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Abstract 

 

Background/Aims 

 

The standard approach to designing stepped wedge trials that recruit participants in a continuous 

stream is to divide time into periods of equal length. But the choice of design in such cases is 

infinitely more flexible: each cluster could cross from the control to the intervention at any point on 

the continuous time-scale. We consider the case of a stepped wedge design with clusters 

randomised to just three sequences (designs with small numbers of sequences may be preferred for 

their simplicity and practicality), and investigate the choice of design that minimises the variance of 

the treatment effect estimator under different assumptions about the intra-cluster correlation. 

 

Methods 

 

We make some simplifying assumptions in order to calculate the variance: in particular that we 

recruit the same number of participants, 𝑚, from each cluster over the course of the trial, and that 

participants present at regularly spaced intervals. We consider an intra-cluster correlation that 

decays exponentially with separation in time between the presentation of two individuals from the 

same cluster, from a value of 𝜌 for two individuals who present at the same time, to a value of 𝜌𝜏 for 

individuals presenting at the start and end of the trial recruitment interval. We restrict attention to 

three-sequence designs with centrosymmetry – the property that if we reverse time and swap the 

intervention and control conditions then the design looks the same. We obtain an expression for the 

variance of the treatment effect estimator adjusted for effects of time, using methods for 

generalised least squares estimation, and we evaluate this expression numerically for different 

designs, and for different parameter values. 

 



Results 

 

There is a two-dimensional space of possible three-sequence, centrosymmetric stepped wedge 

designs with continuous recruitment. The variance of the treatment effect estimator for given 𝜌 and 

𝜏 can be plotted as a contour map over this space. The shape of this variance surface depends on 𝜏 

and on the parameter 𝑚𝜌/(1 − 𝜌), but typically indicates a broad, flat region of close-to-optimal 

designs. The “standard” design with equally spaced periods and 1:1:1 allocation rarely performs 

well, however. 

 

Conclusions 

 

In many different settings a relatively simple design can be found (for example, one based on simple 

fractions) that offers close-to-optimal efficiency in that setting. There may also be designs that are 

robustly efficient over a wide range of settings. Contour maps of the kind we illustrate can help 

guide this choice. If efficiency is offered as one of the justifications for using a stepped wedge design, 

then it is worth designing with optimal efficiency in mind. 

 

Keywords 

Stepped wedge trial, optimal design, continuous recruitment, centrosymmetry, decaying intra-

cluster correlation 

 

  



Introduction 

 

Stepped wedge trials are longitudinal cluster randomised trials where clusters are randomised, not 

to treatment conditions, but to sequences which dictate when each cluster will  cross over uni-

directionally from the control condition to the intervention condition.1,2 Since the seminal discussion 

of stepped wedge trials by Hussey and Hughes,3 methodological work has tended to treat 

prospective time as a series of discrete periods, and we now understand a great deal about the 

optimal design of this kind of stepped wedge trial.4-9 

 

But in many stepped wedge trials, including the first to be published with this label,10 participants 

from a cluster are recruited/identified, exposed and assessed in one, long, uninterrupted stream. 

This is known as a continuous recruitment design.11,12 The standard approach to the design of these 

stepped wedge trials is to divide time into periods of equal length, with cross-overs at the 

boundaries between periods. With time on a continuous scale, however, there are no canonical 

cross-over times, and the number of sequences is limited only by the total number of clusters: each 

cluster could cross from the control to the intervention at any point on the continuous time-scale. 

 

While this means that designs in continuous time can become quite complicated,13,14 there may be 

practical advantages, from the point of view of trial conduct, in choosing a design that has some 

parsimony, symmetry, or other simplicity of form. In this article we are motivated in particular by an 

interest in designing continuous recruitment stepped wedge trials with small numbers of 

randomised sequences. We keep this investigation simple by concentrating on designs with just 

three sequences. (Previous work has considered the case of a two-sequence design where one 

sequence remains in the control condition throughout.15) Aside from their simplicity, designs with 

small numbers of sequences also make it easier to balance the randomisation according to cluster 

characteristics.   



 

The problem of optimal design in this case is quite different to the problem of designing an optimal 

stepped wedge trial with discrete time periods and an equal number of participants in each period.4–

9 In the continuous recruitment design problem we can effectively move the cross-over time in each 

sequence with a slider control: by moving it to the right on the time axis we steadily increase the 

number of control participants in each cluster in that sequence, but at the cost of steadily decreasing 

the number of intervention participants by a corresponding amount. A continuous time-scale also 

allows us to model an intra-cluster correlation (ICC) that varies smoothly as a function of separation 

in time: the further apart we recruit two participants from the same cluster, the weaker we might 

expect the correlation between their outcomes to be.12     

 

Three-sequence designs are relatively simple to characterise, particularly if we focus attention on 

designs that have centrosymmetry. A centrosymmetric design has the property that if we run time 

backwards, and swap intervention and control, then we arrive at the same design.16,17 Given the 

number of clusters, duration of the recruitment period, and rate of recruitment at each cluster, the 

things that we can control in a centrosymmetric, three-sequence stepped wedge trial are: (a) the 

proportion of clusters allocated to the middle sequence , 𝑤, and (b) the timing of the first cross-over, 

𝑠 (Figure 1). 

 

Here we investigate the choice of design that minimises the variance of the intervention effect 

estimator under different assumptions about the correlation of outcomes within the same cluster, 

and consider whether there might be simple design choices that are robustly efficient in this sense, 

even when there is a degree of uncertainty about these unknown correlation parameters. The lower 

the variance of the intervention effect estimator, the higher the power to detect a given 

intervention effect at a certain significance level.  

 



We implicitly assume a large number of clusters are available to be randomised. We use generalised 

least squares methods and asymptotic approximations to calculate the variance of the intervention 

effect estimator, and we assume, whatever the number of clusters, that we can allocate them to 

different sequences in whatever allocation ratios we happen to be discussing. A surprisingly high 

proportion of published stepped wedge trials are conducted with fewer than 10 clusters (33% 

according to one review).18 Designing stepped wedge trials with very small numbers of clusters goes 

against most methodological guidance,19,20 but for practical reasons we can expect many stepped 

wedge trials to include only moderate numbers of clusters. We include simulations for one such trial 

design scenario to illustrate how empirical statistical power matches the power derived from our 

large-sample formula in this case.  

 

Motivating example 

 

PATHWEIGH is a weight loss intervention for use in a primary care setting, that uses tools built into 

the electronic medical record to improve workflow and address various barriers to prioritising 

weight management.21 Suresh and colleagues published a protocol for a stepped wedge trial of 

PATHWEIGH where the clusters are 57 family and internal medicine clinics in a large health system in 

Colorado, USA.21 Patients are identified over a four-year period beginning March 17 2020, and are 

eligible to be included in the trial if they are aged 18 years or over and overweight (BMI ≥25 kg/m2) 

at an initial, index visit. 

 

The investigators estimate that a minimum of 30 patients per clinic per year will be identified. The 

primary outcome measure is weight loss 6 months after the index visit, extracted from the electronic 

medical record. PATHWEIGH, being an electronic intervention, can be “turned on” at a clinic at any 

time, and a patient’s intervention status is defined according to whether the clinic they attend was 

in the control (routine care) condition or intervention condition at the patient’s index visit. 



 

The trial randomises clinics 1:1:1 to three sequences, in which the intervention is turned on after 

one year, two years or three years, respectively. In terms of the design parameters of a 

centrosymmetric, three-sequence stepped wedge design, the timing of the first cross over, 𝑠 = 1 4⁄  

and the proportion of clusters allocated to the middle sequence, 𝑤 = 1 3⁄  in this case. This kind of 

regular spacing is traditional in stepped wedge designs. But what if we were willing to consider 

alternative allocation ratios, or alternative timings for the first and last cross-overs in a three-

sequence design? Is there a more efficient choice of 𝑠 and 𝑤? 

 

Methods 

 

Statistical model 

 

To describe the general scenario that we consider, we suppose that time is re-scaled so that the 

recruitment/identification period runs from time 0.0 to time 1.0. For simplicity we assume that in 

each cluster we recruit the same number of individuals, 𝑚, over the course of this unit time interval.  

 

We assume a continuous outcome 𝑌𝑖𝑗  for individual 𝑖 = 1, … , 𝑚 from cluster 𝑗 = 1, … , 𝐽, with 

 

 𝑌𝑖𝑗 = 𝛿. 𝐻(𝑡𝑖𝑗 − 𝑡𝑗
∗) + 𝑇(𝑡𝑖𝑗 , 𝜷) + 𝜀𝑖𝑗 , 𝜀𝑖𝑗~N(0, 𝜎2), (1) 

 

where 𝑡𝑖𝑗  is the time at which individual 𝑖 from cluster 𝑗 is recruited, 𝑡𝑗
∗ is the time at which cluster 𝑗 

crosses over to the intervention, 𝐻(𝑥) is a unit step function taking value 0 if 𝑥 < 0 and 1 if 𝑥 ≥ 0, 

and 𝑇(𝑡, 𝜷) is a function that describes the underlying effect of time on expected outcome (assumed 

to be the same in all clusters), parameterised by the vector 𝜷. Errors 𝜀𝑖𝑗  are identically distributed 

but not all independent of one another (see below). In a centrosymmetric, three-step design, all of 



the cross-over times 𝑡𝑗
∗, 𝑗 = 1 … 𝐽 belong to the set {𝑠, 0.5, 1 − 𝑠}, for some 𝑠 with 0 ≤ 𝑠 < 0.5, and 

clusters are allocated to these sequences in the respective proportions (1 − 𝑤)/2, 𝑤 and (1 −

𝑤)/2, for some 𝑤 with 0 ≤ 𝑤 < 1 (Figure 1). 

 

The parameter 𝛿 is the intervention effect we would like to estimate. Having a single parameter for 

this intervention effect, expressed through the step function, 𝐻, models a situation where the 

intervention has an instantaneous effect that is then maintained at a constant level, and is common 

to all the clusters. 

 

We assume that 𝜀𝑖𝑗  and 𝜀𝑖′𝑗′  are uncorrelated for all 𝑗 ≠ 𝑗′, for all 𝑖 and 𝑖′, that is, outcomes in 

different clusters are uncorrelated. Within a cluster there may be correlation between outcomes, 

measured by the ICC. Under a model of exchangeability, this ICC is constant: 

 

Corr(𝜀𝑖𝑗 , 𝜀𝑖′𝑗) = 𝜌  ∀ 𝑖 ≠ 𝑖′, 𝑗. 

 

In this article we consider a more general model that allows us to investigate what happens if the 

ICC decays with increasing separation in time:15 

 

 
Corr(𝜀𝑖𝑗, 𝜀𝑖′𝑗) = 𝜌𝜏

|𝑡𝑖𝑗−𝑡
𝑖′𝑗

|
  ∀ 𝑖 ≠ 𝑖′, 𝑗; 

Corr(𝜀𝑖𝑗, 𝜀𝑖′𝑗′) = 0  ∀ 𝑖, 𝑖′, 𝑗 ≠ 𝑗′. 

(2) 

 

The parameter 𝜌 is the ICC for two participants sampled from the same cluster at the same time (the 

time-specific ICC). The ICC for two participants sampled at times 1.0 apart is 𝜌𝜏. The parameter 𝜏 is 

therefore the factor by which the ICC decays over the duration of the recruitment period. 

 



Finally, to make headway with deriving a variance for the treatment effect estimator, we make the 

simplifying assumption that the times at which individuals are recruited from each cluster are 

regularly spaced, at intervals 1/𝑚 apart, rather than being a random process: 

 

 𝑡𝑖𝑗 = 𝑖 𝑚⁄   ∀ 𝑗. (3) 

 

Time effect 

 

The variance of the treatment effect estimator will be adjusted for the time effect, under the 

assumption that this is correctly specified in the analysis model. Exactly which design minimises this 

variance would seem to depend on the form of the time effect, 𝑇 in (1), so how are we to choose 

this? Here, we consider a time effect that is piecewise constant, with discontinuities that coincide 

with the cross-over times. That is, 

 

 𝑇(𝑡, 𝛽1, 𝛽2, 𝛽3, 𝛽4) = 𝛽1 + 𝛽2𝐻(𝑡 − 𝑠) + 𝛽3𝐻(𝑡 − 0.5) + 𝛽4𝐻(𝑡 − 1 + 𝑠). (4) 

 

While it might seem strange at first sight to choose a model for the time effect that depends on the 

design, we make this choice for a number of related reasons. Firstly, the regularly spaced 

recruitment times at each cluster, 𝑖 𝑚, 𝑖 = 1, … , 𝑚⁄ , and the fact that the cross-over times align 

perfectly with the discontinuities in an otherwise constant time effect, mean that the variance of the 

treatment effect estimator under the four-parameter functional form for 𝑇 in (4) is identical to the 

variance if we were to assume a completely general time effect that was different at each of the 

times 𝑖 𝑚, 𝑖 = 1, … , 𝑚⁄ . (This follows from a more general invariance result proved elsewhere.)23 

Secondly, experience with two-sequence designs suggests that the optimal design solution under (4) 

may also be a reasonable approximation to the solution under other models with a smooth time 

effect, such as a polynomial function of sufficiently high degree.15 Thirdly (and more qualitatively), 



adjusting for an underlying time effect that has step-changes at exactly the times the intervention is 

switched on in certain clusters feels like it ought to offer a “strong” test of a genuine intervention 

effect.  

 

In fact, if we were faced with a real-life dataset with 𝑚 = 100, say, it is unlikely that we would use 

as many as 100 parameters for modelling the effect of time, or that we would assume the time 

effect was completely smooth. It is more likely that we would allow for step-changes at the cross-

overs, and otherwise model time in some parsimonious but plausible way that fitted the data and 

our prior beliefs. As long as this analysis model for the time effect is correctly specified, then the 

invariance result mentioned above shows that the variance of the treatment effect estimator will be 

the same as the variance calculated to hold under model (4).23 

 

Variance of the treatment effect estimator 

 

If we write outcomes 𝑌𝑖𝑗  as a single column vector, 𝒀, and rewrite (1), (2), (3), (4) as 

 

𝒀 = 𝑿 (
𝛿
𝜷

) + 𝜺, 𝜺~N(𝟎, 𝑽), 

 

Then the generalised least squares estimator for the parameters is obtained as 

 

(
𝛿
𝜷̂

) = (𝑿′𝑽−1𝑿)−1𝑿′𝑽−1𝒀, 

 

and the variance of 𝛿 is the first diagonal element of the variance-covariance matrix given by 

 



 
𝑉𝑎𝑟 (

𝛿
𝜷̂

) = (𝑿′𝑽−1𝑿)−1. 
(5) 

 

The results presented in this article were obtained with the help of numerical matrix inversion, 

making use of the fact that the matrix 𝑽 is block diagonal, owing to the independence of outcomes 

in different clusters. We used Mata, the matrix programming language within Stata, which is a C-

style language that is compiled to produce fast-running code (StataCorp, College Station, Texas USA). 

Our code can be accessed online (https://github.com/richard-hooper/SW-3sequence-continuous-

recruitment). 

 

Scenarios 

 

Previous work on optimal stepped wedge design suggests, in the case 𝜏 = 1 at least, that the 

optimal design choice depends on the total number of participants in each cluster, 𝑚, and time-

specific ICC, 𝜌, via the single parameter 𝑚𝜌/(1 − 𝜌).4,5 This parameter is key because it determines 

the correlation between mean outcomes in within-cluster comparisons. If clusters are randomised to 

a sequence that crosses over from the control to the intervention condition half-way through the 

recruitment period, for example, then the correlation between the mean outcome in a cluster 

before cross-over (𝑚/2 participants) and the mean outcome in that cluster after cross-over (𝑚/2 

participants) is given by the following expression, which is a function of 𝑅 ≔ 𝑚𝜌/(1 − 𝜌):25 

 

𝑚
2 𝜌

1 + (
𝑚
2 − 1) 𝜌

=
𝑅

2 + 𝑅
. 

 

For given 𝜏 < 1 we hypothesise a similar role for the parameter 𝑚𝜌/(1 − 𝜌) in determining the 

optimal design. Previous work on two-sequence designs with continuous recruitment proposed 

design rules of thumb based on the product 𝑚𝜌.15 Since the parameter 𝑚𝜌 is somewhat simpler, 



and for small 𝜌 the parameters 𝑚𝜌 and 𝑚𝜌/(1 − 𝜌) are almost identical, we consider a range of 

values for 𝑚 and 𝑚𝜌. In order to limit the set of parameter values and to follow a systematic 

approach, we consider 𝑚 ∈ {50, 200, 1,000} and, for each 𝑚, values of 𝜌 for which 𝑚𝜌 ∈

{0.2, 0.5, 1, 2, 5, 10, 20}. These scenarios are investigated for 𝜏 ∈ {1.0, 0.5, 0.1}. By presenting results 

for fixed 𝑚𝜌 side by side, we can see how closely the design recommendations match for different 

𝑚. In the online supplement we also show what results look like when we keep 𝑚𝜌/(1 − 𝜌) fixed 

for different 𝑚, to confirm the intuition that this is the parameter that strictly determines the 

optimal design.    

 

Contour plots 

 

We transform the variance of the treatment effect estimator to a log scale, and draw contour plots 

of the log-variance over the design parameter space 0 ≤ 𝑠 < 0.5 and 0 ≤ 𝑤 < 1, for each of the 

scenarios considered. Contour lines are separated by log(1.1), so that moving from one contour to 

the next represents a 10% increase in the variance. The lowest contour value is set at the minimum 

of the log-variance surface. Thus, the innermost contour is the region where the variance is within 

10% of the minimum attainable. Because we are particularly interested in regions of low variance, 

and to reduce the amount of ink used, we have not drawn all of the higher variance contour lines. 

The variance of the treatment effect estimator will be a multiple of 𝜎2 𝐽⁄ , 𝜎2 being the variance of 

each outcome 𝑌𝑖𝑗, and 𝐽 being the number of clusters. Hence the appearance of the contour plot as 

described does not depend on either 𝜎2 or 𝐽. 

 

Results 

 

Contour plots for 𝜏 = 1.0, 𝜏 = 0.5, and 𝜏 = 0.1 are shown in Figures 2(a), 2(b) and 2(c). For given 𝜏 

and 𝑚𝜌, the plots for different 𝑚 are remarkably similar, confirming that the shape of the variance 



surface, and therefore the choice of optimal design, depends on 𝑚 and 𝜌 primarily through their 

product. The greatest divergence between the plots in a given panel of these Figures is for 𝜏 = 0.1, 

𝑚𝜌 = 20.0 (bottom row of Figure 2(c)). Supplemental Figure 1 (in the online supplement) shows 

contour plots for 𝜏 = 0.1, 𝑚𝜌 (1 − 𝜌)⁄ = 20, 𝑚 ∈ {50, 200, 1,000}. These three plots are almost 

identical, illustrating that the dependence is strictly via 𝑚𝜌 (1 − 𝜌)⁄ . To present a relatively simple 

overview of our results below, with intuitive rules of thumb, we will continue to talk in terms of 𝑚𝜌. 

 

When 𝑚𝜌 is zero the optimal design gives zero weight to the middle sequence and puts the first 

cross-over at time zero. If 𝑚𝜌 is zero then observations within clusters are independent, so this 

design – a two-sequence, parallel groups design with one sequence in the intervention condition 

throughout and the other in the control condition throughout (analogous to an individually 

randomised parallel groups design) – is exactly what we would expect to see. As 𝑚𝜌 starts to 

increases from 0.0 the optimal weight for the middle sequence increases, but the optimal time for 

the first cross-over remains at zero. This means there are clusters that remain in the control 

condition or the intervention condition for the entire trial. In the world of discrete-period stepped 

wedge designs these are known as hybrid designs, because they are a hybrid of a parallel groups 

design and a classic stepped wedge design where all the clusters cross over at some point.5 

Somewhere between 𝑚𝜌 = 2.0 and 𝑚𝜌 = 5.0 (at least for 𝜏 ≥ 0.1) the optimal time for the first 

cross-over breaks away from zero. The shape of the plotted surface depends on 𝜏, although there 

are qualitative similarities between plots for given 𝑚𝜌 and different 𝜏. 

 

The variance surfaces in the plots have relatively flat bottoms, suggesting, first, that for any given 

𝑚𝜌 and 𝜏 there may be a close-to-optimal solution where 𝑠 and 𝑤 are simple fractions, and second, 

that it may be possible to find a solution that is close-to-optimal over a range of values for 𝑚𝜌 and 𝜏, 

thus accommodating some uncertainty in these parameters. Look at the solution with 𝑠 = 0, 𝑤 =

1 3⁄ , for example, which is one of the solutions marked with a “+” in Figure 2. This simple, hybrid 



design allocates clusters in equal proportions to three sequences. For any 𝑚𝜌 in the range 0.2 to 5.0 

and any 𝜏 between 0.1 and 1.0, this design falls within the innermost contour of the plot, i.e. the 

region where the variance is within 10% of the minimum attainable, suggesting it could be an 

acceptable design in all these scenarios. Or consider the solution with 𝑠 = 0.15, 𝑤 = 1 3⁄ , which is 

the second solution marked with a “+”. This is perhaps not a “natural” choice of design, but 

nevertheless falls within the innermost contour of the plot for any 𝑚𝜌 of 5.0 or greater and any 𝜏 

between 0.1 and 1.0, making it a robustly efficient choice in this broad range of cases. 

 

A design with equally spaced steps and equally weighted sequences (𝑠 = 0.25, 𝑤 = 1/3), on the 

other hand, which is the third solution marked in Figure 2 with a “+”, is borderline at best (at least in 

the scenarios plotted), achieving its most favourable performance when 𝑚𝜌 = 20 and 𝜏 = 0.5.   

 

Design and sample size in the motivating example 

 

In our motivating example, the PATHWEIGH trial, the assumption was that 30 patients would be 

recruited per year from each clinic over 4 years, so that 𝑚 = 120. The power calculation for 

PATHWEIGH assumed an ICC somewhere between 0.02 and 0.05. If we take this to reflect an interval 

estimate of the time-specific ICC, 𝜌, then we want a design that is robustly efficient with 𝑚𝜌  in the 

range 2.4 to 6.0. The PATHWEIGH power calculation did not discuss the decay in the ICC, but let us 

suppose, for the sake of argument, that we want to allow for a decay of up to 0.5 in the ICC over the 

four-year trial period, so that 0.5 ≤ 𝜏 ≤ 1. We should remember that a prior estimate of the decay 

in the ICC over 4 years may be much harder to come up with than a prior estimate of the time-

specific ICC. (Of course, when presented with an estimate of the ICC that does not mention the 

decay over time at all, as in the PATHWEIGH example, there is a question as to whether this is really 

an estimate of the time-specific ICC, or some average of the decaying ICC over the entire 



recruitment period.26 This speaks to the importance of specifying assumptions about the ICC when 

reporting sample size calculations for stepped wedge trials.27) 

 

Looking at our contour plots, we might then choose 𝑠  intermediate between 0 and 0.15 – 𝑠 = 1/12, 

say – and 𝑤 = 1/3, as a solution that is robustly efficient. In this design the intervention is switched 

on after 4 months, 2 years, and 3 years and 8 months in the respective sequences. 

 

Recall from the Methods that the variance of the treatment effect estimator is a multiple of 𝜎2/𝐽, 

where 𝜎2 is the variance of each outcome, and 𝐽  is the number of clusters. Let us call this 𝜃𝜎2/𝐽. To 

calculate the number of clusters needed to demonstrate an effect 𝛿∗  with power 1 − 𝛽  at the 5% 

significance level, we can therefore apply the “fundamental equation” of sample size:28 

 

 
𝐽 ≥ (𝑧0.975 + 𝑧1−𝛽)

2
(

𝜎

𝛿∗
)

2

𝜃. 
(6) 

 

Where 𝑧𝑝 is the 𝑝th percentile of the standard normal distribution. 

 

Table 1 shows the variance of the treatment effect estimator for the design 𝑠 = 1/12, 𝑤 = 1/3, at 

the four corners of the selected parameter range for 𝑚𝜌 and 𝜏. The variance is calculated from the 

matrix expression in the Methods. Table 1 also shows the total number of clusters (allocated equally 

to the three sequences) required to detect a mean difference in weight loss of 1kg, 1.25kg, or 1.5kg 

with 80% power at the 5% significance level, assuming (as the PATHWEIGH investigators did) that 

the standard deviation of weight loss is 10.7kg. The number of clusters is rounded up to the next 

multiple of three. For comparison, Table 1 shows the same requirements for the “standard” stepped 

wedge design (the design adopted for PATHWEIGH) with 𝑠 = 0.25, 𝑤 = 1/3. The non-standard 

design always out-performs the standard one – in some scenarios, considerably so. 



 

The theoretical power (from equations (5) and (6)) of each of the designs presented in Table 1 was 

compared with the empirical power estimated by simulation. For each scenario and design, 1,000 

replicated datasets were generated in R, and the continuous time decay model in equations (1) to 

(4) was fitted using the glmmTMB package in R.28 This analysis did not include any small-sample 

correction to mitigate inflation of the nominal Type I error rate and power that might result from the 

moderate number of clusters. Such corrections are becoming more widely available in software 

implementations for the analysis of cluster-randomised trials,30 but also add considerably to the 

processing time, which can make large-scale simulations challenging. Our code can be accessed 

online (https://github.com/richard-hooper/SW-3sequence-continuous-recruitment). Supplemental 

Figure 2 displays the results in a nested loop plot. Empirical power closely matched theoretical 

power when the time-specific ICC was 0.05. Empirical power was inflated when the time-specific ICC 

was 0.02, and this was particularly evident with the non-standard design. The performance of the 

glmmTMB package (and alternatives) for analysing data from longitudinal cluster randomised trials 

with a continuous time decay model for the ICC warrants further investigation.  

 

Discussion 

 

We have illustrated optimal designs for three-sequence stepped wedge trials with continuous 

recruitment, under different assumptions about the correlation of outcomes from the same cluster. 

We conclude that under given assumptions there may be a relatively simple design that offers close-

to-optimal efficiency, and that there may be designs that are robustly efficient over a wide range of 

assumptions. If efficiency is offered as one of the justifications for using a stepped wedge design 

over a parallel groups design, then we should design with optimal efficiency in mind. The focus of 

this article has been on design, informed by theory. Suitable approaches to analysis that can handle 



a continuous time model (including the decay in the ICC) and also control the Type I error rate when 

the number of clusters is moderate or small need further evaluation and comparison. 

 

The way in which the ICC changes over time matters to the design, and it is important to articulate 

these assumptions when reporting sample size calculations for stepped wedge trials.27 We assumed 

a particular parametric form for the decay in the ICC to help us understand the more general impact 

of this kind of decay on optimal design. Other models for the ICC could, of course, be investigated. 

As in earlier work,15 we simplified considerably in assuming that eligible participants present at 

regular, fixed intervals rather than as a random continuous-time process, but assuming that the 

arrival rate is constant over time we would expect arrival times in a sample to become increasingly 

uniformly spread as the rate increases. Simulation studies that have investigated the impact of 

unevenly spaced arrival times on precision of the treatment effect estimator in the context of 

stepped wedge designs suggest that this impact is small.22 

 

Our focus has been on the optimal design of three-sequence trials, but our findings may also offer 

clues about optimal design with larger numbers of sequences. With more sequences there are more 

degrees of freedom to the design space for centrosymmetric designs, which becomes 

correspondingly harder to visualise and requires more effort to search exhaustively. Nevertheless, 

previous work on optimal design in the discrete time case, with no decay in the intracluster 

correlation, has shown that the “internal” sequences (that is, sequences other than the first and last) 

should all be given equal weight.4,5 There may be similar simplifications when we move over to 

considering designs with many sequences in the continuous time setting. Ultimately, however, we 

may prefer a design with fewer sequences for its greater simplicity and practicality.   
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Table 1. Total number of clusters needed in the PATHWEIGH example (see text) to achieve 80% 

power at the 5% significance level to detect different treatment effects, under different scenarios 

concerning correlations between outcomes from the same cluster.  

 

Scenarios Non-standard design 

(𝑠 = 1 12⁄ , 𝑤 = 1 3⁄ ) 

Standard design 

(𝑠 = 1 4⁄ , 𝑤 = 1 3⁄ ) 

  Variance of the 

treatment effect 

estimator 

Number of clusters 

needed to detect a 

difference in mean 

weight loss of 

Variance of the 

treatment effect 

estimator 

Number of clusters 

needed to detect a 

difference in mean 

weight loss of 

𝜌 𝜏  1kg 1.25kg 1.5kg  1kg 1.25kg 1.5kg 

0.02 1.0 0.0793𝜎2/𝐽 72 48 33 0.1002𝜎2/𝐽 93 60 42 

0.02 0.5 0.0820𝜎2/𝐽 75 48 33 0.1054𝜎2/𝐽 96 63 45 

0.05 1.0 0.0928𝜎2/𝐽 84 54 39 0.1054𝜎2/𝐽 96 63 45 

0.05 0.5 0.1093𝜎2/𝐽 99 63 45 0.1217𝜎2/𝐽 111 72 51 

 

  



Figure legends 

 

Figure 1. Schematic for a centrosymmetric, three-sequence stepped wedge trial with continuous 

recruitment. Centrosymmetry is the property that if we run time backwards, and swap intervention 

and control, then we arrive at the same design. 

 

Figure 2. Contour plots of the log of the variance of the treatment effect estimator for different 𝑚𝜌 

and 𝑚, where 𝑚 is the recruitment rate at a cluster, and 𝜌 is the intra-cluster correlation. Time is 

scaled from 0 to 1 over the recruitment period. Contour plots are drawn over the design parameter 

space 0 ≤ 𝑠 < 0.5 and 0 ≤ 𝑤 < 1, where 𝑠 is the first cross-over time and 𝑤 is the proportion of 

clusters allocated to the middle sequence. The solutions 𝑠 = 0, 𝑤 = 1 3⁄ , 𝑠 = 0.15, 𝑤 = 1 3⁄ , and 

𝑠 = 0.25, 𝑤 = 1 3⁄  (see text) are marked with a “+” symbol. Contour lines are separated by log(1.1), 

so that moving from one contour to the next represents a 10% increase in the variance. The lowest 

contour value is set at the minimum of the log-variance surface (the small, circular mark on each plot 

marks this minimum). The factor, 𝜏, by which the intra-cluster correlation decays over unit time is (a) 

𝜏 = 1.0; (b) 𝜏 = 0.5; (c) 𝜏 = 0.1. 
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(a) τ = 1.0   

 m = 50 m = 200 m = 1,000 
    

mρ = 0.0 ρ = 0.0 ρ = 0.0 ρ = 0.0 

 

   
mρ = 0.2 ρ = 0.004 ρ = 0.001 ρ = 0.0002 

 

   
mρ = 0.5 ρ = 0.01 ρ = 0.0025 ρ = 0.0005 

 

   
mρ = 1.0 ρ = 0.02 ρ = 0.005 ρ = 0.001 

 

   
mρ = 2.0 ρ = 0.04 ρ = 0.01 ρ = 0.002 

 

   
mρ = 5.0 ρ = 0.1 ρ = 0.025 ρ = 0.005 

 

   
mρ = 10.0 ρ = 0.2 ρ = 0.05 ρ = 0.01 

 

   
mρ = 20.0 ρ = 0.4 ρ = 0.1 ρ = 0.02 

 

   



(b) τ = 0.5   

 m = 50 m = 200 m = 1,000 
    

mρ = 0.0 ρ = 0.0 ρ = 0.0 ρ = 0.0 

 

   
mρ = 0.2 ρ = 0.004 ρ = 0.001 ρ = 0.0002 

 

   
mρ = 0.5 ρ = 0.01 ρ = 0.0025 ρ = 0.0005 

 

   
mρ = 1.0 ρ = 0.02 ρ = 0.005 ρ = 0.001 

 

   
mρ = 2.0 ρ = 0.04 ρ = 0.01 ρ = 0.002 

 

   
mρ = 5.0 ρ = 0.1 ρ = 0.025 ρ = 0.005 

 

   
mρ = 10.0 ρ = 0.2 ρ = 0.05 ρ = 0.01 

 

   
mρ = 20.0 ρ = 0.4 ρ = 0.1 ρ = 0.02 

 

   



(c) τ = 0.1   

 m = 50 m = 200 m = 1,000 
    

mρ = 0.0 ρ = 0.0 ρ = 0.0 ρ = 0.0 

 

   
mρ = 0.2 ρ = 0.004 ρ = 0.001 ρ = 0.0002 

 

   
mρ = 0.5 ρ = 0.01 ρ = 0.0025 ρ = 0.0005 

 

   
mρ = 1.0 ρ = 0.02 ρ = 0.005 ρ = 0.001 

 

   
mρ = 2.0 ρ = 0.04 ρ = 0.01 ρ = 0.002 

 

   
mρ = 5.0 ρ = 0.1 ρ = 0.025 ρ = 0.005 

 

   
mρ = 10.0 ρ = 0.2 ρ = 0.05 ρ = 0.01 

 

   
mρ = 20.0 ρ = 0.4 ρ = 0.1 ρ = 0.02 

 

   



 
 


