Section 6.3.2. The presented

Harmonic Overlap score shows a moderate negative correlation with separa-

tion performance however it does not present a consistent correlation when

compared with the impact of random mixing. To obtain a clearer understand-

ing of the impact of random mixing, experiments based on a significantly

larger dataset EnsembleSet are presented in Section 6.3.3, which shows that

the negative impact of random mixing is larger as the amount of training

data is reduced which places the observations presented in Section 6.3.1 in

better context.

Although the common understanding from the music separation task based

on instrument classes would suggest timbral similarity to be a key confound-

ing factor for source separation, results described in Section 6.4 suggest that

models trained for experiments from Section 5.4 and Section 5.5 work in an

instrument/timbre agnostic fashion, both in the context of the amount of

training data available for different timbres and also in the context of separa-

tion performance.

Section 6.5 analyses the performance of these models based on different

musical scenarios and where pitch overlaps and crossovers are found to have

a significant impact. Section 6.6 present a few of the worst-performing exam-

ples from the URMP test set, which show a significant number belonging to

scenarios with pitch overlaps and crossovers. These examples are found to

show very different performance characteristics which are then analysed in

the context of the entire test dataset in Section 6.7

Key contributions of this chapter are highlighted below:
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• A novel measure called Harmonic Overlap that measures the musical

complexity of a mixture is presented. A moderate negative correlation

(Pearson correlation coefficient: -0.334) is observed between output SI-

SDR and Harmonic Overlap score for 4-part vocal harmony separation

experiments from Section 5.3.

• Random track mixing as data augmentation for training ensemble sep-

aration models is found to negatively impact performance for smaller

training datasets, but at larger dataset sizes the negative impact dimin-

ishes.

• Instrument-agnostic performance of chamber ensemble separation mod-

els presented in Section 5.4 and Section 5.5 are investigated. It is found

that PIT based DPTNet models indeed perform in a timbre-agnostic

fashion. It is also observed that separation performance seems to be

correlated with pitch trajectories of the constituent sources and is inde-

pendent of the timbre of the constituent sources.

• Two failure modes are identified for DPTNet based models trained

with PIT: unisons and pitch crossovers. While the models fail to sepa-

rate sources playing in unison, it is observed that examples with pitch

crossovers are still separated well but suffer from source confusion, where

the instrument-output channel assignment is swapped at the crossover

point.

6.2 harmonic overlap

Traditional training strategies for source separation using deep learning have

advocated for randomised mixing of the constituent parts of a musical mix-

ture as a form of data augmentation (Uhlich et al., 2017). While this has

proven to be successful for the traditional music separation task of vocal,

drums, and bass stem separation, its applicability in the context of ensem-
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ble separation was unknown. One side-effect of using randomised mixtures

during training is that the model’s exposure to harmonically correlated and

synchronised sources is limited. This may be especially impactful for cham-

ber ensemble separation models as the sources in these mixtures have a sig-

nificantly higher overlap of partials as compared to the stem separation task

where vocals, drums, and bass have very minimal harmonic overlap. The

experiments presented in this section seek to investigate the correlation be-

tween harmonic overlap and separation performance.

6.2.1 Harmonic Overlap Score

A novel measure for calculating the harmonic overlap for any two given

monophonic sources is presented. It is based on calculating the number of

coinciding partials observed in the first 16 overtones for a given pair of notes

being played by two sources. This also correlates well with the perceived res-

onance for any given interval (pair of notes), where the strongest resonances

are seen for octave intervals, followed by perfect fifths, perfect fourths, major

thirds, and so on. This measure is particularly apt for monophonic sources

in an ensemble where such instruments perform together with the intention

of blending well with each other to create a coherent sonic texture. The har-

monic overlap metric is designed to provide a measure of coherence for such

ensembles by calculating pair-wise harmonic overlaps normalised by their

duration of activity.

Given a set of N sources xi for i ∈ {1, 2, ..., N}, we utilise the pYIN pitch de-

tection algorithm from Mauch and Dixon (2014) to estimate their pitches F0
i .

We then compute the first 16 overtones Pj
i for j ∈ {1, 2, ..., 16} and quantise

them to a 20 cent log-frequency scale for each of the sources as per Equa-

tion 21. We convert the obtained set of harmonic pitches to a binary vector

Bi,k as per Equation 22 for k ∈ {1, 2, 3, ...} where k is the 20 cent quantized

note number (k/5 gives us the MIDI note number equivalent for a given har-
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monic). We subsequently get the harmonic overlap for a given time frame by

counting the total number of overlaps per frame for each pair of sources in

a mixture as per Equation 23. We then aggregate the pair-wise scores over

the entire input segment and normalise the score by dividing by the overall

pair-wise activity duration, i.e. for each pair we calculate the total number of

frames where both sources were active and divide the aggregated score by

that value.

Pi
j =

⌈
60 × log2(

j × Fi
0

440
)

⌉
+ 345 (21)

Bi,k =


1, for k ∈ Pi

j

0, for k /∈ Pi
j

j ∈ {1, 2, ..., 16} (22)

Harmonic Overlap :=
N

∑
i ̸=j

Bi,k · Bj,k
T (23)

6.2.2 Implementation

The harmonic series of a given note does not perfectly overlap with the A440

pitch series for a 12-note equal tempered scale, as seen in Table 14. While

computing the harmonic series of a note, only the even-powered harmonics

(octaves) coincide perfectly with the equal-tempered tuning chart while most

other harmonics typically have small errors. Thus to compute the proposed

harmonic overlap score, a minimum pitch resolution needs to be determined

to obtain a meaningful score. Figure 10 presents the harmonic overlap score

for different musical intervals considering different levels of frequency res-
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Overtone Frequency (Hz) Closest Pitch Frequency (Hz) Error (Hz)

1 880 A5 880 0

2 1320 E6 1318.51 1.49

3 1760 A6 1760 0

4 2200 C#7/Db7 2217.47 17.47

5 2640 E7 2636.99 3.01

6 3080 G7 3135.96 55.96

7 3520 A7 3520 0

8 3960 B7 3951.1 8.9
9 4400 C#8/Db8 4434.94 34.94

10 4840 D8 4698.62 141.38

11 5280 E8 5273.98 3.02

12 5720 F8 5587.71 132.29

13 6160 G8 6271.87 111.87

14 6600 G#8/Ab8 6644.86 44.86

15 7040 A8 7040 0

Table 14: Frequencies and Closest Pitches for the Overtones of A440

olution. These are compared to the empirical understanding of interval re-

lationships, such that octaves are the strongest overlaps, followed by perfect

fifths, fourths, and major thirds while dissonant intervals such as diminished

fifths should have the lowest overlaps. Comparing the different pitch resolu-

tions results in the choice of 5 bins per semitone to be the proposed measure

to generate scores that correlate well with our understanding of pitch interval

relationships.

6.2.3 Harmonic Overlap vs. Performance

Using the proposed Harmonic Overlap metric, a moderate negative correla-

tion (Pearson correlation coefficient: −0.334) between the harmonic complexity

of the audio mixture and the separation performance achieved is found (for

the model described in Section 5.3), which is shown in Figure 11. This shows
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Figure 10: Harmonic overlap scores for all intervals up to 2 octaves for various pitch
resolutions. The rows are highlighted based on intervals that should have
higher or lower overlap scores based on our understanding of interval
relationships. Cells highlighted in red represent hypotheses where the
score does not correlate well to perceptual interval relationships.

that mixtures with stronger resonant intervals are more difficult to separate,

thus musical structure does impact separation negatively. This agrees with

our perceptual ability to distinguish harmonies being sung as the Harmonic

Overlap score ranks resonant intervals much higher than dissonant intervals.
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Figure 11: Linear fit with 95% confidence interval of Harmonic Overlap score for
test audio mixtures vs. output SI-SDR achieved with ConvTasNet model.

6.3 random mixing

Random mixing is a commonly used data augmentation method which was

introduced for Music Source Separation by Uhlich et al. (2017) and subse-

quently also utilised by Zeghidour and Grangier (2020) and Défossez et al.

(2019) where they find that mixing segments from different musical pieces

to generate new training examples for training improves separation perfor-

mance. Since finding clean multi-tracks for highly polyphonic ensembles like

choral music is difficult, random mixing would enable us to generate data

with any amount of polyphony by mixing monophonic singing tracks from

various songs.

We systematically study the impact on the model’s performance of ran-

domly mixing vocal parts from different songs during training. We randomly

choose a number of data samples from the training set and shuffle their con-

stituent parts to generate a training set with a desired percentage of randomi-

sation.
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Figure 12: Average output SI-SDR achieved by different ConvTasNet-based models
trained with varying proportions of randomised (musically incoherent)
and synchronised mixtures.

6.3.1 Random Mixing vs. Performance

Models described in Section 5.3 were trained with and without randomisa-

tion to test the impact of using randomised training data to train choral sep-

aration models with PIT. These experiments show that using random mixing

as a data augmentation method results in models failing to converge and/or

generalise to unseen test data. Using synchronised training data generated

good results. To study the impact of randomised mixing, models with dif-

ferent blends of randomised and synchronised audio pairs from the BCBQ

dataset were used to train choral separation models.

In Figure 12 we see that the model performance monotonically decreases

as the number of randomised mixtures in the training data is increased. We

see a 4.32 dB decrease in average SI-SDR improvement between a model

trained on synchronised mixtures vs. randomised mixtures. It is noteworthy

that our randomisation process preserves the SATB choral structure, i.e. the
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Figure 13: Average output SI-SDR achieved by different ConvTasNet-based models
trained with the full amount of synchronised (musically coherent) data
with an additional amount of randomised (musically incoherent) mix-
tures. The X-axis values represent the total dataset size as a percentage of
original dataset size.

four sources consist of one source each from soprano, alto, tenor and bass

registers.

We also carry out experiments where we increase the overall dataset size

by adding new mixtures of generated by downmixing randomly selected

solo choral singing segments. Figure 13 shows that increasing the dataset

size does not improve separation performance. Models trained on expanded

datasets with 10− 100% additional training samples of randomised mixtures

show an average performance difference of +0.07 ± 0.32 dB ∆SI-SDR w.r.t.

our baseline model.

6.3.2 Random Mixing vs. Harmonic Overlap Performance

Mixing random tracks during training would suggest that the model is pre-

sented with mostly harmonically uncorrelated data. This would suggest that

models trained on such data could find harmonically correlated content more
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Figure 14: Linear fit with 95% confidence interval of Harmonic Overlap score for
test audio mixtures vs. output SI-SDR achieved with ConvTasNet models
trained with various proportions of randomised data.

difficult to separate. To test this, similar experiments to the ones described

in Section 6.2.3 were conducted for DPTNet models trained with different

balances of randomised data, and their performance for various test exam-

ples was compared w.r.t. each test example’s harmonic overlap score. Fig-

ure 14 presents 6 such models trained with different balances of randomised

and synchronised data and the Pearson correlation coefficient for Harmonic

Overlap vs. Output SI-SDR is presented. While all models show a mild nega-

tive correlation between Output SI-SDR and the Harmonic Overlap score of

the presented mixture, the correlation is not seen to be affected consistently

across the models.

Figure 15 shows that most models trained with randomised data show a

marginally more negative correlation between performance and harmonic
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Figure 15: Pearson correlation coefficient of Harmonic Overlap score for test audio
mixtures vs. output SI-SDR achieved with ConvTasNet models trained
with various balances of randomised data. The X-axis value represents
the percentage of total training data samples that were randomised.

overlap scores for models trained with more randomised data, with the ex-

ception of one model.

This may also explain why randomisation of mixtures during training af-

fects the overall model performance as randomising mixtures significantly

reduces the average harmonic overlap in the mixtures presented during train-

ing.

6.3.3 Random Mixing vs. Dataset Size

Experiments on the BCBQ datasets suggested that using randomised mix-

tures significantly deteriorates the performance of choral separation models

which was reported in Sarkar, Benetos, and Sandler (2021). Subsequently

Jeon et al. (2023) used randomised mixing of solo vocal performances to

train vocal harmony separation models which reported comparable perfor-

mance to the results reported in Sarkar, Benetos, and Sandler (2021). While

the BCBQ dataset used in Sarkar, Benetos, and Sandler (2021) was only 90

minutes long, the solo singing dataset used in Jeon et al. (2023) was 400 hours

long. Thus experiments were conducted to test the impact of randomisation
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Figure 16: Average output SI-SDR achieved by DPT models trained with a reduced
amount of data from EnsembleSet presented in a synchronised (musically
coherent) and randomised (musically incoherent) fashion when tested on
URMP Data.

as the amount and diversity of training data is scaled up. EnsembleSet was

utilised to run experiments comparing models trained with randomised and

synchronised audio data, where fractional amounts of the total dataset were

used to train models to separate 2 source chamber ensemble mixtures.

Figure 16 shows the results of these experiments. It is observed that at

larger dataset sizes we do not see a significant drop in performance between

models trained on randomised vs. synchronised data. Meanwhile, a sharp

relative performance drop is observed as the amount of training data is re-

duced. It is also notable that the models trained on randomised data never

outperformed models trained on synchronised data.

However, the impact of increased training data size and diversity is much

greater than using synchronised training data. Especially in the context of
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ensemble music where finding clean stems is extremely challenging, using

randomised mixtures of solo instrument recordings can be valuable.

30 20 10 0 10 20 30
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Figure 17: Instrument-wise median output SI-SDR of DPTNet trained on Ensemble-
Set with fine-tuning using a single URMP string quartet example tested
on 2 source mixtures from URMP dataset.

6.4 instrument-agnostic performance

As mentioned in Section 4.2, models trained using PIT are trained in an

instrument-agnostic fashion, where the model is expected to separate any

given mixture regardless of the instrument types present in the mixture.

While the models are trained in an instrument-agnostic fashion, their perfor-

mance may be affected by instrument or timbre especially given that cross-

dataset evaluation often results in performance drop. This cross-dataset per-

formance drop may be attributed to either altered recording conditions or un-

seen instruments/timbres. In this section, an instrument-wise performance

analysis of models trained in Section 5.5 is presented.
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EnsembleSet contains 24 hours of strings and 1 hour of all other instru-

ments (see Section 3.6), in Figure 17 we do not see any correlation between

instrument training data size and instrument separation performance. In fact,

we see that rarer instruments in EnsembleSet on average perform better than

the most dominant instruments which are violin, viola, and cello. To test

the proposed model’s timbre-agnostic behaviour, a DPTNet model (training

details described in Section 5.4) is trained with multi-render augmentation,

excluding French horn training examples (see Figure 18). The average SI-SDR

on URMP data was +8.8 dB, slightly lower (-0.49 dB) than the baseline. How-

ever, we found similar instrument-wise SI-SDR performance across different

instruments, including the French Horn, which is an unseen instrument for

the model. This suggests that models trained with PIT can separate unseen

instruments.

0 5 10 15 20 25
SI-SDR
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Cello

Oboe

Trumpet

Flute

Bass

Clarinet

Bassoon

Horn

ES without Horns
ES baseline
ES + URMP finetune

Figure 18: Average performance of DPTNet models tested on 2 source URMP mix-
tures.

The scores presented in Figure 18 only show average performance for each

instrument class, without any information on the interferer instrument type.

It could be possible that the separation performance of the unseen instrument
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is influenced by the interferer being a well-known instrument. To investigate

this, Figure 19 presents instrument pair-wise average SI-SDR, which shows

that unseen/rare instruments performing well are unrelated to the interferer

instrument being a well-known instrument.
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Figure 19: Instrument pairwise average output SI-SDR for 2 source DPTNet based
ensemble separation model trained on EnsembleSet and evaluated on
URMP.

Instrument pair-wise performance analysis also shows that instruments

with similar registers typically perform poorer than instruments with dis-

tinct registers. The saxophone is an unseen instrument to the model both

during training and finetuning and performs significantly better when pre-

sented as a mixture with a different instrument, but performs quite poorly
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for monotimbral mixtures of the saxophone. While this could be interpreted

as mixtures of the same instruments may perform poorly, it must also be

kept in mind that instrument timbres are not the only factor that may affect

separation performance. It may also be related to the fact that monotimbral

mixtures may have a higher likelihood of having melodies containing pitch

overlaps and crossovers as compared to mixtures of instruments of different

registers.

6.5 musical context vs . separation performance

In this section, we explore how different musical scenarios impact the per-

formance of ensemble separation models by analysing results from the ex-

periments described in Section 5.5. Figure 20 and Figure 21 show the perfor-

mance of DPTNet-based model with fine-tuning for different mixture types

based on the musical context present in the mixture. In Figure 20 the URMP
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8.0 17.2

2.3 12.2

Figure 20: 2-source separation performance w.r.t. pitch overlap of DPTNet trained
on EnsembleSet with fine-tuning on URMP.

test data is divided into 4 categories: same instruments vs. different instru-

ments, mixtures with pitch overlaps, and without pitch overlaps. Pitch over-
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laps are detected using pYIN (Mauch and Dixon, 2014) on each instrument’s

ground truth audio tracks. An example is classified to observe a pitch over-

lap if at any point during the mixture, the two sources are less than less than

half a semitone apart.

It is observed that examples with pitch overlap perform significantly worse

(≈ 6 db) than examples without pitch overlaps across all examples. It is also

found that mixtures of the same instruments and different instruments do

not have a significant performance difference to obtain any insights. However,

mixtures with no overlap and different instruments do contain a significantly

higher number of outliers, arguably due to most examples belonging to this

category and other factors contributing to separation performance that are

not captured here. Similarly, in Figure 21 the URMP test data is divided

10 5 0 5 10 15 20 25
SI-SDR

No
crossover

diff inst

Crossover
diff inst

No
crossover
same inst

Crossover
same inst

15.1

11.0

14.4

8.9

11.7 17.5

6.0 15.1

9.9 17.1

1.8 14.7

Figure 21: 2-source separation performance w.r.t. pitch crossovers of DPTNet trained
on EnsembleSet with fine-tuning on URMP.

into 4 categories, but this time comparing pitch crossovers present in the

mixture. To detect pitch crossovers, we use pYIN and then detect if one of

the sources is either always higher or always lower than the other, and if not

then such mixtures are classified as mixtures with crossovers. It is observed

that examples with crossovers on average perform poorer than examples
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without crossovers. It is also observed that the performance drop caused by

crossovers is in fact larger in the case of mixtures with the same instruments

(≈ 5.5 dB) than mixtures with distinct instruments (≈ 4.1 db).
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Figure 22: 2-source separation performance w.r.t. pitch crossovers and overlaps of
DPTNet trained on EnsembleSet with fine-tuning on URMP.

Combining both these categories, Figure 22 shows the impact of these two

musical contexts on separation performance. It is observed that crossovers

and overlaps contribute to a 6.4 dB performance drop to mixtures of the

same instruments as compared to a smaller drop of 4 dB when comparing

mixtures of different instruments. This may suggest that timbral differences

may still play a role in helping the model separate instruments, but evidently,

the pitch content of the mixtures is far more impactful to the separation

performance.

While pitch crossovers and pitch overlaps both significantly deteriorate the

performance of the presented separation models, further exploration of how

these specific scenarios affect the separation quality is explored in Section 6.6.
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6.6 case-studies

In order to explore the failure modes of the presented separation models, the

worst-performing examples from the test data with less than 0 dB output

SI-SDR were aggregated. Amongst them, the 10 most occurring instrument-

pairs were filtered (as shown in Figure 29) and 36 of them were inspected

at random. 17 of them were found to contain unisons, 12 of them had pitch

crossovers, the remaining 7 did not exhibit any distinguishable characteristic.

The two dominant classifications of unisons and pitch crossovers had con-

sistent performance characteristics which are discussed in Section 6.6.1 and

Section 6.6.2. The remaining examples did not exhibit any distinguishable

characteristics. Of the remaining 7 examples 3 exhibited bleed while 4 had

significantly loud artefacts although the cause for these failures could not be

identified.

6.6.1 Unison

All the examples showing unison exhibit bleed present in both channels. Fig-

ure 23 shows a mixture of two violins playing in unison. While there are

timbral and microtiming differences between the two violins, listening to

this example reveals that the separation fails and both sources are audible

in both estimates. While Figure 23 is an example of both sources playing

in unison for the entire segment, Figure 24 is an example where the two

sources play distinct note for the first half and play in unison for the second

half. Listening to this example reveals that even though the first half of the

estimates show some separation, the second half where both sources play

in unison separation fails completely again. Moreover, the separated part of

the excerpt has audibly higher artefacts, resulting in a SAR of 8.1 dB. This

behaviour is consistently seen in the remaining examples of pitch overlaps

with SARs ranging between 7-10 dB, where even momentary pitch overlaps
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Figure 23: Example of complete unison between two Violins observed in URMP test
data.

between the 2 sources seem to affect the separation quality of the entire audio

segment.

6.6.2 Source Confusion

Analysis of examples of pitch crossovers reveals that the models are indeed

able to successfully separate these sources, however, the sources are swapped

across channels at the crossover point as seen in Figure 25. We define this

phenomenon as source confusion, where the instruments within an output

segment are swapped. Examining the SIR and SAR of these mixtures reveal

that while the SIR of these examples are similarly low as observed in unisons

(≈ 0dB), the SARs of the crossover examples are very high (≈ +18dB).

It is also observed that one of the output channels consistently outputs the

higher melody and the other outputs the lower melody. This is also observed
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Figure 24: Example of partial unison observed between two Trumpets in URMP test
data.

as a general trend across all examples, where the lower register instruments

are typically present in the second channel in our experiments. It is how-

ever unclear whether these channel swaps also occur in the case of pitch

crossovers between different instruments.

6.7 performance insights

Table 15 presents a comparative analysis of average SI-SDR, SIR and SAR

values for scenarios of pitch crossovers and pitch crossovers for mixtures of

same instruments and different instruments. While typically both crossovers

and overlaps negatively affect separation performance across all mixtures,

the relative difference of impact of these scenarios on monotimbral vs. poly-

timbral mixtures provides some insights.
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Metric Inst O-lap ∆ No O-lap Cross ∆ No Cross

Same 8.8 dB -5.6 dB 14.4 dB 8.9 dB -5.5 dB 14.4 dB
SI-SDR ∆ -0.1 dB -0.4 dB 0.3 dB 2.1 dB 1.4 dB 0.7 dB

Diff 8.7 dB -6 dB 14.7 dB 11 dB -4.1 dB 15.1 dB

Same 15.1 dB -3.3 dB 18.4 dB 14.8 dB -4 dB 18.8 dB
SAR ∆ -0.8 dB -1 dB 0.2 dB 1.3 dB 1.4 dB -0.1 dB

Diff 14.3 dB -4.3 dB 18.6 dB 16.1 dB -2.6 dB 18.7 dB

Same 18.5 dB -2.1 dB 20.6 dB 15.4 dB -7.3 dB 22.7 dB
SIR ∆ -3.3 dB -4.2 dB 0.9 dB 2.4 dB 3.2 dB -0.8 dB

Diff 15.2 dB -6.3 dB 21.5 dB 17.8 dB -4.1 dB 21.9 dB

Table 15: Comparative study of average SI-SDR, SAR and SIR values for mixtures of
same and different instruments in different musical contexts across all test
examples from URMP dataset.

6.7.1 Unison

Pitch overlaps have a greater impact on all metrics for polytimbral mix-

tures as compared to monotimbral mixtures. Although the impact on SIR

is more profound than the impact on SAR. This behaviour is observed in

some case studies as unisons of different instruments result in the unison of

both sources is considered as a single source and the higher partials of the

brighter source are attempted to be separated as the second source.

It is understandable how the separation of a unison of distinct timbres may

be more challenging as this appears to be a timbre decomposition problem in

the case of polytimbral mixtures. In the case of monotimbral mixtures play-

ing in unison, it is an ill-posed problem as effectively the model is expected

to perform as a chorus removal tool, which in the case studies is observed to

result in the model not being able to separate the sources at all. This observa-

tion is well aligned with the relative performance difference between unison

and duet vocal separation reported by Jeon et al. (2023).
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6.7.2 Source Confusion

Pitch crossovers have a greater impact on all metrics for monotimbral mix-

tures as compared to polytimbral mixtures. This may suggest that some poly-

timbral mixtures with pitch crossovers may not suffer from source confusion,

while examples of pitch crossovers for monotimbral mixtures are more likely

to result in source confusion.

This poses a fundamental question of whether this kind of error can be

classified as a false negative. In the case of mixtures of identical timbres,

the channel swap between output sources when pitches crossover may be

seen as a valid separation result. Whereas in the case of crossovers with

distinct timbres, if the instrument present in the separated output channel

changes within a segment it should be seen as an incorrect separation result.

Moreover, the bias observed towards output channels favouring lower or

higher melodies poses a problem of instrument swap across segments within

a larger recording.

6.8 discussion

In this chapter, an in-depth analysis of the performance of PIT-based mod-

els for ensemble separation was presented. The presented analysis methods

exhibit that the performance of the model is independent of the type of in-

strument present in the mixture regardless of the training data. However, the

strongest factor determining separation performance is the musical context

of the mixture.

The Harmonic Overlap score presented a moderate negative correlation

with the performance of the model. However, the correlation between the har-

monic overlap and performance was not observed to be very strong. Other

factors such as average pitch distance also presented similar weak correla-
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tions (presented in Section A.1) with respect to separation performance. One

explanation for these observations could be that these metrics might only

be a part of the picture, amongst a larger set of conditions that determine

the separation difficulty of a mixture/capability of the presented models to

separate a mixture.

While interval relationships between the pitch content of the sources did

not provide significant insights, analysing the mixtures in the context of pitch

overlaps and crossovers presented clear correlations. It was found that both

pitch overlaps and crossovers significantly affect the separation performance

of the model, however, the manner in which they affect performance was

found to be very different. In the case of pitch overlaps, it was found that

unisons are inherently an ill-posed separation problem thus the poor sepa-

ration performance observed is understandable and expected. However, it

was found that pitch crossovers do not necessarily result in poor separa-

tion performance. Figure 26 presents an example of a polytimbral mixture

with a large pitch discontinuity for one of the sources including a crossover

with respect to the other source. In this example, the model is able to main-

tain source consistency and source confusion is not observed. This implies

that the model may not suffer from source confusion in scenarios where the

sources do not suffer from label ambiguity. It also shows that the model can

maintain source consistency across large jumps in pitch trajectories.

This raises fundamental questions of what is the performance expectation

of a source separation model. In the case of unisons, a timbre decomposition

problem is a non-defined problem, as a given source timbre may be decom-

posed in multiple non-deterministic ways. Meanwhile, in the case of source

confusion, while polytimbral mixtures suffering from source confusion could

indeed be a problem, source confusion in monotimbral mixtures is a case

where the metrics may diverge from the perceptual quality of separation. As

in the case of monotimbral mixtures with pitch crossovers, a human may not
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be able to identify which melody is expected from each source, especially

without a larger musical context.
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Figure 25: Handpicked example for pitch crossover observed in URMP test data. It
can be observed that the model is able to separate the two sources, except
that the separated sources are swapped across channels at sections with
pitch crossovers preceded by silence.
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Figure 26: Handpicked example for a polytimbral pitch crossover observed in
URMP test data. It can be observed that the model can separate the
two sources effectively regardless of their pitches crossing over and the
sources having pitch jumps up to 17 semitones.



Part IV

T H E F U T U R E I S E X C I T I N G

Source separation is not a solved problem.



7
C O N C L U S I O N S A N D P E R S P E C T I V E S

7.1 summary

This thesis proposed a novel approach to music source separation using

time-domain deep learning models with permutation invariant training for

monophonic sources. While this method had proven successful for speech

separation (Luo and Mesgarani, 2019), its applicability to music was unex-

plored prior to this work. To explore the applicability of permutation invari-

ant training for musical mixtures, a bleed-free high-quality dataset of cham-

ber ensemble instruments EnsembleSet was released. Using this dataset, it is

shown that time-domain deep learning models trained on musical mixtures

of monophonic sources with PIT are capable of separating musical sources

in a class-agnostic fashion. This solved two main unsolved problems of class-

based separation methods. Firstly, it enables the separation of similar/iden-

tical sources in a mixture without relying on timbral differences between

sources. Secondly, it also enables the separation of rare/unseen instruments

in a mixture which the model might not have been trained on. The major-

ity of the work presented in this thesis has been presented in international

peer-reviewed conferences as shown in Section 1.4. In this chapter, the main

contributions of this thesis are summarised and perspectives on future work

are presented.
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7.1.1 Impact of EnsembleSet

In Chapter 3, a novel dataset of high-quality synthesised chamber ensemble

music was presented. A significant drawback of synthesised audio datasets

for training source separation models had been their poor generalisability to

real-world test data. To overcome this challenge, high-quality digital music

scores for chamber ensembles were collected and a data rendering pipeline

that preserves articulation information from these digital scores was pre-

sented. This was used in conjunction with a high-quality sample library Spit-

fire Audio BBC Symphony Orchestra Library (BBCSO) with the capability of

rendering a large number of these articulation modes for each instrument to

generate realistic bleed-free renders of chamber ensemble instruments from

classical musical pieces that are either public domain or under a creative

commons license, enabling their use in research. This articulation-preserving

audio rendering pipeline, in conjunction with the ability of BBCSO to render

20 unique microphone/mix configurations for each instrument enables the

models trained in Section 5.4 and Section 5.5 to generalise well to real-world

chamber ensemble mixtures from the TRIOS and URMP datasets (details in

Section 2.11).

The presented dataset is now available on Zenodo and has had over 1000

views and has been downloaded 76 times at the time of this thesis. This

dataset is currently also being used in the upcoming task of the Cadenza

challenge (Dabike et al., 2023) to improve classical music listening experience

for listeners with hearing loss.

7.1.2 TasNets with PIT for Monotimbral Separation

In Section 5.2 an alternative definition to the music separation task is pre-

sented that enables the use of permutation invariant training to separate mix-
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tures of monotimbral musical sources in a class-agnostic fashion. Using this

problem definition, Section 5.3 presents experiments using bleed-free choral

singing data from the Bach Chorales and Barbershop Quartet datasets (de-

tails in Section 2.11.3) that perform class-agnostic separation of multi-singer

mixtures using PIT. The optimisation process to adapt TasNet-based archi-

tectures to work at high sampling rates was presented in Chapter 4. Based

on these optimisations, experiments in Section 5.3 show that class-agnostic

separation of 4-part choral music reports the highest SDR scores reported in

the prior art. While these results do exhibit the suitability of the proposed

method, the experiments were trained and tested on a very small dataset and

cross-dataset generalisability was yet to be achieved.

Using the dataset EnsembleSet presented in Chapter 3 as training data, mod-

els that can separate monotimbral mixtures of two instruments of the same

instrument family (strings) were presented in Section 5.4. These experiments

performed well when tested on unseen real-world datasets TRIOS and URMP.

These experiments also showed that including instruments from other instru-

ment families (brass and woodwind) did not deteriorate performance. It was

also observed that models trained with PIT were in fact able to separate

instruments from underrepresented and unseen instrument classes as well.

This timbre-agnostic performance is further explored in Section 6.4, where it

is found that the model does not show a performance correlation between

the distribution of instruments in the training set and the test set. It was

found that these models sometimes perform significantly better on unseen

instruments.

While models trained on EnsembleSet did show cross-dataset generalis-

ability, a performance drop was observed when these models were tested

on the URMP dataset. In Section 5.5, experiments with models pre-trained

on EnsembleSet and fine-tuned with target domain data are presented. It

is shown that for same-domain tasks (chamber ensemble instruments), fine-

tuning with a very limited amount of data (3min 45sec) shows significant
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performance improvement (+5.5 dB SI-SDR improvement for URMP dataset).

Domain adaptation for a cross-domain task (choral music separation) was

also experimented with, where fine-tuning the pre-trained model using choral

singing data showed an average of 17.82 dB SI-SDR performance (+1 dB

higher than training on choral data alone).

7.1.3 How do TasNets actually work?

The experiments presented in Chapter 5 exhibit that TasNets trained with

PIT are able to separate mixtures of monophonic musical sources in a class-

agnostic fashion. In Section 6.7, further analysis of these models’ perfor-

mance for ensemble separation was explored. While the average performance

metrics of these models were quite high (up to +18 dB average SI-SDR), the

performance variation across different test examples was quite large. Analy-

sis of this variation across instruments (shown in Section 6.4) did not show

any correlation between the distribution of instrument timbres in training

data and test data. Thus musical complexity (in Section 6.2) and context (in

Section 6.5) is explored as a method to investigate the performance of these

models.

A novel measure for quantifying the harmonic complexity of an input

mixture is presented in Section 6.2. Analysing the results from experiments

presented in Section 5.3 using this harmonic overlap score, it is found that

these models have a moderate negative correlation with the harmonic over-

lap score of the input mixture. While a moderate negative correlation was

observed, it was apparent that there were other factors that also affected the

models’ performance.

Subsequently, pitch overlaps, unisons and crossovers were investigated

for their impact on the separation performance of models presented in Sec-

tion 5.5. It was observed that ensemble mixtures with pitch overlaps showed
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≈ 6 dB performance drop as compared to mixtures without overlap. It was

also observed that ensemble mixtures of distinct instruments and mixtures

of identical instruments did not show significant performance differences.

Further analysis revealed that mixtures with pitch crossovers and unisons

perform 4-6 dB worse on average than the rest.

The worst performing examples were manually examined in Section 6.6.

On inspecting these, ≈ 80% of the worst performing examples were found to

contain pitch crossovers and unisons. Even though the output SI-SDR of both

these cases was <0 dB, it is shown in Section 6.6.2 that examples with pitch

crossovers show successful separation, however, the source-channel assign-

ment is swapped at the crossover points. Meanwhile, examples with unisons

result in bleed in the separated output which is shown in Section 6.6.1.

These results suggest that TasNet based models trained with PIT seem

to separate sources based on pitch tracking. It is observed that the sepa-

ration performance deteriorates significantly when the pitches of the indi-

vidual sources overlap. Moreover, it was also observed that these models

always present the higher-pitched source in one of the channels, whereas

the other channel is always assigned to the lower-pitched source, regardless

of source timbre. Analysing the performance distribution across the instru-

ments (presented in Section 6.4) also shows that instruments with shorter

attack times/onsets (brass instruments) seem to perform better than instru-

ments with longer attack times/onsets (string instruments). All these obser-

vations combined suggest that TasNets trained with PIT may be learning to

detect instrument onsets and then follow their pitch trajectories, and in fact,

distinguish between instruments based on these characteristics.
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7.2 limitations and opportunities

Experiments in Section 6.3 show that while training models on musically in-

coherent mixtures does deteriorate the performance of the presented models,

in Section 6.3.3 it is seen that this effect diminishes and becomes negligible

as the size of the training data is increased. This reduces the usefulness of

EnsembleSet, as it is not crucial to have bleed-free stems of musically co-

herent instrument mixtures. However, it opens up the possibility of using

solo performance data of monophonic sources (which is widely available) to

generate random mixtures for training PIT-based models which makes the

presented method more impactful. This was also utilised in the work by Jeon

et al. (2023), where solo speech data was used to augment vocal harmony

separation training data.

The experiments presented in Section 5.4 show that DPTNet models trained

on EnsembleSet are capable of separating chamber ensemble mixtures from

unseen real-world recordings. However, the performance variance of these

models (as shown in Section 6.7) is very high. Many examples show per-

formance <3 dB output SI-SDR, where perceptually the separation may be

unsatisfactory. While the scenarios where these models fail have been ex-

plored, how to tackle these challenging scenarios has not been explored in

this work.

It is observed in Section 6.6.2 that pitch crossovers between the sources in

a mixture cause source confusion. In case of monotimbral mixtures, this phe-

nomenon may not affect the perceived performance of a separation model,

since the separation quality achieved is good. However, in the case of mix-

tures of sources with distinguishable timbres (especially in the case of vocal

harmony mixtures), source confusion is not desirable. This may however be

treated as a source tracking problem, which has been explored in the contin-

uous speech separation (Chen et al., 2020).
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The analysis presented in Section 6.6.1 shows that separation fails com-

pletely when the sources in the mixture perform in unison. Jeon et al. (2023)

also reported that unison separation is significantly more challenging than

the separation of harmonised vocals. This is still an unsolved problem. How-

ever, such a problem may even be considered as a unique problem altogether,

as decomposing a mixture of sources performing in unison may also be con-

sidered as a timbre-disentanglement problem. While timbre-disentanglement

should be considered as a source separation problem as well, however the

expectation of what a model is expected to learn/achieve is very different.

Moreover, timbre-disentanglement might even appear as a many-solution

problem, as there is no ideal solution available for this task.

Perceptual evaluation through user studies was not undertaken in this

study. Initially, perceptual studies were not considered in this research as

aggregating a singular mean observation score from users and comparing it

with SDR/SI-SDR metrics for the same model was deemed unlikely to yield

meaningful insights when averaged across the extensive test set, compris-

ing over 8500 examples. Additionally, the experiments exhibited substantial

variance in objective metrics.

However, subsequent identification of failure modes in experiments (as

illustrated in Section 6.6) revealed discrepancies between objective metrics

and perceived separation quality, particularly in pitch crossover scenarios.

Recognizing this discrepancy, it appears worthwhile to conduct a user study

specifically focused on the perceptual quality of separation for these specific

failure modes related to unisons and pitch crossovers. Regrettably, these find-

ings emerged late in the Ph.D. timeline (August 2023) and are consequently

deemed as prospective avenues for future research.

While Section 5.5 shows that the performance for real-world examples can

be improved with fine-tuning, it is still not understood why models trained

on EnsembleSet show such a significant drop in performance when tested on

URMP, which was not observed when tested on mixtures from TRIOS. While



7.2 limitations and opportunities 158

it may be due to the fact that the mixtures obtained from TRIOS consist of

fewer examples of instruments with similar pitch ranges, the evidence is not

conclusive. It may also be due to the synthesised nature of EnsembleSet, and

the limited diversity of onsets observed in the synthesised dataset.

Although the impact of fine-tuning is reported in Section 5.5, it is not un-

derstood how exactly the model benefits from the fine-tuning. Analysis of

the impact of fine-tuning on the encoder filterbanks presented in ?? did not

provide any insights. This is especially difficult to interpret as the model was

fine-tuned without freezing any weights, and since the 1-D convolutional

encoder filterbank is followed by a fully connected layer, the differences ob-

served in the filterbank after fine-tuning are hard to interpret. While the

cross-domain performance of fine-tuning experiments for choral separation

suggests that the model does learn features from EnsembleSet that improve

choral separation, it is unclear what these features are.

Another major limitation of the proposed method of PIT based deep-learning

solutions is that the models are trained for specific numbers of concurrent

sources. It is a known phenomenon in speech separation that when the num-

ber of sources present in the mixture is lesser or more than the number of

sources the model is trained for, the model performance significantly deterio-

rates (Luo and Mesgarani, 2020). While this is not reported in this thesis, our

experiments also observed the same. However, this also suggests that exist-

ing solutions for speech separation of a variable number of sources described

in Section 2.8.0.1 should also be useful for this task.

A significant advantage of the proposed method for using time-domain

source separation is its ability to not only separate unseen instruments, but

the potential separation quality achievable is very high (up to +25 dB SI-

SDR) with a significantly smaller model capacity than the state-of-the-art mu-

sic separation models such as Res-U-Net, Band-split RNN and RoPE trans-

former (described in Section 2.7). While class-based music separation mod-

els’ performance seemed to be strongly correlated to both training data size
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and model size, TasNet+PIT-based solutions may offer an alternative high-

quality solution to specific music separation scenarios with much smaller

model sizes.

7.3 future perspectives

This thesis proposes an alternate formulation to the music source separation

problem which is capable of solving a few of the challenges that are not

solvable using class-based music source separation methods. While the pre-

sented method has significant limitations to its range of applicability, it may

be used in conjunction with class-based source separation models to provide

a full-scale music source separation solution.

A noteworthy observation from this work is the necessity for sources to be

monophonic to achieve timbre-agnostic separation. This in conjunction with

the impact of overlapping pitch trajectories of sources provides key insights

into the strengths and weaknesses of permutation invariant training. Explor-

ing the use of permutation invariant training for universal sound separation

by explicitly requiring the sources in the training data to be monophonic may

result in significant performance improvement.

Based on the experiments from Section 5.5, using any form of monophonic

source data may enhance the performance of PIT-based separation models.

While this had been tested by Jeon et al. (2023) for combining speech and

vocal harmony data, the results from this work suggest that all forms of

monophonic sources may be combined to potentially train a foundational

model for universal separation of monophonic sources from mixtures that

could be applicable to music, speech and other environmental sounds as

well.

A key observation from the optimization experiments conducted on DPT-

Net pertains to the enhancement of performance through the manipulation



7.3 future perspectives 160

of filterbank lengths, input frame durations, and the augmentation of repeat

units within the separation stack. Notably, the observed improvements are ex-

trapolatable to other models such as Band-split RNN and RoPE transformer,

where dual path processing has been integrated into the domain of music

demixing.

An important insight has emerged concerning the reduction of the 1-D con-

volutional filterbank length (and stride length) in the input layer, resulting in

a substantial increase in the sequence length of the latent representation. This

effect, in turn, significantly influences the overall memory consumption dur-

ing model training, particularly notable for transformer models compelled

to compute pairwise weights for longer sequences.

The application of graph neural network-based separation stacks may serve

to mitigate this challenge by constraining the number of pairwise computa-

tions executed for prolonged sequences. These have recently been used ef-

fectively for other tasks such audio tagging by Singh et al. (2023), which

achieves state-of-the-art with a significantly lower number of learnable pa-

rameters. Consequently, if the computational demands of the separator stack

can be reduced using graph neural networks without significant compromise

in performance, it may provide enough computational headroom to reduce

the input filterbank length and increase the input audio segment duration,

thereby potentially enhancing the capabilities of these separation methods.
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A P P E N D I X
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A P P E N D I X A

In this appendix, a number of analysis experiments are included that are

referred to in this thesis.

a.1 alternative harmonic overlap hypothesis

In this section, an alternative to the proposed harmonic overlap score (de-

scribed in Section 6.2) is presented and evaluated. In this analysis, the av-

erage pitch distance between the sources is calculated for an input audio

segment.

Given a set of N sources xi(t) for i ∈ {1, 2, ..., N}, we utilise the pYIN pitch

detection algorithm from Mauch and Dixon (2014) to estimate their pitches

F0
i (t). The pitch distance based harmonic overlap score (HOPD) between two

given sources i1 and i2 is then calculated by:

HOPD :=
T

∑
t=0

min
(24 − |F0

i1
(t)− F0

i2(t)|
T

, 0
)

(24)

Using this average pitch distance as a harmonic overlap measure, and cal-

culating the correlation between the separation performance of a 4-source

choral mixture, and its harmonic overlap score (based on pitch distance) is

shown in Figure 27.
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Figure 27: SI-SDR vs. Harmonic Overlap using pitch-distance based Harmonic Over-
lap measure. Pearson coeff: -0.224

While this measure did not account for the musical relationship of harmon-

ics, the correlation observed w.r.t. to its impact on separation performance

was comparable to the one observed with the presented harmonic overlap

score in Section 6.2.3. This motivated further investigation into performance

correlation based on pitch overlaps (instead of spectral/harmonic overlaps)

which is presented in Section 6.5.

a.2 impact of finetuning

Analysis of the difference in performance caused by fine-tuning the models

with target domain data is presented in Figure 28. The fine-tuning process as

explained in Section 5.5 involved retraining all model weights at a very low

learning rate using only 1 song from the URMP dataset. In this experiment,

the song used from the URMP dataset for finetuning was a 4-minute track

of a string quartet. The impact of this is evident in Figure 28 where it is
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Figure 28: Instrument pairwise ∆SI-SDR for 2 source DPTNet based ensemble sepa-
ration model trained on EnsembleSet after fine-tuning with a string quar-
tet example from URMP.

observed that string instruments are the examples with the most significant

improvement.

While most other instrument-pairs do not get negatively impacted by the

fine-tuning process, two outliers are observed both of which are monotim-

bral. All scenarios with Flutes see a consistent performance improvement

even though no flutes were presented in the fine-tuning data. This could be

due to the similar pitch ranges present in the fine-tuning data (consisting of

violins and viola predominantly) and the pitch range of Flutes. Meanwhile,

monotimbral mixtures of Bassoon see a significant performance degradation.
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These changes may be a result of either the model adapting to the timbral

characteristics of the test dataset, or the model adapting to the temporal dy-

namics of the real performance in the URMP dataset. The latter may be the

more realistic explanation as the training data EnsembleSet is completely syn-

thesised and would typically result in highly synchronised note onsets and

dynamics, while the URMP dataset was generated by musicians performing

individually with a backing track. Further exploration of the impact of mu-

sical context vs. instrument timbres on the separation performance of these

models is presented in Section 6.5.

a.3 distribution of failure cases

The worst-performing examples from the test data with less than 5 dB out-

put SI-SDR are aggregated. Amongst them, the 10 most occurring instrument

pairs are filtered and shown in Figure 29. While only 3 of the 10 categories

consist of monotimbral mixtures, 9 of them consist of instrument pairs which

have significant overlap in their pitch ranges. Based on the observations pre-

sented in Section 6.6, it is found that these instrument pairs are likely suf-

fering from pitch overlap related performance degradation. While timbral

similarity between the sources cannot be ruled out as a potential cause for

poor performance, the evidence suggests that the model’s performance is

more dependent on pitch trajectories of the constituent sources rather than

the timbral similarities between the sources.
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Figure 29: Distribution of top 10 categories of worst performing test cases



B
A P P E N D I X B

This is an excerpt from an interview with Jake Jackson, Recording Engineer

for the Spitfire Audio BBC Symphony Orchestra Sample Library. The inter-

view was conducted via Zoom on 14th October 2021. The interviewee con-

sented to the interview being recorded and the information shared was per-

mitted to be used for this research. Details from this interview were used

to better understand the audio plugin, its recording conditions and design

considerations which were crucial for the EnsembleSet dataset generation

process described in Chapter 3.

b.1 interview with jake jackson

Saurjya: Could you provide a brief introduction to how the BBCSO library

is recorded and rendered and primarily how is it superior to like using a

generic synth?

Jake: Essentially, the idea was to record it in a way that we would record

a film score.

So therefore, we had all the microphones that you would use if you were

recording this for a film score and for the people who would use it. But then

also we decided to make it trying to future prove it as much as possible by

making sure we had microphones that could be used for Atmos and but then

also, you know, go take signals that were kind of luxuries really in terms of,

you know, you might, it might use them for certain projects.

167
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Basically wanted to have something that was basically an entire toolkit for

one set of recording everything. So we had everything from the traditional

like, to Decca tree recording, if you’re doing it that way, outriggers, ambience,

because we had the really far balcony mics that were right at the very back

of the room, and we had the atmos mics, we had the side mics, and then we

had the close mics so that you can have, you know, so you can change the

perspective.

Basically the idea is that you can have whatever perspective of any instru-

ment you wanted you could have basically. And so we had, you know, like,

it’s just anything I’ve ever kind of used in a recording session, we put it out.

And then it just made sense to make it available if you bought the profes-

sional one that you could have any combination of those. And then also a

person called John Powell asked what would it be like if we had recorded

all the microphones at once so that you could hear you know what the spill

mics were so that if you were, because often when we do recordings, if you’re

recording just the first violins you record it, you know, like or in a recording

when you hear the first violins playing by themselves they’re still, they’re

single, still coming out of the microphones on the other side of the room.

So the idea was to have those as well. And because it became a kind of

massive project we decided we’d just release it that way anyway. That’s the

idea because it was there and because somebody would find it useful and

there was no point in trying to make it too light.

We did a, you know, it was a, it’s a, it’s a possibility where everything is

possible. So you have every single thing we could ever imagine.

Saurjya: Thank you. That was quite useful. So one thing that I noticed, I’m

not sure if I did not, like if it’s, I’m hearing it wrong, but I did not notice any

of the time delays or the phase differences across the difference mic when

I was rendering it through multiple mics. So is that because like whatever
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was the real time difference between the mics when it was recorded has been

corrected during rendering?

Jake: No, there’s no time correction at all. So with most of the kind of

25 years I’ve been doing this, most of the recordings we do we don’t time

align any microphones. They’re all just as they are in the room. On occasion

we’ve done this like I’ve worked with Deutsche Grammarphone and they go

around and they do some time align. And we’ve done experiments where

you time align and you listen and it sounds very different. You have a much

more present sound if you time align all the microphones. But because you’d

have to I think it would be actually virtually impossible to time align with

all the spill mics but all the different sections.

So no absolutely not. No at any point. Nothing’s time aligned. So it’s all

just as it is from. That makes it slightly awkward in terms of making some-

thing, when you do a sample, putting it in time, because you have to tell

what is the first sample of time.

Is it the close micro? Is it the tree? That kind of thing, because obviously

the speed of sound is relatively slow. But no, nothing’s timeline. So it’s all

just literally as it goes. So the only difference would be where the start of

the sample is compared to where the start of the violin sample is, compared

to where the start of something recorded in the back of the room. So like a

timpani, for example, there’s quite a big difference in where the time it takes

from hitting the tree

Because obviously if you’re thinking about how an orchestra play, they’re

playing it so the conductor hears it at the same time. Which doesn’t mean

rather than, there’s an inherent delay of when, if everyone played one stac-

cato note at the same time, where they start is all different to reach the A

point, a single point in the room.

If you all wanted them to hit the single point that was 10 meters behind

the conductor at the same time, then they’d all have to start in different
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places. Wouldn’t they say everyone? So certain instruments anticipate the

beat, which is fine when you’re recording, but when you’re sampling, where

do you move that to?

Do you decide that’s gonna be the start of the closed mic or is that the tree

mic or the ambient mic? Do you see what I mean? So that’s the, I don’t know

how they chose that. And I guess you can look at that by looking at a sample

and seeing where they’ve decided that is.

And that’s the only thing that makes it slightly more awkward, whether

it’s if you’re playing with an orchestra. And obviously when you have 100

people playing a single note at the same time, they wouldn’t all be exactly

the same time anyway.

Saurjya: I was actually completely unaware of the fact that, from a per-

former’s perspective, they would actually play the note considering what

is the target, like do they want the note to sound at the same time for the

conductor behind them?

Jake: Yeah, I mean, the reason I say that is because when we’re recording,

for like when we’re doing things separately, we, the musicians talk about

people playing ahead of the beat or on the beat, on the click, you know, like

the brass players tend to play fractionately early because, because by the time

it reaches microphones, they know that they have to make it sound like in a

control room, it’s in time, they have to play fractionately early so that so that

it’s in time for us because we don’t really listen to close mics that much, we

listen to the room mics.
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