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exponents can be obtained even when the temperedness of the 
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on the local L2-norms of the Eisenstein series.
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1. Introduction

1.1. Main theorems

Let p be a prime. It is a standard fact that SLn(Z[1/p]) is dense in SLn(R). Following 
Ghosh, Gorodnik and Nevo [21,22], we wish to make this density quantitative.

Let Hn := SLn(R)/SOn(R) be the symmetric space of SLn(R). Fix an SLn(R)-
invariant Riemannian metric dist on Hn.

We define the height of γ ∈ SLn(Z[1/p]) as

ht(γ) = min
{
k ∈ N | pkγ ∈ Matn (Z)

}
,

where Matn denotes the space of n × n matrices.
Our work is based on the following definition, motivated by [22] (see Section 2 for 

comparison).

Definition 1.1. The Diophantine exponent κ(x, x0) of x, x0 ∈ Hn is the infimum over 
ζ < ∞, such that there exists an ε0 = ε0(x, x0, ζ) with the property that for every 
ε < ε0 there is a γ ∈ SLn(Z[1/p]) satisfying

dist(γ−1x, x0) ≤ ε and ht(γ) ≤ ζ
n + 2
2n logp(ε−1).

The Diophantine exponent of x0 ∈ Hn is

κ(x0) = inf {τ | κ(x, x0) ≤ τ for almost every x ∈ Hn} .

The Diophantine exponent of Hn is

κ = inf {τ | κ(x, x0) ≤ τ for almost every (x, x0) ∈ Hn ×Hn} .

In [22] (in a more generalized context) the following is shown.

Proposition 1.2. For every x0 ∈ Hn and almost every x ∈ Hn we have κ(x, x0) = κ(x0), 
and for almost every x, x0 ∈ Hn we have κ(x, x0) = κ(x0) = κ.

The artificial insertion of the factor n+2
2n in the definition of κ(x, x0) is to ensure that

for every x0 ∈ Hn κ(x0) ≥ 1, and κ ≥ 1

as we explain below. It is thus natural to wonder about a corresponding upper bound 
for κ(x0), namely whether

for every x0 ∈ Hn κ(x0) = 1,
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and in particular, whether

κ = 1.

In this case we say that κ is the optimal Diophantine exponent.
In [22] the Diophantine exponents are studied in great generality for a lattice Γ in a 

group G, acting on a homogeneous space G/H, when H is a subgroup of G. In our case 
Γ = SLn(Z[1/p]), G = SLn(R) × SLn(Qp) and H = SOn(R) × SLn(Qp) (see Section 2
for details). The optimality of κ is proved in [22] under certain crucial temperedness
assumptions of the action of H on L2(Γ\G). Unfortunately, in our particular situation, 
the temperedness assumption is not satisfied. As we explain in Section 2, the arguments 
of [22] imply the following non-optimal upper bounds on κ.

Theorem 1 (Ghosh–Gorodnik–Nevo, [22] and Section 2). Let n > 1 be a positive integer.

(1) For n = 2, assuming the Generalized Ramanujan Conjecture (GRC) for GL(2), for 
every x0 ∈ H2 we have κ(x0) = 1. Unconditionally, for every x0 ∈ H2 we have 
κ(x0) ≤ 32/25.

(2) For n ≥ 3, for every x0 ∈ Hn we have κ(x0) ≤ n − 1.

In particular, the same bounds also hold for κ.

One of the goals of this paper is to substantially improve the upper bound of κ, in 
particular, to prove that κ is essentially optimal. Our main theorem is as follows.

Theorem 2. Let n > 1 be a positive integer.

(1) For n = 2 or n = 3 we have κ = 1.
(2) For every n ≥ 4 we have

κ ≤ 1 + 2θn
n− 1 − 2θn

,

where θn is the best known bound towards the GRC for GL(n).

Remark 1.3. We refer to Subsection 4.4 for the precise definition of θn. From Equa-
tion (4.7) and Equation (4.8) we obtain that

κ ≤
{

11/8 for n = 4,
(n2 + 1)/(n2 − n) = 1 + O(1/n) for n ≥ 5

Notice that the bound on κ gets better as n grows. A non-precise reason is that as n
grows, the Hecke operator on the cuspidal spectrum gets closer and closer to having 
square-root cancellation.
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We also show the optimality of κ for any n assuming Sarnak’s Density Hypothesis for 
GL(n) as in Conjecture 2 which is a much weaker version of the GRC for GL(n).

Theorem 3. For every n, assuming Sarnak’s Density Hypothesis for GL(n) as in Con-
jecture 2 below, we have κ = 1.

We consider Theorem 3 as a proof of concept for the claim that the Diophantine 
exponent is usually optimal, even without the temperedness assumption. This is in line 
with Sarnak’s Density Hypothesis in the theory of automorphic forms, which informally 
states that the automorphic forms are expected to be tempered on average (see discussion 
in Subsection 4.4). Our result, at least on the assumption of the density hypothesis, also 
negatively answers a question of Ghosh–Gorodnik–Nevo who asked whether optimal 
Diophantine exponent implies temperedness; see [22, Remark 3.6] ([29] and [39] also 
provide answers to this question, in different contexts).

Note that Theorem 1 is about κ(x0) while Theorem 2 and Theorem 3 are about κ. 
The difference may seem minor but is crucial for the proof. In the general setting of 
Ghosh–Gorodnik–Nevo, we expect that usually κ = 1 (e.g., when SL(n) is replaced by 
another group), but κ(x0) may be larger, because of local obstructions.

An example, based on [19, Section 2.1], is the action of SOn+1(Z[1/p]) on the sphere 
Sn, which we discuss shortly in Subsection 2.1. In our situation, we conjecture that for 
every x0 ∈ Hn we have κ(x0) = 1, but do not know how to prove it even assuming the 
GRC, except for n = 2 (as in Theorem 1) and n = 3.

Theorem 4. For n = 3, assuming the GRC, we have κ(x0) = 1 for every x0 ∈ Hn.

1.2. Almost-covering

Our proofs of Theorem 2 and Theorem 3 use the spectral theory of L2(SLn(Z)\Hn). 
It is therefore helpful to understand the problem in an equivalent language that is more 
suitable for the spectral theory and is of independent interest.

First, it suffices to assume that x, x0 ∈ X := SLn(Z)\Hn as the Riemannian dis-
tance dist is left-invariant under SLn(Z) and the height function ht is bi-invariant under 
SLn(Z). The set of points of the form SLn(Z)γx0 ∈ X for γ ∈ SLn(Z[1/p]) with ht(γ) ≤ k

is in bijection with the set R(1)\R(pkn), where R(pkn) := {A ∈ Matn(Z) | det(A) =
pkn}. More precisely, there is a bijection

SLn(Z)\{γ ∈ SLn(Z[1/p]) | ht(γ) ≤ k} ∼= R(1)\R(pkn)

given by multiplication by pk, and the bijection above holds for generic x0. In general, 
we have a surjection from R(1)\R(pkn) to the set on the left hand side above.



S. Jana, A. Kamber / Advances in Mathematics 443 (2024) 109613 5
It is well known that

|R(1)\R(pkn)| � pkn(n−1);

see Subsection 4.2 (and Subsection 1.6 for the notation �).
The parameter κ(x0) measures the almost-covering of X by the set of points above. 

Consider a sequence of natural numbers k = k(ε), such that the ε-balls around the 
|R(1)\R(pkn)| points in X of the form SLn(Z)γx0 with ht(γ) ≤ k cover all but o(1) of 
the space X, when ε → 0 (compare [37, Proposition 3.1]). The number κ(x0) is closely 
related to the growth of k(ε) as ε → 0.

Therefore, it is required that as ε → 0,

m(Bε)|R(1)\R(pkn)| ≥ m(X) − o(1),

where m denotes the SLn(R)-invariant measure on X and m(Bε) is the volume of a ball 
of radius ε in Hn. We have m(Bε) � εd where d := dimHn = (n+2)(n−1)

2 . Thus, we 
deduce that

k(ε) ≥ d

n(n− 1) logp(ε−1)(1 − o(1)).

The same argument shows that κ(x0) ≥ 1. See Fig. 1 for a pictorial description.
We remark that one can also consider the problem of covering, where we would like 

to cover an entire compact region of X by small balls of radius ε around the Hecke 
points (unlike Theorem 2 and Theorem 3, which are essentially about almost-covering). 
This is also the difference between part (i) and part (ii) of [19, Theorem 1.3]. See also 
[14] for the covering problem of Hecke points around e ∈ X. We will not discuss it 
further in this work but mention that our methods, and in particular the arguments in 
Theorem 4, can lead to a better understanding of the covering problem as well, but the 
results are not expected to be optimal. For example, in the covering problem on the 
3-dimensional sphere the spectral approach leads to a covering exponent which is 3/2
times the conjectural value (see [11] and the references therein).

1.3. Outline of the proof

We start by describing the work of Ghosh–Gorodnik–Nevo in [22] in our setting, 
namely, on X := SLn(Z)\SLn(R)/SOn(R). Their work crucially relies on the existence 
and, in fact, an explicit description of the spectral gap for a certain averaging operator 
(i.e., a quantitative mean ergodic theorem) on a certain homogeneous space arising from 
a general reductive group. In our case, the situation is simpler and the relevant operator 
turns out to be the (adjoint) Hecke operator T ∗(pnk), for certain k, acting on L2(X). By 
a standard duality theorem for Hecke operators [15], the action reduces to an operator 
from the Hecke algebra of SLn(Qp) on L2(SLn(Z[1/p])\SLn(R) × SLn(Qp)).
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Fig. 1. Covering of SL2(Z)\H2 by balls around SL2(Z)\SL2(Z[1/3]). The height of the points is bounded 
by 3, and the balls are of radius 3−3.

One can relate the spectral gap of this Hecke operator to the Diophantine exponent 
(see Theorem 5). The spectral gap, using the theory of spherical functions, can be deter-
mined by a certain integrability exponent, which is parameterized by a number 2 ≤ q ≤ ∞
(see Proposition 2.4). When the integrability exponent is q = 2 (alternatively, an underly-
ing representation is tempered, see Section 2) one gets the optimal Diophantine exponent 
κ = 1. In general, the method of [22] only shows that κ ≤ q/2 (see Theorem 5).

Assuming n ≥ 3, explicit property (T ) implies that q ≤ 2(n − 1) (see the work of Oh 
[36] for a nice proof). This gives the claimed result that κ ≤ n − 1. On the other hand, 
the theory of Eisenstein series implies that q ≥ 2(n − 1) (see [15, Theorem 1.5]). As the 
spectral gap cannot be further improved, the method in [22] is limited and we need a 
different approach to improve the upper bound of κ.

One of the novelties in our work is to use the full spectral decomposition of L2(X)
and treat different types of elements of the spectrum separately. More precisely, we ac-
tually analyze the spectral decomposition of L2(X0), where X0 := PGLn(Z)\Hn. From 
our experience, this maneuver usually gives more detailed knowledge of the sizes of the 
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Hecke eigenvalues than that is provided by the spectral gap alone. The basic spectral 
decomposition uses the theory of Eisenstein Series due to Langlands (see [34]) and pro-
vides a decomposition of the form L2(X0) ∼= L2

cusp(X0) ⊕ L2
Eis(X0). The relevant Hecke 

operator acts on each part of the spectrum and gives rise to certain Hecke eigenval-
ues.

The cuspidal part L2
cusp(X0) decomposes discretely into irreducible representations. 

The Generalized Ramanujan Conjecture (GRC) predicts that all such representations 
are tempered, i.e. the sizes of the Hecke eigenvalues can be bounded optimally. While 
the GRC is completely open even for n = 2, good bounds towards it for each individual 
representation are known; see [40]. This bound is used in our unconditional results for 
n ≥ 4. However, even for n = 2 and assuming the best-known bounds, we are unable to 
reach κ = 1.

To overcome this problem, we notice that one does not need optimal bounds for in-
dividual Hecke eigenvalues, but optimal bounds on average. In general, Sarnak’s Density 
Hypothesis (see [42,43]) predicts (in a slightly different setting) that the GRC should 
hold on average for a nice enough family of automorphic representations. In our condi-
tional result, we assume a certain form of the density hypothesis, namely Conjecture 1
which can be realized as a higher rank analogue of Sarnak’s Density Hypothesis (see 
Proposition 4.12 and discussion there), and apply to our question. This approach was 
already used in different contexts to deduce results of a similar flavor (see [41,10,24,25]). 
The version that is relevant for us can be realized as Density relative to the Weyl’s law. 
We refer to Subsection 4.4 for a complete discussion. This density property is known for 
n = 2 and n = 3 by the work of Blomer [3] and Blomer–Buttcane–Raulf [7], respectively; 
see Subsection 4.4.

Remark 1.4. Recently, Assing and Blomer in [2, Theorem 1.1] proved Sarnak’s density 
hypothesis in a non-archimedean aspect, namely for the automorphic forms for princi-
pal congruence subgroups of square-free level. As an application they solved a related 
problem in [2, Theorem 1.5] namely, optimal lifting for SLn(Z/qZ) with square-free q, 
conditional on a hypothesis [2, Hypothesis 1] about certain local L2-bounds of the Eisen-
stein series; see also [27, Theorem 4, §8].

Dealing with the Eisenstein part L2
Eis(X0) is less complicated arithmetically than the 

cuspidal spectrum – the size of the Hecke eigenvalues can be understood inductively 
using the results of Mœglin and Waldspurger [33]. However, the Eisenstein part is more 
complicated analytically, because of its growth near the cusp. This problem can be 
regarded as a Hecke eigenvalue weighted Weyl’s law. Similar to the proofs in [32,35]
we need to show that the contribution of the Eisenstein part is small compared to 
the cuspidal spectrum. The problem is non-trivial due to the weights coming from the 
Hecke eigenvalues, which can be quite large for the non-tempered part of the Eisenstein 
spectrum. We show that the largeness of the Hecke eigenvalues for the non-tempered 
automorphic forms is compensated by a low cardinality of such forms.



8 S. Jana, A. Kamber / Advances in Mathematics 443 (2024) 109613
The exact result that we need is estimates on the L2-growth of Eisenstein series in 
compact domains, see Subsection 4.8 for a formulation. This result was proved by Miller 
in [32] as the main estimate in his proof of Weyl’s law for SL3(Z), but was open for 
n ≥ 4. In a companion paper [27] we solve this problem; see Subsection 4.8.

1.4. Generalizations and open problems

The questions in this work can be generalized to other groups, by replacing the un-
derlying group SL(n) by another semisimple simply connected algebraic group. Without 
giving the full definitions, we expect that the Diophantine exponent κ will be optimal, 
even without the presence of an optimal spectral gap (compare the discussion in [22, 
Remark 3.6]). Our proof certainly generalizes to SLm(D), when D is a division algebra 
over Q.

One can also wonder about the Diophantine exponents when Hn is replaced with 
SLn(R), with some left-invariant Riemannian metric. The methods of this paper can, in 
principle, be used for this problem as well, but the spectral decomposition, as well as 
other analytical problems, is more complicated due to the absence of sphericality, and 
we were not yet able to overcome them. However, one can show that in this situation 
κ(x0) = κ, since we have a right SLn(R)-action (the metric is not right-invariant, so this 
is not completely trivial).

1.5. Structure of the article

In Section 2 we explain how our question is related to the work of Ghosh–
Gorodnik–Nevo, and prove Theorem 1.

In Section 3 we discuss the relevant local groups and their (spherical) representation 
theory.

In Section 4 we discuss the global preliminaries that we need, and in particular discuss 
Hecke operators, Langlands spectral decomposition, and the description of the spectrum. 
In Subsection 4.4 we discuss the Density Conjecture that we require for this work, and 
in Subsection 4.8 we discuss L2-bounds on Eisenstein series in compact domains.

In Section 5 we reduce the study of Diophantine exponents to a certain analytic 
problem (cf. Lemma 5.12), in the spirit of [22].

In Section 6 we apply Langlands spectral decomposition and Proposition 4.20 to 
reduce the spectral problem to a combinatorial problem.

In Section 7 we complete the proof of Theorem 2 and Theorem 3.
Finally, in Section 8 we prove Theorem 4.

1.6. Notation

The notations 
, �, �, O, o are the usual ones in analytic number theory: for a master 
parameter T → ∞ and A, B depending on T implicitly we say A 
 B (equivalently, 
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A = O(B), and B � A) if there is a constant c such that A ≤ cB for T sufficiently 
large. We write A � B if A 
 B 
 A. The implied constants may depend on n and p, 
without mentioning it explicitly. Also as usual in analytic number theory, δ and η (but 
not ε) will denote arbitrary small but fixed positive numbers, whose actual values may 
change from line to line.

1.7. Acknowledgments

The authors thank Amos Nevo for various discussions and detailed comments about a 
previous version of this work and thank Peter Sarnak for his motivation. The first author 
thanks Shreyasi Datta for numerous fruitful discussions on various aspects of Diophantine 
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Bonn where most of the work was completed during his stay there. The second author is 
supported by the ERC under the European Union’s Horizon 2020 research and innovation 
program (grant agreement No. 803711). Finally, we thank the anonymous referee for the 
helpful comments which made the exposition of the paper a lot better.

2. The setting of Ghosh–Gorodnik–Nevo

The goal of this section is to explain how our question fits into the general framework 
studied by Ghosh–Gorodnik–Nevo in a sequence of works [19–22]. Consequently, we give 
a sketch of the argument which leads to a proof of Theorem 1. In this section we follow 
[22, Section 2] and use its notations, which are not the same as the rest of this work, to 
allow a simple comparison.

Let G := SLn(R) × SLn(Qp) and H := SOn(R) × SLn(Qp) < G. Also let Γ :=
SLn(Z[1/p]), which we consider as embedded diagonally in G. Notice that Γ is a lattice 
in G.

Let X := G/H ∼= SLn(R)/SOn(R) ∼= Hn. Also let dist be the natural Riemannian 
metric on X, coming from the Killing form on the Lie algebra of SLn(R). Notice that the 
action of G on G/H preserves this metric. We fix natural Haar measures mG, mH , mX =
mG/H on G, H, X, respectively.

We define D : SLn(Qp) → R≥0 by

D(gp) = log(p)ht(gp) = log(p) min
{
k ∈ Z≥0 | pkgp ∈ Matn(Zp)

}
.

We extend D : G → R≥0 by D(g∞, gp) := D(gp) and denote |g|D := eD(g), which in our 
case is simply the p-adic valuation of gp.

Definition 2.1 ([22], Definition 2.1). Given x, x0 ∈ X, the Diophantine exponent κ1(x, x0)
is the infimum over ζ, such that there is an ε0 = ε(x, s0, ζ) with the property that for 
every ε < ε0 there is a γ ∈ Γ satisfying

dist(γ−1x, x0) ≤ ε and |γ|D ≤ ε−ζ .
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Let us compare Definition 2.1 and Definition 1.1. The inequality |γ|D = pht(γ) ≤ ε−ζ

is equivalent to the inequality ht(γ) ≤ ζ logp(ε−1). Therefore,

κ(x, x0) = 2n
n + 2κ1(x, x0).

We claim that the choices of G, H, dist, and D satisfy the Assumptions 1 - 4 of [22, 
Section 2]. First, dist is G-invariant so [22, Assumption 1] holds (in fact, [22] requires a 
weaker “coarse metric regularity” condition). It also holds that for ε sufficiently small,

mX({x ∈ X | dist(x, x0) < ε}) � εd,

where d := dim(X) = dim(SLn(R)/SOn(R)) = (n +2)(n −1)/2. Therefore, [22, Assump-
tion 4] holds with local dimension d. Next, it directly follows from the definition that 
D(g1g2) ≤ D(g1) +D(g2), which means that D is subadditive. While [22, Assumption 2]
requires a weaker “coarse norm regularity” condition for D to hold.

Given t ≥ 0, the set Ht = {h ∈ H | D(h) ≤ t} is of finite Haar measure and moreover, 
a simple calculation (see Subsection 3.4) shows that

mH(Ht) � en(n−1)t.

Therefore, [22, Assumption 3] is satisfied with an explicit exponent a := n(n − 1).

Remark 2.2. Our analysis is slightly different than [22], since the set Gt = {g ∈ G |
D(g) ≤ t} is not of finite Haar measure, as assumed in [22]. There are two ways to 
overcome this minor difference. The first is to ignore it, since this assumption is not used 
in the proof of [22]. Alternatively, one may define a different metric by

D1(g∞, gp) := D(gp) + log ‖g∞‖,

where ‖ · ‖ is some submultiplicative matrix norm on Mn(R).
Then it is not hard to show changing D to D1 will give the same Diophantine exponent, 

and Gt,1 = {g ∈ G | D1(g) ≤ t} will be of finite Haar measure. However, the relation 
between D1 and Hecke points is less transparent, so we prefer to work with D instead.

In [22] the authors made the following observation: κ(x, x0) is a Γ ×Γ-invariant func-
tion, and Γ acts ergodically on X, and therefore for every x0 ∈ X there are constants 
κL(x0) and κR(x0) such that κL(x0) = κ(x0, x) and κR(x0) = κ(x, x0) for almost every 
x. Similarly, there is a constant κ such that κ = κ(x, x0) for almost every x, x0 ∈ X.

We have the following lower bound of the Diophantine exponent κ1(x, x0).

Proposition 2.3 ([22], Theorem 3.1). For every x0 ∈ X and for almost every x ∈ X, 
κ1(x, x0) ≥ d/a = n+2

2n , or alternatively κ(x, x0) ≥ 1.
Therefore, for every x0 ∈ X, κR(x0) ≥ 1 and κ ≥ 1.
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We gave a sketch of the proof of this proposition in the introduction. We remark that 
[22, Theorem 3.1] actually show that for every x0 ∈ X it holds that κL(x0) ≥ 1, but 
the above statement follows either by the same arguments, or by replacing D with D′, 
where D′(g) = D(g−1).

To present upper bounds, we consider the right action of H on Y := Γ\G, and 
we endow Y with the natural finite Haar measure coming from G. Let βt ∈ Cc(H), 
βt = 1Ht

mH(Ht) be the normalized characteristic function of Ht. We consider the operator 
of πY (βt) on L2(Y ), defined by

(πY (βt)f)(y) := 1
mH(Ht)

∫
Ht

f(yh) dmH(h).

In this case, πY (βt) can, in fact, be interpreted as a certain spherical Hecke operator for 
which we have the following mean ergodic theorem.

For any measurable space X we denote

L2
0(X) :=

⎧⎨
⎩f ∈ L2(X) |

∫
X

f(x) dx = 0

⎫⎬
⎭ .

Proposition 2.4 ([19], Theorem 4.2). There is an explicit q = q(n) > 0 such that as an 
operator on L2

0(Y )

‖πY (βt)‖op 
δ mH(Ht)−q−1+δ,

for every δ > 0.

The value q in the above proposition is the integrability exponent for the action of H
on L2

0(Y ). The integrability exponent q is the infimum over q′ such that the KH-finite 
matrix coefficients are in Lq′(H), where KH is a maximal compact subgroup of H. We 
have the following results on the integrability exponent.

(1) For n = 2, using Kim–Sarnak bound towards the Generalized Ramanujan Conjecture 
(see [40]), one can take q = 64/25. Assuming GRC, we have q = 2.

(2) For n ≥ 3, using explicit property (T ) from [36] we have q = 2(n − 1). Moreover, 
this choice of q is the best possible.

Using these bounds on the integrability exponents the following result is proved in [22].

Theorem 5 ([22], Theorem 3.3). For every x0 ∈ X and almost every x ∈ X,

κ1(x, x0) ≤
qd

.
2a
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Therefore, κR(x0) ≤ q/2, and consequently, κ ≤ q/2.

This recovers Theorem 1 from the results of [22].

2.1. Diophantine exponents on the sphere

This subsection is independent of the rest of the article, and serves to discuss the 
difference between κ and κ(x0).

The possible difference between κ and κ(x0) has similar origins as the failure of tem-
peredness, and also the failure of optimal L∞-bounds – embedding of a homogeneous 
orbit of a subgroup in the space. For example, when x0 = I, there is a homogeneous 
orbit of SLn−1(Z)\SLn−1(R) ⊂ SLn(Z)\SLn(R), and many points of the Hecke orbit of 
SLn(Z[1/p]) around I belong to the image of this homogeneous orbit in X. It seems that 
this concentration is not dramatic enough to change κ(I), but for other groups, this may 
happen. The goal of this subsection is to give an example with SL(n) replaced by SO(n).

Let n ≥ 5 and SO(n) be the algebraic group which is the stabilizer of the quadratic 
from Q(x1, . . . , xn) := x2

1 + · · · + x2
n.

Replacing SL(n) by SO(n), one can study the equidistribution of SOn+1(Z[1/p]) in 
SOn+1(R). This will help up explain the difference between κ(x0) and κ, hinted at in 
the introduction. For technical reasons, we restrict to p = 1 mod 4.

We let G := SOn+1(R) × SOn+1(Qp), H = SOn(R) × SOn+1(Qp), and Γ =
SOn+1(Z[1/p]) a lattice in G. It holds that X := G/H ∼= Sn and we let dist be an 
SOn+1(R)-invariant Riemannian metric on X. We define D and the Diophantine expo-
nent κ1(x, x0) as above. The relevant dimension is d = n, and the set Ht = {h ∈ H |
D(h) ≤ t} satisfies

mH(Ht) � eat,

where

a =
{
n2/4 n even
(n + 1)(n + 3)/4 n odd

.

We deduce that for every x0 ∈ X and almost every x ∈ X it holds that κ1(x, x0) ≥ d/a. 
The arguments of [22] imply that for every x0 ∈ X and almost every x ∈ X, it holds 
that κ1(x, x0) ≤ qd

2a , where

q =
{
n n even
n + 1 n odd

.

We conjecture that for almost every x, x0 ∈ X it holds that

κ1(x, x0) = d/a.



S. Jana, A. Kamber / Advances in Mathematics 443 (2024) 109613 13
We plan to pursue this conjecture in a future work, using the methods of this work.
Now consider the point x0 = e = (1, . . . , 0) ∈ X. For this specific point, the cardinality 

of the set of points of the form γe with D(γ) ≤ t is at most the number of solutions to

x2
1 + · · · + x2

n+1 = pk,

with xi ∈ Z and pk ≤ e2t. It is standard that the last number is


ε e
t(n−1+ε).

Therefore, by the same arguments, for almost every x ∈ X it holds that

κ1(x, e) ≥ d/(n− 1).

Notice that this is a lot larger than d/a.
For n odd, Sardari [39, Corollary 1.7] indeed proved that, for almost every x ∈ X it 

holds that

κ1(x, e) = d/(n− 1).

The proof uses deep results from automorphic forms to show that the mean ergodic 
theorem has actually a better spectral gap than given simply by explicit property (T ).

The reader is also referred to [29] for calculation of the Diophantine exponents of 
the SOn+1(Q)-action on the sphere, which is proved by a different method, not directly 
related to the spectral decomposition.

3. Preliminaries - local theory

In this section we describe some results about spherical representations and the spheri-
cal transform of SLn(R) and SLn(Qp). We mainly follow [17, Section 3] and [30, Section 3]
(see also [19, Section 3]).

3.1. Basic set-up

For any ring R the group GLn(R) denotes the group defined by the invertible elements 
of the n × n matrix algebra over R, which we call Matn(R). Let PGLn(R) be the group 
GLn(R)/R×. We have a map of algebraic groups GLn → PGLn.

We let v = ∞ or v = p a prime, and let Qv be the corresponding local field, i.e., 
Q∞ = R or the p-adic field Qp. Let | · |v be the usual valuation, i.e. |x|∞ = |x| for x ∈ R, 
and |plz|p = p−l for z ∈ Z×

p .
Let G = Gv := PGLn(Qv). If it is clear from the context we will drop v from the 

notation. Let P be the subgroup of upper triangular matrices, N be the subgroup of 
upper triangular unipotent matrices, and A be the subgroup of diagonal matrices. We 
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have P = NA = AN . Let K be the standard maximal compact subgroup of G, i.e., 
K = K∞ := POn(R) when v = ∞ and K = Kp := PGLn(Zp) when v = p. We have the 
Iwasawa decomposition G = PK. When v = ∞ denote dim(G/K) by d whose value is 
d = (n−1)(n+2)

2 .
We normalize the Haar measure m = mG on G as in [30]. In particular, we give K

Haar measure 1. If v = p this normalization uniquely defines the Haar measure on G. 
If v = ∞, the Killing form on the Lie algebra g of G defines an inner product on the 
tangent space of G/K, and defines a metric and measure on G/K. This uniquely defines 
the Haar measure on G.

Let A+ ⊂ A be the set consisting of the projection to PGL(n) of the elements of the 
following form:

• When v = ∞, A+ := {diag(a1, . . . , an) | a1 ≥ · · · ≥ an > 0}.
• When v = p, A+ := {diag(pl1 , . . . , pln) | l1 ≤ · · · ≤ ln}.

We have the Cartan decomposition G = KA+K.
We let a := {x = (x1, . . . , xn) ∈ Rn |

∑
xi = 0} be the coroot space of PGL(n). 

There is a natural map A → a, given by diag(a1, . . . , an) �→ (log(|a1|v), . . . , log(|an|v))
and further normalized to have sum 0.

Notice that a is the same space for all v. We give a an inner product using the case 
v = ∞. We identify a ≤ g as the Lie algebra of the connected component of the identity 
in A and let the inner product on a be the restriction of the Killing form to it. Thus 
when v = ∞ the set Bb := K{expα | α ∈ a, ‖α‖ ≤ b}K is the ball of radius b in G/K

around the identity. The inner product allows us to identify a with its dual a∗. We let 
a∗C = a∗ ⊗R C, with the natural extension of the inner product.

For every μ = (μ1, . . . , μn) ∈ a∗C, we associate a character χμ : P → C by

χμ(na) = χμ(a) :=
n∏

i=1
|ai|μi

v ,

for a = diag(a1, . . . , an) ∈ A and n ∈ N . Let

ρ := ((n− 1)/2, (n− 3)/2, . . . ,−(n− 1)/2) ∈ a∗C

be the half sum of the positive roots. It holds that Δ = χ2ρ is the modular character of 
P .

We denote the Weyl group of G by W which is isomorphic to the permutation group 
of Sn.

3.2. Spherical transform

Given g ∈ G, we let a(g) be its A part according to the Iwasawa decomposition 
G = NAK. We define the spherical function ημ : G → C corresponding to μ ∈ a∗C by
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ημ(g) :=
∫
K

χμ+ρ(a(kg)) dk.

Thus ημ is bi-K-invariant. Moreover, it can be checked, via a change of variable, that 
ημ is invariant under the action of W on μ. We can therefore, without loss of generality, 
assume that for any ημ the parameter μ is dominant, i.e., �(μ1) ≥ · · · ≥ �(μn). In the 
p-adic case we may also assume that 0 ≤ �(μi) < 2π/ log(p).

The spherical Hecke algebra of G is the convolution algebra on C∞
c (K\G/K), i.e., the 

convolution algebra of bi-K-invariant compactly supported smooth functions on G. For 
h ∈ C∞

c (K\G/K), we let h̃ : a∗C → C be the spherical transform of h, defined by1

h̃(μ) :=
∫
G

h(g)ημ(g) dg.

We have the spherical Plancherel formula which states that for h ∈ C∞
c (K\G/K),

∫
G

|h(g)|2 dg =
∫
ia∗

|h̃(μ)|2d(μ) dμ,

and spherical inversion formula which states that

h(g) =
∫
ia∗

h̃(μ)ημ(g)d(μ) dμ. (3.1)

Here d(μ) is a smooth function closely related to the Harish-Chandra’s c-function. For 
v = ∞, we will need the following estimate (see [30, Equation 3.4])

d(μ) 
 (1 + ‖μ‖)d−(n−1) = (1 + ‖μ‖)n(n−1)/2. (3.2)

3.3. Spherical representations

We call an irreducible admissible representation π of G spherical if π has a non-zero 
K-invariant vector. It is well known that such a vector is unique up to multiplication by 
scalar.

We can construct all admissible irreducible spherical representations of G from the 
unitarily induced principal series representations. Let μ ∈ a∗C and IndG

Pχμ denote the
normalized parabolic induction of χμ from P to G. It is an admissible representation and 
has a unique irreducible spherical subquotient. Conversely, for any irreducible admissible 
spherical representation π we can find a μπ ∈ a∗C such that π appears as a unique 
irreducible subquotient of IndG

Pχμπ
. In this case, we call μπ to be the Langlands parameter

of π; see [40].

1 The normalization here is from [17], which is different from [30].
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Let π also be unitary. In this case, let v ∈ π be a unit K-invariant vector. Then 
it follows from the definition of the spherical function that the corresponding matrix 
coefficient 〈π(g)v, v〉 is equal to ημπ

(g). If h ∈ Cc(K\G/K) then it holds that

π(h)v =
∫
G

h(g)π(g)v dg = h̃(μ)v.

This follows from the fact that π(h)v is K-invariant and therefore a scalar times v. This 
scalar may be calculated by evaluating 〈π(h)v, v〉. If μ is Langlands parameter of some 
irreducible, spherical and unitary representation, in particular if μ ∈ ia∗, then clearly we 
have |ημ(g)| ≤ 1.

Let Q be a standard parabolic subgroup of G attached to the partition n = n1+· · ·+nr. 
The Levi subgroup MQ of Q is isomorphic to GL(n1) × · · ·×GL(nr) modulo GL(1). We 
let a∗Q ∼= {(λ1, . . . , λr) ∈ Rr |

∑r
i=1 λini = 0} which is embedded in a∗ ⊂ Rn, as

(λ1, . . . , λr) �→ (λ1, . . . , λ1, . . . , λr, . . . , λr),

where λi repeats ni times. Similarly, we have a∗Q,C = a∗Q ⊗ C embedded in a∗C. Given 
λ = (λ1, . . . , λr) ∈ a∗P,C, it defines a character χλ of MQ by

χλ(diag(g1, . . . , gr)) =
∏

|det(gi)|λi , gi ∈ GL(ni)

Given a spherical representation π of MQ of we construct the representation πλ = π⊗χλ. 
We realize πλ as an representation of Q by tensoring with the trivial representation of 
the unipotent radical of Q. We denote IndG

Qπλ to be the normalized parabolic induction. 
Here the normalization is via the character χρQ

, where ρQ is the half sum of the positive 
roots attached to Q. We express the Langlands parameters of IndG

Qπλ in terms of that 
of π, and λ.

Lemma 3.1. The Langlands parameters of IndG
Qπλ are μπ + λ.

Proof. Assume first that Q corresponds to an ordered partition n = n1 + n2. Therefore, 
the Levi part M of Q, modulo its center, is equal to PGLn1(Qv) × PGLn2(Qv). Thus, 
the spherical representation π of M with trivial central character is a tensor product 
of the representations of PGLn1(Qv) with Langlands parameters μ = (μ1, . . . , μn1) and 
PGLn2(Qv) with Langlands parameters μ′ = (μ′

1, . . . , μ
′
n2

).
The representation IndG

Qπλ has a unique subquotient that is spherical. By the descrip-
tion of the spherical representations above and transitivity of induction, the Langlands 
parameter of the resulting representation is μ′′ = (μ1, . . . , μn1 , μ

′
1, . . . , μ

′
n2

) + λ. The 
general case follows by an inductive argument. �
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3.4. Bounds on spherical functions

In this subsection we will give uniform bounds on the spherical transform of some 
spherical functions. We will only need the case when v = p is a prime and assume it for 
the rest of the subsection.

As the spherical function ημ is bi-K-invariant, the value ημ(g) depends only on the A+

part of g from the Cartan decomposition. We will therefore focus on elements g ∈ A+, 
which we will assume to be of the form

g = diag(pl1 , . . . , pln),

with l1 ≤ · · · ≤ ln. As described above, we also assume that μ is dominant, i.e., �(μ1) ≥
· · · ≥ �(μn).

We record the following bound from [19, Lemma 3.3].

Lemma 3.2. Let g ∈ A+, and μ ∈ a∗C be dominant. We have

|ημ(g)| 
δ χ−ρ(1−δ)+�(μ)(g),

for every δ > 0.

Proof. Since our notations are different, we repeat the proof of [19, Lemma 3.3]. It holds 
that

|ημ(g)| ≤
∫
K

|χμ+ρ(a(kg))|dk =
∫
K

χ�(μ)(a(kg))χρ(a(kg)) dk.

Since we assume that g ∈ A+ and μ is dominant, from [12, Proposition 4.4.4(i)], we have

χ�(μ)(a(kg)) ≤ χ�(μ)(g).

Therefore,

|ημ(g)| ≤ χ�(μ)(g)
∫
K

χρ(a(kg)) dk = χ�(μ)(g)η0(g).

Finally, η0 is Harish-Chandra’s Ξ-function, which is bounded for g ∈ A+ by

η0(g) = Ξ(g) 
δ χ−ρ(1−δ)(g),

see, e.g., [45, 4.2.1]. �
We will also need an estimate of the measure of double cosets below. This is elemen-

tary, a proof can be found in [45, Lemma 4.1.1].
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Lemma 3.3. For every g ∈ A+ we have m(KgK) � χ2ρ(g).

We end this subsection with a discussion of spherical transform of a certain spherical 
function, which will be needed for latter purposes.

First, we want a measurement of how far are parameters from ia∗. In our context, 
the relevant parameter is as follows. For dominant μ ∈ a∗C parameterizing a unitary 
representation, we define

θ(μ) := max
i

{|�(μi)|} = max{�(μ1),−�(μn)}. (3.3)

We may assume that 0 ≤ θ(μ) ≤ (n − 1)/2 since it is true for every spherical unitary 
representation. Notice that θ(μ) = 0 if and only if μ ∈ ia∗. Such Langlands parameters 
are called tempered.

Remark 3.4. For completeness, we write the relation between θ and the integrability 
parameter q from Section 2. By [19, Lemma 3.2], given 2 ≤ q < ∞, the following are 
equivalent:

• For every ε > 0 it holds that ημ ∈ Lq+ε(G).
• For every k = 1, . . . , n − 1,

k∑
i=1

�(μi) ≤ (1 − 2/q)
k∑

i=1
ρi,

where ρi is the i-th coordinate of ρ.2

Denote the maximal q which satisfies the above equivalent conditions by q(μ). Then, in 
general, we have

q(μ) ≥ q̃(μ) := 2(n− 1)
(n− 1) − 2θ(μ) ,

while for n = 2 or n = 3 it holds that q̃(μ) = q(μ).

Given an integer l ≥ 0, consider the finite set of tuples 0 ≤ l1 ≤ · · · ≤ ln such 
that 

∑n
i=1 li = l. Each such sequence defines a different element diag(pl1 , pl2 , . . . , pln) =

diag(1, pl2−l1 , . . . , pln−l1) ∈ A+. We define

M(pl) := �
0≤l1≤···≤ln∑n

i=1 li=l

Kdiag(pl1 , . . . , pln)K = �
0≤l1≤···≤ln∑n

i=1 li=l

Kdiag(1, pl2−l1 , . . . , pln−l1)K.

(3.4)

2 We remark that [19, Lemma 3.2] has a typo which is fixed here.
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By applying Lemma 3.3 we obtain:

m(Kdiag(pl1 , . . . , pln)K) � p
∑n

i=1 li(n+1−2i). (3.5)

Summing over all the possible choices of l1 ≤ · · · ≤ ln such that l1 + · · · + ln = l, we 
deduce that

m(M(pl)) � pl(n−1) (3.6)

where most of the mass is concentrated on the double coset with l1 = · · · = ln−1 = 0, 
ln = l.

We also define

hpl := 1
m(M(pl))1M(pl) ∈ C∞

c (K\G/K) (3.7)

which is the normalized characteristic function of M(pl). This operator will correspond 
to the usual Hecke operator T ∗(pl) which we will define in Subsection 4.2.

Lemma 3.5. It holds that for μ ∈ a∗C

|h̃pl(μ)| 
δ pl(θ(μ)−(n−1)/2+δ),

for every δ > 0.
Alternatively, if we write

λμ(pl) := h̃pl(μ)m(M(pl))p−l(n−1)/2,

then we have

|λμ(pl)| 
δ pl(θ(μ)+δ),

for every δ > 0.

Proof. Note that using the W -invariance of h̃pl(μ) it suffices to consider μ to be domi-
nant.

From Equation (3.4) and the definition of hpl we have

h̃pl(μ) = 1
m(M(pl))

∑
l1,...,ln

m
(
Kdiag(pl1 , . . . , pln)K

)
ημ

(
diag(pl1 , . . . , pln)

)
,

where the sum is over 0 ≤ l1 ≤ · · · ≤ ln with l1 + · · · + ln = l. We use Lemma 3.2, 
Equation (3.6), and Equation (3.5) to bound the above display equation by
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δ
1

p(n−1)l

∑
l1,...,ln

χρ(1+δ)+�(μ)
(
diag(pl1 , . . . , pln)

)
.

Each summand above is bounded by

pl
(
n−1

2 +δ+θ(μ)
)
.

Thus we obtain that h̃pl(μ) is bounded by

pl
(
−n−1

2 +δ+θ(μ)
) ∑
l1,...,ln

1.

Noting that the last sum is bounded by ln 
δ plδ we conclude. �
Remark 3.6. If μ is Langlands’ parameter of a unitary representation then trivially we 
have |h̃pl(μ)| ≤ 1.

3.5. The Paley–Wiener theorem

In this subsection we will assume that v = ∞ and discuss the Paley-Wiener theorem 
for spherical functions. This is a common tool to localize the spectral side of a trace 
formula (e.g. see proof of Weyl’s law in [35]). See [17, Section 3] for details of the results 
in this subsection.

We define the Abel–Satake transform (also known as the Harish-Chandra transform) 
to be the map Cc(K\G/K) → Cc(A) defined by

f �→ Sf : a �→ Δ(a)1/2
∫
N

f(an) dn.

Since Sf is left K ∩ A-invariant, it is actually a map on A0, the connected component 
of the identity of A. We have the exponent map exp: a → A0, given by

(α1, . . . , αn) → diag(exp(α1), . . . , exp(αn)).

This gives an identification of a with A0. So we may as well consider

Sf ∈ Cc(a)

after pre-composing with exp map.
It holds that Sf is W -invariant and Gangolli showed that

S : C∞
c (K\G/K) → C∞

c (a)W
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is an isomorphism of topological algebras (see [17, 3.21]). Harish-Chandra showed that, 
if we denote the Fourier–Laplace transform Cc(a) → C(a∗C) by the map

h �→ ĥ : μ �→
∫
a

h(α)eμα dα,

then it holds that

h̃ = ̂S(h).

Gangolli (see [17, eq. 3.22]) also proved the following important result.

Proposition 3.7. Let h ∈ C∞
c (a)W be such that supp(h) ⊂ {α ∈ a | ‖α‖ ≤ b}, then

supp(S−1h) ⊂ Bb := K{expα | α ∈ a, ‖α‖ ≤ b}K.

We record the classical Paley–Wiener theorem, which asserts that for h ∈ C∞
c (a)W

with support in {α ∈ a | ‖α‖ ≤ b} we have

|ĥ(μ)| 
N,h exp(b‖�(μ)‖)(1 + ‖μ‖)−N (3.8)

for every N ≥ 0.
The following lemma is standard (compare, e.g., [17, Subsection 6.2]). We give a proof 

because the lemma is crucial in our work.

Lemma 3.8. Let ε → 0. There exists a function kε ∈ Cc(K\G/K) that satisfies the 
following properties:

(1) kε is supported on Bε := K{expα | α ∈ a, ‖a‖ ≤ ε}K.
(2) We have 

∫
G
kε(g) dg = 1.

(3) We have ‖kε‖∞ 
 ε−d and ‖kε‖2 
 ε−d/2.
(4) The spherical transform satisfies for every μ ∈ a∗C with θ(μ) ≤ (n − 1)/2,

|k̃ε(μ)| 
N (1 + ε‖μ‖)−N ,

for all N > 0.
(5) There is a constant C > 0 such that for μ ∈ a∗C satisfying ‖μ‖ ≤ Cε−1 it holds that 

|k̃ε(μ)| � 1.

Proof. Choose a fixed h ∈ C∞
c (a)W , having the properties that

• h is non-negative,
• ĥ(0) = 1,
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• supp(h) ⊂ {α ∈ a | ‖α‖ ≤ 1/2}.

By the Paley–Wiener theorem, as in Equation (3.8), and the third property above we 
have

|ĥ(μ)| 
h,N exp(‖�(μ)‖/2)(1 + ‖μ‖)−N .

In addition, by continuity of h and the second property above we can find a constant 
C > 0 such that |ĥ(μ)| ≥ 1/2 for ‖μ‖ ≤ C.

We define hε(α) := ε−(n−1)h(α/ε). Then we have ĥε(μ) = ĥ(εμ).
Finally, we define

kε := C−1
ε S−1(hε), where Cε :=

∫
G

S−1(hε)(g) dg.

Hence, k̃ε = C−1
ε ĥε.

Let us now prove the different properties of kε. Property (2) follows from the normal-
ization. By Proposition 3.7, kε is supported on Bε, proving property (1).

To estimate Cε, we first notice that the spherical function η−ρ is simply the constant 
function 1. So we have

Cε =
∫
G

S−1(hε)(g) dg =
∫
G

S−1(hε)(g)η−ρ(g) dg = ĥε(−ρ) = ĥ(−ερ).

As ĥ(0) = 1, we have Cε � 1 as ε → 0. This implies that

|k̃ε(μ)| = |C−1
ε ĥε(μ)| = |C−1

ε ĥ(εμ)| 
N exp(ε‖�(μ)‖/2)(1 + ε‖μ‖)−N ,

so property (4) holds.
Similarly, for ‖μ‖ ≤ Cε−1,

|k̃ε(μ)| = |C−1
ε ĥ(εμ)| ≥ C−1

ε /2 � 1,

so property (5) holds.
Finally, using the spherical inversion formula as in Equation (3.1), we have

|kε(g)| ≤
∫
ia∗

|k̃ε(μ)||ημ(g)|d(μ) dμ.

Using the fact that |ημ(g)| ≤ 1 for every g ∈ G and μ ∈ ia∗ unitary, property (4), and 
Equation (3.2) we obtain that the above is bounded by


N

∫
(1 + ε‖μ‖)−N (1 + ‖μ‖)d−n+1 dμ.
ia∗
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The above integral can be estimated by making N large enough as



∞∫
0

(1 + εx)−Nxd−1 dx 
 ε−d.

This shows that ‖kε‖∞ 
 ε−d. The bound on ‖kε‖2 follows from the bound on ‖kε‖∞, 
property (1), and the fact that vol(Bε) � εd. �
4. Preliminaries - global theory

4.1. Adelic formulation

In this section, we describe global preliminaries in adelic language that are needed for 
the proof. Temporarily in this section, p will denote a generic finite prime of Q.

Let A := R ×
∏′

p Qp be the adele ring of Q, where 
∏′ means that if x =

(x∞, . . . , xp, . . . ) ∈ A then xp ∈ Zp for almost all p.
We recall the notations K∞ = POn(R) and Kp = PGLn(Zp). We denote KA :=

K∞ ×
∏

p Kp which is a hyper-special maximal compact subgroup of PGLn(A). We also 
denote

XA := PGLn(Q)\PGLn(A)/KA.

Recall that X := SLn(Z)\Hn ∼= SLn(Z)\SLn(R)/SOn(R).
Let ϕ : SLn(R) → PGLn(R) be the natural quotient map. This map defines an 

action of SLn(R) on PGLn(R)/K∞, which is easily seen to be transitive, and since 
ϕ−1(POn(R)) = SOn(R) we can identify Hn = SLn(R)/SOn(R) ∼= PGLn(R)/K∞. By 
considering the left action of SLn(Z) on the two spaces we can identify

X ∼= PSLn(Z)\PGLn(R)/K∞.

Similarly, by considering the transitive right action of SLn(R) on PSLn(Z)\PGLn(R) we 
may identify SLn(Z)\SLn(R) ∼= PGLn(Z)\PGLn(R) and

X ∼= PGLn(Z)\PGLn(R)/PSOn(R).

It is simpler for us to work with the space

X0 := PGLn(Z)\PGLn(R)/K∞,

which is a quotient space of X by the group PGLn(Z)/PSLn(Z) of size 2.
The following Lemma 4.1 allows us to identify X0 with XA. The lemma is well known, 

but essential for this work, so we provide a proof for completeness.
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Lemma 4.1. We have

X0 ∼= XA

as topological spaces.

Proof. Let Kf =
∏

p Kp embedded naturally in GLn(A). It is enough to prove that

PGLn(Z)\PGLn(R) ∼= PGLn(Q)\PGLn(A)/Kf .

By the fact that GLn over Q has class number 1 (see [38, Proposition 8.1]) we have

GLn(A) = GLn(Q)GLn(R)
∏
p

GLn(Zp).

Alternatively, this follows from the fact that

GLn(R) × GLn(Qp) = GLn(Z[1/p]) (GLn(R) × GLn(Zp)) , (4.1)

where GLn(Z[1/p]) is embedded diagonally in the left hand side. Using the case n = 1
which states

A× = Q×R×
∏
p

Z×
p ,

we get

PGLn(A) = PGLn(Q)(PGLn(R) ×Kf ).

We deduce that the right action of PGLn(R) on PGLn(Q)\PGLn(A)/Kf is onto. The 
stabilizer of this action is PGLn(Z), so we get the desired homeomorphism. �
Remark 4.2. Alternatively, it holds that

X0 ∼= GLn(Z)R×\GLn(R)/On(R) (4.2)

and

XA
∼= GLn(Q)R×\GLn(A)/On(R) ×

∏
p

GLn(Zp). (4.3)

Remark 4.3. A similar proof using the action on PSLn(R) ⊂ PGLn(R) identifies X with 
the adelic space PGLn(Q)\PGLn(A)/(PSOn(R) ×Kf ) (i.e., K∞ = POn(R) is replaced 
with PSOn(R)).
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4.2. Hecke operators

We want to consider Hecke operators on L2(XA) (equivalently, on L2(X0)) from a 
representation theoretic point of view. This is standard (e.g., [15]), but since we work on 
PGL(n), which is not simply connected, some modifications are needed.

Let l ≥ 0 and p be any finite prime. Consider the infinite set

R(pl) = {x ∈ Matn(Z) | det(x) = pl}.

Recall that for every ring R we have a natural projection GLn(R) → PGLn(R), and 
we will write R̃(pl) for the projection of R(pl) to PGLn(Z[1/p]) ⊂ PGLn(Q). Notice 
that R̃(pl) is both left and right R̃(1) = PSLn(Z)-invariant. Let A(pl) be a finite set of 
representatives for R̃(pl)/R̃(1). It is possible to explicitly describe the set A(pl) (e.g., see 
[23, Lemma 9.3.2] for right cosets), but we will not need this explicit description.

Lemma 4.4. It holds that KpR̃(pl)Kp = M(pl), where M(pl) ⊂ PGLn(Qp) is (as in 
Subsection 3.4) the disjoint union of the double cosets of the form

Kpdiag(pl1 , . . . , pln)Kp,

with 0 ≤ l1 ≤ · · · ≤ ln and 
∑

li = l.
Moreover, the elements of A(pl) can be taken as representatives of the left Kp-cosets 

of M(pl).

Proof. For 0 ≤ l1 ≤ · · · ≤ ln and 
∑

li = l it holds that diag(pl1 , . . . , pln) ∈ R(pl). By 
projecting to PGLn(Qp) it follows that M(pl) ⊂ KpR̃(pl)Kp.

We check the other direction. For each element γ ∈ R(pl) (i.e., γ ∈ Matn(Z) with 
det(γ) = pl) we can find, using the Cartan decomposition in GLn(Qp), two elements 
k1, k2 ∈ GLn(Zp) and a = diag(pl1 , . . . , pln) with l1 ≤ · · · ≤ ln such that k1γk2 = a. 
Therefore, a ∈ Matn(Zp), hence l1 ≥ 0. Moreover, by comparing the determinants 
we have 

∑
li = l. By mapping to PGLn(Qp) we deduce that R̃(pl) ⊂ M(pl) and 

KpR̃(pl)Kp ⊂ M(pl).
Now, the natural embedding R̃(pl) → M(pl) extends to a natural embedding

R̃(pl)/R̃(1) → M(pl)/Kp.

We need to show that this map is surjective. By Equation (4.1), the action of 
PGLn(Z[1/p]) on PGLn(Qp)/Kp is transitive. Therefore, each left coset M(pl)/Kp has 
a representative γ ∈ PGLn(Z[1/p]). Lifting to GLn(Qp) and applying the Cartan de-
composition, we can write γ = kdiag(pl1 , . . . , pln)k′, for some k, k′ ∈ GLn(Zp) and 
0 ≤ l1 ≤ · · · ≤ ln with 

∑
li = l. Therefore γ ∈ GLn(Z[1/p]) ∩ GLn(Zp) ⊂ Matn(Z). 

Finally, det(γ) = pl implies that γ ∈ R(pl), as needed. �
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Definition 4.5. Let l ≥ 0. The Hecke operator T ∗(pl) acting on L2(X0) is defined as

(
T ∗(pl)ϕ

)
(x) := 1

|A(pl)|
∑

γ∈A(pl)

ϕ(γ−1x).

By the facts that A(pl) are representatives for left PGLn(Z)-cosets of PGLn(Z)R̃(pl)
which is right and left PGLn(Z)-invariant, and ϕ is left PGLn(Z)-invariant, the operator 
T ∗(pl) is well-defined, and does not depend on the choice of A(pl).

Remark 4.6. In analytic number theory, one usually defines the Hecke operator T̃ (pl) as

(
T̃ (pl)ϕ

)
(x) = 1

pl(n−1)/2

∑
γ∈R̃(1)\R̃(pl)

ϕ(γx),

see e.g., [23, §9.3.5]. If we define T (pl) := pl(n−1)/2

|R̃(1)\R̃(pl)| T̃ (pl) then T ∗(pl) is indeed the 

adjoint of T (pl).

Remark 4.7. Alternatively, using Equation (4.2), we could have defined a Hecke operator 
T ∗

GL(pl) on the space L2(GLn(Z)R×\GLn(R)/On(R)) by

(
T ∗

GL(pl)ϕ
)
(x) = 1

|R(pl)/R(1)|
∑

γ∈R(pl)/R(1)

ϕ(γ−1x)

This definition agrees with the other definition under the equivalence Equation (4.2).

Using Lemma 4.1 we may lift ϕ ∈ L2(X0) to a function ϕA ∈ L2(XA), by

ϕA(g∞, (e)p) := ϕ(g∞)

where (e)p := (1, 1, . . . ) ∈
∏

p GLn(Qp). We extend it to be left PGLn(Q)-invariant and 
right KA-invariant. Using such identification we can define certain averaging operators 
on L2(XA) using local functions hv ∈ Cc(Kv\PGLn(Qv)/Kv), such as

(R(hv)ϕA)(. . . , xv, . . . ) :=
∫

PGLn(Qv)

hv(y)ϕA(. . . , xvy, . . . ) dy.

Recall Equation (3.7)

hpl := 1
m(M(pl))1M(pl) ∈ Cc(Kp\PGLn(Qp)/Kp).

We show that the operators T ∗(pl) and R(hpl) are, in fact, classical and adelic versions, 
respectively, of one another.
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Lemma 4.8. It holds that (T ∗(pl)ϕ)A = R(hpl)ϕA.

Proof. From the definitions of the Hecke operator and the adelic lift above, we have

|A(pl)|(T ∗(pl)ϕ)A(g∞, (e)q) =
∑

γ∈A(pl)

ϕA(γ−1g∞, (e)q) =
∑

γ∈A(pl)

ϕA(g∞, (γ)p, (e)q 	=p),

where the second equality follows from the left PGLn(Q)-invariance and the right KA-
invariance of ϕA. Once again using the right KA-invariance of ϕA we can write the above 
as ∫

PGLn(Qp)

ϕA(g∞, (y)p, (e)q 	=p)
∑

γ∈A(pl)

1γKp
(y) dy.

According to Lemma 4.4,

∑
γ∈A(pl)

1γKp
= 1M(pl).

In addition, it holds that |A(pl)| = m(M(pl)). Therefore, for g ∈ PGLn(A) of the form 
g = (g∞, (e)q), it holds that

(T ∗(pl)ϕ)A(g) = 1
m(M(pl))

∫
y∈PGLn(Qp)

ϕA(gy)1M(pl)(y) dy

= (R(hpl)ϕA)(g),

as needed. �
Remark 4.9. One can similarly define Hecke operators on X, by identifying

X = PGLn(Z)\PGLn(R)/PSOn(R).

4.3. Discrete spectrum and weak Weyl law

We will need to use Langlands’ spectral decomposition of L2(XA). In this subsection 
we describe the discrete part of the spectrum.

The discrete spectrum L2
disc(PGLn(Q)\PGLn(A)) consists of the irreducible repre-

sentations π of PGLn(A) occurring discretely in L2(PGLn(Q)\PGLn(A)). By abstract 
representation theory, we may write

L2
disc(PGLn(Q)\PGLn(A)) ∼= ⊕πVπ,
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where Vπ is the π-isotypic component. By the multiplicity one theorem ([44] and [33]), 
each representation π of PGLn(A) appears in the decomposition with multiplicity at 
most 1, so Vπ spans a representation isomorphic to π. Moreover, π is isomorphic to a 
tensor product of representations πv of PGLn(Qv) for v ≤ ∞ (see [18]).

We restrict our attention to spherical representations π, that is, those having a non-
zero KA-invariant vector. Since π is equivalent to a tensor product of local representations 
πv, and each local representation has a one dimensional Kv-invariant subspace, the KA-
invariant subspace πKA of π has dimension 1. We choose once and for all a unit

ϕπ ∈ V KA
π

for each π with Vπ �= {0}.
We denote the set of all such ϕπ by Bn. Then formally we have

L2
disc(XA) ∼=

⊕
ϕ∈Bn

Cϕ.

The discrete spectrum Bn decomposes naturally into two parts, the cuspidal part Bn,cusp
and the residual part Bn,res.

Recalling from Subsection 3.3, for every place v we may attach the Langlands param-
eter μϕ,v = μπv

to ϕ. When v = ∞ we denote

νϕ := ‖μϕ,∞‖. (4.4)

By [17, Equation 3.17] ϕ is an eigenfunction of the Laplace–Beltrami operator and its 
eigenvalue is

‖ρ‖2 − ‖�(μϕ,∞)‖2 + ‖�(μϕ,∞)‖2.

In particular, for νϕ ≥ 1 the Laplace eigenvalue of ϕ is � ν2
ϕ.

We will also denote

θϕ,p := θ(μϕ,p),

according to Equation (3.3).
We define

FT := {ϕ ∈ Bn,cusp | νϕ ≤ T}. (4.5)

We record the statement of Weak Weyl law due to Donnelly, which gives an upper bound 
of the cardinality FT as T → ∞.

Proposition 4.10 ([16]). We have |FT | 
 T d as T → ∞.
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As a matter of fact, using the corresponding lower bounds by Müller in [35] and 
Lindenstrauss–Venkatesh in [30], we know that as T → ∞

|FT | = CT d(1 + o(1)), (4.6)

for some explicit constant C, but we will not need this stronger result.

4.4. The generalized Ramanujan conjecture and Sarnak’s density hypothesis

Let ϕ ∈ Bn be a spherical discrete series. For every hv ∈ Cc(Kv\PGLn(Qv)/Kv) one 
has the operator R(hv), as defined in Subsection 4.1, and it holds that

R(hv)ϕ = h̃v(μϕ,v)ϕ,

where h̃v denotes the spherical transform of hv. When v = p, combining Lemma 4.8 and 
Lemma 3.5 we obtain that for every x ∈ X,

T ∗(pl)ϕ(x) = λϕ(pl)p−l(n−1)/2ϕ(x)

such that for all δ > 0

|λϕ(pl)| 
δ pl(θϕ,p+δ).

Let ϕ ∈ Bn,cusp be a spherical cusp form. The Generalized Ramanujan Conjecture
(GRC) predicts that the Langlands parameter of ϕ at every place v is tempered, which 
is equivalent in our notations to

θϕ,v = 0, v ≤ ∞

The GRC at the place v = p implies essentially the sharpest bounds on the Hecke 
eigenvalues, in the following form. For every p prime, l ≥ 0, and δ > 0,

|λϕ(pl)| 
δ plδ,

as pl → ∞.
The GRC is out of reach of current technology, even for n = 2. However, we have 

various bounds towards it; see [40] for a detailed discussion.
The bounds of Hecke eigenvalues can be understood in terms of the bounds of θϕ,p. 

For n = 2, the best bounds are due to Kim–Sarnak [28], for n = 3 and n = 4, the 
same are due to Blomer–Brumley [6, Theorem 1], and for n ≥ 5, they are due to Luo–
Rudnick–Sarnak [31]. For GL(n), these bounds are given by

|θϕ,p| ≤ θn (4.7)
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where

θ2 = 7
64 , θ3 = 5

14 , θ4 = 9
22 ,

and

θn = 1
2 − 1

n2 + 1 , n ≥ 5. (4.8)

Our problem requires estimates of the Hecke eigenvalues which is stronger than Equa-
tion (4.8). On the other hand, we do not require a strong bound of individual Hecke 
eigenvalue, but only the GRC on average. In general, one expects Sarnak’s Density Hy-
pothesis to hold; see [43,42,25,4,26,2] for various aspects of this hypothesis.

The hypothesis asserts that for every δ > 0, for a nice enough finite family F of cusp 
forms, one has

∑
ϕ∈F

|λϕ(pl)|2 
δ

(
pl|F|

)δ (|F| + pl(n−1)
)

(4.9)

uniformly in p, l and as |F| → ∞.
Informally, the above says that larger Hecke eigenvalues occur with smaller density. 

Note that the above follows from GRC. On the other hand, the occurrence of the sum-
mand pl(n−1) represents as if the trivial eigenfunction appeared in F . The hypothesis 
above is an interpolation between the two cases. As a matter of fact, we expect that it 
will hold for natural families of discrete forms, not only for cusp forms.

In this paper we will work on a specific kind of family F , namely, FT as defined in 
Equation (4.5) whose cardinality is � T d via Equation (4.6). We will need a hypothesis 
in the following form.

Conjecture 1 (Density hypothesis, Hecke eigenvalue version). Let p be a fixed prime. For 
every l ≥ 0 and T ≥ 1 one has

∑
ϕ∈FT

∣∣λϕ(pl)
∣∣2 
p,δ

(
Tpl

)δ (
T d + pl(n−1)

)
,

for every δ > 0

Remark 4.11. Conjecture 1 should be compared to the orthogonality conjecture which 
asserts that

∑
ϕ∈FT

λϕ(pl11 )λϕ(pl22 ) ∼ δ
p
l1
1 =p

l2
2
T d,

as T → ∞; see e.g., [26, Theorem 1, Theorem 7], [4, Theorem 2] for more details.
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Motivated by the original density hypothesis of Sarnak (see [43]) one can propose an 
analogous density hypothesis in terms of the Langlands parameters in higher rank; see 
[4,26]. In fact, Conjecture 1 is nothing but a reformulation of Sarnak’s density hypothesis 
for higher rank which we describe below.

Conjecture 2 (Density Conjecture, Langlands parameter version). For every 0 ≤ θ0 ≤
(n − 1)/2 and T ≥ 1 one has

|{ϕ ∈ FT | θϕ,p ≥ θ0}| 
δ,p T
d
(
1− 2θ0

n−1

)
+δ

,

for every δ > 0

Following [4] here we prove the equivalence of Conjecture 1 and Conjecture 2.

Proposition 4.12. Conjecture 1 and Conjecture 2 are equivalent.

Proof. Assume that Conjecture 1 holds. Given T sufficiently large, summing over l such 
that pl(n−1) ≤ T d we get

∑
ϕ∈FT

∑
l:pl(n−1)≤Td

∣∣λϕ(pl)
∣∣2 
p,δ T d+δ.

By [4, Lemma 4], for k ≥ n + 1 we have

k∑
l=0

∣∣λϕ(pl)
∣∣2 �p p2kθϕ,p .

Therefore, for T ≥ p(n−1)(n+1)/d,
∑

l:pl(n−1)≤Td

∣∣λϕ(pl)
∣∣2 �p T d

2θϕ,p
n−1 ,

and
∑

ϕ∈FT

T d
2θϕ,p
n−1 
p,δ T d+δ,

and this implies Conjecture 2.
For the other direction, assume Conjecture 2. By Lemma 3.5,

∑
ϕ∈FT

∣∣λϕ(pl)
∣∣2 
δ

∑
ϕ∈FT

pl(2θϕ,p+δ).

Using partial summation, this is bounded by the main term
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p,δ

(n−1)/2∫
0

|{ϕ ∈ FT | θϕ,p ≥ θ0}|pl(2θ0+δ) dθ0


p,δ (plT )δ
(n−1)/2∫

0

T
d
(
1− 2θ0

n−1

)
p2lθ0 dθ0

plus the secondary terms

|FT |plδ + |{ϕ ∈ FT | θϕ,p ≥ (n− 1)/2}|pl(n−1+δ).

For 0 ≤ θ0 ≤ n−1
2 we have

T
d
(
1− 2θ0

n−1

)
p2lθ0 
 T d + pl(n−1).

Therefore, the main term is bounded by (plT )δ(T d + pl(n−1)). Similarly, using Con-
jecture 2, the secondary terms are also bounded by the same value. We therefore get 
Conjecture 1. �

Conjecture 1 is actually a convexity estimate, just as Conjecture 2. As a matter of 
fact, one can replace in it Bn,cusp by Bn, as we will essentially show in Subsection 7.1 that 
the residual spectrum also satisfies this bound. However, for the cuspidal spectrum itself 
one should expect better than what Conjecture 1 asserts, i.e. the subconvex estimates, 
which are indeed available for n = 2 [7, Lemma 1] and n = 3 [13, Theorem 3.3]. For 
n ≥ 3 Blomer [4] has proved a subconvex estimate for Hecke congruence subgroups in 
the level aspect. Recently, Blomer and Man [9] (improving upon the work of Assing and 
Blomer [2]) proved subconvex estimates for principal congruence subgroups, again in the 
level aspect.

We describe the results for n = 2, 3 here which we will use latter. Although, we only 
need the convexity estimates for our proofs, we record the strongest known estimates. 
Let m be of the form pl for some fixed prime3 p.

Proposition 4.13. Let n = 2. We have
∑

ϕ∈FT

|λϕ(m)|2 
δ (Tm)δ
(
T d + m1/2

)
,

for every δ > 0.

The result follows from [7, Lemma 1] and the discussion following it for the bound on 
L(1, sym2 uj). It is stronger than the density estimate given in Conjecture 1. In fact, it 

3 The results below are also true for the extension of λϕ to a multiplicative function on N.
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leads to the following subconvex bound using the same methods as in Proposition 4.12: 
for every 0 ≤ θ0 ≤ 1/2 and T ≥ 1 and we have

|{ϕ ∈ FT | θϕ,p ≥ θ0}| 
δ,p T 2(1−4θ0)+δ, (4.10)

for every δ > 0. Equation (4.10) is slightly stronger than [7, Proposition 1].

Proposition 4.14. Let n = 3. We have
∑

ϕ∈FT

|λϕ(m)|2 
δ (Tm)δ
(
T 5 + m5/4

)
,

for every δ > 0.

The result can be obtained from [13, Theorem 3.3] and upper bound of the adjoint 
L-value as in [7, Equation (22)].4 This result can be used to prove a considerably stronger 
statement than Conjecture 2.

Proposition 4.15. Let n = 3 and p fixed. For every 0 ≤ θ0 ≤ 1 and T ≥ 1 we have

|{ϕ ∈ FT | θϕ,p ≥ θ0}| 
δ,p T 5(1−8θ0/5)+δ,

for every δ > 0.

Proof. We use the same arguments as in Proposition 4.12. For T large enough we sum 
the estimate in Proposition 4.14 with m = pl and l such that pl ≤ T 4. Then using [4, 
Lemma 4] we get

∑
ϕ∈FT

T 8θϕ,p 
p,ε T
5+ε,

and this implies the proposition. �
This substantially improves both [7, Theorem 1] and [7, Theorem 2].

4.5. Eisenstein series

Let P be a standard parabolic in G := PGL(n) attached to an ordered partition 
n = n1+· · ·+nr. Let M be the corresponding Levi subgroup and N be the corresponding 
unipotent radical; see Subsection 3.3, where we denote a general parabolic by Q.

Let TM be the connected component of the identity of the R-points in a maximal 
torus in the center of M . Let M(A)1 be the kernel of all algebraic characters of M (see 

4 Conjecture 1 for n = 3 can actually be deduced from [3].
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[1, Chapter 3]). It holds that M(A) = M1(A) × TM . Following [1, Chapter 7] we give a 
brief sketch of the construction of the Eisenstein series on G(A), constructed inductively 
from the elements of L2

disc(M(Q)\M(A)1).
We follow the construction of induced representation as in Subsection 3.3. Given an 

representation π of M(A) occurring in L2
disc(M(Q)\M(A)1) and λ ∈ a∗P,C we consider the 

representation πλ := π⊗χλ of M(A) and extend it to P (A) via the trivial representation 
on N(A). Then we consider the normalized parabolic induction

IP,π(λ) := IndG(A)
P (A)πλ.

The representation will be unitary when λ ∈ ia∗P .
When π is the right regular representation then we denote IP,π as IP . One can realize 

the IP (λ) on the Hilbert space HP (which is λ-independent) defined by the space of 
functions

ϕ : N(A)M(Q)TM\G(A) → C

such that for every x ∈ G(A) the function ϕx : m → ϕ(mx) belongs to L2
disc(M(Q)\

M(A)1), and

‖ϕ‖2 :=
∫

M(Q)\M(A)1

∫
KA

|ϕ(mk)|2 dk dm < ∞.

Let H0
P ⊂ HP be the subset of KA-finite vectors. For each element ϕ ∈ H0

P and 
λ ∈ a∗P,C we define an Eisenstein series as a function on G(Q)\G(A) by

EisP (ϕ, λ)(x) :=
∑

γ∈P (Q)\G(Q)

ϕ(γx)χρP +λ(a(γx)), x ∈ G(A).

The above sum converges absolutely for sufficiently dominant λ and can be meromorphi-
cally continued for all λ ∈ a∗P,C by the work of Langlands. Moreover, IP,π(λ) intertwines 
with EisP , in the sense that,

EisP (IP (λ)(g)ϕ, λ)(x) = EisP (ϕ, λ)(xg), x ∈ XA, g ∈ G(A).

In particular, if EisP (ϕ, λ) is KA-invariant then ϕ ∈ HKA
P . Consequently, ϕ can be 

realized as an element of L2
disc(M(Q)\M(A)1)KA∩M(A).

We have the decomposition

HKA
P =

⊕
π

HKA
P,π,

where π runs over the isomorphism classes of irreducible sub-representations of 
M(A) occurring in the subspace L2

disc(M(Q)\M(A)1). By the Iwasawa decomposi-
tion G(A) = M(A)N(A)KA, we have an isomorphism of vector spaces HKA

P
∼=
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L2
disc(M(Q)\M(A)1)KM,A �= {0}, where KM,A = KA ∩ M(A). Similarly, we have 

HKA
P,π

∼= πKM ,A, which is one-dimensional by the multiplicity one theorem. In this case we 

choose ϕπ ∈ HKA
P,π to be a vector of norm 1. We let BP be the set of such vectors ϕ, when 

we go over all the possible representation π of M(A) appearing in L2
disc(M(Q)\M(A)1)

with πKM,A �= 0.
Let us describe the last set more explicitly. Each irreducible representation of M(A)

appearing in the decomposition of L2
disc(M(Q)\G(A)) has a central character χ of the 

center Z(M(A)), trivial on Z(M(A)1) ∩M(Q). If the representation has a KM,A-invariant 
vector then χ must also be trivial on Z(M(A)1) ∩ KM,A. Every central character of 
GLni

(A) which is trivial on GLni
(Q) and the maximal open compact subgroup Oni

(R) ×∏
p GLni

(Zp) is trivial. Since M is essentially a product of GLni
, we deduce that χ is 

trivial. Therefore, BP is in bijection with irreducible subrepresentations of

L2
disc((PGLn1(Q) × · · · × PGLnr

(Q))\(PGLn1(A) × · · · × PGLnr
(A))),

having a Kn1,A × · · · × Knr,A-invariant vector, where Kni,A is the maximal compact 
subgroup in PGLni

(A).
The last space decomposes into a linear span of ϕ1 ⊗ · · · ⊗ϕr, ϕi ∈ Bni

. We conclude 
that BP is in bijection with Bn1 × · · · × Bnr

.
If μϕi,v is the Langlands parameter of ϕi as the place v then we embed it in a∗C

in (n1 + · · · + ni−1 + 1, . . . , n1 + · · · + ni)-th coordinates. Consequently, the Langlands 
parameter of EisP (ϕ, λ) at the place v is

μϕ,λ,v := (μϕi,v, . . . , μϕr,v) + λ ∈ a∗C,

which follows from Lemma 3.1. In particular, for λ ∈ ia∗P we have5

θϕ,v = θϕ,λ,v := θ(μϕ,λ,p) = max
i

θϕi,p, (4.11)

where θϕ,v is as defined in Equation (3.3). We also have

ν2
ϕ,λ := ‖μϕ,λ,∞‖2 = ν2

ϕ1
+ · · · + ν2

ϕr
+ ‖λ‖2, (4.12)

where νϕ is as defined in Equation (4.4). We also abbreviate (and slightly abuse nota-
tions) νϕ = νϕ,0.

If hv ∈ C∞
c (Kv\PGLn(Qv)/Kv), then

R(hv)EisP (ϕ, λ) = EisP (IP,π(λ)(hv)ϕ, λ) = h̃(μϕ,λ,v)EisP (ϕ, λ),

where R(hv) is defined as in Subsection 4.1.

5 Notice that θϕ,λ,p does not depend on λ, so we discard it from the notations.
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In particular, if f ∈ C∞
c (KA\PGLn(A)/KA) is of the form

f(g) = f((gv)v) = f∞(g∞)fp(gp)
∏
q 	=p

1Kq
(gq), (4.13)

then we have

R(f)EisP (ϕ, λ) = EisP (IP,π(h)ϕ, λ) = f̃∞(μϕ,λ,∞)f̃p(μϕ,λ,p)EisP (ϕ, λ). (4.14)

4.6. Spectral decomposition

We can describe Langlands spectral decomposition following [1, Section 7].
We denote by C∞

c (KA\PGLn(A)/KA) the space that is spanned by functions of the 
form f =

∏
v≤∞ fv, with fv ∈ C∞

c (Kv\PGLn(Qv)/Kv), and fv = 1Kv
for almost every 

v. Given f ∈ C∞
c (KA\PGLn(A)/KA), we will consider the operator

R(f) : L2(XA) → L2(XA),

defined by

R(f)ϕ(x) :=
∫

PGLn(A)

f(y)ϕ(xy) dy =
∫
XA

Kf (x, y)ϕ(y) dy,

where

Kf (x, y) :=
∑

γ∈PGLn(Q)

f(x−1γy). (4.15)

Note that the compact support of f ensures that the above sum is finite.
Finally, we record the spectral decomposition of the automorphic kernel Kf .

Kf (x, y) =
∑
P

CP

∑
ϕ∈BP

∫
ia∗

P

EisP (IP,πϕ
(λ)(f)ϕ, λ)(x)EisP (ϕ, λ)(y) dλ. (4.16)

Notice that when P = G then BG = Bn, there is no integral over λ, and EisP (ϕ, λ) is 
simply ϕ. The constants CP are certain explicit constants with CG = 1, and are slightly 
different than in [1], since we normalize the measure of aC differently.

We will also need the L2-spectral expansion in the following form.

Proposition 4.16. Let f ∈ C∞
c (KA\PGLn(A)/KA) be as in Equation (4.13). For x0 ∈

XA, let Fx0 ∈ C∞
c (XA) be

Fx0(x) := Kf (x0, x)
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Then

‖Fx0‖2
2 =

∑
P

CP

∑
ϕ∈BP

∫
ia∗

P

|f̃∞(μϕ,λ,∞)|2|f̃p(μϕ,λ,p)|2|EisP (ϕ, λ)(x0)|2 dλ,

where the notations are as in Equation (4.16).

Proof. Denote f∗(g) := f(g−1), and f1 := f ∗ f∗. We notice that for notations as in 
Equation (4.16), using Equation (4.14)

EisP (IP,πϕ
(f1)ϕ, λ) = EisP (IP,πϕ

(f)IP,πϕ
(f∗)ϕ, λ)

= |f̃∞(μϕ,λ,∞)|2|f̃p(μϕ,λ,p)|2EisP (ϕ, λ). (4.17)

We next claim that

‖Fx0‖2
2 = Kf1(x0, x0). (4.18)

Then the proof follows from Equation (4.16), Equation (4.17) and Equation (4.18).
To see Equation (4.18) we note that,

‖Fx0‖2
2 =

∫
XA

Fx0(x)Fx0(x) dx =
∫
XA

∑
γ∈PGLn(Q)

f(x−1
0 γx)

∑
γ1∈PGLn(Q)

f(x−1
0 γ1x) dx

Both of the above sums are finite. Exchanging order summation and integration, and 
unfolding the XA integral we obtain the above equals∫

PGLn(A)

∑
γ∈PGLn(Q)

f(x−1
0 γg)f∗(g−1x0) dg.

Once again exchanging finite sum with a compact integral we obtain∑
γ∈PGLn(Q)

(f ∗ f∗)(x−1
0 γx0),

which concludes the proof. �
We will now use Proposition 4.16 to prove a version of a local weak Weyl Law, which 

will be needed in our proof.

Proposition 4.17. Let Ω ⊂ XA be a compact subset. Then for every x0 ∈ Ω it holds that

∑
P

CP

∑
ϕ∈BP ,νϕ≤T

∫
λ∈ia∗

P ,|λ|≤T

|EisP (ϕ, λ)(x0)|2 dλ 
Ω T d,

as T tends to infinity.
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Proof. Let ε � T−1 with a sufficiently small implied constant. Choose f∞ = kε where 
kε is of the form described in Lemma 3.8, and fp = 1Kp

. Construct f1 and Fx0 as 
in (the proof of) Proposition 4.16. Note that f1,p is again 1Kp

and f1,∞ is supported 
on K∞B2εK∞, which follows from property (1) of Lemma 3.8. Then we claim that for 
x0 ∈ Ω

‖Fx0‖2
2 
Ω ‖f∞‖2

2 
 T d.

Notice that the second estimate follows from property 3 in Lemma 3.8.
First, we choose some fixed liftings of x0, x ∈ PGLn(A), whose p-coordinates 

x0,p, xp are in Kp, and their ∞-coordinates are in a fixed fundamental domain of 
PGLn(Z)\PGLn(R). This is possible by Lemma 4.1.

If f1(x−1
0 γx) �= 0 it implies that 1Kp

(x−1
0,pγxp) �= 0 for all p. Hence, γ ∈ Kp for all p, 

which implies that γ ∈ PGLn(Z). In addition, f1,∞(x−1
0,∞γx∞) �= 0, which implies that 

x−1
0,∞γx∞ ∈ K∞B2εK∞. Clearly, the number of γ ∈ PGLn(Z) with x−1

0,∞γx∞ ∈ B2ε is 

Ω 1.

Using the proof of Proposition 4.16 we obtain

‖Fx0‖2
2 
Ω ‖f1,∞‖∞.

Applying Cauchy–Schwarz we see that the above is bounded by ‖f∞‖2
2, as needed.

First notice that for νϕ ≤ T and ‖λ‖ ≤ T it holds that

‖μϕ,λ,∞‖ = νϕ,λ 
 T � ε−1,

with a sufficiently small implied constant. Thus using property (5) of Lemma 3.8 we get 
that

|f̃∞(μϕ,λ,∞)| � 1.

Therefore we have
∑
P

CP

∑
ϕ∈BP ,νϕ≤T

∫
λ∈ia∗

P ,|λ|≤T

|EisP (ϕ, λ)(x0)|2 dλ



∑
P

CP

∑
ϕ∈BP

∫
λ∈ia∗

P

|f̃∞(μϕ,λ,∞)|2|EisP (ϕ, λ)(x0)|2 dλ.

Applying Proposition 4.16 we conclude. �
4.7. The residual spectrum and shapes

Mœglin and Waldspurger in [33] described the residual spectrum Bn,res as follows. 
Let ab = n with b > 1 and let ϕ ∈ Ba,cusp. Consider the standard parabolic subgroup 
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P corresponding to the ordered partition (a, . . . , a) of n, and let ϕ′ ∈ BP correspond to 
(ϕ, . . . , ϕ) ∈ Ba×· · ·×Ba. Construct the Eisenstein series EisP (ϕ′, λ) for λ ∈ a∗P,C. This 
is a meromorphic function, and it has a (multiple) residue at the point

λ = ρb = ((b− 1)/2, (b− 3)/2, . . . ,−(b− 1)/2) ∈ a∗P,C,

where we temporarily identified a∗P,C with a subset of Cb and recall that it embeds in 
a∗C by repeating each value a times. The residue can be calculated as

ψ′ = lim
λ→ρb

(λ1 − λ2 − 1) · · · · · (λb−1 − λb + 1)EisP (ϕ′, λ).

After normalization, ψ = ψ′/‖ψ′‖ is an element of Bn,res, and every element of Bn,res
can be constructed this way for some ab = n, b > 1, ϕ ∈ Ba. Thus we deduce that

Bn =�
a|n

Ba,cusp.

From the above description it follows that on the level of Langlands parameters we 
have

μψ,v = μϕ′,ρb,v = (μϕ,v, . . . , μϕ,v) + ρb.

In particular, we have

θψ,p = θϕ,p + (b− 1)/2,

and if νϕ � 1 then νψ � νϕ.
Each ϕ ∈ BP is parameterized by a shape (a1, b1), . . . , (ar, br) where ai, bi ≥ 1 with ∑r
i=1 aibi = n, and P corresponds to the ordered partition n =

∑r
i=1 aibi. Moreover, if ϕ

corresponds to (ϕ1, . . . , ϕr), ϕi ∈ Bni
, then ϕi corresponds to a cuspidal representation 

in Bai,cusp.
Given a shape S = ((a1, b1), . . . , (ar, br)), we let BS ⊂ BP be the set of forms ϕ ∈ BP

of shape S. We have the following estimates.

Lemma 4.18. For every ϕ ∈ BS, it holds that

θϕ,p ≤ max
i

{(bi − 1)/2 + θai,p},

where θai,p is the best known bound towards the GRC at the place p for the cuspidal 
spectrum of PGL(ai).

Indeed, the lemma follows from the claim above about the behavior of θ of residual 
forms and Equation (4.11).

The following estimate combines Weyl’s law for a given shape.
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Lemma 4.19. We have

|{ϕ ∈ BS | νϕ ≤ T}| 
 T dS ,

where dS =
∑r

i=1(ai + 2)(ai − 1)/2.

Proof. As described above, there is a bijection between BS and Ba1,cusp × · · · ×Bar,cusp. 
Moreover, under this bijection, by combining the estimates for ν of residual forms above 
and Equation (4.12) we have

νϕ + 1 � rmax
i=1

νϕi
+ 1.

The estimate now follows from Proposition 4.10. �
4.8. Local L2-bounds of Eisenstein series

Let ϕ ∈ BP and λ ∈ ia∗P , and let EisP (ϕ, λ) ∈ C∞(X) be the corresponding Eisenstein 
series. It is known that the Eisenstein series grow polynomially near the cusp. It is a 
natural and challenging problem to find good pointwise upper bound of EisP (ϕ, λ).

A more tractable approach is to take a compact subset Ω ⊂ X of positive measure and 
ask the size of ‖EisP (ϕ, λ)|Ω‖2 as νϕ,λ → ∞. In this paper we need an upper bound of 
‖EisP (ϕ, λ)|Ω‖2

2 on an average over λ in a long interval. One may deduce certain bounds 
of such an average from the local Weyl law (cf. Proposition 4.17) or via the improved 
L∞-bounds in [8], but such bounds are not sufficient for our purposes.

One expects that ‖EisP (ϕ, λ)|Ω‖2 remains essentially bounded in νϕ,λ, which is an 
analogue of the Lindelöf hypothesis for the L-functions. More precisely, we expect that

∫
Ω

|EisP (ϕ, λ)(x)|2 dx 
Ω logn−1(1 + νϕ,λ). (4.19)

Note that for n = 2 the above is classically known. We refer to [27] for a detailed 
discussion.

We remark that a recent result of Assing–Blomer [2, Theorem 1.5] on optimal lifting for 
SLn(Z/qZ) also requires such a bound on the local L2-growth but in a non-archimedean 
aspect; see [2, Hypothesis 1].

Proving Equation (4.19) seems to be quite difficult. A natural way to approach the 
problem is via the higher rank Maass–Selberg relations due to Langlands, at least when 
ϕ is cuspidal. Among many complications that one faces through this approach (see 
[27, §1.3]) the major one involves standard (in νϕ,λ aspect) zero-free region for various 
GL(n) ×GL(m) Rankin–Selberg L-functions, which are available only in a very few cases.

A relatively easy problem would be to find upper bound of a short λ average of 
‖EisP (ϕ, λ)|Ω‖2

2. In fact, we expect
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∫
‖λ′−λ‖≤1

∫
Ω

|EisP (ϕ, λ′)(x)|2 dx dλ′ 
Ω logn−1(1 + νϕ,λ). (4.20)

In a companion paper [27] we study these problems in detail for a general reductive 
groups.

For the current paper we only need to find an upper bound of ‖EisP (ϕ, λ)|Ω‖2
2 on an 

average over λ over a long interval so that the bound in the ϕ aspect is only polynomial 
in νϕ with very small degree. However, it is important for us that the bound is uniform 
over all ϕ, cuspidal or not. We describe the required estimate below.

Proposition 4.20. For every ϕ ∈ BP we have∫
λ∈ia∗

P ,‖λ‖≤T

∫
Ω

|EisP (ϕ, λ)(x)|2 dx dλ 
Ω log(1 + T + νϕ)n−1T dim aP ,

for any T ≥ 1.

The theorem should be compared to the simple upper bounds using the local Weyl 
law as in Proposition 4.17), which allows us to deduce a similar statement, but with 
T dim aP replaced by T d, which is insufficient for our purpose.

We remark that for n = 3, Proposition 4.20 was proved by Miller in [32], as one of the 
main ingredients in proving Weyl’s law for SL3(Z)\SL3(R)/SO3(R). Therefore, for n = 3
(and n = 2) the results of this paper are unconditional on the result of the companion 
paper. Proposition 4.20 generalizes Miller’s result to higher rank, and similarly implies 
Weyl’s law in the same way. However, we heavily rely on [35], so this does not lead to a 
new proof.

Proof of Proposition 4.20. We find {ηj}kj=1 ∈ ia∗P with k 
 T dim aP and ‖ηj‖ ≤ T so 
that

{λ ∈ ia∗P | ‖λ‖ ≤ T} ⊂ ∪k
j=1{λ ∈ ia∗P | ‖λ− ηj‖ ≤ 1}.

Clearly, we can majorize the integral in the proposition by

k∑
j=1

∫
λ∈ia∗

P
‖λ−ηj‖≤1

∫
Ω

|EisP (ϕ, λ)(x)|2 dx dλ.

We apply [27, Theorem 1] to each summand on the right hand side above with ϕ0 = ϕ

and λ0 = ηj to conclude that the integral in the proposition is bounded by


Ω kmax
j

log(1 + νϕ + ‖ηj‖)n−1.

We conclude the proof by employing the bounds on ηj and k. �
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5. Reduction to a spectral problem

In this section, we finally begin proving the main results Theorem 2 and Theorem 3, 
and we will reduce it to a spectral problem. Then we will apply a few different reductions 
to simplify the problem even further.

Consider the set

S(k) := {γ ∈ SLn(Z[1/p]) | ht(γ) ≤ k}.

Lemma 5.1. The image of S(k) in PGLn(Q) is equal to R̃(pnk).

Proof. The map S(k) → R(pnk) defined by γ �→ pkγ is a bijection. Therefore, the images 
of them in PGLn(Q) are the same. �

Below we identify X := SLn(Z)\Hn ∼= PSLn(Z)\PGLn(R)/K∞. This implies that 
the action of γ ∈ SLn(R) on Hn depends only on the image of γ in PGLn(R).

Definition 5.2. Let x, x0 ∈ X which we identify with some lifts of them in Hn ∼=
PGLn(R)/K∞. Also, let ε > 0 and k ∈ Z≥0. We say that the pair (x, x0) is (ε, k)-
admissible if there is a solution γ ∈ R̃(pnk) to dist(x, γx0) ≤ ε.

Notice that since R̃(pnk) is left and right PSLn(Z)-invariant, the above definition does 
not depend on the lifts of x, x0 ∈ Hn.

Unraveling Definition 1.1 and Definition 5.2 we get the following.

Lemma 5.3. Let x, x0 ∈ X. The Diophantine exponent κ(x, x0) is the infimum over ζ < ∞
such that there exists ε0 = ε0(x, x0, ζ) with the property that for every ε < ε0 the pair 
(x, x0) is (ε, ζ n+2

2n logp(ε−1))-admissible.

Let kε ∈ C∞
c (K∞\PGLn(R)/K∞) be as in Lemma 3.8. For x0 ∈ X, let KX

ε,x0
∈ C∞

c (X)
be the automorphic kernel

KX
ε,x0

(y) :=
∑

γ∈PSLn(Z)

kε(x−1
0 γ−1y).

It is simple to see that

∫
X

KX
ε,x0

(y) dy =
∫

PGLn(R)

kε(x−1
0 g) dg = 1.

Recall the Hecke operator T ∗(pk) from Subsection 4.1, and the fact that it acts on 
functions on X by Remark 4.9.
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Lemma 5.4. Assume that

T ∗(pnk1)T ∗(pnk2)KX
ε,x0

(x) �= 0,

then the pair (x, x0) is (ε, k1 + k2)-admissible.

Proof. We have

0 �= T ∗(pnk1)T ∗(pnk2)KX
ε,x0

(x) =
∑

γ1∈A(pnk1 )

∑
γ2∈A(pnk2 )

∑
γ∈PSLn(Z)

kε(x−1
0 γ−1γ−1

2 γ−1
1 x).

So there is a γ′ := γ1γ2γ such that kε(x−1
0 γ′−1x) �= 0. It holds that γ′ ∈ R̃(pn(k1+k2)). 

By the assumption of the support of kε, we have

dist(x−1
0 γ′−1x, e) = dist(x, γ′x0) ≤ ε,

as needed. �
Let πX = 1X

m(X) be the L1-normalized characteristic function on X.

Lemma 5.5. Let x0 ∈ X. Assume that

‖T ∗(pnk1)T ∗(pnk2)KX
ε,x0

− πX‖2 ≤ c√
m(X)

.

Then there is a subset Y ⊂ X, such that

m(Y ) ≥ m(X)(1 − c2),

such that for all x ∈ Y the pair (x, x0) is (ε, k1 + k2)-admissible.

Proof. Let Y := {x ∈ X | T ∗(pnk1)T ∗(pnk2)KX
ε,x0

(x) �= 0}. By Lemma 5.4, each x ∈ Y

is (ε, k1 + k2)-admissible. On the other hand,

‖T ∗(pnk1)T ∗(pnk2)KX
ε,x0

− πX‖2
2 ≥

∫
X\Y

πX(x)2 dx = m(X \ Y )/m(X)2.

We deduce that m(X \ Y ) ≤ c2m(X), as needed. �
Lemma 5.6. Let x0 ∈ X and β ≥ 1. Assume that there is α > 0 such that for every 
δ > 0 there is ε0 > 0, such that for every 0 < ε < ε0 there are k1, k2 with k1 + k2 ≤
(1 + δ)β n+2

2n logp(ε−1), such that we have

‖T ∗(pnk1)T ∗(pnk2)KX
ε,x0

− πX‖2 ≤ εαδ.

Then κ(x0) ≤ β.
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Proof. Let δ > 0. For ε fixed, let Zε,δ ⊂ X be the set of x ∈ X such that the pairs (x, x0)
are not (ε, k)-admissible with k ≤ (1 + δ)β n+2

2n logp(ε−1). Using Lemma 5.3 it suffices to 
prove that for almost every x ∈ X, for ε0 small enough depending on x, δ, and ε < ε0 we 
have x /∈ Zε,δ.

Let εj := e−cj , for some c > 0 sufficiently small relatively to δ. Then for ε small 
enough, there is εj such that Zε,δ ⊂ Zεj ,δ/2. Therefore, it suffices to prove that for 
almost every x ∈ X, for m ∈ Z≥0 large enough, x /∈ Zεj ,δ/2. Using the Borel–Cantelli 
lemma it is enough to prove that

∑
j

m(Zεj ,δ/2) < ∞. (5.1)

By the assumption and Lemma 5.5, there is ε0 > 0 such that for εj < ε0,

m(Zεj ,δ/2) 
 ε2αδ
j = e−2cαδj .

This shows that Equation (5.1) holds, as needed. �
We now add an additional average over x0. Let Ω ⊂ X be a fixed compact subset of 

positive measure.

Lemma 5.7. Let β ≥ 1. Assume that there is α > 0 such that for every δ > 0 there is ε0 >

0, such that for every 0 < ε < ε0 there are k1, k2 with k1 + k2 ≤ (1 + δ)β n+2
2n logp(ε−1), 

such that we have ∫
Ω

‖T ∗(pnk1)T ∗(pnk2)KX
ε,x0

− πX‖2
2 dx0 ≤ εαδ.

Then κ ≤ β.

Proof. Let δ > 0. Let Zε,δ ⊂ X × X be the set of (x, x0) ∈ X × Ω that are not (ε, k)-
admissible, for k ≤ (1 + δ)β n+2

2n logp(ε−1).
Since κ = κ(x, x0) for almost every x, x0 (see Section 2), using Lemma 5.3 it suffices 

to prove that for almost every x0 ∈ Ω and almost every x ∈ X, there is an ε0 such that 
for ε < ε0 the pair (x, x0) /∈ Zε,δ. Using the same argument as in the proof of Lemma 5.6, 
we may assume that ε = εj = e−cj , and using Borel–Cantelli it is enough to prove that

∑
j

m(Zεj ,δ) < ∞.

For ε < ε0 small enough, let Yε,δ ⊂ Ω be the set of x0 ∈ Ω such that for k as in the 
assumption of the lemma

‖T ∗(pnk1)T ∗(pnk2)KX
ε,x − πX‖2

2 ≤ εαδ/2.

0
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We claim that m(Ω − Yε,δ) ≤ εαδ/2. Indeed,

∫
Ω−Yε,δ

‖T ∗(pnk1)T ∗(pnk2)KX
ε,x0

− πX‖2
2 dx0 ≥ εαδ/2m(Ω − Yε,δ),

so εαδ/2m(Ω − Yε,δ) ≤ εαδ giving the desired estimate.
Now, for x0 ∈ Yε,δ by Lemma 5.5 we have

m({x ∈ X | (x, x0) ∈ Zε,δ}) 
 εαδ/2.

Therefore,

m(Zε,δ) ≤ m(Ω − Yε,δ)m(X) + m(Yε,δ)εαδ/2 
 εαδ/2.

Using the last estimate we get
∑
j

m(Zεj ,δ) < ∞,

as needed. �
We now discuss a further reduction, which allows us to prove bounds of κ but with 

weaker assumptions than that of Lemma 5.6 and Lemma 5.7. First, we will need the 
following estimates, which play a major role in the work [22], and which we already 
discussed in Proposition 2.4 using different notations.

Lemma 5.8. For all n ≥ 2 there is an α > 0 such that as an operator on L2
0(X)

‖T ∗(pl)‖op 
 p−lα.

Moreover, for n ≥ 3 any α < 1/2 and for n = 2 (resp. under the GRC) any α < 25/64
(resp. α < 1/2) work.

Proof. Using Remark 4.9, the proof follows from bounds on the integrability exponents 
of the action of PGLn(Qp) on L2(PGLn(Q)\PGLn(A)), as in Proposition 2.4 and the 
discussions after it. �

Some remarks are in order now.

(1) By combining Lemma 5.6 and Lemma 5.8 we may deduce Theorem 1. Indeed, we 
essentially recovered the arguments in [22] for our specific case.

(2) For n ≥ 3, by [15, Theorem 1.5], Lemma 5.8 is optimal in the sense that for every 
δ > 0 there exists f ∈ L2

0(X), with
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‖T ∗(pl)f‖2 �δ p−l(1/2+δ)‖f‖2.

This shows that to prove Theorem 2 one needs stronger tools than spectral gap 
alone.

Lemma 5.8 allows us to give the following versions of Lemma 5.6 and Lemma 5.7.

Lemma 5.9. Let β ≥ 1. Assume that there is an ε0 > 0 such that for every 0 < ε < ε0
there is k ≤ β n+2

2n logp(ε−1) such that we have

‖T ∗(pnk)KX
ε,x0

‖2 
η ε−η,

for every η > 0. Then κ(x0) ≤ β.

Proof. By the assumption, there is an ε0 such that for ε < ε0 and for some k2 ≤
β n+2

2n logp(ε−1), it holds that

‖T ∗(pnk2)KX
ε,x0

‖2 
η ε−η.

Since T ∗(pnk2) is an average operator and 
∫
XKX

ε,x0
(x) dx = 1 we have

T ∗(pnk2)KX
ε,x0

− πX ∈ L2
0(X).

Let δ > 0. Let k1 = �βδ n+2
2n logp(ε−1)�. Notice that k1 + k2 ≤ β(1 + δ)n+2

2n logp(ε−1).
Applying Lemma 5.8 we find some α > 0 such that

‖T ∗(pnk1)T ∗(pnk2)KX
ε,x0

− πX‖2 = ‖T ∗(pnk1)(T ∗(pnk2)KX
ε,x0

− πX)‖2


 εαδ‖T ∗(pnk2)KX
ε,x0

− πX‖2 
η εαδ−η.

By choosing ε′0, η small enough, for ε < ε′0 the above is ≤ εαδ/2. The lemma now follows 
from Lemma 5.6. �

Our final reduction will allow us to replace the space X by the nicer space X0. For 
x0 ∈ X0, let KX0

ε,x0
∈ C∞

c (X0) be

KX0
ε,x0

(y) :=
∑

γ∈PGLn(Z)

kε(x−1
0 γ−1y).

Let Φ: X → X0 be the covering map. Then we can define a push-forward map 
Φ∗ : L2(X) → L2(X0), defined for f ∈ L2(X), y ∈ X as

Φ∗(f)(Φ(y)) :=
∑

f(γy).

γ∈PGLn(Z)/PSLn(Z)
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We have the simple norm estimate on push-forward maps for non-negative f ,

‖f‖2 ≤ ‖Φ∗f‖2, (5.2)

where on the left-hand side the norm on L2(X) and on the right-hand side the norm is 
on L2(X0).

Lemma 5.10. Let x0 ∈ X. Then it holds that

KX0
ε,Φ(x0) = Φ∗K

X
ε,x0

and similarly

T ∗(pnk)KX0
ε,Φ(x0) = Φ∗(T ∗(pnk)KX

ε,x0
)

Proof. It is sufficient to prove the second estimate. Indeed, unwinding the definitions we 
get that

T ∗(pnk)KX
ε,x0

(y) =
∑

γ∈R̃(pnk)

kε(x−1
0 γ−1y),

and similarly,

T ∗(pnk)KX0
ε,x0

(y) =
∑

γ′∈PGLn(Z)/PSLn(Z)

∑
γ∈R̃(pnk)

kε(x−1
0 γ−1γ′y).

The lemma follows. �
Finally, combining Lemma 5.9, Lemma 5.10, and Equation (5.2), we deduce the fol-

lowing.

Lemma 5.11. Let β ≥ 1 and x0 ∈ X. Assume that there is an ε0 > 0 such that for every 
0 < ε < ε0 and for some k ≤ β n+2

2n logp(ε−1) we have

‖T ∗(pnk)KX0
ε,Φ(x0)‖2 
η ε−η,

for every η > 0. Then κ(x0) ≤ β.

The same set of arguments, with Lemma 5.7 in place of Lemma 5.6 will give:

Lemma 5.12. Let Ω ⊂ X0 be a compact set of positive measure. Let β ≥ 1. Assume 
that for every δ > 0 there is ε0 > 0 such that for every 0 < ε < ε0 there is k ≤
(1 + δ)β n+2 logp(ε−1) such that
2n
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∫
Ω

‖T ∗(pnk)KX0
ε,x0

‖2
2 dx0 
η ε−η,

for every η > 0. Then κ ≤ β.

6. Applying the spectral decomposition

Consider the adelic function f ∈ C∞
c (KA\PGLn(A)/KA) defined by

f((g)v) := kε(g∞)hpnk(gp)
∏
q 	=p

1Kq
(gq),

where hpnk is as in Equation (3.7) and kε is given by Lemma 3.8.
Given x0 ∈ X0, identify it by a slight abuse of notations as an element x0 ∈ XA. 

Consider the function

Fx0(x) =
∑

γ∈PGLn(Q)

f1(x−1
0 γ−1x),

where f1 is the self-convolution of f , as defined in the proof of Proposition 4.16. Using 
the discussion in Subsection 4.1, we see that Fx0 is the adelic version of the function 
T ∗(pnk)KX0

ε,x0
. Therefore,

‖T ∗(pnk)KX0
ε,x0

‖2
2 = ‖Fx0‖2

2,

where the underlying space on the left-hand side is X0 and on the right-hand side is XA.
We apply Proposition 4.16 to Fx0 , and obtain that

‖T ∗(pnk)KX0
ε,x0

‖2
2 =

∑
P

CP

∑
ϕ∈BP

∫
ia∗

P

|k̃ε(μϕ,λ,∞)|2|h̃pnk(μϕ,λ,p)|2|EisP (ϕ, λ)(x0)|2 dλ

(6.1)

=
∑

ϕ∈BG

|k̃ε(μϕ,∞)|2|h̃pnk(μϕ,p)|2|ϕ(x0)|2

+
∑
P 	=G

CP

∑
ϕ∈BP

∫
ia∗

P

|k̃ε(μϕ,λ,∞)|2|h̃pnk(μϕ,λ,p)|2|EisP (ϕ, λ)(x0)|2 dλ

Using Lemma 3.8 we get that for every N > 0,

|k̃ε(μϕ,λ,∞)| 
N (1 + ενϕ,λ)−N 
 (1 + ενϕ)−N/2(1 + ε‖λ‖)−N/2,

|k̃ε(μϕ,∞)| 
N (1 + ενϕ)−N .
(6.2)

Also using Lemma 3.5 we get that for every η > 0,
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|h̃pnk(μϕ,λ,p)| 
η pkn(θϕ,p−(n−1)/2+η), |h̃pnk(μϕ,p)| � p−kn(n−1)/2|λϕ(pnk)|. (6.3)

Thus we arrive at the following proposition.

Proposition 6.1 (Truncation). Let Ω ⊂ X0 be a fixed compact set. Then for every x0 ∈ Ω
and δ, η > 0 we have

‖T ∗(pnk)KX0
ε,x0

‖2
2 
Ω,N,η,δ

∑
ϕ∈BG,νϕ≤ε−1−δ

p−kn(n−1)|λϕ(pnk)|2|ϕ(x0)|2

+
∑
P 	=G

CP

∑
ϕ∈BP ,νϕ≤ε−1−δ

pkn(2θϕ,p−(n−1)+η)
∫

λ∈ia∗
P ,‖λ‖≤ε−1−δ

|EisP (ϕ, λ)(x0)|2 dλ + εN

for every N > 0.

Proof. We notice that the proposition follows from Equation (6.1) and Equation (6.3), 
if we can show that the contribution of ϕ ∈ BP with νϕ ≥ ε−1−δ, and the contribution 
of ϕ ∈ Bp for P �= G and λ with ϕ ≤ ε−1−δ and ‖λ‖ ≥ ε−1−δ are OΩ,N,δ(εN ).

We use the estimate

|h̃pnk(μϕ,λ,p))| ≤ 1,

which follows from Remark 3.6, throughout the proof.
We first handle the contribution to Equation (6.1) from ϕ with S ≤ νϕ ≤ 2S, with 

S ≥ ε−1−δ. Notice that in this case (1 +ενϕ) � Sδ′ for some δ′ depending on δ. Applying 
Equation (6.2) we see that the contribution of such ϕ is bounded by


N,δ

∑
P

∑
ϕ∈BP ,S≤νϕ≤2S

S−N

∫
ia∗

P

(1 + ε‖λ‖)−N |EisP (ϕ, λ)(x0)|2 dλ.

Take N large enough, use Proposition 4.17, and apply integration by parts. Then the 
inner integral is bounded by 
Ω ε−L1 for some absolute L1. Making N large enough the 
entire sum is bounded by


Ω,N,δ

∑
P

∑
ϕ∈BP ,S≤νϕ≤2S

S−N .

Using Proposition 4.10 and Lemma 4.19 we have

|{ϕ ∈ BP , S ≤ νϕ ≤ 2S}| ≤ SL2

for some absolute L2. Once again making N sufficiently large the entire contribution is 
bounded by 
Ω,N,δ S−N . Summing over S ≥ ε−1−δ in dyadic intervals we deduce the 
entire contribution from νϕ ≥ ε−1−δ is bounded by 
Ω,N,δ εN .
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We next deal with the case when νϕ ≤ ε−1−δ and ‖λ‖ ≥ ε−1−δ. Applying Equa-
tion (6.2) we see that the contribution is bounded by


N

∑
P

∑
ϕ∈BP ,νϕ≤ε−1−δ

(1 + ενϕ)−N

∫
λ∈ia∗

P ,‖λ‖≥ε−1−δ

(1 + ε‖λ‖)−N |EisP (ϕ, λ)(x0)|2 dλ.

Using Proposition 4.17, applying integration by parts, and making N large enough, the 
inner integral is bounded by 
Ω,N,δ ε

N . Therefore, the entire sum is bounded by


Ω,N,δ εN
∑
P

∑
ϕ∈BP ,νϕ≤ε−1−δ

1.

Applying Proposition 4.10 and Lemma 4.19 again, and making N sufficiently large, this 
is bounded by 
Ω,N,δ εN . �

A similar proposition treats the averaged version.

Proposition 6.2. Let Ω ⊂ X0 be a fixed compact set. For every δ, η > 0 we have
∫
Ω

‖T ∗(pnk)KX0
ε,x0

‖2
2 dx0 
Ω,N,η,δ

∑
ϕ∈BG,νϕ≤ε−1−δ

p−kn(n−1)|λϕ(pnk)|2

+
∑
P 	=G

CP

∑
ϕ∈BP ,νϕ≤ε−1−δ

ε−(1+δ+η) dim a
∗
P pkn(2θϕ,p−(n−1)+η) + εN ,

for every N > 0.

Proof. We integrate both sides of the estimate in Proposition 6.1 over x0 ∈ Ω. Apply 
Proposition 4.20 to bound

∫
Ω

∫
λ∈ia∗

P ,‖λ‖≤ε−1−δ

|EisP (ϕ, λ)(x0)|2 dλ dx0 
Ω,η ε−(1+δ)(1+η) dim a∗
P ,

for νϕ ≤ ε−1−δ. The claim follows from the fact that ϕ ∈ BG are L2-normalized. �
7. Proof of Theorem 2 and Theorem 3

The goal of this section is to prove Theorem 2 and Theorem 3. By Lemma 5.12, to 
prove that κ ≤ β := n−1

n−1−2θn it is sufficient to prove that for ε0 small enough, for every 
ε < ε0 and for k = �β n+2

2n logp(ε−1)�
∫

‖T ∗(pnk)KX0
ε,x0

)‖2 dx0 
η ε−η,
Ω
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for every η > 0.
Using Proposition 6.2 and standard modifications, it is sufficient to prove that under 

the same conditions that

p−kn(n−1)
∑

ϕ∈BG,νϕ≤ε−1

|λϕ(pnk)|2 
η ε−η, (7.1)

and for every standard parabolic P �= G

∑
ϕ∈BP ,νϕ≤ε−1

ε− dim aP pkn(2θϕ,p−(n−1)) 
η ε−η, (7.2)

for every η > 0.

7.1. The discrete spectrum

We start by handling Equation (7.1). We can further divide BG according to shapes, 
as in Subsection 4.7. Each such shape is of the form S = ((a, b)), for n = ab. We can 
uniformly bound

θϕ,p ≤ (b− 1)/2 + θa,

where θa is the best known bound towards the GRC for GLa. So by Lemma 3.5 we have

|λϕ(pnk)| 
η pnk((b−1)/2+θa+η).

We have θa = 0 for a = 1, and by Equation (4.8) θa ≤ 1
2 − 1

a2+1 . By Lemma 4.19, we 
have

#{ϕ ∈ BS , νϕ ≤ ε−1} 
 ε−(a+2)(a−1)/2.

Therefore, applying the above bounds we get

p−kn(n−1)
∑

ϕ∈BS ,νϕ≤ε−1

|λϕ(pnk)|2 
 ε−(a+2)(a−1)/2pnk(b−1−(n−1)+2θa+η),

plugging in k = �β n+2
2n logp(ε−1)�, the last value is

� ε−ηε−(a+2)(a−1)/2−β(n+2)(b−1−(n−1)+2θa)/2.

Making η small enough it suffices to show that

β(n + 2)(n− 1 − (b− 1) − 2θa) − (a + 2)(a− 1) ≥ 0. (7.3)

For a = 1, b = n we have θa = 0. Hence Equation (7.3) is obvious for any β ≥ 1.
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For 1 < a < n, b = n/a we have 2θa ≤ 1. Then n + 2 ≥ a + 2 and

n− b− 2θa > n/2 − 1 ≥ a− 1.

So Equation (7.3) still holds for any β ≥ 1.
Finally, for a = n, b = 1, Equation (7.3) will hold for as long as

β ≥ n− 1
n− 1 − 2θn

.

Now, assuming Conjecture 1 for n ≥ 4 and using Proposition 4.13 and Proposition 4.14
for n = 2 and n = 3, respectively we can handle a = n, b = 1 for β = 1. Indeed, in this 
case BS = Bn,cusp. We have

p−kn(n−1)
∑

ϕ∈BS ,νϕ≤ε−1

|λϕ(pnk)|2 
η p−kn(n−1)(ε−1pnk)η(ε−d + pnk(n−1)).

Assuming β = 1, i.e., k = �n+2
2n logp(ε−1)�, then

pnk(n−1) � ε(n+2)(n−1)/2 = ε−d,

so the above is 
η ε−η, as needed.

7.2. The continuous spectrum

In this subsection we prove Equation (7.2) for every β ≥ 1, which is enough for our 
purpose.

We further divide into shapes, as in Subsection 4.7. Let S = ((a1, b1), . . . ., (ar, br)) be 
a shape, and let BS ⊂ BP . Notice that in this case dim aP = r− 1. Since we assume that 
P �= G, we assume that r > 1.

We need to prove that for every shape S, it holds that

∑
ϕ∈BS ,νϕ≤ε−1

ε−(r−1)pkn(2θϕ,p−(n−1)) 
η ε−η.

Without loss of generality, we assume that it holds that

max
i

{(bi − 1)/2 + θai
} = (b1 − 1)/2 + θa1 .

Then by Lemma 4.18 we have θϕ,p ≤ (b1 − 1)/2 + θa1 . Using Lemma 4.19, we deduce

∑
−1

ε−(r−1)pkn(2θϕ,p−(n−1)) 
 ε−(r−1)−
∑r

i=1(ai+2)(ai−1)/2pkn(b1−1+2θa1−(n−1)).
ϕ∈BS ,νϕ≤ε



S. Jana, A. Kamber / Advances in Mathematics 443 (2024) 109613 53
We plug in k = �n+2
2n logp(ε−1)�, and deduce that it is sufficient to prove that for every 

shape S it holds that

−(r − 1) −
r∑

i=1
(ai + 2)(ai − 1)/2 + n + 2

2 ((n− 1) − (b1 − 1) − 2θa1) ≥ 0.

We start by noticing that

r +
r∑

i=1
(ai + 2)(ai − 1)/2 =

r∑
i=1

((ai + 2)(ai − 1)/2 + 1) =
r∑

i=1
ai(ai + 1)/2.

We have the following simple lemma

Lemma 7.1. Assume that 
∑r

i=2 ai ≤ M . Then

r∑
i=2

ai(ai + 1)/2 ≤ M(M + 1)/2.

Proof. The polynomial p(x) = x(x + 1)/2 satisfies for x1, x2 ≥ 0 that p(x1) + p(x2) ≤
p(x1 + x2). The lemma follows. �

In our case, we have 
∑r

i=2 ai ≤ n − a1b1. So we deduce that

r∑
i=1

ai(ai + 1)/2 ≤ (n− a1b1)(n− a1b1 + 1)/2.

We deduce that it is sufficient to prove the following.

Lemma 7.2. Denote

F (a, b, n) := 2 + (n + 2)(n− b− 2θa) − a(a + 1) − (n− ab)(n− ab + 1).

Then for every positive integers n ≥ 2 and a, b such that ab < n it holds that F (a, b, n) ≥
0.

Proof. We show by case-by-case analysis. First, it is easy to see that the claim holds for 
n = 2, since then a = b = 1 and θa = 0.

Now, assume that a = 1. Then θa = 0, and it holds that

F (1, b, n) = 2 + (n+ 2)(n− b)− 2− (n− b)(n− b+ 1) = (n− b)(n+ 2− (n− b+ 1)) ≥ 0.

Next, assume that a > 1. We first take care of the case n = 3. Then we only need to 
consider a = 2, b = 1 case. It holds that
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F (2, 1, 3) = 2 + 5(2 − 2θ2) − 6 − 2 = 4 − 10θ2.

Plugging in the Kim–Sarnak’s bound θ2 ≤ 7
64 we get the desired result.

Now assume that a > 1 and n ≥ 4. We will use the bound θa ≤ 1/2 which follows 
from Equation (4.8). Then

F (a, b, n) ≥ G(a, b, n) := 2 + (n + 2)(n− b− 1) − a(a + 1) − (n− ab)(n− ab + 1).

First consider the case b = 1. Then

G(a, 1, n) = 2 + (n + 2)(n− 2) − a(a + 1) − (n− a)(n− a + 1).

The values of G(a, 1, n), when n is fixed and a varies, lie on a parabola with negative 
leading coefficient. To prove lower bounds in the range 2 ≤ a ≤ n − 1 it is sufficient to 
check the extreme values, namely a = 1 and a = n − 1.

We see that

G(n−1, 1, n) = G(1, 1, n) = 2+(n+2)(n−2)−2−(n−1)n = n2−4−n2+n = n−4 ≥ 0,

as we assumed that n ≥ 4.
Finally, we are left with the case a ≥ 2, b ≥ 2. In this case we have n ≥ ab + 1 ≥ 5

and a ≤ (n − 1)/2. Fix a and n. Then G(a, b, n) as a function of b is again a parabola 
with negative leading coefficient. So it suffices to check the extreme cases b = 1 and 
b = (n − 1)/a We already proved that G(a, 1, n) ≥ 0, so we are left to show that for 
2 ≤ a ≤ (n − 1)/2,

G(a, (n− 1)/a, n) ≥ 0.

Indeed, we get

G(a, (n− 1)/a, n) = 2 + (n + 2)(n− (n− 1)/a− 1) − a(a + 1) − 2.

Using (n − 1)/a ≤ (n − 1)/2 and a ≤ (n − 1)/2, we get

G(a, (n− 1)/a, n) ≥ (n + 2)((n− 1)/2 − 1) − (n− 1)(n + 1)/4

= 2(n + 2)(n− 3) − (n2 − 1)
4 = n2 − 2n− 11

4 .

The last value is non-negative since n ≥ 5. �
8. Proof of Theorem 4

We start the proof for n general, assuming the GRC for GLm for all m ≤ n. The 
proof is similar to the last section, but we use Lemma 5.11 instead of Lemma 5.12. It is 
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therefore sufficient to show that for every x0 ∈ X0, for ε < ε0, for k = �n+2
2n logp(ε−1)�, 

it holds that

‖T ∗(pnk)KX0
ε,x0

‖2 
η ε−η.

We choose a compact subset Ω which contains x0. Using Proposition 6.1, we reduce to 
proving that

∑
P

CP

∑
ϕ∈BP ,νϕ≤ε−1

pkn(2θϕ,p−(n−1))
∫

λ∈ia∗
P ,‖λ‖≤ε−1

|EisP (ϕ, λ)(x0)|2 dλ 
 ε−η. (8.1)

We can then further divide the above sum into shapes as done in Section 7. The basic 
observation is that for a shape S = ((a1, b1), . . . , (ar, br)), if bi = 1 for all i (i.e., the 
shape is cuspidal), then by Lemma 4.18 for every ϕ ∈ BS the GRC implies that θϕ,p = 0. 
Therefore, for cuspidal S, assuming GRC,

∑
ϕ∈BS ,νϕ≤ε−1

pkn(2θϕ,p−(n−1))
∫

λ∈ia∗
P ,‖λ‖≤ε−1

|EisP (ϕ, λ)(x0)|2 dλ

=p−kn(n−1)
∑

ϕ∈BS ,νϕ≤ε−1

∫
λ∈ia∗

P ,‖λ‖≤ε−1

|EisP (ϕ, λ)(x0)|2 dλ

Using Proposition 4.17, the last value is


Ω p−kn(n−1)ε−d,

and plugging in the value of k the last value is 
 1.
We, therefore, deduce that assuming the GRC, we are only left with non-cuspidal 

shapes to deal with.
For S = ((1, n)), the only representation ϕ ∈ BS is the constant L2-normalized func-

tion ϕ0. In this case θϕ0,p = (n − 1)/2, and its contribution is

pkn(2θϕ0,p−(n−1))ϕ0(x0) 
 1.

Now, let us fix n = 3. In this case, the only non-cuspidal shapes are S = ((1, 3)) and 
S = ((1, 2), (1, 1)). Following the above, we are left with the shape S = ((1, 2), (1, 1)). In 
this case there is exactly one element ϕ1 ∈ BS with θϕ1,p = 1/2. We have the following 
result.

Proposition 8.1. For every λ ∈ ia∗P and every η > 0, it holds that

|EisP (ϕ1, λ)(x0)| 
η,x0 λ3/4+η.
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The result follows from the functional equation of EisP (ϕ1, λ), standard bounds of the 
Riemann ξ-function, and the Phragmén–Lindelöf convexity principle. This is explained 
in [5]. As a matter of fact, [5, Theorem 1] proves a stronger and far deeper result where 
the exponent is 1/2 instead of 3/4.

Now, using Proposition 8.1, we deduce that

∑
ϕ∈BS ,νϕ≤ε−1

p3k(2θϕ,p−2)
∫

λ∈ia∗
P ,‖λ‖≤ε−1

|EisP (ϕ, λ)(x0)|2 dλ


η,x0 p−3kε−5/2−η.

In this case pk � ε−5/6, so we conclude.

Remark 8.2. The argument above using the local L∞-bound of the maximal degenerate 
Eisenstein series extends to the shapes of the form S = ((1, n − 1), (1, 1)) for any n. 
However, for n = 4 we do not know how to handle shapes of the form S = ((1, 2), (1, 2))
or S = ((1, 2), (2, 1)) or S = ((2, 2)). In all cases, we need good uniform bounds for 
EisP (ϕ, λ)(x0).

Remark 8.3. Without assuming the GRC we do not know, even for n = 2, whether 
κ(x0) = 1 for all x0 ∈ X. The problem reduces to the following local version of Sarnak’s 
density conjecture, which we state for general n: for every x0 ∈ X and l ≥ 0, T ≥ 1

∑
ϕ∈FT

∣∣λϕ(pl)
∣∣2 |ϕ(x0)|2 
δ,p,x0

(
Tpl

)δ (
T d + pl(n−1)

)
,

for every δ > 0. This version is open even for n = 2 but can be proven for some x0 using 
different methods. This result will appear elsewhere.
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