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We study a mass-deformed N ¼ 4 version of the Banks-Fischler-Shenker-Susskind (BFSS) matrix
model with three matrices and gauge group SUð2Þ. This model has zero Witten index. Despite this, we give
numerical evidence for the existence of four supersymmetric ground states, two bosonic and two fermionic,
in the limit where the mass deformation is tuned to zero.
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I. INTRODUCTION

This paper concerns itself with the supersymmetric
quantum mechanics of three bosonic SUðNÞ matrices
and their fermionic superpartners. The model in question,
introduced in [1–3], has four supercharges and describes
the low energy effective dynamics of a stack of N wrapped
D-branes in a string compactification down to 3þ 1
dimensions. When the compactification manifold has
curvature and carries magnetic fluxes, the bosonic matrices
obtain masses [3]. When the compact manifold is Calabi-
Yau and carries no fluxes, the matrices are massless.
This theory has flat directions whenever the matrices are

massless, and hence is a simplified version of the Banks-
Fischler-Shenker-Susskind (BFSS) matrix model [4],
which, for the sake of comparison, has nine bosonic
SUðNÞ matrices and 16 supercharges and describes the
non-Abelian geometry felt by D particles in a noncompact
(9þ 1)-dimensional spacetime. We hence dub the model
studied here: mini-BFSS (or mini-BMN [5], for Berenstein-
Maldacena-Nastase, in the massive case). The Witten index
WI has been computed for mini-BFSS [6–10] and vanishes,
meaning that the existence of supersymmetric ground states
is still an open question. Even the refined index, twisted by
a combination of global symmetries and calculated in [9],
gives us little information about the set of ground states due
to the subtleties associated with computing such indices in

the presence of flat directions in the potential. This is in
stark contrast with the full BFSS model, whose Witten
index WI ¼ 1, implying beyond doubt the existence of at
least one supersymmetric ground state. The zero index
result for mini-BFSS has led to the interpretation that it may
not have any zero energy ground states [6,10], and hence no
holographic interpretation. The logic being that, without a
rich low energy spectrum, scattering in mini-BFSS would
not mimic supergraviton scattering in a putative super-
symmetric holographic dual [11]. Of course a vanishingWI
does not confirm the absence of supersymmetric ground
states—as there may potentially be an exact degeneracy
between the bosonic and fermionic states at zero energy.
We weigh in on the existence of supersymmetric states in

mini-BFSS by solving the Schrödinger equation numeri-
cally for the low-lying spectrum of the N ¼ 2model, in the
in silico spirit of [12]. To deal with the flat directions we
numerically diagonalize the Hamiltonian of the mass-
deformed mini-BMN matrix model, for which the flat
directions are absent, and study the bound state energies as
a function of the mass. A numerical analysis of mini-BFSS
can also be found in [13,14], which use different methods.
What we uncover is quite surprising. As we tune the

mass parameter m to zero, we find evidence for four
supersymmetric ground states, two bosonic and two fer-
mionic, which cancel in the evaluation of WI . This result
seems to agree with plots found in [13,14]. It must be said
that our result does not constitute an existence proof for
supersymmetric threshold bound states in the massless
limit, but certainly motivates a further study of the low-
lying spectrum of these theories. We reiterate that the
Witten index of mini-BFSS vanishes at any N, and while
we have only given evidence for the existence of zero-
energy states at N ¼ 2, this encourages us to determine if a
similar cancellation between bosonic and fermionic states
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occurs for N ≫ 2. If this turns out to be the case, it would
provide a new addition to the exceedingly small list of
matrix models with a potential holographic limit at large N.
The organization of the paper is as follows: in Sec. II we

present the supercharges, Hamiltonian and symmetry gen-
erators of the mini-BMN model for arbitrary N. In Sec. III
we restrict to N ¼ 2 and give coordinates in which the
Schrödinger equation becomes separable. In Sec. IV we
provide our numerical results, and in Sec. V we derive
the one-loop effective theory on the moduli space in the
massless theory. We conclude with implications for the
large-N mini-BFSS model in Sec. VI. We collect formulas
for the Schrödinger operators maximally reduced via sym-
metries in Appendix A and compute the one-loop metric on
the Coulomb branch moduli space in Appendix B.

II. SETUP

A. Supercharges and Hamiltonian

Let us consider the supersymmetric quantum mechanics
of SUðNÞ bosonic matrices Xi

A and their superpartners λAα.
The quantum mechanics we have in mind has four super-
charges1:

Qα ¼ ð−i∂Xi
A
− imXi

A − iWi
AÞσi γα λAγ;

Q̄β ¼ λ̄ γ
A σ

i β
γ ð−i∂Xi

A
þ imXi

A þ iWi
AÞ: ð2:2Þ

The parameter m is simply the mass of Xi
A. The massless

version of this model was introduced in [1] and can be
derived by dimensionally reducing N ¼ 1, d ¼ 4 super
Yang-Mills to the quantum mechanics of its zero modes.
The mass deformation was introduced in [3] and can be
obtained from a dimensional reduction of the same gauge
theory on R × S3. We direct the reader to [2,3] for an
introduction to these models. This quantum mechanics
should be thought of as a simplified version of the BMN
matrix model [5] (mini-BMN for brevity). The massless
limit should then be thought of as a mini-BFSS matrix
model [4]. The lowercase index i ¼ 1;…; 3 runs over the
spatial dimensions (in the language of the original gauge
theory), and the uppercase index A ¼ 1;…; N2 − 1 runs
over the generators of the gauge group SUðNÞ. The σi are
the Pauli matrices, and greek indices run over α ¼ 1, 2. In
keeping with [1], we have defined Wi

A ≡ ∂W=∂Xi
A where

W ≡ g
6
fABCϵijkXi

AX
j
BX

k
C; ð2:3Þ

and fABC are the structure constants of SUðNÞ. The
gauginos obey the canonical fermionic commutation rela-
tions fλAα; λ̄βBg ¼ δABδ

β
α , and hence the algebra generated

by these supercharges is [3]

fQα; Q̄βg ¼ 2ðδ β
α H − gσk β

α Xk
AGA þmσk β

α JkÞ;
fQ̄α; Q̄βg ¼ fQα; Qβg ¼ 0; ð2:4Þ

with Hamiltonian

H ≡ −
1

2
∂Xi

A
∂Xi

A
þ 1

2
m2ðXi

AÞ2 þmXi
AW

i
A

þ g2

4
ðfABCXi

BX
j
CÞ2 −

3

4
m½λ̄A; λA� þ igfABCλ̄AXk

Bσ
kλC:

ð2:5Þ
The operators GA and Jk appearing in the algebra are,
respectively, the generators of gauge transformations and
SOð3Þ rotations. These are given by

GA ≡ −ifABCðXi
B∂Xi

C
þ λ̄BλCÞ;

Ji ≡ −iϵijkX
j
A∂Xk

A
þ 1

2
λ̄AσiλA: ð2:6Þ

In solving for the spectrum of this theory, we must impose
the constraint GAjψi ¼ 0; ∀ A. In the above expressions,
whenever fermionic indices are suppressed, it implies that
they are being summed over.
Let us briefly note the dimensions of the fields and

parameters in units of the energy ½E� ¼ 1. These are
½X� ¼ −1=2, ½λ� ¼ 0, ½g� ¼ 3=2, and ½m� ¼ 1. Therefore,
an important role will be played by the dimensionless
quantity

ν≡ m

g2=3
: ð2:7Þ

We consider here the mass deformed gauge quantum
mechanics because, in the absence of the mass parameter
m, the classical potential has flat directions (see Fig. 1).
Turning on this mass deformation gives us a dimensionless
parameter ν, to tune in studying the spectrum of this theory,
and allows us to approach the massless limit from above.

B. Symmetry algebra

Let us now give the symmetry algebra of the theory. The
components of J⃗ satisfy

½Ji; Jj� ¼ iϵijkJk; ½Ji; Qα� ¼ −
1

2
σi γα Qγ;

½J⃗2; Ji� ¼ 0; ½Ji; Q̄α� ¼ 1

2
Q̄βσi αβ : ð2:8Þ

There is an additional Uð1ÞR generator R≡ λ̄AλA which
counts the number of fermions. It satisfies

1Spinors and their conjugates transform, respectively, in the 2
and 2̄ of SOð3Þ. Spinor indices are raised and lowered using the
Levi-Civita symbol ϵαβ ¼ −ϵαβ with ϵ12 ¼ 1. Thus in our
conventions

ðψ̄ϵÞα ¼ ψ̄ γϵγα; ðϵψÞα ¼ ϵαγψγ ; ϵαωϵ
ωβ ¼ δβα: ð2:1Þ
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½R;Qα� ¼ −Qα; ½R; Q̄α� ¼ þQ̄α; ½R; Ji� ¼ 0:

ð2:9Þ

The Hamiltonian also has a particle-hole symmetry,

λ̄αA → ϵαγλAγ; λAα → λ̄γAϵγα; ϵ12 ¼ −ϵ12 ¼ 1;

ð2:10Þ

where ϵαβ is the Levi-Civita symbol. This transforma-
tion leaves the Hamiltonian invariant but takes R →
2ðN2 − 1Þ − R and effectively cuts our problem in half.
One peculiar feature of the mass deformed theory is

that the supercharges do not commute with the Hamiltonian
as a result of the vector J⃗ appearing in (2.4). It is easy to
show that

½H;Qα� ¼
m
2
Qα; ½H; Q̄β� ¼ −

m
2
Q̄β: ð2:11Þ

Thus, acting with a supercharge increases/decreases the
energy of a state by � m

2
. This is a question of R frames,

as discussed in [3]. Essentially we can choose to measure
energies with respect to the shifted Hamiltonian Hm ≡
H þ m

2
R, which commutes with the supercharges, and write

the algebra as

fQα; Q̄βg ¼ 2

�
δ β
α

�
Hm −

m
2
R

�
− gσk β

α Xk
AGA þmσk β

α Jk
�
:

ð2:12Þ

C. Interpretation as D particles

The ν → 0 limit of this model can be thought of as the
world volume theory of a stack of N D-branes compactified
along a special Lagrangian cycle of a Calabi-Yau threefold
[2]. The Xi

A then parametrize the non-Abelian geometry felt
by the compactified D particles in the remaining non-
compact (3þ 1)-dimensional asymptotically flat space-
time. The addition of the mass parameter corresponds to
adding curvature and magnetic fluxes to the compact
manifold [3], changing the asymptotics of the noncompact
spacetime to AdS4. This interpretation was argued in [3,15]
and passes several consistency checks. Hence we should
think of the mass deformed theory as describing the
nonrelativistic dynamics ofD particles in an asymptotically
AdS4 spacetime and the massless limit as taking the AdS
radius to infinity in units of the string length.
To be more specific, it will be useful to translate between

our conventions and the conventions of [3]. One iden-
tifies m ¼ Ω, g2 ¼ 1=mv, fX; λgus ¼ m1=2

v fX; λgthem in
units where the string length ls ¼ 1. Reintroducing ls, this
dictionary implies that g2 ¼ gs=l3s

ffiffiffiffiffiffi
2π

p
, with gs the string

coupling, gets set by a combination of the magnetic fluxes
threading the compact manifold, and similarly lAdS ≡ 1=m

gets set by a combination of these magnetic fluxes and the
string length. For AdS4 × CP3 compactifications dual to
the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory
this was worked out in detail in [3,16], and they identify

gs ¼
�
32π2N
k5

�1
4

; lAdS ¼
�

N
8π2k

�1
4

ls; ð2:13Þ

where k and N are, respectively, integrally quantized
magnetic 2-form and 6-form flux. In this example taking
ν ¼ ffiffiffiffiffiffi

2π
p ðk2=NÞ1=3 → 0 while keeping gs fixed takes the

AdS radius to infinity in units of ls.
The main focus of the next sections is on whether this

stack of D particles forms a supersymmetric bound state,
particularly in the ν → 0 limit. There the Witten index
WI ≡ TrHfð−1ÞRe−βHg has been computed [6–10] and
evaluates to zero. This is in contrast with the full BFSS
matrix model, whose index is WI ¼ 1, confirming the
existence of a supersymmetric ground state. We will use the
numerical approach of [12] and verify if supersymmetry is
preserved or broken in the SUð2Þ case. We find evidence
that supersymmetry is preserved in the ν → 0 limit, and that
there are precisely four ground states contributing to the
vanishing Witten index.

III. QUANTIZING THE SU(2) THEORY

A. Polar representation of the matrices

We are aiming to solve the Schrödinger problem
Hmjψi ¼ Emjψi. We will not be able to do this for arbitrary
N, and from here on we will restrict to gauge group SUð2Þ
for which the structure constants fABC ¼ ϵABC. In this case
the wave functions depend on 9 bosonic degrees of freedom
tensored into a 64-dimensional fermionic Hilbert space. It
is thus incumbent upon us to reduce this problem maxi-
mally via symmetry. To do so, we exploit the fact that the
matrices Xi

A admit a polar decomposition as follows:

Xi
A ¼ LABΛ

j
BM

Tji; ð3:1Þ

where

L≡ e−iφ1L
3

e−iφ2L
2

e−iφ3L
3

; M ≡ e−iϑ1L
3

e−iϑ2L
2

e−iϑ3L
3

;

ð3:2Þ

and ½Li�jk ≡ −iϵijk are the generators of SOð3Þ. The
diagonal matrix

Λ≡ diagðx1;x2;x3Þ ð3:3Þ

represents the spatial separation between the pair of
D-branes in the stack. The φi and ϑi represent the
(respectively, gauge-dependent and gauge-independent)
Euler-angle rigid body rotations of the configuration space.
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This parametrization is useful because the Schrödinger
equation is separable in these variables, as we show in
Appendix A.
The metric on configuration space can be reexpressed as

X
A;i

dXi
A dX

i
A ¼

X3
a¼1

dx2
a þ IaðdΩ2

a þ dω2
aÞ − 2KadΩadωa;

ð3:4Þ

Ia ≡ xbxb − x2
a; Ka ≡ jϵabcjxbxc: ð3:5Þ

The angular differentials are the usual SUð2Þ Cartan-
Maurer differential forms defined as follows:

dωa ¼ −
1

2
ϵabc½LT · dL�bc; dΩa ¼ −

1

2
ϵabc½MT · dM�bc:

ð3:6Þ

The volume element used to compute the norm of the wave
function is

Y
i;A

dXi
A dX

i
A ¼ ΔðxaÞ

Y3
i¼1

dxi sinφ2

Y3
j¼1

dφj sinϑ2
Y3
k¼1

dϑk;

ð3:7Þ

where ΔðxaÞ ≡ ðx2
1 − x2

2Þðx2
3 − x2

2Þðx2
3 − x2

1Þ is the
Vandermonde determinant with squared eigenvalues. To
cover the configuration space correctly, we take the new
coordinates to lie in the range [17]

x3 ≥ x1 ≥ jx2j ≥ 0; π ≥ φ2; ϑ2 ≥ 0;

2π ≥ φi≠2; ϑi≠2 ≥ 0: ð3:8Þ

The generators of gauge transformations GA and rotations
Ji are given in (2.6). These satisfy

½Ji; Jj� ¼ iϵijkJk; ½GA;GB� ¼ iϵABCGC;

½J⃗2; Ji� ¼ 0; ½Ji; GA� ¼ 0: ð3:9Þ
To label the SUð2Þgauge × SOð3ÞJ representations of the
wave functions, it is useful to define the “body fixed”
angular momentum and gauge operators P⃗≡M−1 · J⃗ and
S⃗≡ L−1 · G⃗, which satisfy

P⃗2 ¼ J⃗2; S⃗2 ¼ G⃗2;

½Pi; Pj� ¼ −iϵijkPk; ½SA; SB� ¼ −iϵABCSC;

½Pi; Jj� ¼ 0; ½SA;GB� ¼ 0: ð3:10Þ

Unlike the generators of angular momentum, P⃗ is not
conserved. However, as we explain in Appendix A, it is still
useful for separating variables.

Let us give expressions for the bosonic parts of J⃗ and P⃗,
which we call J⃗ and P⃗, respectively, in terms of the angular
coordinates. These are

J 1 ¼ −i
�
− cosϑ1 cotϑ2∂ϑ1 − sinϑ1∂ϑ2 þ

cosϑ1
sin ϑ2

∂ϑ3

�
;

ð3:11Þ

J 2 ¼ −i
�
− sin ϑ1 cotϑ2∂ϑ1 þ cos ϑ1∂ϑ2 þ

sin ϑ1
sin ϑ2

∂ϑ3

�
;

ð3:12Þ

J 3 ¼ −i∂ϑ1 ; ð3:13Þ

and

P1 ¼ −i
�
−
cosϑ3
sin ϑ2

∂ϑ1 þ sin ϑ3∂ϑ2 þ cotϑ2 cosϑ3∂ϑ3

�
;

ð3:14Þ

P2 ¼ −i
�
sinϑ3
sinϑ2

∂ϑ1 þ cosϑ3∂ϑ2 − cotϑ2 sin ϑ3∂ϑ3

�
;

ð3:15Þ

P3 ¼ −i∂ϑ3 : ð3:16Þ

Similarly let us define GA and SA as the bosonic parts of the
GA and SA operators. The GA are related to the J i by
replacing ϑi → φi. It is easy to guess that the SA are then
related to the Pi via the same replacement.
We are now ready to give expressions for the momentum

operators and the kinetic energy operator in terms of the
new variables. These are [18]

−i∂Xi
A
¼ −iLAaMib

�
δab∂xa

þ i
ϵabc

x2
a − x2

b

ðxaPc þ xbScÞ
�
;

ð3:17Þ

−
1

2
∂Xi

A
∂Xi

A
¼ −

1

2Δ
∂xaΔ∂xa

þ 1

2

X3
a¼1

IaðPa2 þ S2
aÞ þ 2KaPaSa

I2a − K2
a

: ð3:18Þ

It is also straightforward to write down the bosonic
potential V in terms of the new variables:

V ¼ 1

2
m2xaxa þ 3gmx1x2x3 þ

g2

2
ðx2

1x
2
2 þ x2

1x
2
3 þ x2

2x
2
3Þ:

ð3:19Þ
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As expected it is independent of the angular variables. We
have depicted constant potential surfaces in Fig. 1.
Apart from the coordinates xa the following nonlinear

coordinates will often appear in the equations below:

ya ≡ Ia
I2a − K2

a
¼ 1

2
jϵabcj

x2
b þ x2

c

ðx2
b − x2

cÞ2
;

za ≡ Ka

I2a − K2
a
¼ jϵabcj

xbxc

ðx2
b − x2

cÞ2
: ð3:20Þ

With these definitions the kinetic term can be written as

−
1

2
∂Xi

A
∂Xi

A
¼ −

1

2Δ
∂xaΔ∂xa

þ 1

2
½yaðPa2 þ S2

aÞ þ 2zaPaSa�:

Notice that the term
P

3
a¼1 yaP

a2 is the kinetic energy of a
rigid rotor with principal moments of inertial y−1a . Unlike
the c ¼ 1 matrix model, the angular-independent piece of
the kinetic term cannot be trivialized by absorbing a factor
of

ffiffiffiffi
Δ

p
into the wave function [19]. Instead, we have

−
1

2Δ
∂xaΔ∂xa ¼ −

1

2

�
1ffiffiffiffi
Δ

p ∂2
xa

ffiffiffiffi
Δ

p
þ T

�
; ð3:21Þ

where

T ≡X3
a¼1

ya ¼
x2
1 þ x2

2

ðx2
1 − x2

2Þ2
þ x2

1 þ x2
3

ðx2
1 − x2

3Þ2
þ x2

2 þ x2
3

ðx2
3 − x2

3Þ2
;

ð3:22Þ

and its appearance in the Schrödinger equation acts as an
attractive effective potential between the xa.

B. Gauge-invariant fermions

Because the operators GA in (2.6) have a nontrivial
dependence on the gauginos λAα, it is not sufficient to
suppress the wave function’s dependence on gauge angles
φi entirely. Instead, we can write down a set of gauge-
invariant fermions that will contain the entire dependence
on the gauge angles [20]:

χAα ≡ LBAλBα; χ̄βA ≡ LBAλ̄
β
B: ð3:23Þ

These satisfy fχAα; χ̄βBg ¼ δABδ
β
α , but no longer commute

with bosonic derivatives. Defining σ̃i βα ≡Mjiσj βα , we can
now write the supercharges in terms of the new para-
metrization. These are

FIG. 1. Contours of constant potential energy V ¼ 2 in units where g ¼ 1 as a function of xa. The left-hand figure is evaluated at
m ¼ 0, whereas the right-hand figure is evaluated at m ¼ 1. The long spikes in the left figure are indicative of the flat directions along
the moduli space. These flat directions get lifted for any finite m.
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Qα ¼ −iσ̃b γ
α χaγ

�
δab

�
∂xb þmxb þ

g
2
jϵbstjxsxt

�
þ i

ϵabc
x2
a − x2

b

ðxaPc þ xbScÞ
�
;

Q̄β ¼ −iχ̄γaσ̃b β
γ

�
δab

�
∂xb −mxb −

g
2
jϵbstjxsxt

�
þ i

ϵabc
x2
a − x2

b

ðxaPc þ xbScÞ
�
; ð3:24Þ

where we have put the gauge-invariant fermions to the left
so as to remind the reader that the bosonic derivatives are
not meant to act on them in the supercharges. The
Hamiltonian H (not Hm) in the new parametrization is

H ¼ −
1

2Δ
∂xaΔ∂xa þ

1

2
½yaðPa2 þ S2

aÞ þ 2zaPaSa�

þ 1

2
m2xaxa þ 3gmx1x2x3

þ g2

2
ðx2

1x
2
2 þ x2

1x
2
3 þ x2

2x
2
3Þ −

3

4
m½χ̄A; χA�

þ igϵAkCχ̄Axkσ̃kχC: ð3:25Þ

IV. NUMERICAL RESULTS

To calculate the spectrum of the Hamiltonian (3.25), we
must reduce our problem using symmetry; that is, we
should label our states via the maximal commuting set
of conserved quantities: Hm, J3, J⃗

2, R. Because of the
discrete particle-hole symmetry (2.10) we need only con-
sider R ¼ 0;…; 3. In Appendix A we construct gauge-
invariant highest-weight representations of SOð3ÞJ in each
R-charge sector. This means we fix the wave functions’
dependence on the angles ϑi and φi and provide the
reduced Schrödinger operators that depend only on xa.

2

Our numerical results for the lowest energy states of Hm
for each R and j are presented in Fig. 2 and were obtained
by inputting the restricted Schrödinger equations of
Appendix A into Mathematica’s NDEIGENVALUES com-
mand, which uses a finite element approach to solve for
the eigenfunctions of a coupled differential operator on a
restricted domain. We have labeled each row by the fermion
number R and each column by the SOð3ÞJ highest weight
eigenvalue j (i.e., J⃗2jψi ¼ jðjþ 1Þjψi and J3jψi ¼ jjψi).
A few comments are in order:
(1) The most striking feature of these plots is the

seeming appearance of zero energy states for
ðR; jÞ ¼ ð2; 0Þ and ðR; jÞ ¼ ð3; 1=2Þ as ν → 0.
Since the Witten index WI ¼ 0, and since the states
in the (2,0) and (3, 1=2) sectors seem to have
nonzero energy for any finite ν, it must be the
case that these states are elements of the same
supersymmetry multiplet. This must be so for the
deformation invariance of WI.

(2) Since we know, by construction, that the lowest
energy ðR; jÞ ¼ ð2; 0Þ and ðR; jÞ ¼ ð3; 1=2Þ states
are related by supersymmetry, we can use the
difference in their numerically obtained energies
as a benchmark of our numerical errors. Obtaining
the ðR; jÞ ¼ ð2; 0Þ ground state energy required
solving a coupled Schrödinger equation involving
15 functions in 3 variables. For the ðR; jÞ ¼ ð3; 1=2Þ
state, the number of functions one is numerically
solving for jumps to 40. In the latter case, it was
difficult to reduce our error (either by refining the
finite element mesh or by increasing the size of the
domain) in a significant way without Mathematica
crashing. This is despite the fact that we had 12 cores
and 64 Gb of RAM at our disposal. In Fig. 3 we plot
the percentage error in the Hm energy difference
between these two states as a function of ν. We find
that the energy difference between these states is
around 13% of the total energy as a function of ν.
For comparison, we also do this for the lowest
ðR; jÞ ¼ ð0; 0Þ and ðR; jÞ ¼ ð1; 1=2Þ states, where
the numerics are more reliable as a result of solving a
much simpler set of equations. There the difference
between the computed energies is at most 2%.

(3) Our results suggest that there are four supersym-
metric states, two of which are bosonic and two of
which are fermionic, which would cancel in the
evaluation of the index. Explicitly, the two bosonic
states are j ¼ 0 singlets in the R ¼ 2 and R ¼ 4
sectors (recall the discrete particle hole symmetry of
the theory) and the two fermionic states are the j ¼
1=2 doublet in the R ¼ 3 sector. It is interesting to
note that there are not more states in this multiplet;
for example, numerically studying the ðR; jÞ ¼
ð0; 1Þ sector reveals no evidence for a supersym-
metric state in the ν → 0 limit.

(4) The massless SUð2Þ model was studied using a
different numerical approach in [13,14], and their
plots for the ground state energies seem to approach
ours, particularly Figs. 2 and 5 of [14].

(5) Our numerical evidence for these supersymmetric
states does not constitute a proof since we will never
be able to numerically resolve if this state has exactly
zero energy. However, the result is highly suggestive
of a supersymmetry preserving set of states at ν ¼ 0,
and there is no contradiction with the analytically
obtained Witten index result WI ¼ 0. It would be
interesting to analyze the existence of these states
analytically in future work.

2We only provide a small set of these reduced Schrödinger
operators, as they increase in size with increasing SOð3ÞJ
eigenvalue j.
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FIG. 2. Lowest energy eigenvalue for R ¼ f0; 1; 2; 3g and j ¼ f0; 1=2g as a function of ν. Each row corresponds to a different value of
R up to 3, and the columns are labeled by j ¼ 0 or j ¼ 1=2. Note that for ν ¼ 0 there are E ¼ 0 energy eigenstates in both the R ¼ 2 and
R ¼ 3 sectors of the theory. This implies the existence of four supersymmetric ground states at ν ¼ 0, a fermionic j ¼ 1=2 doublet in the
R ¼ 3 sector, and two bosonic j ¼ 0 singlets in the R ¼ 2 and R ¼ 4 sectors.
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V. EFFECTIVE THEORY ON THE MODULI
SPACE OF THE SU(2) MODEL

To get a better handle on the previous section’s numerical
results, we will now study the ν → 0 limit of the matrix
model analytically. Since the full problem is clearly quite
difficult even for N ¼ 2, we will study the massless model
in some parametric limit. This is possible because the
theory has a moduli space3—a flat direction where the
D-branes can become well separated, and along this moduli
space certain fields become massive and can be integrated
out. We will parametrize this moduli space by the coor-
dinates ðx3; ϑ2; ϑ1Þ and will henceforth label them
ðx3; ϑ2; ϑ1Þ → ðr; θ;ϕÞ for the remainder of this section.
The parametric limit we will take is the limit of large r.
To derive the effective theory along the moduli space,

we will first take ðr; θ;ϕÞ to be slowly varying and expand
H ¼ Hð0Þ þHð1Þ þ � � � in inverse powers of the dimen-
sionless quantity gr3. We will compute the effective
Hamiltonian in perturbation theory by integrating out the
other fields in their ground state, in which ðr; θ;ϕÞ appear
as parameters. Similar analysis to this was performed in

[20–25]. Defining ∂⃗ ≡ ð∂x1 ; ∂x2Þ, the Hamiltonian, to
lowest order, is

Hð0Þ ≡−
1

2ðx2
1 − x2

2Þ
∂⃗ · ðx2

1 − x2
2Þ∂⃗

−
1

2ðx2
1 − x2

2Þ2
½ðx2

1 þ x2
2Þð∂2

ϑ3
þ ∂2

φ3
Þ þ 4x1x2∂ϑ3∂φ3

�

þ g2

2
r2ðx2

1 þ x2
2Þ− igrϵ3DEχ̄Dσ̃3χE; ð5:1Þ

where σ̃i βα ≡Mjiσj βα depends explicitly on ðϑ1;ϑ2; ϑ3Þ. It
is straightforward to show that Hð0Þ admits a zero energy
ground state given by

Ψð0Þ ¼ gr

π
ffiffiffiffiffi
32

p e−
g
2
rðx2

1
þx2

2
Þ

×
X2
B¼1

�
χ̄Bϵχ̄B − i

X2
C¼1

ϵ3BCχ̄Bσ̃3ðχ̄CϵÞ
�
j0i; ð5:2Þ

where j0i is the fermionic vacuum and we have normalized
Ψð0Þ with respect to

Z
∞

0

dx1

Z
x1

−x1
dx2

Z
2π

0

dϑ3

Z
2π

0

dφ3ðx2
1 − x2

2Þ: ð5:3Þ

Similarly we can expand the supercharges Qα ¼ Qð0Þ
α þ

Qð1Þ
α þ � � �, where

Qð0Þ
α ≡ −i

X2
a;b¼1

σ̃b γ
α χaγ

�
δab

�
∂xb þ

g
2
jϵbstjxsxt

�

þ i
ϵabc

x2
a − x2

b

ðxaPc þ xbScÞ
�
; ð5:4Þ

Qð1Þ
α ≡ −iσ̃b γ

α χ3γ

�
δ3b

�
∂r þ

g
2
jϵ3stjxsxt

�

þ i
ϵ3bc
r

ðPc þ ScÞ
�
: ð5:5Þ

It is easy to check that Qð0Þ
α Ψð0Þ ¼ Q̄ð0ÞβΨð0Þ ¼ 0. We are

now tasked with finding the effective supercharges Qeff
α ¼

hQð1Þ
α iΨð0Þ þ � � � that act on the massless degrees of freedom

ðr; θ;ϕÞ along the moduli space. At lowest order we find
the supercharges (acting on gauge-invariant wave func-
tions) are those of a free particle in R3 and its fermionic
superpartner,

Qeff
α ¼ −i∇x⃗ · σ⃗

γ
α ψγ; Q̄β

eff ¼ −iψ̄ γ∇x⃗ · σ⃗
β
γ ; ð5:6Þ

where we have labeled ðr; θ;ϕÞ in Cartesian coordinates as
well as defined ðψα; ψ̄βÞ≡ ðχ3α; χ̄β3Þ. Since the remaining
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FIG. 3. Left: Percentage energy difference between the lowest ðR; jÞ ¼ ð0; 0Þ state and the lowest ðR; jÞ ¼ ð1; 1=2Þ state. As expected
by supersymmetry their energies match to within 2%. Right: Percentage energy difference between the lowest ðR; jÞ ¼ ð2; 0Þ state and
the lowest ðR; jÞ ¼ ð3; 1=2Þ state. These energies match to within 13%. The percentage error is larger for low ν since the energy is
approaching zero.

3Also sometimes called a Coulomb branch.
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gauge angles ðφ1;φ2Þ have no kinetic terms in the effective
theory along the moduli space, we need not consider them
as dynamical variables and can treat ψα as a fundamen-
tal field.
Let us now compute the effective theory to next order in

perturbation theory. Instead of computing this in the
operator formalism, let us first invoke symmetry arguments
to constrain what the answer should look like. The low
energy effective theory on the moduli space should be a
supersymmetric theory with four supercharges and an
SOð3Þ R symmetry; therefore, it should fall in the class
discovered in [26,27],

L ¼ 1

2
fð _x⃗2 þ iðψ̄ _ψ − _̄ψψÞ þD2Þþ 1

2
ð∇kfÞϵklm _xlψ̄σmψ

−
D
2
ð∇x⃗fÞ · ψ̄ σ⃗ ψ þ 1

4
ð∇i∇jfÞðψ̄σiψÞðψ̄σjψÞ; ð5:7Þ

which is invariant under

δx⃗ ¼ iψ̄ σ⃗ ξ − iξ̄ σ⃗ ψ ;

δψα ¼ _x⃗ · σ⃗ β
α ξβ þ iDξα;

δψ̄β ¼ _x⃗ · ξ̄ασ⃗ β
α − iDξ̄β;

δD ¼ − _̄ψξ − ξ̄ _ψ :

To preserve the SOð3Þ symmetry, f should be a function of
r≡ jx⃗j. Notice that (5.7) reduces to the theory of a free
particle and its superpartner when f ¼ 1. Therefore we
should find that at one-loop order f ¼ 1þ c

gr3, since ðgr3Þ−1
is our expansion parameter, with c to be determined.
A calculation [22,23] reproduced in Appendix B gives
c ¼ −3=2 or

f ¼ 1 −
3

2gr3
: ð5:8Þ

Analytic evidence for the numerically found supersym-
metric ground states can be obtained by studying the
Schrödinger problem associated with (5.7). We do not
do this here, but we can gain some intuition by studying the
existence of normalizable zero modes of the Laplacian on
moduli space [28]:

ds2 ¼
�
1 −

3

2gr3

�
ðdr2 þ r2dΩ2

2Þ: ð5:9Þ

We can construct two normalizable zero modes as follows.
The zero form

ω0 ≡
Z

r
dr0

1

r02

�
1 −

3

2gr03

�
−1=2

ð5:10Þ

is a zero mode of the Laplacian, but is not normalizable. To
construct normalizable forms, we take

ω1 ≡ dω0; ω2 ¼ ⋆ω1: ð5:11Þ

These are normalizable within the domain r ∈ ½ð 3
2gÞ1=3;∞�.

Since there exists zero modes in this toy-moduli-space
approximation, it would be interesting to study the set of
ground states of (5.7) in more detail.

VI. DISCUSSION

In this paper we have studied the mini-BFSS/BMN
model with gauge group SUð2Þ and uncovered numerical
evidence for a set of supersymmetric ground states in the
massless limit of the theory. In the massless limit the
matrices can becomewidely separated. The effective theory
on the moduli space has nontrivial interactions governed by
a metric that gets generated on this moduli space at
one loop.
Our numerical evidence for zero energy ground states

is limited to the N ¼ 2 case, but we can now safely
establish that the vanishing Witten index of mini-BFSS
does not conclusively imply supersymmetry breaking,
even for N > 2. This should renew our interest in deter-
mining if supersymmetric states continue to exist at large
N. Let us now discuss what may happen in the SUðNÞ case
at large N. The quartic interaction in (2.5) can be rewritten
as a commutator-squared interaction ðfABCXi

BX
j
CÞ2 ∼

Trð½Xi; Xj�Þ2, where Xi ≡ Xi
AτA and τA are the generators

in the fundamental of SUðNÞ. Therefore, at tree level, along
the moduli space there will be a set of N − 1 massless,
noninteracting, point particles in R3 (and their super-
partners), each one corresponding to an element of the
Cartan of SUðNÞ. At one loop there will be a correction
to the moduli space metric, depending on the relative
distances between these particles. Just as in the SUð2Þ case
these corrections will come at order jra − rbj−3. One dif-
ference, however, is that there may be an enhancement of
order N to this correction. It would certainly be interesting
to see if we can isolate the jra − rbj−3 corrections to the
moduli space metric by taking a large N limit, as can be
done in the D0–D4 system [28] and in the three-node
Abelian quiver [29]. Perhaps we can adapt the methods in
[30] for these purposes. The analysis in [22] seems to
suggest that such a decoupling limit at large N is possible.
Interestingly, it was shown in [29] that the one-loop

effective action on the Coulomb branch of the three-node
Abelian quiver exhibits an emergent conformal sym-
metry at large N. This conformal symmetry depends on
the delicate balance between the form of the interaction
potential and the metric on the moduli space, which has a
similar jra − rbj−3 form as in (5.8). It would be interesting
to establish whether the SUðNÞ generalization of the model
studied in this paper also has a nontrivial conformal
symmetry at infinite N, broken by finite N effects. We
save this problem for future work, but list here some
reasons why this would be worth studying:
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(1) The BFSS matrix model has a holographic inter-
pretation [11,31–33]. At large N it is dual to a
background of D0 branes in type IIA supergravity. In
BFSS there is no correction to the moduli space
metric and neither side of this duality is conformal.
The BFSS matrix model is thus a theory of the 10D
flat space S matrix. It would be interesting to
understand the large N version of mini-BFSS in
the context of holography along similar lines.
Because of the large number of coupled degrees
of freedom at large N and the reduced supersym-
metry, the effective theory along the moduli space of
mini-BFSS has a nontrivial metric and may poten-
tially exhibit a nontrivial conformal fixed point
along this moduli space, as happens for quiver
quantum mechanics models with vector rather than
matrix interactions [29,34]. To answer this question
definitively we will need to compute the effective
theory along the Coulomb branch for N ≫ 2 and
check whether it is conformal.

(2) New results have shown that a certain class of
disordered quantum mechanics models, known as
SYK for Sachdev-Ye-Kitaev, exhibits phenomenol-
ogy of interest for near-extremal black holes (see
[34–41] and references therein as well as [42–45] for
models without disorder). These phenomena include
an emergent conformal symmetry in the IR, maximal
chaos [46], and a linear in T specific heat. Despite
the successes of these models, they are not dual to
weakly coupled gravity. BFSS is a large N gauged
matrix quantum mechanics dual to weakly coupled
Einstein gravity but, as we previously mentioned, it
does not have an emergent conformal symmetry and
remains a model ofD particles in flat space. It would
certainly be interesting if mini-BFSS fell in the
universality class of quantum mechanics models
with emergent conformal symmetry in the IR and
maximal chaos, such as the SYK model and its
nondisordered cousins, but remains dual to weakly
coupled gravity. Recently [47,48] advocated the
study of such matrix models for similar reasons.
In the same vein the authors of [49] study classical
chaos in BFSS numerically.

(3) If this model, like SYK, is at all related to the
holography of near-extremal black holes, then we
can try to study its Smatrix to gain some insight into
the real time dynamics of black hole microstates.
A numerical implementation of such a study in the
context of similar supersymmetric quantummechan-
ics models with flat directions can be found in [50].

(4) The slow moving dynamics of a class of super-
symmetric multicentered black hole solutions in
supergravity is a superconformal quantum mechan-
ics [51–54] with no potential, provided a near
horizon limit is taken. It would be interesting to
understand if there is some limit in which the

multicentered black hole moduli space quantum
mechanics and the large N matrix quantum mechan-
ics on the moduli space coincide, perhaps as a
consequence of nonrenormalization theorems as
in [2].
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APPENDIX A: REDUCED SCHRÖDINGER
EQUATION

In this Appendix we construct gauge-invariant highest-
weight wave functions of SOð3ÞJ in each R-charge sector
(up to 3) and use these to maximally reduce the
Schrödinger equation via symmetries.

1. R= 0

This sector of the theory was studied in [55–57],
although without access to numerics. We repeat their
analysis here. We wish to separate variables using the
SOð3ÞJ symmetry. We therefore want to write down the
highest weight state satisfying J3jψi0 ¼ jjψi0 and
Jþjψi0 ¼ 0, with J� ≡ J1 � iJ2. The rest of the spin
multiplet can be obtained by acting on jψi0 with J− up
to 2j times. This, however, does not entirely fix the angular
dependence of the wave function, as these two conditions
only fix the dependence on up to two angles. Recall,
however, that the operators P⃗ commute with J⃗ and P⃗2 ¼ J⃗2,
but ½H; P⃗� ≠ 0. We will then write jψi0 as a sum of terms
with definite P3 eigenvalue. That is, we write jψi0 as

jψi0 ¼ eijϑ1sinjϑ2
Xj

p¼−j
eipϑ3cotp

�
ϑ2
2

�
fpðxaÞ: ðA1Þ

Since the number of terms in the wave function grows with
j, it will be cumbersome to give the reduced radial
Schrödinger equation for arbitrary j. Instead, we will give
the expressions for j ¼ 0; 1

2
; 1. Before giving the reduced

Schrödinger equations, it is worth noting that it has long
been known that there exist no supersymmetric states in this
sector [1]. The reason is that the supersymmetry equations
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Qαjψi0 ¼ Q̄βjψi0 ¼ 0 are easy to solve and give

jψiSUSY0 ∼ exp

�
gx1x2x3 þ

m
2
xaxa

�
; ðA2Þ

which is non-normalizable. It is also known that the
spectrum in this sector is discrete [57].
For parsimony let us define

Ĥ≡ −
1

2Δ
∂xaΔ∂xa þ V ðA3Þ

with V defined in (3.19). Then for j ¼ 0 the reduced
Schrödinger equation, obtained from Hmjψi0 ¼ Emjψi0, is
simply

�
Ĥþ 9

2
m

�
f0ðxaÞ ¼ Emf0ðxaÞ: ðA4Þ

For j ¼ 1=2 there is no mixing between the f�1=2ðxaÞ, and
each satisfies

�
Ĥþ 9

2
mþ T

8

�
f�1=2ðxaÞ ¼ Emf�1=2ðxaÞ; ðA5Þ

where T was defined in (3.22). Finally, for j ¼ 1 we have

8<
:Ĥþ 9

2
mþ T

4
þ 1

4

0
B@

y3 0 y1 − y2
0 T − 2y3 0

y1 − y2 0 y3

1
CA
9=
;

×

0
B@

f−1

f0

fþ1

1
CA ¼ Em

0
B@

f−1

f0

fþ1

1
CA: ðA6Þ

2. R= 1

Continuing on from the last section, we want to write
down wave functions in the R ¼ 1 sector that are gauge
invariant, and satisfy J3jψi1 ¼ jjψi1 and Jþjψi1 ¼ 0. To
do so, we will write our wave functions as

jψi1 ¼ eijϑ1sinjϑ2
Xj

p¼−j
eipϑ3cotp

�
ϑ2
2

�
fpAαχ̄

α
Aj0i; ðA7Þ

where j0i is the fermionic vacuum and each term in the sum
has a definite P3 eigenvalue. The functions fpAα that satisfy
these conditions are

fpA1 ¼ e−i
ϑ1
2

�
e−i

ϑ3
2 cos

�
ϑ2
2

�
Lp
2A−1ðxaÞ

− ei
ϑ3
2 sin

�
ϑ2
2

�
Lp
2AðxaÞ

�
; ðA8Þ

fpA2 ¼ ei
ϑ1
2

�
e−i

ϑ3
2 sin

�
ϑ2
2

�
Lp
2A−1ðxaÞ

þ ei
ϑ3
2 cos

�
ϑ2
2

�
Lp
2AðxaÞ

�
: ðA9Þ

We remind the reader that the χ̄αA are the gauge-invariant
fermions defined in (3.23). The reduced Schrödinger
equation for j ¼ 0 (and hence p ¼ 0) is

�
Ĥþ 7

2
mþ 5

8
T þA

�0
BB@

L0
1

..

.

L0
6

1
CCA ¼ Em

0
BB@

L0
1

..

.

L0
6

1
CCA; ðA10Þ

where A is a 6 × 6 matrix that can be written in terms of
2 × 2 blocks as follows:

A≡ i
2

0
B@

iy11 −ð2gx3þz3Þσ3 ð2gx2þz2Þσ2
ð2gx3þz3Þσ3 iy21 −ð2gx1þz1Þσ1
−ð2gx2þz2Þσ2 ð2gx1þz1Þσ1 iy31

1
CA;

ðA11Þ

where the coordinates ya and za (nonlinearly related to xa)
were defined in (3.20).
Using the above definitions it is straightforward to write

down the equations for j ¼ 1=2. These are

�
Ĥþ 7

2
mþ 3

4
T þ

�Aþ B C

C† A −B

��

×

0
BBBBBBBBBBBBB@

L
−1
2

1

..

.

L
−1
2

6

L
1
2

1

..

.

L
1
2

6

1
CCCCCCCCCCCCCA

¼ Em

0
BBBBBBBBBBBBB@

L
−1
2

1

..

.

L
−1
2

6

L
1
2

1

..

.

L
1
2

6

1
CCCCCCCCCCCCCA

ðA12Þ

with

B≡ 1

4

0
B@

y3σ3 −2iz31 0

2iz31 y3σ3 0

0 0 y3σ3

1
CA ðA13Þ
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and

C≡ 1

4

0
B@

y1σ1 − iy2σ2 0 2z21

0 y1σ1 − iy2σ2 −2iz11
−2z21 2iz11 y1σ1 − iy2σ2

1
CA:

ðA14Þ

3. R= 2

As we can see, the number of equations keeps increasing
with fermion number and spin. Therefore in this section
and the next, we will only give the reduced Schrödinger

equations for j ¼ 0. As before the general highest weight
R ¼ 2 wave function admits a decomposition:

jψi2 ¼ eijϑ1sinjϑ2
Xj

p¼−j
eipϑ3cotp

�
ϑ2
2

�
fpABαβχ̄

α
Aχ̄

β
Bj0i:

ðA15Þ
To avoid overcounting let us set fpABαβ ¼ 0 whenever
B < A and similarly fpAAαβ ¼ 0 (no sum on indices)
whenever β ≤ α. Imposing that J3jψi2 ¼ jjψi2, Jþjψi2 ¼
0 and that each term in the sum has definite P3 eigenvalue
imposes that the functions fpABαβ take on a particular form.
These are (no sum on indices and A < B)

fpAA12 ¼ Lp
AðxaÞ; ðA16Þ

fpAB12 ¼
e−iϑ3

2
sinϑ2Y

p
ABðxaÞ þ cos2

�
ϑ2
2

�
Rp
ABðxaÞ − sin2

�
ϑ2
2

�
SpABðxaÞ −

eiϑ3

2
sin ϑ2U

p
ABðxaÞ; ðA17Þ

fpAB21 ¼
e−iϑ3

2
sinϑ2Y

p
ABðxaÞ − sin2

�
ϑ2
2

�
Rp
ABðxaÞ þ cos2

�
ϑ2
2

�
SpABðxaÞ −

eiϑ3

2
sin ϑ2U

p
ABðxaÞ; ðA18Þ

fpAB11 ¼ e−iϑ1
�
e−iϑ3cos2

�
ϑ2
2

�
Yp
ABðxaÞ −

1

2
sin ϑ2ðRp

ABðxaÞ þ SpABðxaÞÞ þ eiϑ3sin2
�
ϑ2
2

�
Up

ABðxaÞ
�
; ðA19Þ

fpAB22 ¼ eiϑ1
�
e−iϑ3sin2

�
ϑ2
2

�
Yp
ABðxaÞ þ

1

2
sin ϑ2ðRp

ABðxaÞ þ SpABðxaÞÞ þ eiϑ3cos2
�
ϑ2
2

�
Up

ABðxaÞ
�
: ðA20Þ

Notice that even for j ¼ 0, determining the spectrum will involve solving a set of 15 coupled partial differential equations.
We will label the set of functions Yp

AB ≡ Yp
6−A−B and so on for the remaining functions. We also define the following vector

of functions:

Ψ0
R¼2 ≡ ðL0

1;…; R0
1;…; S01;…; U0

1;…; Y0
1;…ÞT: ðA21Þ

The j ¼ 0 Schrödinger equation is then

�
Ĥþ 5

2
mþ 3

4
T þ DþLþ gM

�
Ψ0

R¼2 ¼ EmΨ0
R¼2; ðA22Þ

where D, L, and M are 15 × 15 matrices that can be written in terms of 3 × 3 blocks as follows:

D≡

0
BBBBBB@

d1 0 0 0 0

0 d3 d1 − y3
4
1 0 0

0 d1 − y3
4
1 d3 0 0

0 0 0 −d3 1
4
ðy1 − y2Þ1

0 0 0 1
4
ðy1 − y2Þ1 −d3

1
CCCCCCA
; ðA23Þ
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L≡ −
1

2

0
BBBBBBBB@

2
P
a
yajLaj 0 0 0 0

0 0 0 z1L1 þ iz2L2 z1L1 − iz2L2

0 0 0 z1L1 þ iz2L2 z1L1 − iz2L2

0 z1L1 − iz2L2 z1L1 − iz2L2 −2z3L3 0

0 z1L1 þ iz2L2 z1L1 þ iz2L2 0 2z3L3

1
CCCCCCCCA
; ðA24Þ

M≡

0
BBBBBB@

0 x3m3 x3m3 x1m1 þ x2m2 x2m2 − x1m1

x3m3† −x3L
3 0 x2d2 x2d2† − x1L

1

x3m3† 0 x3L
3 −x1L

1 − x2d2† −x2d2

x1m1† þ x2m2† x2d2† −x1L
1 − x2d2 x3L

3 0

x2m2† − x1m1† x2d2 − x1L
1 −x2d2† 0 −x3L

3

1
CCCCCCA
: ðA25Þ

In these definitions, the Li are the 3 × 3 generators of
SOð3Þ defined below (3.1). The di are

d1 ≡
�
T
4
− ya

�
δab; d2 ≡

0
B@

0 0 0

0 0 0

−1 0 0

1
CA;

d3 ≡ 1

2

�
ya −

1

2
y3

�
δab; ðA26Þ

and the mi are

m1 ≡
0
B@

0 0 0

i 0 0

i 0 0

1
CA; m2 ≡

0
B@

0 −1 0

0 0 0

0 −1 0

1
CA;

m3 ≡
0
B@

0 0 i

0 0 i

0 0 0

1
CA: ðA27Þ

Whenever a matrix appears in an absolute value symbol
j · j, the absolute value is to be applied to the entries of the
matrix.
The Schrödinger operator for j ¼ 1=2 will be a gener-

alization of the above operator to one acting on 30
functions. We do not provide expressions for it here, but
analyze its spectrum in the main text.

4. R= 3

The highest weight R ¼ 3 wave functions take the form

jψi3 ¼ eijϑ1sinjϑ2
Xj

p¼−j
eipϑ3cotp

�
ϑ2
2

�
fpABCαβγχ̄

α
Aχ̄

β
Bχ̄

γ
Cj0i:

ðA28Þ
To avoid overcounting we set

fpABCαβγ ¼ 0 if C < B or B < A; ðA29Þ

fpAABαβγ ¼ 0 if β ≤ α; ðA30Þ
fpABBαβγ ¼ 0 if γ ≤ β: ðA31Þ

Because of the fermionic statistics fpAAAαβγ ¼ 0 identically.
Imposing the highest weight condition forces fp123αβγ to
take the following form:

fp123αβγ ¼
X2

a;b;c¼1

Fp
abcðxaÞuαaðϑ⃗Þuβbðϑ⃗Þuγcðϑ⃗Þ; ðA32Þ

with

uαaðϑ⃗Þ≡ e
i
2
ðð−1Þαϑ1þð−1Þaϑ3Þ

�
ð1 − jα − ajÞ cos

�
ϑ2
2

�

þ ðα − aÞ sin
�
ϑ2
2

��
: ðA33Þ

Furthermore

fpAABαβγ ¼ Up
AABðxaÞy1αβγðϑ⃗Þ þ Yp

AABðxaÞy2αβγðϑ⃗Þ; ðA34Þ
fpABBαβγ ¼ Up

ABBðxaÞy1αβγðϑ⃗Þ þ Yp
ABBðxaÞy2αβγðϑ⃗Þ; ðA35Þ

where

y1αβγðϑ⃗Þ≡ e
i
2
fðð−1Þαþð−1Þβþð−1ÞγÞϑ1−ϑ3g

2

×

�
ð4 − αβγÞ cos

�
ϑ2
2

�
þ ðαβγ − 2Þ sin

�
ϑ2
2

��
;

ðA36Þ

y2αβγðϑ⃗Þ≡ e
i
2
fðð−1Þαþð−1Þβþð−1ÞγÞϑ1þϑ3g

2

×

�
ðαβγ − 4Þ sin

�
ϑ2
2

�
þ ðαβγ − 2Þ cos

�
ϑ2
2

��
:

ðA37Þ
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Notice that for j ¼ 0 the reduced Schrödinger equation is a
set of 20 coupled partial differential equations. We will give
the Schrödinger operator acting on the following vector of
functions:

Ψ0
R¼3 ≡ ðF0

122; F
0
211; F

0
121; F

0
212; F

0
221; F

0
112; F

0
111; F

0
222;

U0
113; U

0
223; Y

0
113; Y

0
223; U

0
112; U

0
233; Y

0
112; Y

0
233;

U0
122; U

0
133Y

0
122; Y

0
133ÞT: ðA38Þ

With Ψ0
R¼3 defined, we are tasked with solving the

following set of differential equations:
�
Ĥþ 3

2
mþ 1

4

�
11

2
T − y3

�
− Iþ Jþ J† þK

�
Ψ0

R¼3

¼ EmΨ0
R¼3; ðA39Þ

where I, J, and K are 20 × 20 matrices that can be written
in block form as follows:

I≡

0
BBBBBBBBBBBBB@

y112×2
y212×2 0

y312×2
ðy1 þ y2Þ12×2

3
4
ðy1 þ y2Þ14×4

0 1
2
ðT þ y1−y2

2
Þ14×4

1
2
ðT − y1−y2

2
Þ14×4

1
CCCCCCCCCCCCCA

; ðA40Þ

and J and K can be written in terms of 4 × 4 blocks as follows:

J≡ i
2

0
BBBBBB@

0 0 z3a3 þ 2gx3b3 z2a2 þ 2gx2b2 z1a1 þ 2gx1b1

0 0 0 −z2a2 þ 2gx2c2 z1e1 þ 2gx1c1

0 0 0 σ1 ⊗ ðz11þ 2gx1σ3Þ −σ2 ⊗ ðz2σ1 − 2igx2σ2Þ
0 0 0 0 σ3 ⊗ ðz31 − 2gx3σ3Þ
0 0 0 0 0

1
CCCCCCA
; ðA41Þ

K≡

0
BBBBBB@

1
4
ðT − 5y3Þσ1 ⊗ σ1 1

4
ðy1sþ y2tÞ 0 0 0

1
4
ðy1sþ y2tÞ† 1

4
ðy1 − y2Þσ1 ⊗ 1 0 0 0

0 0 −y31 ⊗ σ1 0 0

0 0 0 −y21 ⊗ σ1 0

0 0 0 0 −y11 ⊗ σ1

1
CCCCCCA
; ðA42Þ

where we have implicitly defined

a1≡−
1

2

�
0 0

1 1

�
⊗ ð1− σ1Þþ 1

2

�
0 0

1 −1

�
⊗ ð−iσ2þ σ3Þ; b1≡ 1

2

�−1 1

0 0

�
⊗ ð1þ σ1Þ− 1

2

�
1 1

0 0

�
⊗ ðiσ2þ σ3Þ;

a2≡−
i
2

�−1 1

0 0

�
⊗ ð1− σ1Þþ i

2

�
1 1

0 0

�
⊗ ð−iσ2þ σ3Þ; b2≡−

i
2

�
0 0

1 1

�
⊗ ð1þ σ1Þþ i

2

�
0 0

1 −1

�
⊗ ðiσ2þ σ3Þ;

a3≡ iσ2 ⊗
�−1 1

0 0

�
þ σ3 ⊗

�
0 0

−1 1

�
; b3≡−1⊗

�
0 0

1 1

�
− σ1 ⊗

�
1 1

0 0

�
;

as well as
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c1 ≡ 1

2

�
0 0

1 −1

�
⊗ ð1þ σ1Þ þ 1

2

�
0 0

1 1

�
⊗ ðiσ2 þ σ3Þ;

c2 ≡ −
i
2

�
0 0

1 1

�
⊗ ð1þ σ1Þ − i

2

�
0 0

1 −1

�
⊗ ðiσ2 þ σ3Þ;

e1 ≡ −
1

2

�
1 1

0 0

�
⊗ ð1 − σ1Þ þ 1

2

�−1 1

0 0

�
⊗ ð−iσ2 þ σ3Þ;

and finally

s≡
�
1 1

0 0

�
⊗ 1þ

�
0 0

−3 1

�
⊗ σ1 and t≡

�−3 1

0 0

�
⊗ 1þ

�
0 0

1 −1

�
⊗ σ1:

The Hamiltonian acting on the R ¼ 3, j ¼ 1=2 wave
function will be a generalization of the above operator
to one acting on 40 functions. We will not give the
expression here, but we analyze the spectrum of the
R ¼ 3, j ¼ 1=2 sector numerically in the main text.

APPENDIX B: METRIC ON THE
MODULI SPACE

To determine the one-loop effective action for the
ν ¼ 0 theory, we follow [28,58,59] and pass to the
Lagrangian formulation of our gauge-quantum mechanics,
including gauge-fixing terms and ghosts. We will use the
background field method [60,61]—that is, we will expand
the fields Xi

A ¼ Bi
A þ X̃i

A where Bi
A is a fixed background

field configuration and X̃i
A are the fluctuating degrees of

freedom. We choose Bi
A ¼ δA3x⃗ such that it parametrizes

motion along the moduli space.
The gauge-fixed Lagrangian is

L ¼ Lbos: þ Lferm: þ Lg:f: þ Lghost ðB1Þ

with

Lbos: ¼
1

2
ðDtXi

AÞ2 −
g2

4
ðfABCXi

BX
j
CÞ2; ðB2Þ

Lferm: ¼ iðλ̄ADtλA − gfABCλ̄AXk
Bσ

kλCÞ; ðB3Þ

Lg:f: ¼ −
1

2ξ
ðDbg

t AAÞ2; ðB4Þ

Lghost ¼ c̄Að−δAB∂2
t − gfACB∂tðAC·Þ

þ g2fACDfDEBBi
CX

i
EÞcB; ðB5Þ

and

DtXi
A ≡ _Xi

A þ gfABCABXi
C; DtλAα ≡ _λAα þ gfABCABλCα;

Dbg
t AA ≡− _AA þ gfABCBi

BX
i
C: ðB6Þ

We further set ξ ¼ 1, corresponding to Feynman gauge. We
can obtain the correction to the metric on moduli space by
choosing a background field x⃗ as follows [28]:

x⃗ ¼ ðb; vt; 0Þ; ðB7Þ

where b is to be thought of as an impact parameter for a
particle moving at speed v. We now Wick rotate t → −iτ,
v → iγ, and AA → iAA and expand the action to quadratic
order in fluctuating fields about the background field
Bi
A ¼ δA3x⃗. The idea is to integrate out all fields that

obtain a mass, through interaction with the background
field, at one loop.
Following this procedure, it is easy to show that all fields

with color index A ¼ 3 remain massless, while the rest
obtain time dependent masses. After diagonalizing the
mass matrix for the bosonic fields, we find the contribution
to the Euclidean effective action coming, respectively, from
the bosonic, fermionic, and ghost determinants:

δSbos:E ¼ −2Tr log ð−∂2
τ þ g2ðb2 þ γ2τ2ÞÞ

− Tr log ð−∂2
τ þ g2ðb2 þ γ2τ2Þ − 2gγÞ

− Tr log ð−∂2
τ þ g2ðb2 þ γ2τ2Þ þ 2gγÞ; ðB8Þ

δSferm:
E ¼ Tr log

� ∂τ −gðγτ þ ibÞ
−gðγτ − ibÞ ∂τ

�

þ Tr log

� ∂τ gðγτ − ibÞ
gðγτ þ ibÞ ∂τ

�
; ðB9Þ

δSghostE ¼ 2Tr log ð−∂2
τ þ g2ðb2 þ γ2τ2ÞÞ: ðB10Þ

Note that the ghost determinant cancels against the con-
tribution coming from four of the eight massive bosons. Up
to a diverging constant, which will cancel between the
bosonic and fermionic terms, we can replace logðλÞ ¼
−
R
∞
0

ds
s e

−sλ and, summing over the spectra of the above
differential operators, we find
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δSE ¼
Z

∞

0

ds
s
e−b

2g2sðcoshð2gγsÞcschðgγsÞ − cothðgγsÞÞ

ðB11Þ

¼
Z

∞

0

ds
s
e−b

2g2ssech

�
gγs
2

�
sinh

�
3gγs
2

�
: ðB12Þ

Let us now wick rotate back to Lorentzian time and use

e−b
2g2s

s
¼

Z
dtffiffiffiffiffi
πs

p gve−sg
2r2 ; r2 ¼ b2 þ v2t2; ðB13Þ

to write down the Lorentzian action to Oðv2Þ:

iSL ¼ i
Z

dt

�
v2

2
−gv

Z
dsffiffiffiffiffi
πs

p e−sg
2r2 sec

�
gvs
2

�
sin

�
3gvs
2

��

ðB14Þ

¼ i
Z

dt
1

2

�
1 −

3

2gr3

�
v2 þOðv4Þ; ðB15Þ

which is the same correction as found in [22,23]. It also
resembles the correction to the moduli space metric in the
D0–D4 system [28], albeit with a different coefficient
and sign.
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