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1 Introduction

Since 2017 [4] there has been a renewed interest in using QFT techniques to study classical
gravitational binaries. The trademark of this approach is to begin the investigation from the
scattering problem, i.e. open rather than bound systems, where questions can be directly
formulated in terms of the S-matrix. In this way, it is possible to use amplitudes as starting
points to calculate observables that characterize binary scatterings.1 Several techniques
have been developed to extract from the full quantum amplitudes the classical results of
interest [13–17], including matching the QFT results with an EFT description [13, 15], using
the KMOC framework [16] or the eikonal exponentiation [17–20]. The QFT based/inspired
approach has lead to several explicit new results starting from the conservative deflection
angle at 3PM [21] and then considering more general observables and increasing the precision:
focusing on the scattering of Schwarzschild black holes see for instance [22–25] for amplitudes
and [26–30] for the worldline effective theory. A general feature of the results obtained in
this way is that they are valid for generic relative velocities, since Lorentz invariance is
kept manifest throughout the calculations. As a non-trivial check, one can expand the PM
expressions obtained in the small velocity limit and compare them, in the common regime of
validity, with the results available in the PN literature [31–34]. This comparison has been so
far relatively straightforward as the physical observables considered in the references above
were quantities with a simple dependence on the reference frame, such as the deflection

1In addition, for some quantities it is possible to give an explicit map between open and bound orbits [5–7].
Alternatively the scattering results can be used to inform an Effective One Body models [8, 9] as recently
done in [10–12].
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angle, the impulse of the black holes, the total energy and angular momentum carried away
by the gravitational radiation.

In this paper we focus on a more complicated scattering observable: the gravitational
waveform itself. The leading PM result was obtained within the GR framework long ago [35, 36]
and, more recently rederived in [37, 38] by using a worldline theory one-point function
equivalent to the classical limit of the tree-level 5-point scattering amplitude [39–41] with
two incoming and two outgoing black holes and an extra graviton in the final state. The
comparison with the PN waveform at the leading order for small velocities was already
discussed in [36], but a systematic comparison with the PN results obtained in the Multipolar-
post-Minkowskian (MPM) expansion [31, 42–44] has been started only recently [2]. As can
be expected, the comparison is trickier because of the dependence on the precise reference
frame. The complication becomes fully manifest when including also the first subleading PM
order which requires knowing the classical limit of the same five-point amplitude, but now at
one-loop. This quantity was obtained in [45–48], where, despite the rather complicated form
of the result, it was shown that it has the expected structure. The leading contribution in the
amplitude as ℏ → 0 limit is more singular than the tree-level, but it is killed when extracting
the classical physical observable following the approaches mentioned above. So in [45–48],
the waveform was directly identified with the subleading term of the amplitudes, but it was
pointed out in [1] that this is not the full story because the KMOC approach implies that
the waveform includes also an extra contribution associated to cuts of the 5-point amplitude
with two intermediate massive particles. In a parallel development [2] initiated a detailed
comparison between the PN expansion of the subleading PM result of [45–48] and the MPM
result for hyperbolic orbit pointing out some mismatches between the two approaches.

It may be natural to think that the two observations above are related and that agreement
between the amplitudes and the MPM waveforms would be restored once the contribution
pointed out in [1] is included. We investigated this possibility by focusing on the soft expansion
of the full waveform reaching an order where all the points raised in [2] are visible. We find
that agreement between the two approaches is indeed restored, but in a subtler way than
guessed above. Let us briefly summarize the tensions highlighted in [2]:

1. The amplitudes (KMOC) and the MPM results are naturally written in two different
frames that differ by a rotation of Θ/2, i.e. half the scattering angle. While this
difference is irrelevant at leading PM order, it should matter for the NLO comparison,
and [2] found that even at the Newtonian level the subleading PM term match only if
the two results are interpreted to be in the same frame used in the MPM approach.

2. Various radiation reaction effects are important in the physical waveform. In the PN
expansion they start at 1.5PN order with the leading contribution of the tail effect that
is already correctly reproduced by the result of [45–48]. However, at 2.5PN order (1/c5

corrections with respect to the Newtonian result), ref. [2] found discrepancies between
the PM and the PN results already in the probe limit (the linear terms in ν for small
mass-ratio ν ≪ 1 limit, see (5.8) below). This is rather surprising since this part of the
NLO PM waveform is completely determined by the well-known tail effect [49, 50].

3. The mismatches found in [2] become even more substantial beyond the probe limit
when several contributions, due to the non-linearities of gravity, become relevant.
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In order to shed some light on the points above, we start by studying the cut contribution
of [1] and point out the similarity with a mechanism present in a much simpler observable: the
2PM impulse [16, 51]. In that case, an analogous cut contribution is important to reproduce
the longitudinal parts of the impulse of the process that are present in the frame aligned with
the initial spatial momentum of the black holes, while they would disappear in the frame
rotated as in point 1 above. Based on the intuition from the eikonal approach, it is natural to
expect that a similar pattern holds for the waveform as well and this is further supported by
an observation of [52] when studying the waveform to leading order in the soft limit. If this
is the case, the cut contribution of [1] should take a simple form in impact parameter space.
We show that this is the case by following an approach [53] used also to calculate observables
related to the angular momentum from the eikonal operator [20, 54], obtaining a simple
expression for this cut in impact-parameter space. We validate this derivation by performing
cross checks both in the soft and in the PN limit, and in particular by checking that in the PN
limit it agrees with the impact-parameter Fourier transform of the full momentum-space result
for the cut obtained in [55] (see also [56] and v4 of [45, 46]). This provides a first-principle
derivation for the rotation mentioned in point 1, so we then move on to the analysis of the
disagreement between the amplitudes and the MPM results in the PN limit.

Since, so far, it does not seem possible to write a manageable expression for the full PM
waveform, we focus our attention on the limit of soft radiation, ω → 0 (or equivalently the
early/late time behavior of the waveform). This regime has been under intense investigation
since the seminal papers by Weinberg [57, 58] and has more recently been discussed in a
series of papers [59–62] both from the classical and the amplitudes point of view. The first
three terms in the soft expansion, 1

ω , logω and ω(logω)2, are universal in the sense that they
can be obtained by acting with an appropriate operator on the elastic result. We extend our
analysis to include the next term, ω logω, providing an explicit NLO PM expression for it.
Then we reassess points 2 and 3 above by using this result: by following [2], it is instructive
to focus on the difference between the PN results obtained from the soft waveform as derived
from amplitudes and those obtained from the soft MPM waveform. This difference does not
vanish at order 1/c5 for the non-universal ω logω soft term already at leading order in the
probe limit which, as mentioned above, is entirely determined by the tail effect. However the
O(ν) mismatch we found is much simpler than the one reported in eq. (9.13) of [2]: with
our result, one can reabsorb such mismatch with an appropriate choice of the time-origin of
the frame (the freedom to perform such shifts was already highlighted in [2]). This solves
the discrepancy presented in point 2.

We then move to point 3 in the list above by including the O(ν2) terms in our analysis.
Again, we find a simpler result than eq. (9.13) of [2] for the difference between the amplitudes
and MPM soft waveforms, however at this order we cannot reabsorb the mismatch simply by
a time translation. Note that at this level we start probing in detail both formalisms: on the
MPM side various effects become important, including the use of retarded propagators and the
non-linearity of gravity (see the review by Blanchet [31] for a discussion of these points), while
on the amplitudes side the corresponding contributions come from “rescattering”-diagrams
where one can isolate a Compton-like subamplitude. In particular on the MPM side one has
to take into account some non-linear relation between near- and intermediate-zone multipoles
(see for instance (5.20)). In evaluating these contribution at the PM order we are interested in,
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one needs to use the static contribution to the waveform which depends on the choice of BMS
supertranslation frame [3]. This issue has played an important role in the calculation of the
radiated angular momentum [53, 63–70] which depends on the static part of the LO waveform.
It is thus natural to expect that the same issue is relevant for the NLO waveform at least for
the terms where the static terms are important. The most natural guess is that the NLO
waveform obtained from the amplitudes approach is written in the “canonical” BMS frame, as
defined in [3], while the MPM result is in the frame used in [63]. Since from [3, 71] we know the
supertranslation connecting this two frames, it is straightforward to compare the two results in
the same BMS frame: we find that the mismatch mentioned in point 3 above then completely
disappears when using our soft result for the amplitude-based waveform! This shows that the
disagreement arises due to two different choices of asymptotic frames, which differ by a BMS
supertranslation, rather then a Poincaré transformation as for the first two points.

The paper is structured as follows. In section 2, as preparatory work, we recall some
results about the elastic process in particular to present a derivation of the 2PM longitudinal
impulse which is instructive for our purposes. In section 3 we review the results on the
1-loop 5-point amplitude [45–48] and the cut contribution highlighted in [1]. We obtain an
explicit expression for the latter in term of known leading PM quantities. The key point of
the derivation is to move to impact parameter space before doing the integrals over the cut
propagators, which allows to simplify the expression since only the long-range contributions
survive. In section 4 we perform the soft limit of the NLO PM waveform derived from the
amplitudes approach including the first non-universal term. In section 5 we compare our
soft results in the small velocity limit with those obtained in the PN MPM approach and
reassess the mismatch with the amplitude-based waveform pointed out by [2]. We provide a
simple symmetry argument showing that the 2.5PN contribution to each multipole does not
receive corrections from the cut highlighted in [1]. However, we show that the results in the
two approaches match after making sure that they are written in the same BMS frame. We
conclude in section 6 by summarizing the main results and discussing what in our opinion
are the most interesting possible future developments.

Note added. At the final stages of this work, we became aware of the parallel work of the
collaboration of Donato Bini, Thibault Damour, Stefano De Angelis, Andrea Geralico, Aidan
Herderschee, Radu Roiban and Fei Teng who independently derived the full PM soft limit
of the NLO waveform, including the first non-universal term, ω logω, and find agreement
with our results [72]. They also derived the mismatch between the MPM and the amplitudes
based results at 2.5PN order, reproducing exactly eq. (5.26) below.

2 From amplitudes to classical GR observables: the elastic case

We focus on minimally coupled massive scalars with a “large” (i.e. classical) mass so they
can be used to model Schwarzschild black holes. In this setup, standard perturbation theory
breaks down and Feynman diagrams involving only few gravitons do not provide a faithful
description of the scattering between two black holes, see for instance [20] for a discussion in
the framework of the eikonal approach. However, it is possible to rearrange the standard
QFT perturbative expansion so as to extract from each order in the Newton constant2 G

2We shall also use the symbol κ =
√

8πG.
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the contributions relevant to the classical Post-Minkowskian (PM) expansion and to make
contact with GR observables. This step can be done in a variety of ways: by matching with
an effective field theory [15, 73–76], in the KMOC approach [16, 25, 51, 77, 78] and by using
the eikonal exponentiation (see [20] and references therein) among others. Focusing on the
last two approaches, the idea is to define the incoming state by considering two well-separated
objects described by a wave-packet superposition of plane-wave states,

|in⟩ = |1⟩ ⊗ |2⟩ , (2.1)

with

|1⟩ =
∫
2πδ(p2

1 + m2
1)θ(−p0

1)
dDp1
(2π)D

φ1(−p1) eib1·p1 |−p1⟩ ≡
∫
−p1

φ1(−p1) eib1·p1 |−p1⟩

|2⟩ =
∫
2πδ(p2

2 + m2
2)θ(−p0

2)
dDp2
(2π)D

φ2(−p2) eib2·p2 |−p2⟩ ≡
∫
−p2

φ2(−p2) eib2·p2 |−p2⟩ .

(2.2)

The classical value of an observable O is obtained by calculating the leading order
contribution in the classical limit to the expectation value

⟨O⟩ ≡ ⟨out|O|out⟩ , |out⟩ = S|in⟩ . (2.3)

It is convenient to formally write the final state in the plane wave basis and in the elastic
case we have

|out⟩ =
∫
−p1

∫
−p2

∫
p3

∫
p4

φ1(−p1)φ2(−p2) ei(b1·p1+b2·p2)|p3, p4⟩⟨p3, p4|S| − p1,−p2⟩+ · · · (2.4)

and one can evaluate the S-matrix with standard QFT methods. The KMOC approach
exploits the fact that, for classical observables,3 the expectation value (2.3) has finite classical
limit order by order in the G-expansion. In order to make this manifest, it is convenient
to introduce the following scaling for the momenta

p1 ∼ p2 ∼ O(λ0) , qi ∼ k ∼ O(λ) , as λ → 0 , (2.5)

where λ is proportional to ℏ, and so it is small, pi are the external momenta of the black holes
as in (2.2), while with qi and k we will indicate the momenta of virtual and real gravitons
respectively. For later convenience we introduce the notation below to indicate the behavior
of an arbitrary quantity Q under the scaling (2.5)

Q[−j] ∼ O(λ−j) . (2.6)

When computing (2.3) in the KMOC approach, we will need to extract at each order in G

the first non-trivial contribution to the expectation value in the limit (2.5) and to rewrite
it in terms of classical quantities (which can be done since all factors of λ or of ℏ should
have canceled). Instead, in the eikonal approach one uses a classical approximation for

3When considers quantum observables, such as the average number of gravitons emitted during a scattering
process, one would find results that diverge in the classical limit. Here, we will focus on classical observables,
such as the deflection angle and the waveform.
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the S-matrix in order to obtain an expression for the out-states and for the expectation
values, see (2.3). This classical S-matrix arises by exponentiating the divergent terms as
ℏ → 0, which is done by working in impact parameter space. While at the LO in the PM
expansion the results obtained in the two approaches can be compared directly, it turns
out that at subleading order the eikonal impact parameter be is different from the one used
in the KMOC approach which we indicate as bJ , to stress that it is directly related to the
initial angular momentum J of the binary in the center of mass frame. In order to spell
out this point, which will play an important role in the analysis of the waveform, let us
first introduce our conventions on the kinematics (following closely [20]) starting first from
the elastic scattering and then including radiation.

For the elastic tree-level 2 → 2 amplitude we have,

A(4)
0 (p1, p2; q) = q

p1

p2 p3

p4

= A(4)[−2]
0 (p̄1, p̄2; q) +O(λ0) , (2.7)

with

qµ = pµ
1 + pµ

4 = −pµ
2 − pµ

3 , p̄µ
1 = pµ

4 − pµ
1

2 = −pµ
1 + qµ

2 , p̄µ
2 = pµ

3 − pµ
2

2 = −pµ
2 − qµ

2 , (2.8)

where q ∼ ℏ/be ∼ ℏ/bJ is quantum and so it is also the difference between p̄1,2 and −p1,2.

2.1 PM impulse

Let us now see how the classical impulse Qµ describing the total momentum exchanged in
the process emerges in the KMOC approach. In order to do this we need to calculate the
expectation value (2.3), for the observable representing the variation of the momentum of
one of the massive states (i.e. the impulse). For instance, denoting by P µ

1 the operator
measuring the momentum of particle 1, we have

Qµ = ⟨out|P µ
1 |out⟩ − ⟨in|P µ

1 |in⟩ = Qµ
1PM + Qµ

2PM +O(G3) . (2.9)

In order to write the results of the expectation values in terms of classical quantities we need
to perform a Fourier transform to impact parameter space

FT[O] =
∫

dDq

(2π)D
2πδ(2p1 · q) 2πδ(2p2 · q)O(q) eib·q , (2.10)

where O is a generic observable. When the Fourier transform (2.10) is performed on a quantity
whose leading behavior is classical, we can neglect the difference between pi and p̄i and the
shifts ±q2 that would appear in the delta functions when writing the full on-shell conditions
for the final states. These differences have an extra factor of ℏ and so they cannot change
the leading classical term. However the interpretation of the impact parameter b appearing
in (2.10) depends on how the classical quantity has been extracted from the amplitude, which
in general contains terms which are more divergent than the classical ones as ℏ → 0. When
applying (2.10) to observables obtained in the KMOC approach, the impact parameter should
be interpreted as bJ , i.e. the quantity directly related to the orbital angular momentum
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J = |p⃗ |bJ . We review this point below in the simple example of the 2PM impulse [51]. Let us
stress that bJ is the impact parameter appearing also at subleading PM orders whenever the
subtraction leading to the classical result is done by using the full unitarity cuts [51, 79, 80].

Coming back to the impulse in the KMOC approach, we can compute perturbatively (2.9)
by expanding S = 1+ iT and writing the matrix elements of T in terms of amplitudes. Then,
at the first order in G, the expectation value gets contributions only from terms linear in
T and so it can be written in terms of a tree-level amplitude, which we can approximate
at the leading order in the regime (2.5). The operator P µ

1 inserted in the expectation value
yields either p1 or p4 for the terms linear in T and so we get

Qµ
1PM = iFT

[
(p1 + p4)µA(4)[−2]

0

]
= iFT

[
qµA(4)[−2]

0

]
, (2.11a)

where, for minimally coupled massive scalars,

A(4)[−2]
0 (p1, p2; q) =

32πGm2
1m2

2

(
σ2 − 1

D−2

)
q2 , (2.11b)

with
σ = −p1 · p2

m1m2
, E =

√
−(p1 + p2)2 =

√
m2

1 + 2m1m2σ + m2
2 . (2.12)

By using (2.11) we have

Qµ
1PM = −bµ

J

bJ

4Gm1m2
(
σ2 − 1

2

)
bJ

√
σ2 − 1

. (2.13)

Notice that in order to restore length and mass units in the equation above, one does not
need factors of ℏ: as advertised, expectation values of classical observables are independent
of it. Thus we can interpret (2.13) as the classical result at order G, i.e. at leading order
in the PM expansion.

The contributions coming from elastic diagrams involving more exchanged gravitons will
yield subleading PM corrections. Let us discuss the 2PM correction in some detail as in
the next section we will employ a similar approach to study the subleading contribution to
the waveform. The second term in the PM expansion of the impulse, Qµ

2PM, contains two
contributions [16, 51].4 One comes from the terms linear in T in the expectation values (2.9)
and is proportional to a scattering amplitude which now has to be evaluated at the second
order in G, while the second one comes from the term quadratic in T where each factor
is evaluated at order G,

Qµ
2PM = iFT

[
p4A(4)

1 + p1A(4)∗
1 − i

∫
(ℓ − p1)A(4)

0 (p1, p2; ℓ)A(4)∗
0 (p3, p4; q − ℓ)dL(ℓ)

]
, (2.14)

where A(4)
1 (A(4)

0 ) is the elastic 4-point 1-loop (tree-level) amplitude and
∫

dL(ℓ) indicates
an integral over ℓ where the cut propagators are on-shell∫

dL(ℓ) =
∫

dDℓ

(2π)D
2πδ(2p1 · ℓ − ℓ2) 2πδ(2p2 · ℓ + ℓ2) . (2.15)

4A similar analysis has recently been discussed for the scattering of spinning particles [81].
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It is convenient to rewrite this result in terms of the real and the imaginary part of A(4)
1 .

Thanks to unitarity −i(T − T †) = T †T , the imaginary part can be combined with the last
term in (2.14) yielding

Qµ
2PM = iFT

[
qµ ReA(4)[−1]

1 + isµ
]

, (2.16)

where

sµ =
∫ (

pµ
4 − pµ

1
2 − (ℓµ − pµ

1 )
)
A(4)

0 (p1, p2; ℓ)A(4)∗
0 (p3, p4; q − ℓ)dL(ℓ) . (2.17)

The contribution from ReA(4)
1 in (2.16) follows the same pattern we saw at tree level: its

leading behavior in the regime (2.5) (which is O(λ−1)) ensures that the final contribution
to the impulse is classical. Focusing again on GR for instance, we have

ReA(4)[−1]
1 = 2πGm2

1m2
2(m1 + m2)

3π(5σ2 − 1)
q

, (2.18)

and thus

iFT
[
qµ ReA(4)[−1]

1

]
= −bµ

J

bJ

3πG2m1m2(m1 + m2)(5σ2 − 1)
4b2

J

√
σ2 − 1

= −bµ
J

bJ
Q2PM . (2.19)

As anticipated, the contribution above is classical since it has the dimension of a mass without
the need of introducing ℏ. Instead, the term involving sµ in (2.16) naively seems to have
contributions that scale as O(λ−2) by (2.17), where the two terms in the round parenthesis
are separately O(λ0). However, the leading term cancels and we obtain

s̃µ = FT
[∫ (1

2 qµ − ℓµ
)
A(4)

0 (p1, p2; ℓ)A(4)∗
0 (p3, p4; q − ℓ)dL(ℓ)

]
. (2.20)

Eq. (2.20) was evaluated explicitly in [51] by doing the integral over ℓ first and then
performing the Fourier transform. It is instructive to reproduce the same result by doing the
two operations in the opposite order as this approach will be useful in the next section when
discussing a similar cut contribution in the inelastic case. By using the variables p̄i (2.8),
so as to exploit the simpler classical expansion in (2.7), we have

s̃µ = FT
[ ∫

dDℓ

(2π)D

(1
2qµ − ℓµ

)
A(4)

0 (p1, p2; ℓ)A(4)∗
0 (p3, p4; q − ℓ)

× 2πδ(2p̄1 · ℓ + ℓ · (ℓ − q))2πδ(2p̄2 · ℓ − ℓ · (ℓ − q))
]
.

(2.21)

At the first order in the classical limit (2.5) we can use (2.7) and approximate the delta
functions by keeping only the linear terms in p̄i. However this contribution vanishes [16, 51],
by using the delta functions and the fact that the integrand becomes odd in ℓ → q − ℓ at this
order. Thus the first non-trivial term follows from the expansion of the delta functions

δ(2p̄1 · ℓ + ℓ · (ℓ − q))δ(2p̄2 · ℓ − ℓ · (ℓ − q)) =
δ(2p̄1 · ℓ)δ(2p̄2 · ℓ) + ℓ · (ℓ − q)

(
δ′(2p̄1 · ℓ)δ(2p̄2 · ℓ)− δ(2p̄1 · ℓ)δ′(2p̄2 · ℓ)

)
+ · · · ,

(2.22)
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while, thanks to (2.7), there are no NLO contribution from the tree amplitude. Since the
result is classical, we may now approximate p̄µ

i ≃ −pµ
i (i = 1, 2), and by using the fact

that A(4)[−2]
0 is real write

s̃µ = FT
[ ∫

dDℓ

(2π)D

(
ℓµ − 1

2qµ
)
A(4)[−2]

0 (ℓ)A(4)[−2]
0 (q − ℓ)

× (2π)2ℓ(ℓ − q)
(
δ′(2p1 · ℓ)δ(2p2 · ℓ)− δ(2p1 · ℓ)δ′(2p2 · ℓ)

) ] (2.23)

up to quantum corrections. Let us introduce the following variables to indicate the velocities
of the massive particles

pµ
1 = −m1vµ

1 , pµ
2 = −m2vµ

2 , σ = −v1 · v2 (2.24)

and the dual velocities

v̌µ
1 = σvµ

2 − vµ
1

σ2 − 1 , v̌µ
2 = σvµ

1 − vµ
2

σ2 − 1 , (2.25)

which satisfy v̌i · vj = −δij , so that

δ′(2p1 · ℓ) = v̌ρ
1

2m1

∂

∂ℓρ
δ(2p1 · ℓ) , δ′(2p2 · ℓ) = v̌ρ

2
2m2

∂

∂ℓρ
δ(2p2 · ℓ) . (2.26)

Using the above expressions to rewrite the delta functions appearing in (2.23), and integrating
by parts, we can check that the only term giving a non-trivial O(λ0) contribution is obtained
when the derivative acts on ℓµ. Thus we get

sµ =
(

v̌µ
1

2m1
− v̌µ

2
2m2

)∫
dDℓ

(2π)D
A(4)[−2]

0 (ℓ) ℓ·(q−ℓ)A(4)[−2]
0 (q−ℓ) 2πδ(2p̄1 ·ℓ)2πδ(2p̄2 ·ℓ) (2.27)

Going to impact-parameter space, the convolution factorizes (see e.g. [20] for more details),
and one is left with

s̃µ = −
(

v̌µ
1

2m1
− v̌µ

2
2m2

)
Q2

1PM . (2.28)

Inserting (2.19) and (2.28) in (2.16), we finally have

Qµ
2PM = −bµ

J

bJ
Q2PM +

(
v̌µ

1
2m1

− v̌µ
2

2m2

)
Q2

1PM . (2.29)

The longitudinal terms in (2.29) are thus induced by the following transformation of
the basis vectors,

m1vµ
1 7→ m̃1ũµ

1 = p̃µ
1 = −pµ

1 + 1
2 Qµ , m2vµ

2 7→ m̃2ũµ
2 = p̃µ

2 = −pµ
2 − 1

2 Qµ , (2.30)

and
bµ

J 7→ bµ
e = bµ

J −
(

v̌µ
1

2m1
− v̌µ

2
2m2

)
Q bJ , (2.31)
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where p̃1,2 and bµ
e are defined in such a way that, while p1,2 · bJ = 0,

p̃1,2 · be = 0 . (2.32)

Notice that the momenta p̃i and −pi differ by a classical quantity in contrast to what happens
with the variables p̄i defined in (2.8). In analogy to what was done in (2.24) and (2.25), we
introduce for later convenient also the velocities ui

p̄µ
1 = −m̄1uµ

1 , p̄µ
2 = −m̄2uµ

2 , y = −u1 · u2 (2.33)

and the dual velocities

ǔµ
1 = yuµ

2 − uµ
1

y2 − 1 , ǔµ
2 = yuµ

1 − uµ
2

y2 − 1 , (2.34)

which satisfy ǔi · uj = −δij . Coming back to the impulse the difference between the norms
be and bJ is of order G2 (and similarly between mi and m̃i). Thus, at 2PM order one can
regard the transformation of bµ

J as a rotation and by using (2.31) in (2.29) we have

Qµ = −bµ
e

be
(Q1PM + Q2PM) +O(G3) . (2.35)

The infinitesimal action of (2.30), (2.31) can be written as follows,

δ̄Qµ = Q1PM ∂̄Qµ +O(G3) , (2.36)

where
∂̄ = −bα

J

bJ

( 1
2m1

∂

∂vα
1
− 1

2m2

∂

∂vα
2

)
− bJ

(
v̌α

1
2m1

− v̌α
2

2m2

)
∂

∂bα
J

, (2.37)

is a differential operator that preserves the constraints v1,2 · bJ = 0. So we can write the
longitudinal contribution as follows

−s̃µ = δ̄Qµ = Q1PM∂̄Qµ . (2.38)

It is instructive to explicitly check that acting with ∂̄ as in (2.36) indeed reproduces
the longitudinal terms in (2.28) both when using the explicit 1PM expression (2.13), where
only the ∂/∂bα

J part of ∂̄ acts non-trivially, and when using the integral expression (2.11a),
where instead only the ∂/∂vα

1 , ∂/∂vα
2 terms act non-trivially. This interplay is due to the

fact that only the sum of the two terms in (2.37) is a well-defined differential operator on the
constrained surface v1,2 · bJ = 0, whereas the two terms are separately ambiguous.

Let us conclude this section with a brief comparison between the KMOC and the eikonal
approach. The basic idea of the latter is to first obtain a classical approximation for the
out-state by resumming the leading contributions in the classical limit into an exponential
form. In the elastic approximation, we expect

|out⟩ = [1 + i∆(E, be)] e2iδ(E,be)|in⟩ , (2.39)

where ∆ captures quantum effects while the classical part, scaling as 1/ℏ, exponentiates. The
quantities appearing on the r.h.s. can be determined by performing a formal expansion in G
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on the S-matrix elements ⟨in|out⟩ and matching the result with perturbative calculations,
see [20] and references therein. This allows to determine the eikonal phase δ(E, be) in a PM
expansion and, for instance, in the case of GR we have at leading and subleading order

2δ0 = Ã(2)[−2]
0 =

2Gm1m2(σ2 − 1
D−2)√

σ2 − 1
Γ(−ϵ)
(πb2

e)−ϵ
, 2δ1 = 3πG2m1m2(m1 + m2)(5σ2 − 1)

4be

√
σ2 − 1

.

(2.40)
Let us stress that even the leading contribution captures (after exponentiation) an infinite
number of ladder and cross-ladder diagrams,

1 + iFT = e2iδ0 . (2.41)

Since the matching in (2.39) is performed on a result with terms that are more divergent
than the classical ones, one has to be careful about subleading quantum corrections. The
subtraction implied by this procedure requires to interpret the impact parameter appearing
in the equation in a different way from the one used in the KMOC approach. A first signal of
this can be seen by rewriting the eikonal S-matrix in momentum space: the Fourier transform
can be performed via a stationary phase argument (and similarly for the transformation from
the energy to the time domain) leading to the impulse and (IR-divergent) Shapiro time delay

Qµ = ∂2δ

∂(be)µ
, T = ∂2δ

∂E
= E

m1m2

∂2δ

∂σ
. (2.42)

Because of the kinematic constraint Q = 2|p⃗ | sin(Θ/2) between the impulse and the elastic
scattering angle Θ, there is in general a non-linear relation between the angle and ∂be(2δ)
contrary to what happens when one takes the derivative of the radial action with respect
to bJ . By using (2.40) and (2.42) one then directly obtains (2.35) for GR, with Qµ written
in terms of bµ

e [20], and, to leading order,

T1PM = 2GE
σ
(
σ2 − 3−4ϵ

2−2ϵ

)
(σ2 − 1)3/2

Γ(−ϵ)
(πb2

e)−ϵ
. (2.43)

3 From amplitudes to the PM waveform

Let us now proceed to study another classical observable, the expectation value of the
canonically quantized graviton field in the final state:

⟨Hµν(x)⟩ = ⟨out|
∫

k

[
eik·xaµν(k) + e−ik·xa†

µν(k)
]
|out⟩ , (3.1)

where, as before, the out-state is dictated by the S-matrix as in (2.3). However, compared
to (2.4) we now need to also include the first inelastic contribution with one graviton of
momentum kµ in the final state,

|out⟩ =
∫
−p1

∫
−p2

∫
p3

∫
p4

φ1(−p1)φ2(−p2)ei(b1·p1+b2·p2)

×
[
|p3, p4⟩⟨p3, p4|S| − p1,−p2⟩+

∫
k
|p3, p4, k⟩⟨p3, p4, k|S| − p1,−p2⟩+ · · ·

]
.

(3.2)
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The metric fluctuation sourced by the scattering,

gµν(x)− ηµν = 2
√
8πG ⟨Hµν(x)⟩ = hµν(x) , (3.3)

is determined by the so-called wave-shape W [16, 54, 82],

⟨out|aµν(k)|out⟩ = iFT[Wµν(k)] ≡ iW̃µν , (3.4)

where the generalization of the Fourier transform (2.10) reads

FT[f ] =
∫

dDq1
(2π)D

dDq2
(2π)D

(2π)Dδ(D)(q1+q2+k) 2πδ(2p1 ·q1) 2πδ(2p2 ·q2) eib1·q1+ib2·q2 f(q1, q2, k).

(3.5)
In the rest of the paper, we shall employ the following notation for the 5-point kinematics.
We denote

ω1 = −v1 · k , ω2 = −v2 · k , (3.6)

so that ωi with i = 1, 2 are the frequencies of the emitted graviton in the rest frame of the
first or the second massive particle, and

qµ
1 = pµ

1 + pµ
4 , qµ

2 = pµ
2 + pµ

3 , qµ
1 + qµ

2 + kµ = 0 , (3.7)

so that

p̄µ
1 = −pµ

1 + 1
2 qµ

1 , p̄µ
2 = −pµ

2 + 1
2 qµ

2 (3.8)

obey p̄1 · q1 = 0, p̄2 · q2 = 0. Note that (3.8) reduces to (2.8) in the elastic case kµ = 0,
qµ

1 = qµ = −qµ
2 .

Let us also recall the following useful identities

m1ω1 + m2ω2 = Eω , E|p⃗ | = m1m2
√

σ2 − 1 , (3.9)

where E, p⃗ and ω are, respectively, the total energy, the massive particle’s spatial momentum
and the graviton’s frequency in the center of mass frame. W̃µν in eq. (3.4) is the fundamental
object entering (3.1). From it one can derive the asymptotic limit of the metric at the future
null infinity and, in D = 4, we have

⟨Hµν(x)⟩ ∼
1

4πr

∫ ∞

0

[
e−iωU W̃µν(ω n) + eiωU W̃ ∗

µν(ω n)
] dω

2π
. (3.10)

Here nµ = kµ/ω is a null vector such that −n · t = −1 where tµ is the four-velocity of the
detector, while r is the radial distance of the detector from the source and U is the retarded
time. The dimensionless metric fluctuation in the asymptotic limit is thus given by

hµν(x) ∼
4G

r

∫ ∞

0
e−iωU W̃µν(ω n)√

8πG

dω

2π
+ (c.c.) , (3.11)

where “c.c.” stands for complex conjugate.
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The leading contribution to (3.4) is of order G3/2: it is obtained by using the second
line of (3.2) to rewrite the bra-vector in (3.4), focusing on T in S = 1 + iT and on 1 in S†.
This is given by a tree-level amplitude, so we have

W̃ µν
0 = FT[Aµν

0 ] , (3.12)

where Aµν
0 is now the amplitude with an extra graviton in the final state with respect to the

elastic case discussed in the previous section. For our purposes it is useful to notice that
it enjoys a classical expansion similar to the elastic amplitude (2.7)

A0(p1, p2; q1, q2) =
p1

p2 p3

p4

k = A[−2]
0 (p̄1, p̄2; q1, q2) +O(λ0) , (3.13)

with no corrections scaling as O(λ−1). The explicit result for W̃ µν
0 was already discussed long

ago in [36] and has more recently been rederived and simplified in [37, 38] (see also [52, 83–87]
for generalizations which include spin or tidal effects).

It was pointed out in [1] that at subleading PM order a naive generalization of (3.12),
where the classical part of the 5-point 1-loop amplitude is used on the r.h.s., is not correct,
in the sense that this is not the result that follows from the KMOC prescription (3.1). We
are still going to present the calculation as done historically, by first focusing on the 5-point
1-loop amplitude Aµν

1 , as done in [45–48], and then analyze separately the new contribution
needed to reconstruct the NLO PM waveform.

3.1 The 5-point 1-loop amplitude

The one-loop amplitude Aµν
1 , describing the scattering of the massive states with a graviton

in the final state, has a real part ReAµν
1 = Bµν

1 as well as an imaginary part dictated by its
unitarity cuts. We will indicate these contributions as follows

Aµν
1 = Bµν

1 + i

2(s
µν + s′µν) + i

2(c
µν
1 + cµν

2 ) (3.14)

where the contributions related to the cuts are

s = s′ = (3.15)

and

c1 = c2 = (3.16)

and they all possess an infrared (IR) divergent contribution. Instead the “irreducible” part
Bµν

1 is real and finite.5

5As discussed in [45–48], IR divergences also appear in the real part [58] but only in quantum terms.
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In the regime (2.5), the classical contribution scales as O(λ−1) and we have

i

2(s
µν + s′µν) ∼ is

[−2]µν
+ +O(λ0) , (3.17)

while
i

2 cµν
1,2 ∼ i

2 c
[−1]µν
1,2 ∼ O(λ−1) , (3.18)

Bµν
1 = B[−1]µν

1 ∼ O(λ−1) . (3.19)

Due to the absence of classical O(λ−1) terms in (3.17), the leading order of the amplitude is
given by the sum of the S-channel cuts and should disappear in classical observables, while
its classical part is given by the real part and by the C-channel cuts (3.20)

Aµν
1 ∼ is

[−2]µν
+ +

[
B[−1]µν

1 + i

2
(
c

[−1]µν
1 + c

[−1]µν
2

)]
+O(λ0) . (3.20)

The rest of this section is devoted to a closer analysis of the various building blocks of
the amplitude. Starting from Bµν

1 , we recall that it can be further broken down as follows

Bµν
1 = Bµν

1O + Bµν
1E , (3.21)

where

Bµν
1O =

[
1−

σ(σ2 − 3
2)

(σ2 − 1)3/2

]
πGEω Aµν

0 (3.22)

is odd under ω1 7→ −ω1, ω2 7→ −ω2, ω 7→ −ω, while Bµν
1E is even under this transformation.

The even part takes the following form,

εµBµν
1Eεν = AR

1√
q2

1 + ω2
2

+ AR
2√

q2
2 + ω2

1

+ AR
3√
q2

1

+ AR
4√
q2

2

(3.23)

where AR
i are rational functions of q2

1, q2
2, ω1, ω2 and σ, bilinear in ε · q2, ε · u1, ε · u2, which

are provided in the ancillary files of [46].
Let us turn to the C-channel contribution to the waveform kernel [45–48]. For these

cuts the infrared divergence is associated to a running logarithm depending on the frequency,
hallmark of the tail effect, and can be cast in the form,

i

2(c
µν
1 + cµν

2 ) = iGEω

[
−1

ϵ
+ log ω1ω2

µ2
IR

]
Aµν

0 + iMµν
1 (3.24)

where Mµν
1 is IR finite. We follow in particular the splitting adopted in ([46], eq. (7.2))

so that Mµν
1 is given as follows,

εµMµν
1 εν =

AI
rat + AI

1

arcsinh ω2√
q2

1√
q2

1 + ω2
2

+ AI
2

arcsinh ω1√
q2

2√
q2

2 + ω2
1

+ AI
3 log q2

1
q2

2
+ AI

4 log ω1
ω2

+ AI
5

arccosh σ

(σ2 − 1)3/2 .
(3.25)
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AI
i are again rational functions of q2

1, q2
2, ω1, ω2 and σ, bilinear in ε · q2, ε · u1, ε · u2 and

are also provided in the ancillary files of [46].
For later convenience let us evaluate the divergent part of cµν

1 . This comes from the
region where the momentum of the graviton in the Compton sub-diagram (the right blob)
is the smallest energy scale in the problem. In this regime we can approximate the explicit
expression for this contribution

c1µν = =
∫

dDℓ

(2π)D
2πδ(2p̄1 · ℓ) 2πδ((k + ℓ)2)Θ(−k0 − ℓ0)

×A[−2]ρσ
0 (p̄1, p̄2; q1 − ℓ, q2)

(
δα

ρ δβ
σ − 1

D − 2 ηρσηαβ
)
A(C)[−2]

αβ,µν (p1,−ℓ − k; ℓ) ,

(3.26)

by using the GR contribution6

A
(C)[−2]
αβ,µν (p1,−ℓ − k; ℓ) = 4κ2 (p1 · k)2

ℓ2

(
ηαµ − p

(α
1 k

µ)

p1 · k

)(
ηβν − p

(β
1 k

ν)

p1 · k

)
+O(ℓ) (3.27)

and by placing a very small cutoff Λ on |ℓ|, so that we may effectively set ℓ = 0 in A[−2]ρσ
0 .

Proceeding in this way, and contracting with physical polarizations ε · k = 0, ε · ε = 0, we get

cdiv
1µνεµεν = 4κ2A[−2]ρσ

0 (p̄1, p̄2; q1, q2)ερεσ

∫
dDℓ

(2π)D
2πδ(2p1 · ℓ) 2πδ(2k · ℓ)Θ(Λ2 − ℓ2) (m1ω1)2

ℓ2 .

(3.28)

Using ∫
dDℓ

(2π)D

1
ℓ2 2πδ(2p1 · ℓ) 2πδ(2k · ℓ)Θ(Λ2 − ℓ2) = 1

8πm1ω1

[
− 1
2ϵ

+ logΛ
]

, (3.29)

we obtain

(c1µν + c2µν)div = 2GEω A[−2]
0µν (p̄1, p̄2; q1, q2)

[
−1

ϵ
+ log(Λ2)

]
(3.30)

in agreement with the literature [1, 45, 46, 48] (and with (3.24)).

3.2 The NLO PM waveform

Evaluating at the subleading order (3.4) shows that in order to derive the NLO waveform
the 1-loop amplitude discussed above it is not sufficient to drop the divergent term (3.17).
Instead one should subtract the cut s′µν [1], which yields

W̃ µν
1 = FT

[
Aµν

1 − is′µν] = FT
[
B[−1]µν

1 + is
[−1]µν
− + i

2
(
c

[−1]µν
1 + c

[−1]µν
2

)]
, (3.31)

where we define s
[−1]µν
− by

i

2(s
µν − s′µν) ∼ i s

[−1]µν
− ∼ O(λ−1) . (3.32)

6As seen, for instance, by taking the q1 + q2 → 0 limit of eq. (4.36) in [20].
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In this section we focus on this new contribution s
[−1]µν
− that was not taken into account

in [45, 46, 48].
Two approaches are possible. One is to compute s

[−1]µν
− in momentum space by using the

explicit expression for the tree-level 4-point and 5-point amplitudes, and then by performing
the loop integration, following the same approach used for the amplitude [45, 46, 48]. We
refer to [55, 56] and v4 of [45, 46] for this calculation. Here, instead, we follow an alternative
approach inspired by the eikonal exponentiation, which allows us to provide a compact
relativistic expression for s̃

[−1]µν
− directly in impact-parameter space. The idea is simple:

instead of first performing the loop integrals and then the Fourier transform (2.10) to b-space,
we rewrite the contribution to the cut as a product of tree-level building blocks in impact
parameter space, very much as it was done starting from (2.17) for the cut in the elastic
1-loop amplitude. This approach has the further advantage of eliminating all analytic (in
q1 − q2) contributions that translate to short-range terms in b-space and are thus irrelevant in
the PM expansion, but that make the momentum space expression s

[−1]µν
− more complicated.

We begin from the explicit expressions for the cuts s and s′ in terms of the momentum
space tree-level ingredients. With an accuracy up to and including the classical O(λ−1)
order, we have

sµν = =
∫

dDℓ

(2π)D
2πδ(2p̄1 · ℓ + ℓ · (ℓ − q1)) 2πδ(2p̄2 · ℓ − ℓ · (ℓ + q2))

×A(4)[−2]
0

(
p̄1 +

1
2(ℓ − q1), p̄2 −

1
2(ℓ + q2); ℓ

)
A[−2]

0µν

(
p̄1 +

ℓ

2 , p̄2 −
ℓ

2; q1 − ℓ, q2 + ℓ

)
(3.33)

and

s′µν = =
∫

dDℓ

(2π)D
2πδ(2p̄1 · ℓ − ℓ · (ℓ − q1)) 2πδ(2p̄2 · ℓ + ℓ · (ℓ + q2))

×A[−2]
0µν

(
p̄1 −

ℓ

2 , p̄2 +
ℓ

2; q1 − ℓ, q2 + ℓ

)
A(4)[−2]

0

(
p̄1 −

1
2(ℓ − q1), p̄2 +

1
2(ℓ + q2); ℓ

)
.

(3.34)

In the sum, we see that all first-order expansions of A(4)[−2]
0 , A[−2]

0 and of the delta functions
in the soft region ℓ ∼ q1 ∼ q2 ∼ O(λ) cancel out and one is left just with the leading
O(λ−2) contribution

sµν + s′µν

2 =
∫

dDℓ

(2π)D−2 δ(2p̄1 · ℓ) δ(2p̄2 · ℓ)A(4)[−2]
0 (p̄1, p̄2; ℓ)A[−2]

0µν (p̄1, p̄2; q1 − ℓ, q2 + ℓ) (3.35)

up to O(λ0) corrections, in agreement with [1, 48]. Vice versa, in the difference they add up.
As done in the elastic case we use (2.26) and integrate by parts the result of the expansion
in order to rewrite the contribution without using derivatives of delta function. Since we
are focusing on a quantity whose leading term is classical, we can just neglect all subleading
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quantum corrections, obtaining
i

2
(
s[−1]

µν − s
′[−1]
µν

)
= (3.36)

i

∫
dDℓ

(2π)D
2πδ(2p̄1 · ℓ) 2πδ(2p̄2 · ℓ)

×
{
A[−2]

0µν (p̄1, p̄2; q1 − ℓ, q2 + ℓ) Eω

2m1m2

[
∂

∂σ
− σ

σ2 − 1

]
A(4)[−2]

0 (σ; ℓ2) +A(4)[−2](σ; ℓ2)

×
[

ℓ2 − ℓ · q1
2m1

∂

∂ℓ∥1
− ℓ2 + ℓ · q2

2m2

∂

∂ℓ∥2
+ ℓα

2

(
∂

∂p̄α
1
− ∂

∂p̄α
2

)]
A[−2]

0µν (p̄1, p̄2; q1 − ℓ, q2 + ℓ)
}

,

where we have defined ℓµ = ℓ∥1ǔµ
1 + ℓ∥2ǔµ

2 + ℓµ
⊥ and

A(4)[−2](p̄1, p̄2; ℓ) ≃ A(4)[−2](p1, p2; ℓ) = A(4)[−2](σ; ℓ2) . (3.37)

Note that the differential operator in the square parenthesis in the last line of (3.36) preserves
the mass-shell constraints p̄1 · (q1− ℓ) = 0 and p̄2 · (q2 + ℓ) = 0. One can evaluate the first term
of the curly parenthesis in (3.36) by using the elastic 2 → 2 amplitude (2.11b), obtaining

1
2m1m2

[
∂

∂σ
− σ

σ2 − 1

]
A(4)[−2]

0 (σ; ℓ2) = 16πGm1m2
ℓ2

σ
(
σ2 − 3−4ϵ

2−2ϵ

)
σ2 − 1 . (3.38)

We now take the Fourier transform as we did in (2.10) for the elastic amplitude. In the
case at hand we solve q1 + q2 + k = 0 in (3.7) by eliminating q2 and define the Fourier
transform with respect to q1

FT(k)
q1 [f(q1, q2, k)] = e−ib2·k

∫
dDq1
(2π)D

2πδ(2p̄1 · q1) 2πδ(2p̄2 · (q1 + k)) eib·q1f(q1,−q1 − k, k) .

(3.39)
We proceed by considering separately the two terms in (3.36), writing

i s̃
[−1]µν
− = D̃µν + F̃µν . (3.40)

The D-term factorizes straightforwardly as follows

D̃µν = i

2 ω T1PM W̃ µν
0 (p1, p2; bJ ; k) (3.41)

in terms of the tree-level waveform W̃0 and of the IR-divergent Shapiro time delay (2.43).
As in the elastic case, the classical results obtained by following the KMOC prescription are
written in the frame aligned with pi and bJ . The F-term can be instead cast in the form

F̃µν = Qα
1PM

[
ǔβ

1
2m1

(
−i

∂

∂bα
J

)
+ ǔβ

2
2m2

(
−i

∂

∂bα
J

+ kα

)]
FT(k)

ℓ

[
∂

∂ℓβ
A[−2]

0µν (p̄1, p̄2; ℓ; k)
]

+ Qα
1PM FT(k)

ℓ

[1
2

(
∂

∂p̄α
1
− ∂

∂p̄α
2

)
A[−2]

0µν (p̄1, p̄2; ℓ; k)
]

,

(3.42)

where we used the 1PM impulse (2.43). In the following, we restrict to the center-of-mass
translations frames,

bα
1 = E2

E
bα

J , bα
2 = −E1

E
bα

J , (3.43)
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where
E1
E

= m1(m1 + m2σ)
m2

1 + 2m1m2σ + m2
2

,
E2
E

= m2(m2 + m1σ)
m2

1 + 2m1m2σ + m2
2

. (3.44)

Following the example of the impulse kernel discussed in the previous section, let us compare
the F-term in (3.42) with the transformation of the leading waveform,

δ̄W̃ µν
0 = W̃ µν

0 (p̃1, p̃2; be; k)− W̃ µν
0 (−p1,−p2; bJ ; k) , (3.45)

with p̄1, p̄2 and be as in (2.30) and (2.31). To leading PM order, the transformation (3.45)
is given by Taylor expanding the waveform, which leads us to

δ̄W̃ µν = Q1PM ∂̄W̃ µν
0 (m1v1, m2v2; bJ ; k) +O(G7/2) (3.46)

with ∂̄ as in (2.37). Letting ∂̄ act on the leading-order waveform expressed as the Fourier
transform (3.39) of the tree-level amplitude A[−2]

0 we obtain

δ̄W̃ µν
0 = F̃ − i

2 ωbe Q1PM
E1E2
Ep2 W̃ µν

0 , (3.47)

where we write be at the place of bJ when the difference is immaterial for our purposes and

E =
√

m2
1 + 2m1m2σ + m2

2 , Ep = m1m2
√

σ2 − 1 . (3.48)

Combining (3.47), from which we read off the F -term, with the expression for the D-term
in (3.41), we finally obtain

i s̃
[−1]µν
− = δ̄W̃ µν

0 + i

2 ω

(
T1PM + be Q1PM

E1E2
Ep2

)
W̃ µν

0 . (3.49)

By using the GR expressions for T1PM and Q1PM (2.43), we have the explicit expression

i s̃
[−1]µν
− = (3.50)

δ̄W̃ µν
0 + iGµ2ϵ

IREω

σ
(
σ2 − 3−4ϵ

2−2ϵ

)
(σ2 − 1)3/2

Γ(−ϵ)
(πb2

e)−ϵ
+ (m1 + m2σ)(m2 + m1σ)

m2
1 + 2m1m2σ + m2

2

2σ2 − 1
(σ2 − 1)3/2

 W̃ µν
0 .

The first line of eq. (3.50) thus embodies the mechanism showcased by eq. (2.38) for the
case of the elastic impulse. KMOC subtractions of unitarity cuts with two intermediate
on-shell massive particles both subtract classically singular terms from the amplitude and
leave behind the transformation associated to the change of frame (2.30) and (2.31), induced
by the operator ∂̄ (2.37). In this sense, (3.50) provides the generalization for generic velocity
and frequency of the mechanism first noted in ref. [2], in the PN limit, and in ref. [52] to
leading order in the soft limit.

A novelty with respect to the elastic case is instead given by the IR divergent piece in
the second line of (3.50). The IR pole comes from the first term of the square parenthesis
there and takes the form

i s̃
[−1]µν
− = − i

ϵ
GEω

σ
(
σ2 − 3

2
)

(σ2 − 1)3/2 W̃ µν
0 +O(ϵ0) . (3.51)
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We can read the IR divergent contribution of the other cuts from (3.30): since the dependence
on the impact parameter is entirely in W̃ µν

0 , it is straightforward to perform the Fourier
transform back to momentum space obtaining

c̃µν
1 + c̃µν

2 = (c̃µν
1 + c̃µν

2 )reg + (c̃µν
1 + c̃µν

2 )div ,
i

2 (c̃µν
1 + c̃µν

2 )div = − i

ϵ
GEωW̃ µν

0 . (3.52)

Since both (3.51) and (3.52) are proportional to the tree-level waveform, one can always
reabsorb them into the definition of the origin of retarded time in (3.11) [88, 89]. This is
equivalent to multiplication by an overall phase in frequency domain,

hµν(x) ∼
4G

r

∫ ∞

0
e−iω(U+ 1

ϵ
U0) W̃ sub

µν (ω n)
κ

dω

2π
+ (c.c.) , (3.53)

where
U0 = GE

[
1 +

σ
(
σ2 − 3

2
)

(σ2 − 1)3/2

]
, (3.54)

so W̃ sub
µν is finite up to NLO in the PM expansion. In fact also the finite piece in the second

line of (3.50) bears this form and can be canceled or modified in a similar way. By following
the same logic, it is convenient to subtract with an appropriate choice of the time-origin
the whole second line of (3.50), while the first line can be effectively taken into account by
using everywhere be, ũ1, ũ2, instead of bJ , v1, v2 (see eqs. (2.30), (2.31)). This will simplify
the formulas presented in sections 4 and 5 below.

Let us comment on the comparison between the KMOC subtraction (3.31) and an
analogous one discussed in [90, 91] in the ultrarelativistic/massless case. There, isµν was
subtracted, instead of is′µν . This leads to a relative minus sign in the analog of (3.54), which
explains the absence of IR divergences in that setup as σ → ∞.7

We have performed the following cross checks on the above derivation. First, we have
explicitly calculated both sides of (3.47) to leading order in the PN expansion ω ∼ p∞ =√

σ2 − 1 → 0. This can be conveniently done by starting from the momentum-space expression
of the tree-level 5-point amplitude, expanding it to leading order in the PN regime, and
then substituting it into both (3.42) and (3.45). As a separate check, we started from the
momentum-space expression for the cut in ref. [55], expanded it to LO, NLO and NNLO
in the PN limit, and performed the resulting Fourier transform to impact-parameter space,
finding perfect agreement with eq. (3.50).8 The Fourier transforms appearing in the PN
limit can be easily computed via

∫
d2−2ϵq⊥
(2π)2−2ϵ

(
1 + p2

∞q2
⊥

ω2

)ν

eib·q⊥ = 2ν+ϵ

π1−ϵ

(
p∞
ω

)−1+ν+ϵ K1+ν−ϵ

(
ωb
p∞

)
Γ(−ν) b1+ν−ϵ

(3.55)

and derivatives thereof.
7We are grateful to Gabriele Veneziano for pointing this out to us.
8In this check one needs to be careful in two steps. First, one has to use the same IR regulator on both sides

of (3.50); for instance, when using the result of ref. [55] in the l.h.s. of (3.50), one needs to use µ̄2 = µ2
IR4πe−γ

(see eq. (3.8) of [48]). Second, as clear from its derivation, (3.50) has to be evaluated in D = 4− 2ϵ dimensions;
there are nontrivial ϵ/ϵ terms arising in the ϵ → 0 limit of the product T1PMW̃ µν

0 on the r.h.s. of (3.50), which
need to be taken into account.
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We have also checked (3.47) in the soft limit ω → 0 (for generic velocities) by explicitly
calculating both of its sides at order O(1/ω), O(logω), O(ω0) and O(ω logω), using the
techniques detailed in subsection 4.1. Moreover, we started from the momentum-space
expression for the cut in ref. [55], performed the soft limit and checked the agreement in
impact parameter space directly with (3.50) to order O(1/ω), O(logω), and O(ω logω). For
these calculations, as we will discuss, one can again start from the tree-level 5-point amplitude,
but care must be exerted when expanding for small ω as two regions open up in the Fourier
integral and both need to be taken into account.

4 Soft expansion

The soft expansion for low graviton frequency of the waveform, or equivalently its
early/late limiting behavior domain, is fixed at the first few leading orders by soft theo-
rems [57, 58, 60–62, 71]. These universal terms can be obtained by acting with an appropriate
soft operator on the elastic eikonal e2iδ [92]. It is therefore interesting to exhibit explicitly
the soft expansion of the waveform up to one loop.

The expansion of the waveform as ω → 0 takes the following form,

W̃ = W̃ [ω−1] + W̃ [log ω] + W̃ [ω0] + W̃ [ω(log ω)2] + W̃ [ω log ω] + · · · (4.1)

and the non-analytic terms are constrained by classical soft theorems [59, 60, 62]. The last
term displayed in (4.1) is dictated by the soft theorem [93] only at tree level.

4.1 Method of regions in the soft limit

Although the ω → 0 limit can be in principle performed on the full b-space expression of
the waveform, it is often more convenient to anticipate it and take ω to be small before
performing the Fourier transform from momentum space to impact parameter. When doing
so, one needs to consider two regions.

The first region is defined in terms of the following kinematic limit,

ω ≪ q⊥ ∼ b−1 (4.2)

with
kµ = ω nµ , ω1 = ω α1 , ω2 = ω α2 , qµ

1 = −ω α2 ǔµ
2 + qµ

⊥ . (4.3)

This region leads to dramatic simplification of the integrand to be Fourier-transformed,
especially at one-loop level. There, by a suitable use of the Gram determinant identity that
guarantees the cancellation of spurious poles, we find that all Fourier transforms can be
reduced to the following elementary one, which can be seen as a limiting case of (3.55),∫

d2−2ϵq⊥
(2π)2−2ϵ

(q2
⊥)ν eib·q⊥ = 4ν

π1−ϵ

Γ(1 + ν − ϵ)
Γ(−ν)(b2)1+ν−ϵ

. (4.4)

Contributions arising from this region are non-analytic in q2
⊥ and therefore long-range in

b, while they are analytic in ω.
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The second region is instead characterized by

ω ∼ q⊥ ≪ b−1 . (4.5)

In this region, the integrand does not simplify, since by construction it is homogeneous in
ω ∼ q⊥ in the classical limit, but one may expand out the phase factor eib·q⊥ = 1+ ib ·q⊥+ · · · .
The Fourier integral then effectively turns into an ordinary one. For the tree level, calculations
in this region can be systematized by introducing the integral family

Ii1i2 =
∫

d2−2ϵq⊥
(2π)2−2ϵ

1(
q2
⊥ + ω2α2

2
σ2−1

)i1 (
(q⊥ − n⊥)2 + ω2α2

1
σ2−1

)i2
(4.6)

(the subscript ⊥ stands for projection orthogonal to u1, u2) with master integrals

I10 = Γ(ϵ)
(4π)1−ϵ

(
α2

2ω2

σ2 − 1

)−ϵ

, I01 = Γ(ϵ)
(4π)1−ϵ

(
α2

1ω2

σ2 − 1

)−ϵ

(4.7)

and

I11 =
√

σ2 − 1
4πα1α2ω2 arccosh σ +O(ϵ) . (4.8)

Contributions arising from this region are instead analytic in q2
⊥, but non-analytic in ω.

For later convenience, it is useful to introduce also the quantities

α̃1 = −ũ1 · k , α̃2 = −ũ2 · k , (4.9)

which are adapted to the eikonal reference frame. When writing the NLO PM waveform in
this frame, which as already mentioned takes into account in a simple way the first term
of (3.50), one has to use the quantities (4.9) in all tree-level terms.

4.2 Universal soft terms 1/ω, log ω and ω(log ω)2

To leading order in the soft limit, we find that the amplitude-based waveform matches the
prediction of the leading soft graviton theorem, i.e. the (linear) memory effect,9

W̃ [ω−1] = iκQ

beωα̃2
1α̃2

2
(α̃1ũ2 · ε − α̃2ũ1 · ε)(2α̃1α̃2be · ε + be · n(α̃1ũ2 · ε + α̃2ũ1 · ε)) , (4.10)

where Q = Q1PM + Q2PM + · · · is the PM impulse (2.35). For our purposes is sufficient to
keep the NLO PM corrections and so we can stop at Q2PM for the impulse and neglect the
difference between m̃i and mi. The O(G) contribution to (4.10) is obtained by straightforward
expansion of the tree-level amplitude. Its O(G2) arises instead from the leading soft limit
of the real part of the one-loop waveform kernel, B1, in particular from its even part B1E

(since the odd part B1O is further suppressed in the soft limit, see eq. (3.22)).
9As is well known [94–96], there are extra contributions to (4.10) due to the non-linearities of gravity which

we will neglect in this work: in the PM scattering waveform they start at O(G4) for the metric fluctuation.
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We also find that the logω soft term of the waveform matches the universal predic-
tion [60, 62]

W̃ [log ω] = κ
2Gm1m2σ(2σ2 − 3)

α̃1α̃2(σ2 − 1)3/2 (α̃1ũ2 · ε − α̃2ũ1 · ε)2 log
(

ωbe eγ

2
√

σ2 − 1

)
+ 2iGEω W̃

[ω−1]
0 logω +O(G3) .

(4.11)

The first line of (4.11) is the tree-level contribution, for which one does not expect any
running logarithm. In order to make this manifest, we made the argument of the logarithm
dimensionless by including regular terms that naturally arise from the soft limit of the full
tree-level frequency-domain waveform. Instead the second line of (4.11) is the one-loop
contribution, but it arises entirely from the tail effect displayed explicitly in eq. (3.24), and
thus it is ultimately dictated by the (soft) tree-level amplitude. The logarithm in the second
line of (4.11) is therefore running, and its scale is set by the dimensional regularization µIR
in our approach. We find that the remainder M1 in (3.24) does not give logω contributions.
Indeed, considering its expansion the region defined by (4.2), we find that the Fourier
transform of its O(ω0) contributions is finite and does not give rise to any log(b). Therefore,
by dimensional analysis, no log(ω) can arise from the other region defined by (4.5).

For the ω(logω)2 behavior, again looking at the terms explicitly displayed in (3.24),
we find

W̃ [ω(log ω)2] = 2iGEωW̃
[log ω]
0 logω +O(G3) , (4.12)

once again in perfect agreement with the corresponding soft theorem [62]. Note that, following
the logic highlighted by the comments in the previous paragraph, W̃ [ω(log ω)2] in (4.12) involves
in a natural way the product of a log uKT, with uKT = ωbe/

√
σ2 − 1 as in (5.2) below, and

of a running logω.

4.3 Non-universal soft term ω log ω

While the tree-level contribution to the ω logω term,10

W̃
[ω log ω]
0 = κ

2iGm1m2σ(2σ2 − 3)
α̃1α̃2(σ2 − 1)3/2 (α̃1 ũ2 · ε − α̃2 ũ1 · ε)

× [α̃1α̃2 be · ε + α̃2(b1 · n)(ũ1 · ε)− α̃1(b2 · n)(ũ2 · ε)]ω logω

(4.13)

is completely fixed by the corresponding soft theorem [93], the one-loop contribution is not,
and is sensitive to non-universal terms.

A first one-loop contribution comes from B1O in (3.22) and is fixed in terms of a universal
tree-level term,

B̃[ω log ω]
1O =

[
1−

σ
(
σ2 − 3

2
)

(σ2 − 1)3/2

]
πGEω W̃

[log ω]
0 . (4.14)

No contributions arise instead from B1E . We have reached this conclusion by explicitly
calculating its expansion up to ω1 in the region (4.2) and by checking that the Fourier

10Since we are now working in the MPM frame, the eikonal impact parameter must be used throughout and
bi in (4.13) should be interpreted as in (3.43), but with be at the place of bJ .
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transform (4.4) of the resulting expression is finite and does not give rise to any log(b) (hence,
no logω can come from the other region (4.5)). From the C-channel cuts, (3.24), we have

i

2(c̃1 + c̃2)[ω log ω] = iGE

[
− 1

ϵ
+ log α1α2

µ2
IR

]
ωW̃

[log ω]
0

+ 2iGEω logω W̃
[ω0]
0 + iM̃[ω log ω]

1 ,

(4.15)

where W̃
[log ω]
0 is given in the first line11 of (4.11), while W̃

[ω0]
0 and M̃[ω log ω]

1 will be given
in (4.16) and (4.19) below. Eq. (4.15) involves a universal part in the first line (including the
scale of the running logarithm in (4.12)) and non-universal contributions in the second line.

The tree-level term W̃
[ω0]
0 can be obtained either by expanding the known tree-level

waveform [35–38] or can be more conveniently calculated by expanding the tree-level ampli-
tude [40] in the two regions (4.2), (4.5) and summing the two contributions. In this second
way one sees that, separately, each region gives rise to singularities which however cancel
in the sum. Correspondingly, log(b) and logω terms arising from the two regions neatly
combine to reconstruct log(ωb) in the sum, thus unambiguously fixing the non-logarithmic
terms as well. As a result, we have

W̃
[ω0]
0 = κ(α̃1ũ2 · ε − α̃2ũ1 · ε)2

[
Gm1m2σ(2σ2 − 3)

α̃1α̃2(σ2 − 1)3/2 log (α̃1α̃2)−
2Gm1m2(2σ2 − 1)

P
√

σ2 − 1

]

+ κ
4Gm1m2

P

[(α̃1ũ2 · ε − α̃2ũ1 · ε)2

α̃1α̃2P

(
g3 arccosh σ + g2 log

α̃1
α̃2

)
+ 2σ2 − 1

2b2α̃2
1
√

σ2 − 1
g1

]
− ib2 · n ωW̃

[ω−1]
0 . (4.16)

Here,
P = −α̃2

1 + 2α̃1α̃2σ − α̃2
2 ≥ 0 , (4.17)

and

g3 = α̃2
2α̃2

1

(
2σ2 + 1

)
− 2α̃2α̃3

1σ − 2α̃3
2α̃1σ + α̃4

1 + α̃4
2 , (4.18a)

g2 = − α̃2
1 − α̃2

2
4(σ2 − 1)3/2

[
σ(2σ2 − 3)

(
α̃2

1 + α̃2
2

)
+ 2α̃1α̃2

]
, (4.18b)

g1 = −P(α̃1 be · ε + (be · n)(ũ1 · ε))2 . (4.18c)

Note that combining the two terms in the last line of (4.16) makes the expression manifestly
symmetric under particle-interchange symmetry, but we prefer to keep them separate in
order to highlight their different origin.

Finally, from the remainder M1 in eq. (3.24), we obtain

iM̃[ω log ω]
1 = iκω logω G2 m2

1m2
2σ(α1 u2 · ε − α2 u1 · ε)2

(σ2 − 1)3/2P

×
[
2σ2 − 3

P

(
f3

arccosh σ

(σ2 − 1)3/2 + f2
1

α2
log α1

α2

)
− f1

α2(σ2 − 1)

]
+ (1 ↔ 2) ,

(4.19)

11At subleading order in the PM expansion, analytic terms in ω are irrelevant for our analysis of the soft
limit, so the equations of these section should be understood up to such terms.
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where we can neglect the difference between tilded and untilded quantities, since this result
is already a NLO PM quantity, and

f3 = α3
1

(
4σ4 − 6σ2 + 1

)
+ α2α2

1σ
(
−4σ4 + 4σ2 + 3

)
+ α2

2α1
(
4σ4 − 6σ2 − 1

)
+ α3

2σ
(
3− 2σ2

)
,

(4.20a)

f2 = −α4
1 − α4

2 , (4.20b)

f1 = α2
1

(
−
(
σ2 − 1

))
+ α2α1σ

(
4σ4 − 6σ2 + 1

)
+ α2

2

(
−4σ4 + 7σ2 − 2

)
. (4.20c)

Since we are targeting the ω logω terms, we calculated (4.19) by expanding M1 only in the
first region, (4.2), we disregarded the 1/ϵ terms, which would cancel with analogous ones
arising from the other region, and focused on the ω log(b) terms, which, by dimensional
analysis, must appear with the same prefactor as the ω logω terms in the other region (4.5).

Collecting all the relevant contributions, from (3.31) and (4.1), we can then extract
the ω logω term of the NLO subtracted amplitude (3.53). For this term, which will be the
main focus of the next section, we have

W̃
[ω log ω]
1 = B̃[ω log ω]

1O + i

2(c̃1 + c̃2)[ω log ω]
reg , (4.21)

where we used (3.52), and let us recall that we can neglect all analytic terms in ω and NNLO
PM contributions on the right hand side of (4.21).

5 Gravitational-wave tails in the soft regime

In the Post-Newtonian (PN) approach it is convenient to expand the metric fluctuation (3.53)
at null-infinity in multipole moments of the SO(3) acting on n̂, the spatial part of kµ/ω,

kµ = ω(1, n̂) , (5.1)

working in the center-of-mass frame (see [31] and references therein). The reason for this
is that higher order multipoles are suppressed in small velocity limit,

σ =
√
1 + p2

∞ , p∞ ≪ 1 with uKT = ωbe

p∞
fixed . (5.2)

To be precise, increasing by one the order of the multipole considered brings an extra factor
of p∞. There are two types of multipoles involved in the decomposition mentioned above
which are usually denoted by UL and VL which indicate symmetric trace-free tensors of order
ℓ in Cartesian 3D space. We can reconstruct the spatial part of the PN waveform just by
using these multipoles as follows [31]

W̃ij(ω n) =
∞∑

ℓ=2

κ

ℓ!

[
ni1 · · ·niℓ−2Uiji1···iℓ−2 −

ℓ

ℓ + 1nkni1 · · ·niℓ−2
(
ϵkhiVjhi1...iℓ−2 + i ↔ j

)]
,

(5.3)
where we follow the notation of [2]. The physical waveform is the projection of the result
above along the physical “×” and “+” polarizations, and have been extensively used in the
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PN literature to extract more inclusive observables such as the radiated (angular) momentum,
see for instance [33, 34, 97–99]. Again by following [2], we will parametrize the result in
terms of the angles of n̂ adopting the conventions,

n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) ,

ε⃗ = 1√
2
(cos θ cosϕ + i sinϕ, cos θ sinϕ − i cosϕ,− sin θ) ,

⃗̃p = |p⃗ |(0, 1, 0) , b⃗e = be(1, 0, 0) ,

(5.4)

so that n̂ · ε⃗ = ε⃗ · ε⃗ = 0, by using

W̃ (ω, θ, ϕ) = εiεjW̃ij(ω n) . (5.5)

The standard approach is to calculate the gravitational field in the near-zone by solving
the Einstein equations with a stress-energy tensor appropriate to the binary motion and
then analyze its propagation up to future null infinity (again see [31] for a review). For the
tree-level waveform the second part of the calculation is trivial and one can simply identify
the UL’s and VL’s with the near-zone field (whose multipoles are usually referred to as IL’s
for the representation corresponding to UL and JL for the one corresponding to VL). One can
obtain these IL’s and JL’s at tree level by simply taking the limit (5.2) on the leading PM
waveform [35–38] and performing the multipolar decomposition. We checked up to ℓ = 4 that
this yields the correct PN results for UL and VL as already emphasized in [2]. At subleading
PN orders there are several effects that need to be taken into account to reconstruct the full
waveform at null infinity starting from the near-zone multipoles. They are neatly summarized
in [2], where they are explicitly spelled out for the scattering case of interest to us. It is
interesting to connect the various contributions on the PN side to the different terms of the
PM waveform as derived from scattering amplitudes. The following pattern emerges:

• The expansion in the PN regime (5.2) of the tree-level PM waveform yields corrections
weighted by p2k

∞, with k = 1, 2, . . ., to the leading contributions of each multipole (so,
integer PN corrections of order k relative to the leading term, according to the standard
nomenclature). This can be checked explicitly, but also proved in general by noticing
that the PM-waveform is even under the transformation

(p∞, n̂) ↔ (−p∞,−n̂) with uKT, b fixed . (5.6)

This means that each factor of p∞ arising from the expansion is accompanied by a
factor of n̂, which changes the order ℓ of the multipole by one. For instance, can use
the explicit expression of the frequencies ωi in the center of mass frame,

ω1 = ω
m1 + m2(σ − v⃗ · n̂ p∞)

E
ω2 = ω

m2 + m1(σ + v⃗ · n̂ p∞)
E

(5.7)

to check that they have the same parity as ω under this transformation, i.e. they
are odd.

• Also the even part of the irreducible one-loop contribution (dubbed Bµν
1E in (3.21) is

even under (5.6). So it has the same parity as the second term in the square parenthesis
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in (3.22) and both yield relative PN corrections that have integer order. By taking the
PN expansion of these terms, we reproduced eq. (7.1) and (7.2) of [2], noticing that the
first result comes from the part of Bµν

1O, which is even under (5.6), while the second one
comes from Bµν

1E .

• The contribution coming from the s-channel cut discussed in section 3.2 is again even
under (5.6). This is consistent with (3.50) and thus provides further support for that
result.

• Instead the contributions coming from the c-channel cuts discussed in section 3.1 are
odd under (5.6) exactly as the first term in the square parenthesis in (3.22). Thus
the PN expansion of these terms does not mix with that of the rest of the NLO PM
waveform and yields half-integer PN corrections to the leading contribution for each
multipole (i.e. terms weighted by p2k+1

∞ , with k = 1, 2, . . .).

We checked the properties above numerically on the full 1-loop results and it would be
interesting to find a more analytic understanding of this structure and, in particular, why
the s-channel and the c-channel cuts behave differently under (5.6).

In any case, this makes the mismatches at 2.5 PN order found in [2] even more interesting
as they cannot be solved by the inclusion of the new contribution pointed out in [1] and
discussed in section 3.2. As emphasized in [2], the most surprising mismatch is in the probe
limit, where one of the masses is taken to be much larger than the other one, for instance
we can take m1 ≫ m2. It is standard to introduce

ν = m1m2
m2 , m = m1 + m2 , ∆ = m1 − m2

m
, (5.8)

and so in the probe limit the waveform is linear in the symmetric mass-ratio ν. The order
G2 of this linear-in-ν contribution to W̃ is entirely captured by a very simple result in
the PN approach: the so-called tail terms [44, 49, 50, 89, 100]. Thus, let us first focus
on this contribution O(G2ν) of the waveform and revisit the mismatch between the PM
amplitude-based and PN results which is discussed in [2]. We will do so in the soft limit by
using the results of section 4. As already discussed there, the first three terms in the soft
expansion of the PM waveform agree with what is obtained from the soft theorems and, as
shown in [2], match the PN results. So from now we will focus on the ω logω term which
is the first one where the mismatch found in [2] appears.

Starting on the PM side, we can consider the two contributions to W̃
[ω log ω]
1 in (4.21)

and adjust the scale µIR by setting

logµIR = − log b̃0 +
1
2 , (5.9)

for later convenience,12 obtaining

W̃
[ω log ω]
1 = B[ω log ω]

1O + W̃
[ω log ω]
C + 2iGE log b̃0 ωW̃

[log ω]
0 , (5.10)

12The + 1
2 is chosen so as to directly match (5.16) to leading PN order.
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where the first term has an extra factor of π with the respect to the second one, which
comes instead from the Compton cuts (4.15). By focusing on the latter, which contains the
non-universal part, and saturating it as in (5.5), we obtain,

W̃
[ω log ω]
C

κω logω
=− 1

24 p∞
iG2m3ν

(
35(cos(2θ) + 3) cos(2ϕ) + 140i cos(θ) sin(2ϕ) + 22 sin2(θ)

)
+ 1

60G2m3∆ ν sin(θ)(cos(ϕ) + i cos(θ) sin(ϕ))

×
(
cos(θ)(307 cos(2ϕ)− 67) + 614i sin(ϕ) cos(ϕ)

)
+ 1

120 p∞ iG2m3ν
[(
139 cos(2θ) + 57 cos(4θ) + 600

)
cos(2ϕ)

+ 2 sin2(θ)
(
cos(2θ)(51 cos(4ϕ) + 63) + 204i cos(θ) sin(4ϕ) + 153 cos(4ϕ) + 460

)
+ 4i

(
178 cos(θ) + 21 cos(3θ)

)
sin(2ϕ)

]
+O(p2

∞) + (quadratic in ν) . (5.11)

On the PN side, when focusing on the linear-in-ν sector, we can neglect the non-linearities
of gravity and focus just on the near-zone multipoles (the IL’s) and the contribution from
the tail formula [44, 49, 50]13

Utail
L (U) = 2GE

∫ +∞

0
dτ I

(ℓ+2)
L (U − τ)

[
log

(
τ

2b0

)
+ κℓ

]
,

Vtail
L (U) = 2GE

∫ +∞

0
dτ J

(ℓ+2)
L (U − τ)

[
log

(
τ

2b0

)
+ πℓ

]
,

(5.12)

with

κℓ =
2ℓ2 + 5ℓ + 4

ℓ(ℓ + 1)(ℓ + 2) +
ℓ−2∑
k=1

1
k

κ2 = 11
12 , κ3 = 97

60 , κ4 = 59
30 , . . . .

(5.13)

See [31] for an explicit formula for the πℓ appearing in the VL’s: we will not need it in
our current analysis as the contributions depending on πℓ are negligible in the soft-limit
including at the order ω logω. Of course we could change the values of κℓ and πℓ by an
overall shift if we redefine the cutoff b0 appearing in (5.12). Taking the Fourier transform
of (5.12) to frequency space, we get

Utail
L (U) = 2GEiωI

(ℓ)
L (ω)

[
log(2b0ω) + γ − κℓ − i

π

2

]
. (5.14)

Let us stress that the result (5.12) is quite surprising from the amplitudes point of view:
when evaluated at the first non-trivial order, O(G2), it implies that the half-integer PN
corrections to each multipole are proportional to the tree-level result (since at order G we
have UL = I

(ℓ)
L ). As discussed above, these contributions come from the c-channel cuts on

the amplitudes side and there is no obvious reason why they should be related in a simple
way to the tree-level result. Another important point is that, by taking the soft limit (5.14),
there are two sources of ω logω terms: the first one is the (ω logω)0 contribution from the

13At the order of interest here, we can neglect the distinction between intermediate- and near-zone multipoles.
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O(G) term of I
(ℓ)
L (i.e. the tree-level multipole moment) and the factor of logω in the square

parenthesis, while the second contribution comes from the constant terms in the same square
parenthesis multiplied by the ω0 logω terms from I

(ℓ)
L (note the overall ω in (5.14)). Thus,

at this order, the soft result is sensitive to values of κℓ reported in (5.13) and, as already
mentioned in the previous section, to non-universal parts of the soft waveform. We can derive
this second, non-universal, contribution by using the ω0 term in (4.16) and the first one,
which depends on the κℓ’s, by using the logω term in (4.11). The terms with an extra factor
of π simply reproduce the PN-odd terms of the first contribution in (5.10), as is clear by
comparing (4.14) with (5.14). Therefore, adjusting the arbitrary scales by

log(2b0) = log b̃0 − γ , (5.15)

we arrive at the following result for the counterpart of W̃
[ω log ω]
C in (5.10) as obtained from

the MPM approach [31],

W̃
[ω log ω],MPM
C

κω logω
= (5.16)

− 1
24 p∞

iG2m3ν
(
35(cos(2θ) + 3) cos(2ϕ) + 140i cos(θ) sin(2ϕ) + 22 sin2(θ)

)
+ 1

60G2m3∆ ν sin(θ)(cos(ϕ) + i cos(θ) sin(ϕ))(cos(θ)(307 cos(2ϕ)− 67) + 614i sin(ϕ) cos(ϕ))

+ 1
120 p∞iG2m3ν

[(
79 cos(2θ) + 57 cos(4θ) + 420

)
cos(2ϕ)

+ 2 sin2(θ)
(
51(cos(2θ) + 3) cos(4ϕ) + 204i cos(θ) sin(4ϕ) + 63 cos(2θ) + 400

)
+ 4i cos(θ)(42 cos(2θ) + 97) sin(2ϕ)

]
+O(p2

∞) + (quadratic in ν) .

For θ = π
2 , we have checked that (5.16) agrees with the corresponding terms of the MPM

result in eq. (9.11) of [2]. By comparing (5.16) and (5.11) we note that, at first sight, they
differ by an O(p∞) term. However, we can find agreement also at that order by performing
the following shift in the retarded time U appearing in (3.53),

U 7→ U + 2Gmp2
∞ (5.17)

and expanding for small G. This is equivalent to considering the infinitesimal (retarded)
time translation of the metric fluctuation

hµν = gµν − ηµν , δhµν = 2Gmp2
∞ ∂U hµν , (5.18)

or to deforming the cutoff redefinition (5.9) in a manner similar to (5.17). The order ν part
of the waveform can be obtained also by studying the perturbation around the solution
describing a single black hole, see for instance [101]. This approach has been reconsidered
in [102] by using recent progress on the connection problem for the Heun equation and it
would be interesting to compare also with the results obtained in this way.
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Let us now move on to the O(G2ν2) terms, for which, using the soft-expanded amplitude
results of section 4, we find

W̃
[ω log ω]
C

κω logω
= (linear in ν)

+ G2m3ν2

160 p∞
[
822 sin(2θ) sin(θ) sin(4ϕ)− i(142 cos(2θ)+231(cos(4θ)+5)) cos(2ϕ)

− i sin2(θ)(cos(2θ)(411 cos(4ϕ) + 513) + 1233 cos(4ϕ) + 775)

+ 4 cos(θ)(171 cos(2θ) + 211) sin(2ϕ)
]
+O(p2

∞) . (5.19)

On the MPM side, in addition to contributions arising from the tails, ν2 terms also receive
nonlinear contributions arising from relations among near- and intermediate-zone multipoles
that need to be combined in order to produce the far-zone ones and start appearing at
relative 1/c5 PN order. For example, from [2],

UQQ
ijkl = G

[
−21

5 I⟨ij I
(5)
kl⟩ −

63
5 I

(1)
⟨ij I

(4)
kl⟩ −

102
5 I

(2)
⟨ij I

(3)
kl⟩

]
. (5.20)

Note that contributions of this kind start mattering in O(G2) multipoles, and hence in the
O(G3) metric fluctuation, because the quadrupole moment employed in the PN literature
has a G-independent piece that is determined by the free trajectories and is quadratic in the
time t. As a result, Iij , I

(1)
ij and I

(2)
ij start at O(G0), while I

(≥3)
ij start at order G. Moreover,

contributions like (5.20) are clearly quadratic in ν, since each multipole brings about a factor
of the mass-ratio. Combining the ν2 arising from the tail formula (5.12) with the quadratic
contributions akin to (5.20), we obtain

W̃
[ω log ω],MPM
C

κω logω
= (linear in ν) (5.21)

− G2m3ν2

160 i p∞
[
842i sin(2θ) sin(θ) sin(4ϕ)

+ (102 cos(2θ) + 241 cos(4θ) + 1025) cos(2ϕ)
+ sin2(θ)(421(cos(2θ) + 3) cos(4ϕ) + 543 cos(2θ) + 705)

+ 4i cos(θ)(181 cos(2θ) + 161) sin(2ϕ)
]
+O(p2

∞) .

We have cross-checked (5.16) against the corresponding terms in eq. (9.11) of [2] for θ = π
2 .

Once again, the two results (5.21) and (5.19) do not match at face value, but we can find
agreement upon performing the following transformation in (3.53),

U 7→ U − T (n) , T (n) = 2G(m1α1 logα1 + m2α2 logα2) (5.22)

and expand for small G. This is equivalent to an infinitesimal transformation,

δT hµν = −T (n) ∂U hµν . (5.23)

Up to static contributions, which we systematically disregard by focusing on ω > 0 in
frequency domain (and which would only affect the O(G) metric fluctuation), we recognize
this as the action of the supertranslation (see e.g. [71, 103–105])

δT hAB = −T (n) ∂uhAB + r [2DADB − γAB∆]T (n) (5.24)
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on the angular part of the metric, hAB = r2 (∂An̂)i (∂Bn̂)jhij where A, B = θ, ϕ, while
γAB = (∂An̂) · (∂Bn̂) is the metric on the 2-sphere, DA is the associated covariant derivative
and ∆ = γABDADB. Following the terminology of ref. [3], the supertranslation appearing
in (5.24) is precisely the one needed to move from the “canonical” BMS frame, where the
asymptotic shear vanishes in the far past, to the “intrinsic” one, where the asymptotic shear
is nonzero even in the far past and in the PM expansion starts with an O(G) constant
term dictated by the velocities of the incoming objects. The intrinsic frame is the standard
supertranslation frame employed in the PN literature, where the static terms in the leading-
order multipoles play a crucial role, for instance via non-linearities such as eq. (5.20).

The combined effect of (5.17), (5.22) is to fully resolve the following “mismatch” between
the ω logω waveform the amplitude-based approach, given by (5.11), (5.19), and the analogous
MPM result, given by (5.16), (5.21),

W̃
[ω log ω]
C − W̃

[ω log ω],MPM
C

κω logω

= −iG2m3νp∞
(
ν sin2(θ) sin2(ϕ) + ν − 2

)
(cos(ϕ) + i cos(θ) sin(ϕ))2 +O(p2

∞) .

(5.25)

Restricting to the equatorial plane θ = π
2 , and focusing on terms that are even under

ϕ → ϕ + π, eq. (5.25) reduces to

W̃
[ω log ω]
C − W̃

[ω log ω],MPM
C

κω logω

∣∣∣∣
θ= π

2

= 1
2 p∞ iG2m3ν cos2(ϕ)(4 + ν(cos(2ϕ)− 3)) +O(p2

∞) + (odd) ,

(5.26)

in agreement with the difference between (5.11), (5.19) and eq. (9.11) of ref. [2]. The result
in (5.26) has also been derived by [72]. To reiterate, with the supertranslation function T (n)
given in (5.22) [3], one can obtain agreement, between the MPM expression of ref. [2] and
the waveform obtained from the amplitude computed in [45, 46, 48] in the PN limit,

W̃
[ω log ω]
C − W̃

[ω log ω],MPM
C − iω (2Gmp2

∞ − T (n))W̃ [log ω]
0

κω logω
= O(p2

∞) . (5.27)

6 Conclusions and outlook

In this paper, we investigated the gravitational scattering waveform at subleading order,
shedding light on its structure and properties. We first clarified the role played by the KMOC
cut contribution involving intermediate states with two massive particles pointed out in
ref. [1], and which had been neglected in refs. [45–48]. We have shown that it can be neatly
rewritten as a simple differential operator acting on the tree-level waveform, as in eq. (3.50).
Its inclusion thus simply amounts to rotating the basis vectors bJ 7→ be, −p1,2 7→ p̃1,2 as
in (2.30), (2.31), much like it happens for the subleading PM impulse, and shifting the
origin of (retarded) time. This translation in time is in fact divergent and is related to the
Shapiro time delay, as already recognized in [1, 2]. This result clarifies how amplitude-based
calculations of observables, in particular both the impulse and the waveform, calculated in
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the KMOC approach consistently hold in the bJ , −p1,2 frame. Instead the eikonal approach
works in the be, p̃1,2 frame, so that the cut pointed out in [1] does not appear, and the
naive exponentiation of [54] seems to work also at this order. The eikonal approach yields
directly the frame used in MPM approach.

Our next target has been the expansion of the waveform in the soft limit ω → 0, for
generic velocities. Besides checking that the 1

ω , logω, ω(logω)2 contributions in this limit
perfectly match the universal predictions dictated by soft theorems [61, 62], we have also
been able to obtain a compact explicit expression, detailed in eq. (4.15), (4.16), (4.19) for
the first non-universal contribution, ω logω. This is not fixed by soft theorems at one-loop,
i.e. subleading PM, level. For this calculation, we developed a method of expansion by regions
adapted to the soft limit of the waveform.

Using such explicit and handy results, we have been able to revisit the mismatch discussed
in ref. [2] between the waveform obtained from the amplitude EFT approach and the one
derived from the MPM formalism in the PN limit, i.e. for small velocities. While all universal
soft terms match straightforwardly between the two approaches, the comparison for ω logω

requires more care. Still, we have shown that the agreement between the amplitude and MPM
results can be recovered by suitably shifting the origin of retarded time and by performing
the BMS supertranslation (5.24). The latter connects the canonical “asymptotic” frame [3],
where the early-time shear is zero and where the amplitude result holds, to the “intrinsic” one,
where the shear has a constant O(G) piece as systematically assumed in the PN literature.
This solves the mismatch pointed out in [2] up to and including relative 2.5PN i.e. 1/c5 order.

The presence of such supertranslation-dependent static terms is indeed crucial in the
MPM-PN formalism, where several O(G2) multipoles take the form of non-linear contributions
given by G times an O(G0) static piece times an O(G) dynamic piece. In other words, such
terms arise due to the non-linearities of gravity. On the contrary, the amplitudes approach
discussed here should be interpreted “without the static modes” to use a nomenclature
introduced in [20]. One should then perform the supertranslation derived in [3] to compare
with the PN results. However, when working at O(G3) with the full-time dependent waveform,
the action of the supertranslation involving a time-derivative in eqs. (5.22), (5.24), and not
just on the static O(G) part, must be taken into account. It would be interesting to explore
if the amplitude approach can be adapted to produce the MPM result directly in the
supertranslation frame “including the static modes”, as well as to study the dependence on
the asymptotic frame in the presence of additional vector or scalar fields.

Let us now move to the open issues. It would be of course interesting to go beyond
the soft limit and check the mechanisms proposed here on the full PN waveform up to 1/c5

so as to complete the comparison with [2]. In this respect, it will be important to better
understand why we obtain a different result for the difference between amplitude and MPM
waveform compared to eq. (9.13) of [2]. In that reference, the amplitude-based result was
obtained by doing the expansions in the opposite order compared to the approach we took
here, i.e. starting with low velocity limit and then performing the soft limit. We expect that
the comparison between amplitude and MPM results for the subleading PM waveform will
work to any PN order and any frequency up to properly adjusting the (super)translation
frame as discussed here. Of course, it would be very interesting to perform such comparison
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explicitly beyond what has it has been considered in this paper: this would provide highly
non-trivial checks both on the expressions entering the quasi-Keplerian orbits and on the
various relations that link, within the MPM approach, the near-zone field with the asymptotic
values at null infinity (see for instance [34, 106, 107] and references therein).

A systematic expansion of the subleading PM waveform in the PN limit calls for a
rewriting of the 5-point 1-loop amplitude in order to tame the technical complication arising
from the presence of spurious poles in its expression. The issue here is that, while the full
result for the waveform is well-behaved in the PN limit, separately its different contributions
involving rational as well as logarithmic terms are very singular. The smooth PN limit
is recovered only thanks to highly nontrivial cancellations among all various pieces. This
mechanism is already present, in a harmless form, e.g. in the results for the radiated energy-
momentum [77], but given the much larger size of the waveform expression, the presence
of such singularities in intermediate results represents a nontrivial technical obstacle for
performing the PN (and, partly, also soft) expansion of this observable. It would thus be
highly desirable to reorganize the result in a way, if any, that makes such spurious poles
harmless (and steps in this directions have already been taken [56]).

Another potential development concerns the extension to NLO of waveform calculations
to take into account physical effects associated to more complicated binaries, for instance
involving spinning black holes or different astrophysical objects, like neutron stars, that can be
subject to tidal deformations. It will be interesting to test the role of the supertranslation frame
also in those contexts, to see whether the pattern found here is, as we suspect, more general.

Moving forward, it will be important to put to the test the straightforward exponentiation
pattern dictated by the eikonal operator proposed in [53, 54], for which the next nontrivial
check is represented by the classical 2-loop 5-point amplitude. The present work highlights
an additional piece of appeal of that calculation, which would make it possible to check
non-linearities involving all non zero-frequency gravitons.
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