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Ⓑ Five example stimuli from each experimental condition

Consider the paerns contained in the images. 
Which of the two images below is most similar 
to the one above?

Ⓐ Triplet comparison task: two alternative forced choice

Figure 1: (A) Two alternative forced choice (2AFC) triplet comparison task and (B) five example stimuli for each experimental
condition: two video game titles (ccs: Candy Crush Saga; loz: Legend of Zelda) in two representations (img: level screenshots;
pat: abstract colour patterns). Each stimulus was randomly drawn from the respective subset identified through our three-stage
selection procedure.

ABSTRACT
Similarity estimation is essential for many game AI applications,
from the procedural generation of distinct assets to automated ex-
ploration with game-playing agents. While similarity metrics often
substitute human evaluation, their alignment with our judgement is
unclear. Consequently, the result of their application can fail human
expectations, leading to e.g. unappreciated content or unbelievable
agent behaviour. We alleviate this gap through a multi-factorial
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study of two tile-based games in two representations, where par-
ticipants (N=456) judged the similarity of level triplets. Based on
this data, we construct domain-specific perceptual spaces, encod-
ing similarity-relevant attributes. We compare 12 metrics to these
spaces and evaluate their approximation quality through several
quantitative lenses. Moreover, we conduct a qualitative labelling
study to identify the features underlying the human similarity
judgement in this popular genre. Our findings inform the selection
of existing metrics and highlight requirements for the design of
new similarity metrics benefiting game development and research.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI; •
Computing methodologies→ Computer vision.

KEYWORDS
Games/Play, Empirical Study, Quantitative Methods, Computer
Vision
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1 INTRODUCTION
For video games to be enjoyable, game designers must anticipate
how their players will perceive, and consequently experience and
react to, elements in the game. This however proves challenging
when considering elements that only unfold dynamically at run-
time, such as procedurally generated content or the behaviour of
non-player characters (NPCs). To constrain such processes and
meet players’ expectations, designers can endow them with com-
putational metrics that approximate player perception, experience,
and behaviour [6, 15, 48].

Here, we focus on an important family of such metrics to as-
sess players’ perception of visual similarity. Metrics of similarity
are an integral part of many game AI applications such as proce-
dural content generation (PCG), which we use as a motivating case.
For example, procedural content generation via machine learning
(PCGML) [37] approaches rely on similarity metrics to generate
artefacts such as game levels that resemble existing samples, or that
are sufficiently distinct from previously played levels. In contrast
to this runtime use-case, similarity metrics have also been used
in design-time tools, e.g. to determine and modify the expressive
range of content that a generator with a specific configuration can
produce [8, 33, 35].

There exist many similarity metrics to choose from, ranging from
general-purpose ones to data-driven approaches to expert measures
custom-tailored to a scenario. Typically, game designers and re-
searchers select a similarity metric based on conventions, personal
preferences, basic assumptions, or computational properties.

However, in both online and design-time PCG practice, it is un-
clear if the generated content is actually perceived as similar by
players, i.e. how well the metric works as a surrogate of players’
perception [43, 46]. If the selected metric is misaligned, the con-
sequences can be detrimental to how a game is experienced, as
exemplified by the Thousand Bowls of Oatmeal Problem, a term
coined by Kate Compton to describe the “common antipattern of
generating a set of artefacts which are technically distinct to the
computer, but perceived by humans as uniform” [7]. Given its strong
resonance with game development reality, it has quickly become
one of the best-known idioms in the PCG community [25]. A classic
example of this phenomenon is the lack of visual variety in the 18
quintillion possible planets of No Man’s Sky, which are mathemati-
cally, but not perceptually, unique [19]. In this context, perceptual
uniqueness has been promoted as the “real metric” required. Its
characterisation as a “darn tough” one, highlights the importance
of the development and identification of visual similarity metrics
that approximate human perception as a core research challenge in
games.

We hold that there exists no empirical data in the context of
games to adequately support designers and researchers in selecting
the most appropriate similarity metric. At the same time, there

exists a wide range of metrics to choose from, including general-
purposemetrics with no psychometric claims, custom-mademetrics
from game AI and PCG, and models from computer vision (CV)
research. While some hold that writing metrics that ought to ap-
proximate human perception in video games “is a difficult skill that
requires a deep understanding of the application domain” [25], it
is presently unclear whether such domain-specific metrics truly
perform best. Image embedding models are of particular interest
here. While CV has long been active in developing surrogate models
for the human similarity judgement for very specific domains [e.g.
16, 22, 31, 45], we recently saw a surge in the publication of more
generic models [e.g. 13, 26]. This goes against the above claim for
the necessity of domain knowledge. Moreover, one may assume
that such CV models cannot approximate the human similarity
judgement well on the synthetic and highly stylised levels of es-
pecially non-realistic video games, since they are trained on, and
optimised primarily for natural images. But we do not know this
for a fact. Moreover, metric development at present is based on de-
signer intuition, but we are in the dark about which visual features
of game levels really determine players’ similarity judgement. This
is of high significance for the game industry and research, as the
development of custom metrics is time-intensive and hence costly.
More generally, choosing a sub-optimal metric could result in bad
guidance at design time or unsatisfying player experiences when
used in-game.

With this paper, we build a better understanding of the human
similarity judgement and its alignment with existing metrics for a
specific sensory modality in a well-constrained but very popular
non-realistic game genre. We focus on people’s perception of visual
similarity of tile-based video game levels, and address two research
questions: (RQ1) Which existing metrics approximate the human
similarity perception of grid-based video game levels best? And,
(RQ2) what are the dimensions of this space that govern players’
similarity perception? The second question serves as a direct re-
sponse to the first, in that its answer can serve as a stepping stone
to inform the development of better domain-specific metrics. More-
over, the gained insights can teach designers how players perceive
their assets, e.g. to inform amore intuitive creative process at design
time even if not relying on computational support tools.

We investigate these questions through two empirical studies.
We collect data on the human similarity perception in a 2 x 2 fac-
torial study, covering two very different titles (Candy Crush Saga;
Legend of Zelda) in two visual representations (level screenshots;
abstract colour patterns). In a mixed design, participants compared
the similarity of level triplets for subsets of each factor combination.
In each triplet comparison task, they are presented with a reference
stimulus and choose the most similar stimulus from two options.
Choices are forced, and participants cannot skip a task. Using a vari-
ant of multi-dimensional scaling (MDS), we build domain-specific
perceptual spaces, encoding similarity-relevant attributes for this
specific scenario. We compare a selection of PCG, general purpose
and computer vision metrics against these perceptual spaces, thus
contributing to RQ1. This is complemented by our second study, in
which we asked focus groups with relevant experience to gather in-
terpretations of the dimensions underlying these perceptual spaces,
supporting RQ2 and thus fostering designer insights and the future
development of better metrics.

https://doi.org/10.1145/3613904.3642077
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Our contributions are threefold:
(1) A quantitative study comparing similarity judgements from

456 participants against a total of 12 configurations of 7
existing metrics.

(2) A qualitative interpretation study, in which four focus groups
with experience relevant to video game design, development,
and research (N=4x2) provide their interpretations of the
dimensions underlying the human similarity judgements in
this domain.

(3) A public dataset of human similarity judgements in tile-based
video game levels and implementation of the comparison
test suite.1

We moreover critically reflect on the requirements of each group
of metrics and provide recommendations for scenarios when not
the best but a runner-up metric might be preferred.

Similar to Rabii and Cook [25], we thus set out to put intuitions
and internalised knowledge of game researchers and practitioners
to the test in the hope of strengthening applications and inspir-
ing new research. Our findings from (1) serve the game develop-
ment and research communities by informing recommendations for
which existing metrics should be preferred in different scenarios,
resting on a strong empirical basis. Moreover, our findings from (2)
inform the future development of more human-aligned similarity
metrics in the video games domain. The publicly available code
and data in (3) facilitate the evaluation of additional existing and
newly developed similarity metrics, thus enabling game developers
and researchers to easily build on our work. Focusing on levels of
tile-based video games, we relate to a particularly big and popular
game genre, and arguably the most common type of procedurally
generated content. While using PCG as a prominent application
domain to motivate this research, an evaluation of these metrics
in concrete PCG algorithms is out of scope. Instead, we focus on
the comparison of existing metrics for approximating the human
similarity perception in a way that is agnostic w.r.t. the specific
game AI application.

We next provide a brief overview of related work in Section 2,
followed by background information on the similarity metrics con-
sidered in our study, and an introduction to perceptual embeddings
in Section 3. We report on our two studies in Section 4 and Section 5,
complemented with a discussion of our findings and study limita-
tions in Section 6 and Section 6.1. The paper closes with conclusions
of our findings and an outlook on future work.

2 RELATEDWORK
Studies on the human perception of similarity are at the core of
psychophysics. They cover a vast space of stimuli, from more basic
stimuli such as sound or colour to complex ones such as motion
or 3D models. To the best of our knowledge, there exist no em-
pirical studies on human similarity judgement and its comparison
to surrogate metrics in the domain of video games. A taxonomy
of game evaluation metrics put forward by Volz [42, Appendix A]
suggests that very few of such metrics in games draw on insights
into human perception, and of those few, none measure similarity.
Previous related work on the alignment of computational metrics
with human perception [20, 36] focuses on human perception of
1https://github.com/sebastianberns/similarity-estimation-chi24

fun, difficulty, and aesthetics within individual levels. Arguably
the closest predecessor to the present study, Mariño et al. [20] in-
vestigate whether a series of computational metrics used in PCG
adequately capture player’s perceptions of levels of Super Mario
Bros. Amongst unrelated metrics, they calculate Compression Dis-
tance as a metric of structural dissimilarity between pairs of levels.
Crucially though, they do not correlate it with the player’s per-
ception, likely because the experimenters did not find significant
differences in compression distance between the generated levels
examined in the user study. In contrast, our present work focuses
specifically on comparing similarity metrics to people’s perception
of similarity of game levels.

Our choices of data collection and analysis methods are well
supported by related work. Human similarity ratings are typically
collected by presenting participants with triplet matching tasks
(two alternative forced choice, 2AFC, Figure 1) [13, 16, 22, 31, 45],
which is the most robust judgement type [9]. Collected triplet judge-
ments are then converted into a perceptual space through multi-
dimensional scaling (MDS) or related ordination techniques (see
Section 3.2 for details). The resulting representation is often used
to label and thus identify the dimensions underlying the human
similarity judgement for the stimuli in question. Crucially, this is
where most existing analyses stop; we adopt this common method-
ology for our study, but take it further by comparing the perceptual
spaces derived from human judgement against those produced by
computational metrics.

As motivated earlier (Section 1), an intriguing question is how
well state-of-the-art computer vision metrics, which were not de-
veloped specifically for use in games, can compete with more con-
ventional or custom-made metrics already adopted in games. Cru-
cially though, stimuli in studies on image similarity more generally,
e.g. photographs [28], are arguably far removed from the imagery
that players experience in the tile-based video games under consid-
eration. We include DreamSim [13] here both as a recent example
to frame and compare our study setup against, as well as a metric
in our study (Section 4). For the development of DreamSim, Fu
et al. [13] have curated a dataset of human judgements over pairs
of synthetic images, following the same 2AFC triplet judgement
task method described above and employed in our work. Crucially,
their image triplets were iteratively selected for maximum partici-
pant agreement, effectively optimising for an easily solvable binary
decision task. In contrast, we take into account participant dis-
agreement and thus gather richer relational information between
stimuli. Their work focuses on synthesised natural images and thus
compares conventional CV metrics and state-of-the-art learned, i.e.
data-driven, embeddings. We instead focus on metrics relevant to
video game development and research but overlap with their work
in comparing CLIP [26] as a popular image embedding. They finally
use their dataset to fine-tune an ensemble model for measuring
image similarity, which we leave for future work.

3 BACKGROUND
We first introduce how similarity is measured in the context of
video games and present the specific metrics compared in our study.
We then explain how to construct perceptual embedding spaces
from triplet judgement data.

https://github.com/sebastianberns/similarity-estimation-chi24
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Table 1: Selection of image embeddings, metrics and measures (with optional configurations) compared in this work. Note that
the image embeddings and measures require additional transformations to be used as similarity metrics (Section 3.1).

Name Group Input Output Description

CLIP [26] CV Image Vector Image embedding trained on a huge dataset of image-text pairs
scraped from the internet.

DreamSim [13] CV Image Vector Image embedding fine-tuned on human similarity judgements
(two alternative forced choice).

Normalised Compres-
sion Distance [17] General Tiles Scalar Using a compression algorithm (gzip), compares the joint compression

length of two levels to their individual compression lengths.

Hamming Distance General Tiles Scalar Fraction of tiles that exactly match across two levels.

Tile Frequencies [36] PCG Tiles Distribution Relative frequencies of tile types appearing in a level.

Tile Patterns [18] PCG Tiles Distribution Relative frequencies of tile patterns appearing in a level.
Configurations: size of patterns (2 × 2, 3 × 3, 4 × 4).

Symmetry [43] PCG Tiles Scalar

Fraction of tiles that match when mirroring half of a level across a cor-
responding axis (e.g. vertical symmetry: left and right halves compared
across the centre). Configurations: axis of symmetry (Horizontal, Vertical,
Diagonal Forward, Diagonal Backward).

3.1 Similarity Metrics for Video Games
To calculate video game level similarity, game developers and re-
searchers leverage methods from three different groups of measures
and distances: 1) artificial neural network-based image embeddings
trained on datasets of natural images for computer vision (CV), 2)
domain-agnostic, general-purpose distance metrics (General), and
3) manually-designed measures based on expert knowledge, from
the PCG literature (PCG). In Table 1, we list and describe all embed-
dings, distances, and measures used as metrics for comparison in
this study. Our focus in this selection lies on measures specifically
used in video games-related research and the game industry. In the
following, we provide further detail about our choice of metrics.

We define a measure as a method to quantify the qualities of
a video game level and a metric as the comparison of such qual-
ities between two levels.2 To build a working similarity metric,
embeddings, distances, and measures need to be transformed and
compared. We outline here how this applies to the aforementioned
groups and our selection.

In computer vision (CV), it is common to use the embedding
spaces of artificial neural networks to compare the perceptual sim-
ilarity of images [49]. Most recent embedding models (e.g. CLIP)
have been specifically designed for the evaluation of two inputs
via cosine similarity [26]. We chose two state-of-the-art image em-
bedding models: CLIP (ViT-L/14@336px) for its ubiquitous use and
DreamSim (ensemble) for its specific alignment with human per-
ception. Both take as input one square colour image (either a level
screenshot or the corresponding colour pattern; see Section 4.1) and
yield its corresponding embedding vector. To evaluate the similarity
of any pair of images, we calculate the cosine similarity between
their embedding vectors.

2Note that we do not follow the stricter mathematical definition of a “metric” here,
but instead use the term more colloquially as a way of more easily differentiating the
methods that quantify qualities from those that compare them.

While little PCG research focuses on similarity estimation specif-
ically, many works propose or use some measure to evaluate gen-
erative systems and their output. For example, in expressive range
analysis [33] or to drive quality diversity search in video game
asset production [12]. Researchers draw from expert knowledge
to design specialised measures that capture relevant qualities. In
contrast to CV embedding models, PCG measures always take as
input a tile-based representation of a level (independent of experi-
mental condition), where individual tile types are encoded as ASCII
characters. Tile Frequencies is a popular baseline measure to char-
acterise tile-based levels [36]. While it disregards the location of
tiles and thus does not fully capture the composition of a level, the
discrepancy of different tile types appearing in two levels might
be enough to approximate the overall visual similarity between
the two levels. This simple idea has been extended to larger Tile
Patterns [18]. While Tile Frequencies only consider individual tiles
(1 × 1 patterns), Tile Patterns can be configured to calculate the
occurrences of any 𝑁 ×𝑀 pattern in a level. Both Tile Frequencies
and Tile Patterns take as input the tile-based representation of one
level and yield the probability distribution over the tiles or patterns
that appear in the level. We calculate the similarity between two
levels by first calculating the Jensen-Shannon distance between the
two tile or pattern distributions and then converting their distance
into similarity by subtracting it from 1. We further included sym-
metry measures because research on patterns in Candy Crush Saga
has shown that symmetric generated levels are considered more
similar to original game levels by human expert judges [43]. While
symmetry by itself is probably not sufficient to fully describe level
similarity, we hypothesise that it might be an important factor in
the human perception of tile-based video game levels. Symmetry
measures take as input one level in a tile-based representation and
yield a scalar output that quantifies the level’s symmetry on a given
axis (horizontal, vertical, or either forward or backward diagonal).
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Two levels are compared in terms of their similarity by calculating
the absolute difference between their symmetry scores.

As general and domain-agnostic metrics, we selected Hamming
and Normalised Compression Distance (NCD). While these have
been applied to PCG [10, 27], they have not been specifically devel-
oped for video game applications. Instead, they stem from informa-
tion-theoretic approaches to measuring distances between strings
of text. Hamming Distance provides a simple baseline, is easily
interpretable and finds many applications in video game research
in its more general form as edit distance [2, 39]. NCD has been used
as a metric for the structural similarity of video game levels, as it
encodes both tile frequencies and positions [20, 30]. Both general
metrics take as input two levels in the tile-based representation
and yield the distance between them, which is converted into their
similarity by subtracting the distance from 1.

3.2 Perceptual Embedding Spaces
Our work aims to compare various similarity metrics to the judge-
ments collected from our study participants. To facilitate this, we
apply the conventional methodology of constructing a perceptual
space from the triplet judgements that embeds all stimuli in a Eu-
clidean space where distances correspond to the perceived relations
between triplets [9, 22, 23]. We thus understand the distance in the
Euclidean space to be the inverse of perceived similarity: the more
similar two stimuli are, the closer they will be positioned to each
other in the embedding.

More formally, in an exemplary triplet judgement task, let 𝐴 be
the reference stimulus, and 𝐵 and𝐶 be the two options participants
can choose from (Figure 1). Suppose a participant decides that
the reference 𝐴 is more similar to option 𝐵 than it is to option
𝐶 . We can describe this relation as 𝑑 (𝐴, 𝐵) < 𝑑 (𝐴,𝐶), where 𝑑

is a distance metric in Euclidean space. Let us call this a paired
comparison of the given triplet𝐴, 𝐵,𝐶 . The embedding space is built
by finding the vectors corresponding to all stimuli ®𝑎, ®𝑏, ®𝑐 , such that
∥ ®𝑎 − ®𝑏∥ < ∥ ®𝑎 − ®𝑐 ∥. Naturally, this relationship should hold for
all collected triplet judgements, thus creating a set of constraints
on the vectors. The construction of the perceptual embedding is
conventionally formulated as a constrained optimisation problem.

A common method to obtain such an embedding is multi-dimen-
sional scaling (MDS). A loss function (called strain) quantifies how
well the embedding satisfies all constraints. Several versions of
MDS exist, most notably metric and non-metric algorithms. How-
ever, most require a target distance matrix in which the pairwise
similarities between stimuli are expressed as numerical distances.
This is difficult to obtain from our study data, in particular, because
not all participants judged every triplet. Generalised non-metric
multi-dimensional scaling (GNMDS) [1] instead reformulate the
loss function to primarily depend on information from the paired
comparisons. Additional slack variables account for unsatisfied con-
straints. The optimisation objective aims to minimise the amount
of slack. Yet, when there is high disagreement in the data between
judgements from individual participants, it becomes difficult to
satisfy all constraints at once. This results in large amounts of
remaining slack.

In our work, we employ t-distributed stochastic triplet embed-
ding (t-STE) [41], which responds better to the naturally occurring

noise in the judgement data by not trying to satisfy constraints that
contradict the consensus. t-STE can thus deal best with two impor-
tant characteristics of our collected judgement data: 1) missing data
due to participants only judging a subset of triplets, and 2) high
disagreement between individual participants due to the difficulty
of the triplet judgement task.

4 STUDY 1: HUMAN VS. COMPUTATIONAL
SIMILARITY EVALUATION

To compare the human evaluation of similarity with computational
metrics, we collect data on people’s evaluation of similarity in tile-
based video games. To this end, we employ a full 2x2 factorial design
with the first factor defining the video game Title (ccs: Candy Crush
Saga; loz: Legend of Zelda) and the second the visual Representation
of levels (img: level screenshots; pat: an abstract colour tile pattern
of the level sprite layout). This yields a total of four experimental
conditions: ccs-img, ccs-pat, loz-img, loz-pat. We choose two Repre-
sentations to cover different scenarios relevant to the application
of similarity metrics in video games and PCG. The img representa-
tion provides direct insight into how people assess the similarity
between levels as they appear in the given Titles. Through this,
we aim to inform the selection of similarity metrics for applica-
tion in these and other closely related video games. With the pat
representation, we focus on more abstract pattern representations
of level layouts as they are used in the level design process and
by many PCG algorithms. Our goal is to provide practical recom-
mendations for game designers, developers and researchers for the
application of similarity metrics at design time and in conjunction
with PCG and PCGML approaches. We are interested in answering
RQ1 individually for both of these scenarios (Which existing metrics
approximate the human similarity perception of grid-based video
game levels best?). Note that there is an important difference in
the design of the similarity metrics. CV-based metrics (CLIP and
DreamSim) take image input and can be applied to any image. In
img conditions, they will be given level screenshots, whereas, in
pat conditions, they will receive the colour patterns. In contrast, all
other metrics receive levels in their tile-based representation and
are given the same information in all conditions.

With the stimuli in each condition, we prepared a collection of
triplet comparison tasks as two alternative forced choice (2AFC)
questions. Given a reference stimulus, participants are asked to
make a forced choice between two stimuli, selecting the option
most similar to the reference. This design was shown to be the
most robust data collection method and has been recommended for
assessing perceptual similarities (triplet ranking with matching) [9].
To prevent participant fatigue but still assess a high number of
stimuli, we employ a mixed design where each participant judges a
subset of triplets from each condition. The study was approved by
the Queen Mary Ethics of Research Committee.3

4.1 Materials
As stimuli, we first select a subset of level images from both video
games (Title). Video game levels in the img representation include
some decorative elements, e.g. different colour sprites for the same
game objects in loz and certain game objects, like candies, being
3Reference number: QMERC20.565.DSEECS23.030
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Table 2: Self-reported experience with tile-based video games of participants in study 1 (blue) and study 2 (red). Participants
selected one option in each row, and percentages in each row add up to 100%.

I do not know this
type of game

I have heard of
this type of game

I have played this
type of game

I regularly play this
type of game

Tile-matching games (like
Candy Crush or Bejeweled) 1.80% — 14.7% 25% 59.1% 75% 24.4% —

Pacman or Ms Pacman 2.90% — 16.5% — 73.6% 100% 7% —
Retro dungeon crawlers
(like Legend of Zelda) 29% — 42.0% 37.5% 23.5% 37.5% 5.50% 25%

Sokoban 75.8% 62.5% 15.6% 12.5% 7.70% 25% 0.9% —
Bomberman, Dyna Blaster,
or similar 48.1% 12.5% 20.7% — 29.9% 87.5% 1.3% —

represented by different sprites in ccs. We hypothesise that the
img representation, essentially content shown in-game, evokes
gameplay associations in the participants and obfuscates some
similarity-relevant visual patterns.

To test this hypothesis, we leverage an abstract colour pattern
representation (pat) for each Title that relies on existing mappings
from level object to colour tile (Summerville et al. [38] for loz and
Volz et al. [43] for ccs). The purpose of the pat representation is to
remove potentially distracting gameplay associations and empha-
sise the similarity-relevant characteristics of levels, e.g. shapes and
patterns. These types of colour tile patterns are commonly used
in PCG in research [5, 29, 37, 38], as well as in practice [14, 34].
In the following we describe how the conversion from img to pat
representation is performed and how it differs between the two
Titles. However, to represent level objects, we apply the same colour-
blindness-safe colour palette [47] to converted level representations
from both Titles. For Legend of Zelda (loz), the colour tile mapping
defined in the VGLC [38] is straightforward, as it simply maps
level elements with different functionality to distinct colour tiles
(e.g. walls are different from floors are different from enemies are
different from doors, and thus assigned different colours). In this
abstraction, simplifications are limited to subsuming all enemies
into a single colour tile and ignoring the different colour palettes
of the various dungeon rooms. The colour tile mapping we use
for Candy Crush Saga (ccs) is informed by Volz et al. [43] and was
devised in collaboration with the game’s creator, King. Instead of
a direct one-to-one mapping from each level object to a colour
tile, this representation subsumes several level objects with similar
in-game behaviour. For example, objects that look visually distinct
(e.g. frosting and chocolate objects) but perform similar game func-
tions (blockers impede moves, making gameplay more difficult) are
mapped to the same colour tile. This is done for several functional
level objects, such as blockers, candies, power pieces, and locks. Using
the above img to pat mappings, we represent every Title in each
Representation. For details on the specific conversion procedures,
please refer to our implementation in the supplementary material.

As datasets, we obtain loz levels from an open-source corpus
of video game levels [38] and scrape ccs level screenshots from
a fan wiki4. Since our datasets (ccs: 2,792 levels, loz: 225 levels)
were too large for a triplet comparison study, we selected a sub-
set of stimuli informed by the expected amount of participants, a
4https://candycrush.fandom.com

minimum of five comparisons per triplet, and a maximum amount
of 100 comparisons per participant. To select a subset represen-
tative of the overall variety in levels, we employed a three-stage
selection pipeline. We first obtained image embeddings from an
artificial neural network (CLIP ViT-14/L@336px [26]). While using
a metric assessed in the same study introduces a bias, the bias is
explicit and can be accounted for. We discuss this and alternatives
we considered in the limitations Section 6.1. We then reduced the
dimensionality of the embeddings from 768 to 2 dimensions with
t-SNE [40], to make the subsequent sampling step feasible. In our
implementation, t-SNE uses cosine similarity, which is the most
appropriate to calculate distances between CLIP embeddings. The
origin of biases is thus limited to the choice of embedding model.
Finally, we used conditioned Latin Hypercube Sampling (cLHS) [21]
to find a subset for which items are maximally distant from each
other in the low-dimensional embedding space. This is to ensure
that 1) the samples cover a large part of the space of possible lev-
els and 2) that we do not inadvertently draw conclusions from a
non-representative subset of levels. To mitigate the influence of
different tile colours in Legend of Zelda, we select levels based on
their greyscale versions. We selected 17 stimuli for each of the four
experimental conditions, yielding

(17
1
)
×
(16
2
)
= 2040 triplets per

condition, and 8160 triplet comparisons overall. Figure 1 shows a
random selection of five levels from all subsets, each corresponding
to one condition.

Participants were asked optional demographic questions about
their self-described gender and age, and their experience with tile-
based video games. The surveys were implemented in Qualtrics.
Given a list of stimuli, we compute all triplet combinations and gen-
erate individual surveys for all conditions for upload to Qualtrics.

4.2 Participants
We recruited 460 participants from Prolific to complete a 15-minute
survey paid at the equivalent of an hourly rate of £10. Funding
was provided by modl.ai. We excluded four participants who did
not complete the full survey and proceeded with the data from
the remaining 456 participants. Out of these, 53.51 % reported their
gender as female, 43.64 % as male, 1.75 % identified as non-binary or
third-gendered, none chose to self-describe, 0.44 % preferred not to
respond, 0.44 % left the question unanswered, and 0.22 % abandoned
the survey before seeing the question. The median reported age
is 28. Our sample is thus considerably more representative w.r.t.

https://candycrush.fandom.com
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identified gender than common in studies related to video games.
We summarise their self-reported experience with tile-based video
games in Table 2.

4.3 Procedure
We informed our final study procedure based on a pilot, involving
seven stimuli in each condition. The goal of this pilot was to test
the survey setup and identify average response times, suitability of
validation questions, and baseline disagreement ratios on individ-
ual triplets. It was completed by 22 trusted participants from the
authors’ respective industry and academic institutions.

Our study follows the conventional methodology for collecting
human similarity ratings with two alternative forced choice (2AFC)
questions, one of the oldest methods of psychophysics [11]. We
interchangeably refer to this as triplet comparisons. Given a ref-
erence stimulus, participants are asked to make a forced choice
between two stimuli, selecting the option most similar to the refer-
ence. For our study, out of the 8160 total triplets (Section 4.1), every
participant was assigned a random subset of 25 from each of the
four experimental conditions. In addition to these 100 triplet com-
parisons, participants were asked to judge three additional triplets
as validation questions in each condition. The order between and
within conditions was randomised for each participant, and colour
patterns were shown before level images to not prime participants’
perceptions. Participants provided informed consent at the start of
the survey and answered optional questions on demographics and
game experience after judging all triplets.

4.4 Data Analysis
To understand how the computational metrics correlate with our
data on the human perception of similarity, we perform two com-
plementary quantitative data analyses. First, we quantify how well
the computational metrics can approximate the similarity matrices
derived from our participant data. For this, we construct a per-
ceptual space for each condition which embeds the stimuli in a
low-dimensional Euclidean space. Second, we conduct pairwise
comparisons between the judgements of individual human partic-
ipants and the different computational metrics in an inter-rater
agreement analysis. In addition, we provide a qualitative analysis
of the features underlying the human similarity judgements in our
second study (Section 5). All analyses are performed separately for
each experimental condition.

4.4.1 Perceptual Embedding of Tile-Based Level Similarity. To deter-
mine the overall relationships between stimuli in terms of similarity,
aggregated over all human responses, we construct a perceptual
space from the collected triplet judgements, i.e. an embedding of
stimuli in Euclidean space (here also called perceptual embedding
or embedding space). Participants were asked for their subjective
perception of similarity. Choices were forced, and participants did
not have the option to skip a judgement task. It is natural that the
triplet data is noisy and reflects some disagreement. Yet, this pro-
vides important information about the similarity-relations of stimuli
and introduces constraints that need to be taken into account. For
example, if many participants agree that reference stimulus 𝐴 is
more similar to stimulus option 𝐵 than the other option 𝐶 , in the
embedding space 𝐴 needs to be positioned closer to 𝐵 than 𝐶 . A

perceptual embedding converts each individual piece of relation-
ship information into an aggregated positional distance within the
embedding while satisfying all constraints as best as possible. As
noted in Section 2, this inclusive approach also distinguishes our
work from related work.

We chose the embedding algorithm t-distributed stochastic triplet
embedding (t-STE) [41] as it provides several advantages over con-
ventional multi-dimensional scaling (MDS) methods, in particular,
the handling of missing data and noisy data (for background see
Section 3.2). The former is necessary since not all participants judge
all triplets, and the latter as our data shows a lot of disagreement
between participants. Elbow plots (Figure 4) indicate that four di-
mensions can adequately encode the most relevant attributes across
experimental conditions while providing a close-to-optimal fit for
the triplet data.

To quantify the suitability of the embedding for subsequent com-
parisons with computational metrics, we analyse the robustness
of the embedding to random initialisation over 10 runs with differ-
ent random seeds. The goodness of fit to the raw data, number of
required iterations, and number of constraints are almost identi-
cal across all runs. While the absolute positions of triplets in the
embedding depend on the initialisation of the embedding and can
differ significantly between random seeds, the variance of pairwise
similarities between the embedded stimuli is much lower across all
conditions (ccs-img: 0.0349, ccs-pat: 0.0464, loz-img: 0.0389, loz-pat:
0.0419; variance over 10 runs with random initialisation), indicating
overall robustness of the resulting perceptual embeddings. For each
condition, we select the embedding with the best fit to the data
from these 10 candidates.

4.4.2 Comparison of Similarity Matrices. To quantify the capa-
bilities of the computational metrics to approximate the human
similarity judgements, we calculate the error between similarity ma-
trices derived from either source. The similarity matrix for human
judgements is based on the previously described perceptual em-
beddings (Section 4.4.1). We first compute the pairwise Euclidean
distances between all stimuli in the embedding, then normalise
them by the maximum distance, and finally convert normalised dis-
tances into similarities by subtracting them from 1. The similarity
matrix for a computational metric is constructed from the pairwise
similarity between stimuli computed by a given metric as outlined
and motivated in Section 3.1. Two similarity matrices are compared
by calculating the mean squared error. Results are summarised in
Section 4.5 and visualised in Figure 2.

This comparative analysis allows us to quantify a metric’s pre-
diction error of the similarity-relation between two stimuli by com-
paring it to the ground-truth human perception. However, this can
only be done by way of constructing a perceptual embedding space
from the collected judgement data, which itself only approximates
the judgement data. We supplement this first analysis with the
following inter-rater agreement analysis, as it allows for a more
direct comparison to the judgement data given by our participants,
without requiring an intermediate approximation.

4.4.3 Agreement between Participants and Metrics. We perform an
inter-rater agreement analysis between human participants and
computational metrics. Cohen’s kappa (𝜅) is calculated for pairs
of one participant and one metric as the two raters. For this, we
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Figure 2: Mean squared errors (lower is better; horizontal axes) when comparing the pairwise similarity matrices of different
candidatemetrics (vertical axis) to those derived from the perceptual embeddings of the four experimental conditions (subplots).

first find the triplets judged by a given participant and then deter-
mine the judgements of the metric in question on the same triplet
comparison tasks. This allows us to perform a direct inter-rater
agreement analysis. This process is repeated for each combination
of participant and metric in each condition. We remind the reader
that in each triplet comparison, a participant is presented with a ref-
erence stimulus A and chooses the most similar stimulus from two
options B and C. In standard inter-rater agreement terminology, we
thus deal with two raters each judging 25 items on a two-category
nominal scale (stimulus option B or C). We use Cohen’s kappa over
agreement percentage, as it takes into account the possibility of
chance agreements, which is particularly important when dealing
with only two categories. As not every participant has judged all
triplets, the statistics only reflect agreement on each participant’s
random subset of 25 triplets from each condition. For each con-
dition, we thus collect as many data points (kappas) as there are
participants who completed this section of the survey. We further
perform additional analyses of the inter-rater agreements, available
in Appendix A, which support the results presented here. For ease
of interpretation, however, we here focus on Cohen’s kappa.

This collection of inter-rater agreement statistics complements
the initial comparison of similarity matrices, allowing for a direct
comparison of a metric’s binary prediction to a given participant’s
judgements. However, a binary choice between two stimuli options
only gives a limited account of the complex similarity-relations
between stimuli. In contrast, the initial comparison of similarity
matrices can accommodate more fine-grained relations, expressed
as distances in a Euclidean space.

4.5 Results
From the 456 participants, we collect a total of 11,400 judgements
per condition, resulting in an average of 5.6 judgements per triplet
comparison. We next present our results separately for each of
the analysis steps outlined in Section 4.4. We give a summary of

the results here, alongside visualisations. For full and exact results
consult the supplementary material.

In our main analysis, we compared the pairwise similarity matri-
ces of different candidate metrics to those derived from the percep-
tual embeddings. We report results as mean squared error, where a
lower score indicates a better approximation of the human judge-
ments by a computational metric (Figure 2). Overall, the two CV
metrics, CLIP and DreamSim, have the lowest errors across all ex-
perimental conditions. Looking at individual conditions, DreamSim
exhibits the best approximation performance when using pattern-
based representations (ccs-pat, loz-pat). While CLIP has slightly
lower error for image-based Legend of Zelda levels (loz-img), both
CV-based metrics are tied on image-based Candy Crush Saga levels
(ccs-img). Tile frequencies are the overall third-best-performing ap-
proximate metric across all experimental conditions. In fourth place,
the general-purpose metrics, Normalised Compression Distance
(NCD) and Hamming Distance are tied in terms of overall error on
Candy Crush Saga levels (ccs-img, ccs-pat). However, for Legend of
Zelda levels in both representations (loz-img, loz-pat), Hamming
Distance performs almost equally as well as Tile Frequencies. Tile
Patterns in various configurations (2×2, 3×3 and 4×4) are not good
approximations for our collected human judgements. We observe
that a larger pattern size leads to a higher error. We provide an
explanation in the discussion (Section 6). Similarly, Symmetry met-
rics in all configurations (horizontal, vertical, as well as diagonal
forward and backward) yield comparatively high overall errors.

In a supporting inter-rater agreement analysis, we calculated the
agreement between every pair of individual human participants and
computational metric. A summarising box plot shows the median
agreements and the interquartile ranges, where a higher score
indicates higher agreement (Figure 3; full raincloud plot available
in Appendix A). As all metrics exhibit roughly similar interquartile
ranges, we will focus our description on their median agreements
with participant judgements. Out of all metrics, DreamSim shows
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Figure 3: Cohen’s kappa (higher is better): inter-rater agreement between human participants and computational metrics over
all experimental conditions (subplots). Summaries here show box plots with median values and the interquartile ranges. Full
raincloud plots can be found in Appendix A.

the overall highest agreement. This is followed by CLIP which
has the second-highest agreement in most conditions. The only
exception is the pattern-based representation of Legend of Zelda
levels (loz-pat), where Tile Patterns (2×2) and Tile Frequencies beat
CLIP and share a close second-highest agreement. Tile Frequencies
has the third-highest agreement for images of Legend of Zelda levels
(loz-img), again closely followed by Tile Patterns (2 × 2). For the
pattern-based representation of Candy Crush Saga levels (ccs-pat),
Normalised Compression Distance has the third-highest agreement,
but only by a small margin when compared to Tile Frequencies as
well as Tile Patterns (2 × 2) and (3 × 3). Third-highest agreement in
Candy Crush Saga images (ccs-img) is shared by Tile Frequencies
and Tile Patterns (3 × 3), though very closely followed by several
other metrics.

We performed statistical significance testing [44] on the agree-
ment between metrics and participant judgements (Cohen’s kappa).
First, we test our basic assumption: (H1) there are significant differ-
ences in the performance of metrics in individual conditions. For
this, we perform a one-way ANOVA separately for each condition.
We further seek to evaluate two other hypotheses: (H2) Dream-
Sim, from the CV group, performs better than Tile Frequencies, the
next-best metric from a different group, i.e. PCG expert metrics;
(H3) metrics have higher agreement with participant judgements
of the pattern-based representation of levels than with judgements
of level images. H2 is tested with a paired student’s t-test of the
two related samples within individual conditions: participant agree-
ment with DreamSim and with Tile Frequencies. H3 is tested with
a separate independent student’s t-test of each metric between indi-
vidual conditions. As H3 entails multiple comparisons, we correct
p-values with the Benjamini-Hochberg procedure [3]. We perform
these tests on Cohen’s kappa and not on the approximation errors,
as the tests require a minimum number of samples.

One-way ANOVAs, separately for each condition, confirm that
there are significant differences (all 𝑝 < 0.01) in the agreement
between participant and metrics (H1). Paired student’s t-tests in
each condition confirm that DreamSim has a significantly higher
agreement (all 𝑝 < 0.01) than Tile Frequencies (H2). Independent
student’s t-tests, followed by p-value correction, confirm that the
best metrics from each group, DreamSim (CV), Hamming Distance
(General), and Tile Frequencies (PCG), have higher agreement (all
𝑝 < 0.01) for pattern-based representations than images (H3). How-
ever, this does not hold for all metrics.

5 STUDY 2: INTERPRETATION OF
SIMILARITY DIMENSIONS

Our first study has shown that the approximation of human simi-
larity assessments through custom-tailored metrics leaves space for
improvements. In our second study, we identified the dimensions
underlying the human similarity assessment to better understand
this phenomenon and inform the future development of fast and
compact similarity metrics tailored to this domain. We thus adopt
a similar methodology as in other work on the human perception
of similarity (Section 2) and re-use the perceptual spaces from the
first study identified through t-STE on the triplet judgements (Sec-
tion 4.4.1), to ask participants in focus groups to interpret their
dimensions. To prevent participant fatigue, we employed a mixed
design where each condition was assigned to one focus group,
tasked to provide interpretations for all four dimensions of the
associated perceptual space. We obtained approval from the Queen
Mary Ethics of Research Committee.5

5Reference number: QMERC20.565.DSEECS23.055
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5.1 Materials
We prepared a guide for all participants with a tutorial to demon-
strate the exercise (Supplementary Material). It shows a horizontal
axis with several circles arranged by increasing size from left to
right. The suggested label for this example is “pattern size” or
“from small to big”. For each of the four focus groups, we prepare
an A2 printout composing all four embedding dimensions of the
corresponding condition, to be handed to each participant within
(cf. Appendix B). We leave space under each axis for people to note
their ideas. The dimensions are not provided on screen to improve
readability and avoid distractions. We used the same demographics
and experience questionnaire (Supplementary Material) as in the
first study (Section 4.1) but as a printout.

5.2 Participants
Our focus groups were composed of a total of eight participants
(two per experimental condition) with backgrounds covering HCI
and psychology, game AI research, as well as game design and
development. These participants were recruited from the IGGI PhD
programme, a doctoral training centre spanning multiple universi-
ties and focusing on video game research with a strong industry
orientation. The study was open for everyone over 18 with normal
or corrected to normal vision, which was not assessed. Participants
were incentivised with a £15 gift voucher.

Out of the eight participants, seven reported their gender as male,
and one as female. The median reported age is 28. Participants in
our second study have overall higher experience with the relevant
tile-based video games than our general demographic in the first
(Table 2).

5.3 Procedure
The focus groups were conducted as part of a workshop run at the
first author’s institution and lasted about 45 minutes each. We ran a
total of four individual focus group sessions. All sessions followed
the same procedure but focused on interpreting dimensions from
different conditions.

At the beginning of each session, participants were informed
about the goals of the study through the participant information
sheet (Supplementary Material). They were particularly reminded
that multiple interpretations for each dimension are possible, that
there are no right or wrong answers, and that their subjective opin-
ion counts. After giving informed consent, they were familiarised
with the task through the tutorial sheet and offered help with any
remaining questions. They were then handed the sheets with the
dimensions to label, one for each participant.

Each session was split into four parts, corresponding to the
dimensions on the paper provided to the participants. The experi-
menter initiated each part by asking the participants to write down
their interpretations of the respective dimension silently by them-
selves. After 5 minutes, they were asked to discuss their proposals
with the other members to identify the best interpretation, which
they were instructed to write down and highlight. After at most
five minutes, the next part was initiated. We decided to interleave
the silent individual interpretation task to prevent forgetting about
the interpretations and to inspire and inform their upcoming inter-
pretations.

In the debriefing, participants were finally thanked and asked to
fill in the demographics and expertise questionnaires. They were
then invited to ask any questions, and finally received their incen-
tive, which concluded the session.

5.4 Results
Our findings reflect a diverse range of perspectives, echoing our
participants’ varied backgrounds. They noted the difficulty of the
labelling task and agreed that discussions within the groups bene-
fited their individual insights. While some groups found it easy to
determine consensus labels, not all groups succeeded. We compare
the consensus labels between conditions in Table 3, and list them,
together with the individually assigned labels, under the respec-
tive dimension in Appendix B. We summarise the most important
findings here.

ccs-img. The participants believe shape to be of high importance.
Their labels include ‘squareness’ (dim. 3) and ‘shape irregularity’
(dim. 1). One participant further mentions ‘roundness’ (dim. 2). The
group assigns ‘brightness’ of tile colours as another label (dim. 4).

ccs-pat. ‘Tile colours’, and its range from bright to dark as well
as from blue to orange, was assigned as a label to two dimensions
(2 and 4). The group further agreed on ‘pattern complexity’ (dim.
1) and ‘pattern symmetry’ (dim. 3).

loz-img. The group highlighted ‘symmetry’ and ‘colourfulness’
as possible labels (dim. 1 and 3, respectively) and agreed on ‘inter-
esting patterns’ (dim. 2). One participant further mentioned the
‘complexity’ of patterns in relation to two dimensions (2 and 4).

loz-pat. One participant misinterpreted the tile colours to in-
dicate functionality (blue for water, yellow for desert) and thus
focused on game design aspects, describing ‘themes’ of different
levels (dim. 3) and the difficulty of solving them. However, the par-
ticipant also commented on the repetition of tiles (dim. 4), alluding
to the distribution of tile types. The group only gave one relevant
consensus label: ‘pattern complexity’ (dim. 1).

6 DISCUSSION
We discuss the findings from our first study (Section 4) to contribute
to our first research question (Which existing metrics approximate
the human similarity perception of grid-based video game levels best?).
For this, we primarily focus on ametric’s approximation capabilities
as quantified by mean squared error in our comparison of similarity
matrices, since computing pairwise similarities comes closest to the
application scenarios in game development and research. We sup-
port these findings with the result from the inter-rater agreement
analysis, which allows for a more direct, albeit limited, comparison
of the metrics to the participant judgements.

The results suggest that CV-based similaritymetrics (CLIP, Dream-
Sim) provide the overall best approximation to the collected par-
ticipant judgements, outperforming the PCG expert metrics and
general-purpose metrics. In particular, results for the artificial neu-
ral network-based image embedding DreamSim exhibit the overall
lowest approximation error and highest agreement when compared
to our participant judgements. While this may be unsurprising,
given that the image embedding was specifically fine-tuned to align
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Table 3: Consensus labels for dimensions of the perceptual embeddings (rows) as proposed by individual focus groups per
condition (columns) in study 2 (Section 5).

Dim. ccs-img ccs-pat loz-img loz-pat

1 Shape irregularity (from square blocks
to non-contiguous shapes)

Pattern complexity (from intricate
to simple patterns)

Symmetry (from high
to low)

Complexity (from
low to high)

2 Level difficulty (from low to high) Tile colours (from bright to dark) Interesting patterns —

3 Squareness (from vertical/
horizontal to diagonal shapes)

Pattern symmetry (from vertical
symmetric to asymmetric)

Colourfulness (from
low to high) Level theme

4 Brightness of tile colours
(from dark to light colours) Tile colours (from blue to orange) — —

with human perception of synthetic natural images, our results
confirm that this equally benefits similarity estimation of video
game levels. Yet, accuracy is not everything. A downside of arti-
ficial neural network-based image embeddings however is their
size, complexity and dependence on specialised hardware for fast
inference. For example, DreamSim requires a CUDA-compatible
GPU with 1.6 GB memory available to load the model (additional
memory required to compute image embeddings). This can be prob-
lematic, considering the limited resources available when relying
on suchmetrics in games at runtime, in particular onmobile devices.
Furthermore, sub-symbolic approaches (artificial neural networks)
are limited in their transparency, as it is more difficult to explain
why a particular pair of levels is attributed to high similarity. In
contrast, symbolic approaches (the PCG expert metrics) with their
transparent design choices can more easily be broken down into
specific rules.

Between the three expert metrics from the PCG literature (with
a total of eight configurations), we can observe big differences in
performance. The Symmetry metrics in any of its configurations
only seem to capture a single aspect relevant to our sample of
participants (cf. Table 3), yielding high approximation errors and
overall low, often even negative agreement. With the closely related
Tile Pattern and Tile Frequencies (identical to the tile pattern size
1 × 1) metrics, we observe a correlation in the results: the larger
the patterns, the higher the metric’s approximation error (Figure 2).
This correlation has a simple explanation: the larger the patterns,
the fewer patterns there are in a level to compare. That is to say,
a lower granularity of patterns (in the extreme case 1 × 1, i.e. Tile
Frequencies) allows for a more nuanced comparison between levels.
If there is little data to compare (e.g. only a few large 4× 4 patterns)
it will be difficult to determine whether two levels are slightly
more similar than another pair. This can lead to high errors in our
similarity matrix analysis. Furthermore, our collection of stimuli is
a particularly small dataset, which likely does not provide much
overlap in patterns across levels. This explanation is supported by
the results on Legend of Zelda levels (loz-img, loz-pat), which share
more patterns due to the common layout of rooms. Consequently,
Tile Patterns of size 2 × 2 and 3 × 3 perform much better on levels
from this title than on Candy Crush Saga levels. Tile Frequencies
being the third-best approximating metric is surprising, given that
this metric only compares the number of different tiles in a level
but entirely disregards their positions. Nonetheless, our results

suggest that Tile Frequencies is a reliable PCG expert metric across
all experimental conditions.

The effect of different level structures on metric performance can
be observed in the results for Hamming Distance, the best out of two
general-purpose metrics. Hamming Distance performs much better
on Legend of Zelda than on Candy Crush Saga levels. As mentioned
above, the common structure of Legend of Zelda levels puts a focus
on the differences in the room interiors between levels. All rooms
are the same size and are surrounded by walls and doors. It is thus
more important whether rooms are filled with obstacles, enemies or
staircases. For participants in our first study, these details may have
also been the most similarity-relevant criteria. In contrast, Candy
Crush Saga levels can have very different shapes and compositions,
making it a more difficult task for a tile position-sensitive metric.
Given a more homogeneous collection of Candy Crush Saga levels,
Hamming Distance might have performed better on this title. More
work is required to test this hypothesis. Hamming Distance has a
competitive performance when levels share a common structure
and differences between them consist in smaller but important
details.

One may argue that in our first study participants with experi-
ence of the relevant video game titles (Candy Crush Saga, Legend of
Zelda) or similar ones from the same genre might have a better idea
of the expressive range amongst levels, therefore making different
similarity judgements. Even more so, the perception of expressive
ranges between participants, even with similar experiences, might
differ. Yet, the design of the triplet judgement task as two-alternative
forced choice aims to prevent exactly these variances. Participants
are only asked to make a simple binary choice, rather than a more
nuanced judgement of similarity.

Our second study (Section 5) allows us to probe this assumption,
and highlights two principal similarity-relevant criteria in this spe-
cific scenario as an answer to our second research question (What
are the dimensions that govern players’ similarity perception?). First,
the design of patterns in terms of shape (‘irregularity’, ‘squareness’),
symmetry and tile composition (‘complexity’). Second, the choice
of sprites (‘tile colours’, ‘colourfulness’ and ‘brightness’), which
might explain the performance advantage of image embedding
metrics, DreamSim and CLIP, over the tile representation-based
metric. While symmetry along various axes is already covered by
specialised metrics compared in our study, most other criteria are
not explicitly accounted for. In particular, visual qualities are not re-
flected in tile representations. Moreover, participants also thought
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about gameplay-specific criteria, like level ‘difficulty’ and game
narrative (‘themes’), which are not yet covered by any metric. All
in all, in the context of video games, expert metrics find their pur-
pose in providing robust performance in a dynamic, potentially
low-resource environment. These findings can contribute to the
future development of custommetrics that meet these requirements
and are more closely aligned with human perception.

6.1 Study Limitations
The present work focuses on visual similarity estimation in two
tile-based video games. We note two limitations on generality. First,
we have not taken into account other game genres beyond tile-
based games. Moreover, constrained by the triplet comparison data
collection methodology, we could only include a limited amount
of stimuli. We tried to mitigate this constraint by systematically
selecting stimuli for diversity and through our mixed design. While
we selected our two game titles to capture diversity and popularity
in the space of tile-based games, there exists muchmore variation in
video game titles that could not be accounted for. Second, the same
applies to variation within the levels of each title which, despite
our systematic procedure, could not be captured in its entirety.
Crucially though, we hold that the dimensions governing similarity
between levels here can inform stimulus selection in future studies
extending our work. Moreover, we are confident that the choices of
games and levels in this work reflect many use cases in the industry.

Beyond limitations to generality, we note that our study only
considers similarity judgements of tile-based video games with
respect to visual information. We agree with related work on player
modelling in that functional and dynamic elements of gameplay
such as power-ups or tile cascades are also important determinants
of player perception, experience and behaviour. Minor differences
in the layout of any two levels may have little effect on their visual
similarity, yet might make a big difference in terms of gameplay.
While many of these elements can be identified visually, we ex-
pect players’ similarity assessment to be considerably shaped by
their active interaction with them. This research thus represents
a specialised lens on visual and static game content, contributing
to the future development of holistic models of players’ similarity
judgement.

The setup of experimental conditions and in particular the fact
that CV metrics receive different inputs depending on the Represen-
tation of the condition, limits our study in that we do not cover all
possible comparisons for the image-based similarity metrics. We
thus do not investigate the discrepancies between the participant
judgements across visual representations while keeping the metric
representation static. However, we deliver on our plans. As the
input to the image-based metrics is varied based on the condition to
match what the participants see, we get direct comparisons for how
well the image-based metrics approximate the participant judge-
ments for that condition. In this work, we focus on this aspect and
leave other comparisons for future work. We acknowledge that the
mapping from img to pat representation does encode some assump-
tions around the similarity of the different level objects. However,
these assumptions do not stem from our own biases but instead rely
on the experience of the domain experts for the respective games.

We identify two limitations stemming from the design of the
stimuli selection process. First, selecting stimuli that cover the
wide range of level designs increases the difficulty of the triplet
judgement task. We argue, however, that the data collected from
forced-choice judgement tasks is still useful as overall relations be-
tween stimuli are captured in the aggregated judgements of a large
group of participants. Our results confirm this; despite the difficult
triplet combinations, the best metrics compared in our work were
able to approximate stimuli relations with very little error. Second,
our conclusions about the performance of CLIP are insofar limited
as we also leveraged CLIP in the stimuli selection procedure. This
choice in the selection process allowed us to maximise the diversity
of levels, thus benefiting the fair evaluation of all metrics, at the
expense of introducing a bias on the performance of a single model.
We chose CLIP for the selection procedure as we expected it to
be amongst the strongest candidates, thus leaving more space for
fine-grained differentiation between the other metrics. And despite
our use of CLIP in the selection process, our results point to a dif-
ferent CV-based metric as the best-performing metric: DreamSim.
We considered multiple other stimuli selection strategies. Here we
discuss the advantages and drawbacks of three options which ul-
timately led us to adopt the approach presented earlier. The first
alternative, random sampling of stimuli, is the most unbiased ap-
proach, yet unlikely to cover the diverse level design space (e.g.
out of 2,792 Candy Crush Saga levels we were only able to select
17). Second, a selection of stimuli informed by a pilot study is also
relatively unbiased. However, participants would have to assess
an overwhelmingly large amount of stimuli (ccs: 2,792 levels; loz:
225 levels). A cognitively very demanding task that would require
additional recruitment of reliable participants. Third, instead of
CLIP, we could use a different embedding (e.g. another CV-based
model). While this would not introduce a bias in favour of any of
the metrics compared in this work, it would nonetheless introduce
a bias towards a different metric for which the relations to the other
metrics are not explicitly assessed.

We leveraged inter-rater agreement statistics to facilitate direct
comparisons of metric performance with raw data from individual
participants. However, we only found low to moderate agreement
between participants. Since triplet comparisons only require binary
decisions, we had no information on participants’ confidence in
their ratings. We deliberately chose not to leverage disagreement
ratios as a proxy for rating confidence due to the low number of
samples per stimulus. Future studies could include an additional
confidence rating or leverage a different rating task to facilitate a
closer comparison between human judgements and the continuous
similarity values provided by metrics.

The focus group labelling task in our second study is a naturally
noisy process because 1) labels are subjective and 2) the dimensions
of the perceptual embeddings are the product of noisy participant
judgements. Given the difficulty of the labelling exercise, some
groups were not able to provide a consensus label for some dimen-
sions. Yet, rather than labelling exhaustively, our goal was to obtain
as much relevant information as possible. The labels identified in
our second study nonetheless are a valuable resource to explain the
total variance of the similarity judgements. We were only able to ob-
tain data from a relatively small group of participants per condition.
More participants would have provided higher robustness, as the
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quality of consensus labels benefits from a variety of perspectives.
However, our decision on an on-site study to limit distractions and
foster discussion imposed constraints on how many participants
could be possibly recruited. Given the complexity of the domain
and task, we hold that our findings provide good pointers for fu-
ture work. Moreover, We published our dataset and interpretation
scales to enable other researchers to further validate and extend
our findings.

7 CONCLUSIONS & FUTUREWORK
In this work, we sought to answer two research questions: (1)Which
existing metrics approximate the human similarity perception of
grid-based video game levels best? And, as a stepping stone toward
the development of better metrics, (2) which dimensions govern
the similarity perception in this scenario? Of immediate practical
relevance, we probe the common belief that the development of
good similarity metrics requires a deep understanding of games as
an application domain. To this end, we compared 7 metrics in 12
configurations, grouped into custom-made PCG, general-purpose,
and computer vision metrics. Surprisingly to some, we find that
the DreamSim image embedding exhibits the overall best perfor-
mance (low overall approximation error and high agreement with
human participants), followed by the CLIP embedding model from
the same group of CV-based metrics. Since such artificial neural
network-based approaches can be too resource-intensive for de-
ployment within a video game, we recommend their use for the
offline generation of video game assets. As an alternative, for in-
game use, we find that Tile Frequencies, a simple baseline metric
from the PCG literature more suitable for low-resource environ-
ments, shows the next-best performance. Furthermore, Hamming
Distance is competitive with Tile Frequencies when levels share a
common structure and differences between them consist of smaller
but important details, e.g. our collection of Legend of Zelda levels.

However, our findings also show that there is room for improve-
ment. Opportunities for advancements of similarity metrics are
revealed through our second study, in which we asked focus groups
with relevant experience to interpret the dimensions underlying
the similarity judgement as captured by our data. Participants par-
ticularly highlighted the importance of pattern design in terms of
shape, symmetry and tile composition, as well as the choice of tile
sprites as similarity-relevant criteria of human perception in this
specific domain. Our findings contribute to a better understanding
of similarity estimation in people and its alignment with existing
metrics for tile-based video game levels, and through this inform
similarity estimation via computational metrics.

Our findings can inform metric selection in game development
and as an element of research studies on games more generally.
Moreover, they highlight potential avenues for improvement of
existing and the development of future metrics. We particularly
advocate supporting further research on this topic through vari-
ous uses of machine learning. To select a small subset of stimuli
from a large dataset that covers the variation in the dataset, an
auto-encoding artificial neural network can be trained on the full
dataset. A subset of stimuli can then be selected based on their
pairwise distances in the model’s latent space. Other stimuli selec-
tion strategies may be applied in future work: random sampling,

grid-based selection, etc. To further advance data-driven metrics,
we can fine-tune an existing image embedding on a curated dataset
of annotated video game levels to obtain a specialised embedding
space for the video game domain. Moreover, as DreamSim [13]
(Section 2) has demonstrated, we can bootstrap an ensemble of
metrics to train a prediction model of human judgement on top
of the metrics’ respective calculations. Yet, these efforts have to
be assessed in comparison to the performance of much simpler
general-purpose metrics. In the video game context, in particular
for applications on-device, only limited resources might be avail-
able which need to be managed carefully. This work can inform
which metrics to include in further benchmarks. We note that this
work contributes to the bigger effort of developing holistic models
of human similarity judgement in games. Our study setup leaves
open for future work further investigations of agreement with CV
metric. Our study shows that when participants and image-based
metrics are given the same level representation (img or pat), CV
metrics perform best overall. But further study is needed to un-
derstand their performance in scenarios where participants are
shown the same level screenshots (img) between conditions, while
the input to image-based metrics is changed from img to pat. The
publication of our data and implementation opens these avenues
for future work to the whole research community. More work is
needed to extend our analysis to other video game titles, as well
as alternative mappings from level objects to abstract colour tiles.
While we have focused on the perception of visual similarity in
static content, we expect players’ similarity judgement to be also
shaped by the dynamic gameplay behaviour that levels afford, and
the experiences they are expected to provide. Consequently, an
important avenue for future work will be to understand how these
static and dynamic aspects can be combined. For example, through
representations that can more explicitly encode gameplay, as used
in the Video Game Affordances Corpus (VGAC) [4]. Finally, while
the focus of this paper was on similarity, we advocate research into
how well the identified metrics can estimate the human perception
of diversity as a natural next step toward supporting a wider range
of game AI applications.

Together, our findings can advance a wide range of tasks in re-
search and industry, from developing better player models, more
satisfying PCG, believable NPCs, and increasingly plausible auto-
mated play-testing approaches. They thus benefit both the game
AI and game user research communities and enable new work at
the crossroads.
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Figure 4: Elbow plots for t-STE goodness of fit in all condi-
tions (from top left to bottom right: ccs-img, ccs-pat, loz-img,
loz-pat). We choose 4 as the number of dimensions (horizon-
tal axis) for perceptual embeddings based on the evaluation
of overall normalised errors (vertical axis).

A STUDY 1: EXTENDED DATA ANALYSES
There exist some potential limitations in the interpretation of Co-
hen’s kappa statistic on its own. Different scales have been proposed
to interpret the magnitude of kappa (e.g. poor, slight, fair, moderate,
substantial, and almost perfect; for different intervals of kappa). Yet,
choosing any such standard for the evaluation of the strength of
agreement is inevitably arbitrary. Moreover, a potential scale would
have to be adjusted to the maximum value kappa could attain for
a given pair of ratings. While 𝜅 is theoretically upper-bounded by
1, in practice its maximum value is often much lower, as kappa is
highly sensitive to differences in allocation and quantities. Con-
sidering a 2 × 2 contingency table, maximum agreement is only
possible if the marginal distributions are balanced. We assist the

interpretation of kappa by calculating the maximum value of kappa
across our pairwise comparisons [32], and visualise the difference
between individual kappa and their respective maximum values
𝜅max − 𝜅 (unachieved agreement, lower is better) as raincloud plots
in Figure 6. This provides a more realistic scale of comparison
across metrics. We further report two easily interpretable coeffi-
cients, appropriate for evaluation of accuracy in prediction tasks,
quantity disagreement and allocation disagreement [24], visualised
in Figures 7 and 8.

A.1 Results
We present here the full raincloud plots of Cohen’s kappa from our
inter-rater agreement analysis (Figure 5). To support our main anal-
ysis, we report three additional statistics of inter-rater agreement
between human participants and computational metrics: (a) un-
achieved agreement (Figure 6), (b) quantity disagreement (Figure 7),
and (c) allocation disagreement (Figure 8). In all three statistics,
lower scores indicate higher agreement. While results are difficult
to interpret across all statistics and experimental conditions, there
are a few observable patterns, supporting the main analysis. Dream-
Sim has the overall lowest median scores and interquartile ranges,
followed by CLIP and Tile Frequencies. Other metrics occasionally
perform better than some of the three but not across all statistics
and conditions.

B PERCEPTUAL SPACES
This appendix comprises the perceptual spaces obtained via t-STE
from triplet comparison data in our first study (Section 4). Each
space corresponds to one condition and rests on four dimensions.
These were also used as materials in our second, labelling study
(Section 5). We include the labels as determined in the study below
each dimension. We remind the reader that the study materials
were printed in A2 size, thus affording better readability than those
presented here.

Received 14 September 2023; revised 12 December 2023; accepted 19 January
2024
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Figure 5: Cohen’s kappa (higher is better): inter-rater agreement between human participants and computational metrics over
all experimental conditions (subplots). Each data point indicates Cohen’s kappa comparing the similarity judgements of a
single participant against those of a given metric on the same subset of triplets. Each raincloud plot features individual data
points as dots, the estimated kernel density over the data as a curve above the data points, and a box plot with the sample
minimum, maximum and median, as well as the first and third quartiles and outliers.
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Figure 6: Unachieved agreement (lower is better): difference of the maximum value and Cohen’s kappa of the inter-rater
agreement between human participants and computational metrics over all experimental conditions (subplots). Each data
point indicates Cohen’s kappa subtracted from 𝜅max, when comparing the similarity judgements of a single participant against
those of a given metric on the same subset of triplets. Each raincloud plot features individual data points as dots, the estimated
kernel density over the data as a curve above the data points, and a box plot with the sample minimum, maximum and median,
as well as the first and third quartiles and outliers.
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Figure 7: Quantity disagreement (lower is better) between human participants and computational metrics over all experimental
conditions (subplots). Each data point indicates disagreement between a single participant and a given metric on the same
subset of triplets. Each raincloud plot features individual data points as dots, the estimated kernel density over the data as a
curve above the data points, and a box plot with the sample minimum, maximum and median, as well as the first and third
quartiles and outliers.
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Figure 8: Allocation disagreement (lower is better) between human participants and computationalmetrics over all experimental
conditions (subplots). Each data point indicates disagreement between a single participant and a given metric on the same
subset of triplets. Each raincloud plot features individual data points as dots, the estimated kernel density over the data as a
curve above the data points, and a box plot with the sample minimum, maximum and median, as well as the first and third
quartiles and outliers.
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(a) ccs-img, dimension 1. P1: “From bespoke to generative”. P2: “Irregularity of shapes”. Consensus: “Shape irregularity (from square blocks to
non-contiguous shapes)”.

(b) ccs-img, dimension 2. P1: “Inverse difficulty (from hard to easy), i.e. more blocks requiring multiple ? (interactions?)”. P2: “Roundness, how
much does it look like a circle”. Consensus: “Level difficulty (from low to high)”.

(c) ccs-img, dimension 3. P1: “Diagonal angularity (from squareness of level design to diagonalness)”. P2: “Amount of candy/fruit blocks compared
to other blocks (just a guess)”. Consensus: “Squareness (from vertical/horizontal to diagonal shapes)”.

(d) ccs-img, dimension 4. P1: “Most to least likely generative (guess)”. P2: “Brightness (from dark to light)”. Consensus: “Brightness of tile colours
(from dark to light colours)”.

Figure 9: Labelled embedding dimensions for condition ccs-img
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(a) ccs-pat, dimension 1. P3: “Number of straight horizontal lines; pixels are grouped”. P4: “From intricate to simple; Colors tend to loose darker
shades from left to right”. Consensus: “Pattern complexity (from intricate to simple patterns)”.

(b) ccs-pat, dimension 2. P3: “More green and black, less yellow and blue as x increases”. P4: “Colors tend to go from orange-yellow colorspace to
black to green-blue colors (CMY–Black–RGB); Patterns tend too go lateral-symmetric-radial”. Consensus: “Tile colours (from bright to dark)”.

(c) ccs-pat, dimension 3. P3: “Blue swaps for green and yellow”. P4: “Pattern from lateral symmetric”. Consensus: “Pattern symmetry (from
vertical symmetric to asymmetric)”

(d) ccs-pat, dimension 4. P3: “More orange, less blue as x increases”. P4: “The patterns tend to move up to down going left to right”. Consensus:
“Tile colours (from blue to orange)”.

Figure 10: Labelled embedding dimensions for condition ccs-pat
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(a) loz-img, dimension 1. P5: “Symmetrical arrangement of tiles high – low”. P6: “Asymmetry”. Consensus: “Symmetry (from high to low)”

(b) loz-img, dimension 2. P5: “Interesting patterns low – high”. P6: “Complexity”. Consensus: “Interesting patterns”.

(c) loz-img, dimension 3. P5: “Colours variation low – high”. P6: “Incohesion”. Consensus: “Colourfulness (from low to high)”.

(d) loz-img, dimension 4. P5: “Coherence low – high”. P6: “Complexity”. No consensus.

Figure 11: Labelled embedding dimensions for condition loz-img
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(a) loz-pat, dimension 1.P7: ‘From “game started” to “20 minutes in”’. P8: “Connected components of color (not necessarily of different colors),
ignoring outer side rectangles”. Consensus: “Complexity (from low to high)”.

(b) loz-pat, dimension 2. P7: ‘I can’t unsee Zelda, so I’m gonna say from “More hidden secrets” –> “less hidden secrets” or “Exploration-focused
gameplay” –> “Challenge-focused gameplay”’. P8: “No idea”. No consensus.

(c) loz-pat, dimension 3. P7: ‘“Closed-up areas” –> “Open-ended areas”; Maybe something like “linear progression” –> “Open worlds”;
Colour/amount of yellow seems to be a factor too. Maybe “from coast to desert”???; Theme’. P8: ‘Different tile type “theme”; cutscene –>
start –> water –> land –> yellow (?)’. Consensus: “Level theme”.

(d) loz-pat, dimension 4. P7: ‘More unique to less unique? In the sense of “tile is never repeated in game” –> “tile is often repeated”; Maybe theme
again. Yellowish to blueish; Challenging desert section to more relaxed water section. Hard to easy?’. P8: ‘Yellows –> blues’. No consensus.

Figure 12: Labelled embedding dimensions for condition loz-pat
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