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SUMMARY

The citric acid cycle (CAC) metabolite fumarate has
been proposed to be cardioprotective; however, its
mechanisms of action remain to be determined. To
augment cardiac fumarate levels and to assess
fumarate’s cardioprotective properties, we gener-
ated fumarate hydratase (Fh1) cardiac knockout
(KO) mice. These fumarate-replete hearts were
robustly protected from ischemia-reperfusion injury
(I/R). To compensate for the loss of Fh1 activity, KO
hearts maintain ATP levels in part by channeling
amino acids into the CAC. In addition, by stabilizing
the transcriptional regulator Nrf2, Fh1 KO hearts
upregulate protective antioxidant response element
genes. Supporting the importance of the latter mech-
anism, clinically relevant doses of dimethylfumarate
upregulated Nrf2 and its target genes, hence pro-
tecting control hearts, but failed to similarly protect
Nrf2-KO hearts in an in vivo model of myocardial
infarction. We propose that clinically established
fumarate derivatives activate the Nrf2 pathway and
are readily testable cytoprotective agents.

INTRODUCTION

The observation that exposing hearts to brief, repeated

episodes of ischemia renders them resistant to the sequelae
Ce
of prolonged I/R has triggered the search for pharmacological

agents, including metabolic agents, that recapitulate this cardi-

oprotection (Yellon and Hausenloy, 2007). Although the litera-

ture relating metabolism to cardioprotection is dominated by

accounts of carbohydrate metabolism (Howell et al., 2011),

other metabolites, such as amino acids and citric acid cycle

(CAC) intermediates, also contribute to the myocardial

response to ischemia. Previous studies have reported that

the hypoxic/ischemic myocardium converts aspartate and

glutamate to succinate via the CAC (Figure 1), yielding ATP

and GTP (Hochachka et al., 1975; Taegtmeyer, 1978; Sanborn

et al., 1979; Hohl et al., 1987). This channeling of amino acids

through the CAC has been proposed to be beneficial by virtue

of its capacity to maintain redox potentials and to yield high-

energy phosphates. However, despite the plausibility of these

pathways (Penney and Cascarano, 1970), their contribution to

I/R and cardioprotection in the mammalian heart remains

contentious (Sanborn et al., 1979; Peuhkurinen et al., 1983;

Hohl et al., 1987; Wiesner et al., 1988; Penney and Cascarano,

1970).

Recognizing the central role of fumarate to the above pathway,

Des Rosiers and colleagues studied metabolic fluxes in fuma-

rate-perfused rat hearts (Laplante et al., 1997). While this study

substantiated the potentially cardioprotective influence of exog-

enous fumarate, it raised a number of questions. As the kinetic

characteristics of the mammalian dicarboxylate transporter are

poorly understood (Gallagher et al., 2009), the 0.04–0.4 mM of

fumarate in the perfusate may not have optimally raised intracel-

lular fumarate levels, resulting in relatively modest cardiopro-

tection. Moreover, since the yield of ATP directly derived from

fumarate metabolism was 100-fold lower than the rate of lactate
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Figure 1. A Summary of Metabolic Pathways Relating to the CAC

Carbons derived from amino acids contribute to citric acid cycle (CAC) flux (anaplerosis), reducing NAD+ to NADH and ultimately yielding ATP. To maintain this

energy-yielding flow, especially in the context of CAC interruption and during hypoxia/ischemia, carbon moieties must exit the CAC, e.g., through succinate and

succinyl CoA.
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release, the invocation of additional mechanisms was necessary

to account for fumarate’s cardioprotective properties (Penney

and Cascarano, 1970; Peuhkurinen et al., 1983). These included

fumarate’s putative capacity to preserve cellular redox potential,

improve calcium homeostasis, decrease free radical production,

and reduce toxic acyl-CoA derivative accumulation during I/R

(Laplante et al., 1997).

To increase myocardial fumarate concentrations and to

permit delineation of the mechanisms through which fumarate

might confer cardioprotection, we began by generating a mouse

model of fumarate augmentation. We used a gene-targeted

mouse with loxP sequences flanking exons 2 and 3 of the

fumarate hydratase gene (Fh1)—Fh11fl/fl (Pollard et al., 2007).

Inactivation of Fh11 in the kidney achieved by crossing Fh11fl/fl

mice with mice expressing Cre recombinase under the Ksp-

cadherin promoter (Ksp1.3/Cre) resulted in healthy animals

despite substantially increased fumarate concentrations

(Pollard et al., 2007; Ashrafian et al., 2010). Reassured by this

unexpectedly mild phenotype, we similarly inactivated cardiac

Fh11 (specifically in cardiomyocytes) by breeding Fh11fl/fl

mice with mice expressing Cre recombinase under the cardio-

myocyte-specific promoter of myosin light chain—(MLC2v)-Cre

(Chen et al., 1998). We sought to (1) assess whether cardiac

function is maintained despite Fh1 inactivation in Fh11fl/fl

MLC2v-Cre hearts and whether they exhibit increased fumarate

levels, (2) determine whether these hearts are protected against

I/R, (3) investigate the metabolic and other mechanisms of car-

dioprotection, and finally (4) ascertain whether any of the bene-

ficial effects are directly attributable to fumarate by assessing

the cardioprotective effects of exogenous oral fumaric acid

derivatives (FADs) in nontransgenic animals experiencing I/R

in vivo.
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RESULTS

Cardiac Structure and Function Are Comparable in Fh1
Knockout and Control Mice
To understand the consequences of cardiac fumarate aug-

mentation Fh1fl/fl MLC2v-Cre (termed Fh1 KO) (Figure 2A),

Fh1fl/+ MLC2v-Cre and Fh1fl/fl (termed controls and indistin-

guishable from wild-type [WT] controls) were observed to be

healthy until �3 months of age, when they develop ventricular

dysfunction—the metabolic and redox basis of which is the

subject of ongoing investigation. Experiments were therefore

performed in �6-week-old mice. Immunoblotting confirmed

depletion of Fh1 protein in Fh1 KO mice compared to controls

(29% ± 8% versus 100% ± 16%; p < 0.05) (Figure 2B). The re-

maining protein reflects persisting Fh1 in the nonmyocyte

compartment (in which Cre is not expressed), as Fh1 transcript

and protein are almost completely absent from isolated Fh1 KO

cardiomyocytes (Figure 2C). Substantial metabolic differences

exist between the Fh1 KO and control mice (see Figure S2

and Table S1 online), including a significant increase in

whole-heart fumarate levels in Fh1 KO animals as derived

from 1D 1H NMR spectroscopy (Fh1 KO:control ratio, 1.63:1;

p < 0.005). Despite the Fh1 depletion, cardiac structure and

function including myocyte size (Figure 2D), heart weight:body

weight ratio (Figure 2E), and ejection fraction (Figure 2F), as

well as function assessed by cine MRI (data not shown), were

similar in young Fh1 KO and controls. Heart rate, blood pres-

sure (Figure 2G), and comprehensive assessment of LV func-

tion in vivo were comparable between both groups. The only

difference was in the LV end-diastolic pressure, which

decreased greater with dobutamine in Fh1 KO compared to

controls (at baseline, 5.61 ± 1.52 versus 10.06 ± 3.74; after



Figure 2. Fh1 KO Hearts Are Anatomically

andPhysiologically Comparable toControls

(A) Fh1fl/fl mice (Pollard et al., 2007) were crossed

with mice expressing Cre recombinase under the

promoter of myosin light chain, (MLC2v)-Cre

(Chen et al., 1998), to generate heterozygous and

homozygous knockout (KO) mice.

(B) Assessed at 5–6 weeks of age, Fh1 KO hearts

had substantially reduced Fh1 protein levels as

demonstrated by the representative immunoblots

and densitometric analysis (29% of controls).

(C) Isolated cardiomyocytes in Fh1 KO had

complete depletion of Fh1 protein.

(D and E) Fh1 KO hearts were comparable to

controls, with no evidence of cellular hypertrophy

as assessed by wheat germ agglutinin (WGA) and

gross hypertrophy.

(F) Systolic cardiac function as assessed by

echocardiographic left ventricular ejection fraction

was comparable between KO and control hearts.

(G and H) Invasive assessment of blood pressure

and of contractile function revealed that Fh1 KO

hearts were comparable to controls except with

respect to LVEDP (H), which decreased in Fh1 KO

hearts with increasing doses of dobutamine. B,

controls; x, HET KO; C, Fh1 KO.

(I) Fh1 KO hearts exhibited comparable baseline

energetics to controls as assessed by 31P-MRS.

Values are mean ± SEM. *p < 0.05 versus Fh11fl/fl

mice.
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16 mg/kg dobutamine, 3.25 ± 1.55 versus 10.35 ± 3.41 mmHg;

p < 0.05) (Figure 2H).

Energetics in Fh1 KO hearts were comparable to controls as

assessed by 31P-MRS measurement of the PCr:ATP ratio in

perfused hearts (2.23 ± 0.20 versus 2.02 ± 0.12) (Figure 2I).

Fh1 KO Mice Are Protected from Ischemia-Reperfusion
Injury
Using a perfused heart model of ischemia/reperfusion (I/R), we

investigated the response of Fh1 KO and controls to global

cardiac ischemia. We employed a relatively long (40 min) period

of ischemia, as young hearts are more tolerant of ischemia (Wil-

lems et al., 2005)—shorter (30 min) periods of ischemia had

similar effects (data not shown). The degree of necrosis

expressed as percentage of total at risk myocardium (i.e.,

ventricular volume) was substantially decreased in the Fh1

KOs compared to controls (17% ± 4% versus 37% ± 5%; p <

0.005) (Figure 3A). The recovery of coronary flow (CF), an estab-

lished surrogate for reduced I/R injury (Headrick et al., 2001),
Cell Metabolism 15, 361–3
was increased in the Fh1 KO group

compared to controls after reperfusion

(mean CF, 2.4 ± 0.05 versus 1.7 ±

0.03 ml/min; ANOVA, p < 0.0001) (Fig-

ure 3B), consistent with reduced myocar-

dial necrosis. This reduction in necrosis

was corroborated by significantly

reduced release of markers of myocardial

injury including creatine kinase and

cardiac troponin I (Figures 3C and 3D).

The recovery of function, expressed as
percentage of the initial rate pressure product, was not signifi-

cantly different in Fh1 KO versus controls (97% ± 12% versus

78% ± 6%) (Figure 3E), a dissociation that has been recognized

in cardioprotection (Cohen, 2004). Importantly, no differences

were observed between Fh1 KO and controls in PCr, ATP, or

Pi during the I/R protocol (data not shown).

Myocardial microdialysis was used to systematically profile

the interstitial cardiac metabolite concentrations during the

different phases of I/R. During ischemia, the concentrations of

many CAC intermediates, as previously reported by the same

technique, increased in both Fh1 KO and control hearts (Birkler

et al., 2010). However, the concentrations of succinate and

glutamate were lower in Fh1 KO hearts than in controls—a

pattern that has previously been associated with reduced

myocardial injury (Vincent et al., 2000; Liu et al., 2010). During

ischemia, and in reperfusion, the interstitial purine concentra-

tions increased. However, the adenosine levels were lower in

Fh1 KO hearts compared to controls (Figures 3F–3K). This

pattern of reduced purine metabolism, previously observed in
71, March 7, 2012 ª2012 Elsevier Inc. 363



Figure 3. Cardiac Fh1 Deficiency Confers Cardioprotection

(A) Fh1-KO exhibited significant attenuation of myocardial necrosis (determined with TTC staining) compared with control hearts when perfused with 40 min of

no-flow ischemia followed by 120 min of reperfusion.

(B) This was accompanied by substantially better recovery in coronary flow.

(C and D) This reduction in myocardial necrosis was confirmed by a significant reduction in markers of cardiac injury (cardiac troponin I, TnI; and creatine

kinase, CK).

(E) Functional recovery as assessed by the rate pressure product was comparable in the Fh1-KOs and controls.

(F–K) Myocardial microdialysis coupled to an ultraperformance liquid chromatography/electrospray-tandem mass spectrometry approach demonstrated

differences in the interstitial concentrations of succinate, glutamate, and adenosine during stabilization, ischemia, and reperfusion between Fh1-KO and control

hearts. Fh1-KO (C) and controls (B). Values are mean ± SEM. *p < 0.05; **p < 0.01 versus control; ***p < 0.001 versus control.
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ischemic preconditioning, is consistent with reducedmyocardial

injury and may indicate inhibition of adenine nucleotide catabo-

lism resulting from the inhibition of 50-nucleotidase activity (Van

Wylen, 1994; Wikstrom et al., 1995).
364 Cell Metabolism 15, 361–371, March 7, 2012 ª2012 Elsevier Inc.
Anaplerosis by Amino Acids Is a Prominent Adaptation
to Fh1 Deletion
To determine themechanisms of cardiac viability and I/R protec-

tion in hearts lacking Fh1, a critical component of the CAC, we
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applied a flux balance analysis (FBA) model of mitochondrial

metabolism to predict the consequences of Fh1 depletion (Smith

and Robinson, 2011). The metabolic fluxes for maximal ATP

production were determined on the basis of fixed reaction stoi-

chiometry, reaction directionality accounting for thermodynamic

requirements, protonation state differences between the cytosol

and matrix, and known transport fluxes. This model predicted

that deletion of Fh1, without any adaptations, disrupted flux

around the CAC, causing a 96% drop in ATP production.

However, increased import of glutamate, other amino acids,

and metabolites related to the malate-aspartate shuttle restored

cardiac NAD+ reduction and ATP production (Figure 4A). In

summary, a substantial anaplerotic amino acid flux into the

CAC is predicted to restore both spans of the CAC, maintaining

[NAD+/NADH], oxidative phosphorylation, and energetic

viability. 1D 1H NMR confirmed the perturbation of many of the

metabolites identified in our in silico analysis (Table 1). Although

this steady-state metabolomics is a metabolic snapshot sup-

porting our predictions, inferences about metabolic fluxes are

necessarily limited.

To investigate our metabolic model further, we studied Fh1 KO

cardiac metabolism in vivo with hyperpolarized magnetic reso-

nance spectroscopy using [1-13C]pyruvate and [2-13C]pyruvate

to measure the rate of glycolytic (i.e., pyruvate dehydrogenase

[Pdh] fluxes and lactate dehydrogenase [Ldh]) and CAC fluxes,

respectively (Schroeder et al., 2008, 2009). Although Fh1 KO

hearts manifest increased steady-state lactate levels (Fh1 KO,

control ratio 1.26:1; p = 0.034) (Table 1), consistent with

increased glycolysis in Fh1 KO hearts as in other tissues (Ashra-

fian et al., 2010), no pyruvate flux differences were apparent

between Fh1 KO and control hearts (Figure S4). Finally, to deter-

mine the influence of Fh1 deletion on the metabolic fate of amino

acids, we perfused Fh1 KO and controls hearts ex vivo with

[3-13C]glutamate with subsequent 2D 13C-HSQC NMR analysis.

As expected, fumarate levels were significantly higher in Fh1 KO

hearts. Moreover, supporting the proposal that Fh1 KO hearts

augment amino acid derived flux through the CAC, we observed

significantly increased label incorporation into CAC metabolites

(e.g., aspartate and pyruvate [at C2 and C3], likely by reductive

carboxylation) in Fh1 KO hearts compared to controls

(Figure S5).

Supporting these observations, the expression of mRNA

coding for glycolytic enzymes, biochemical measures of glyco-

lytic enzyme activity, mitochondrial respiratory chain complex

activity, and myofiber oxygen consumption showed no differ-

ences between Fh1 KO and control hearts (Figure S6). Overall,

these metabolic studies reinforce the role of increased amino

acid metabolism as an important mechanism contributing to the

maintenance of CAC activity and hence viability in Fh1KOhearts.

Fh1 KO Hearts Activate the Nrf2 Pathway that Mediates
Cardioprotection
To identify signaling pathways that contribute to cardioprotec-

tion, we used microarray analysis (Table S2) with qRT-PCR vali-

dation of Fh1 KO and control heart mRNA. Canonical Nrf2 target

genes (Kwak et al., 2003; Hayes et al., 2010) and coregulated

genes encoding antioxidant enzymes of one-carbonmetabolism

(Harding et al., 2003) showed prominent differential expression

between Fh1 KO and controls (fold change KO:control is as
Ce
follows: Hmox1, 1.53 ± 0.13, p < 0.01; Nqo1, 1.93 ± 0.2x3,

p < 0.01; Mthfd2, 243 ± 43, p < 0.001; Gsta1, 1733 ± 493,

p < 0.001) (Figure 4B). To assess if this increase in Nrf2-

dependent target genes resulted from a stabilization of Nrf2

protein related to modification of its inhibitor—Kelch-like ECH-

associated protein 1 (Keap1)—immunoblotting was performed.

This confirmed downregulation of Keap1 protein (fold change

KO:control, 0.663 ± 0.053, p < 0.01; despite unchanged

Keap1 mRNA expression levels, Figure S1) and upregulation of

Nrf2 (1.993 ± 0.583, p < 0.05), Hmox1 (2.733 ± 0.713, p <

0.05), Nqo1 (2.243 ± 0.423, p < 0.05), Mthfd2 (19.913 ±

5.943, p < 0.05), Gsta3 (1.73 ± 0.343, p < 0.05), and Gsta1

(149.03 ± 43.73, p < 0.05) proteins, which corresponded well

to the gene expression changes (Figure 4C). To assess whether

the pseudohypoxic properties of fumarate or succinate resulted

in HIF-1a stabilization in this model (Ashrafian et al., 2010), qRT-

PCRwas used to quantify a panel of HIF targets—these were not

raised in Fh1 KO hearts (Figure S1).

Both endogenous (i.e., Fh1 KO) and exogenous fumarate

augmentation in cells have been reported to modify and inacti-

vate Keap1 by modification at cysteines 151 and 288 in vitro

(Linker et al., 2011; Adam et al., 2011; Ooi et al., 2011). To

address whether this ‘‘succination’’ was pertinent to Fh1 KO

hearts in vivo, whole-cell lysates from Fh1 KO and control hearts

were probed with an antibody to S-(2-succinyl)cysteine (2SC)

(Blatnik et al., 2008; Bardella et al., 2011). Fh1 KO hearts had

increased levels of 2SC compared to controls (2.493, p <

0.001) (Figure 4D). These findings, coupled with Keap1’s sensi-

tivity to electrophiles (Taguchi et al., 2011), support the proposal

that Keap1 succination in Fh1 KO hearts is the cause of Nrf2 acti-

vation (Adam et al., 2011; Ooi et al., 2011).

One transcriptional consequence of Fh1 deficiency is Hmox1

upregulation. Since Hmox1 is cardioprotective (Melo et al.,

2002; Piantadosi et al., 2008; Soares et al., 1998; Yet et al.,

2001), we hypothesized that Hmox1 contributed to fumarate-

related cardioprotection and assessed the effect of zinc deu-

teroporphyrin 2,4-bis glycol (ZnBG), a well-established and

relatively specific Hmox1 inhibitor (Vreman et al., 1991; Appleton

et al., 1999; Zhang et al., 2002; Morioka et al., 2006; Czibik et al.,

2009). Inhibition of Hmox1 by ZnBG abrogated cardioprotection

in the Fh1 KO hearts (33.3% ± 2.2% control; 11.4% ± 1.5% Fh1

KO; 30.1% ± 2.7% control + ZnBG; 35.2% ± 4.6% Fh1

KO + ZnBG; Fh1 KO ANOVA p < 0.001 versus all other groups)

(Figure 4E).

Exogenous Fumarate Is Protective against Cardiac
Ischemia-Reperfusion Injury
To investigate whether our observations in our Fh1 KOmodel are

directly attributable to elevated fumarate and amenable to clin-

ical translation, we assessed the consequences of fumarate

augmentation. Mice were gavaged with dimethylfumarate

(DMF) 15 mg/kg twice daily (comparable to a dose well-tolerated

by humans and applicable to clinical practice) for 5 days (Linker

et al., 2011; Kappos et al., 2008). We found that, compared with

the vehicle-treated controls, DMF stabilized and increased Nrf2

protein (1.483 ± 0.153, p < 0.05). Further, using confocal immu-

nofluorescence microscopy, we were also able to demonstrate

that low concentrations of DMF (10 mM) promoted Nrf2 nuclear

translocation in cardiomyocyte-like HL-1 cells (Figure 5A).
ll Metabolism 15, 361–371, March 7, 2012 ª2012 Elsevier Inc. 365



Figure 4. Fh1 Deficiency Confers Cardioprotection through Both Increasing Carbon Flux and Upregulating Heme Oxygenase 1 by Nrf2

(A) In silico modeling of optimal metabolic flux distributions for maximal ATP production in Fh1-deficient hearts. In contrast to the normal heart (Figure S3),

reconstituting the CAC around absent Fh1 requires amino acids (e.g., glutamate and branched chain amino acids) to be fed into the first span of the CAC and
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Table 1. 1D 1H NMR Analysis Results Comparing the Metabolite

Profiles of Fh1 KO against Control Hearts

Metabolite

Fold Change,

Fh1�/� versus WT T Test p

3-Hydroxybutyrate 1.844 0.0030

Alanine 1.230 0.0286

Fumarate 1.634 0.0044

Glutamate 0.829 0.0109

Glycine 1.153 0.0328

Isoleucine 1.298 0.0087

Lactate 1.26 0.034

Serine 1.288 0.0153

Succinate 1.817 6.72E-06

Taurine 0.893 0.0142

Valine 1.327 0.0002
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DMF-treated mice recapitulated much of the cardiac Nrf2-

dependent transcriptional profile noted in Fh1 KO mice

(Hmox1, 1.63 ± 0.13, p < 0.05; Nqo1, 2.83 ± 0.63, p < 0.05;

Mthfd2, 1.13 ± 0.13, ns; Gsta1, 12.93 ± 3.53, p < 0.01) (Fig-

ure 5B), which translated to proteins as assessed by immuno-

blotting: Hmox1 (2.403 ± 0.273, p < 0.0001), Nqo1 (3.093 ±

0.333, p < 0.0001), Gsta3 (3.113 ± 0.183, p < 0.0001), and

Gsta1 (6.273 ± 0.433, p < 0.0001) (Figure 5C). Consistent with

our observations in the Fh1 KO hearts, DMF-treated animals

showed profoundly reduced myocardial necrosis when

compared to vehicle in the perfused heart model (9.3% ± 1.2%

versus 36.9% ± 3.9%, respectively; p < 0.0001) (Figure 5D)

and resulted in a more rapid recovery of coronary flow (mean

CF, 1.9 ± 0.05 versus 1.6 ± 0.04 ml/min; two-way ANOVA, p <

0.05) (Figure 5E). Finally, to assess the consequences of Nrf2

deletion on cardioprotection by DMF in vivo, 4-month-old WT

and Nrf2 knockout (Nrf2 KO) mice after oral DMF or vehicle treat-

ment underwent a coronary artery ligation model of myocardial

infarction (MI). DMF significantly reduced the size of the MI/

area at risk in WTmice compared to vehicle-treated WT controls

(p < 0.05 by ANOVAwith Bonferroni post hoc correction), but not

in the DMF-treated Nrf2 KO mice compared to vehicle-treated

Nrf2 KO controls (44.6% ± 3.9% versus 62.2% ± 3.9% and

63% ± 4.1% versus 57.9% ± 3.8%, respectively; p < 0.001 by

ANOVA), affirming the importance of Nrf2 to fumarate-related

cardioprotection (Figure 5F).

DISCUSSION

There is an increasing recognition that metabolites (e.g., succi-

nate), in addition to their roles in generating energy through inter-

mediary metabolism, have an important role in sensing and
aspartate, via the malate-asparate shuttle, into the second span of the CAC. This

and porphyrin synthesis-heme degradation channeled through Hmox1.

(B) Nrf2 target genes and the genes coding for the related antioxidant enzymes

assessed by Taqman qRT-PCR. White bars, control; black bars, Fh1-KO.

(C) Representative immunoblots and densitometric analysis of Fh1-KO hearts d

Nqo1, Mthfdh2, Gsta3, and Gsta1.

(D) Fh1-KO hearts exhibit significantly increased levels of succination compared

(E) Hmox1 inhibition by ZnBG abrogates cardioprotection in Fh1-KO hearts as as

mean ± SEM. *p < 0.05; **p < 0.01; and ***p < 0.001 versus control.

Ce
marshalling responses to diverse cellular stresses including I/R

injury (Sapieha et al., 2008). Accordingly, the present study

demonstrates that augmentation of myocardial fumarate,

whether through Fh1 depletion or by DMF treatment, is cardio-

protective. Predictions from an in silico model of the mito-

chondrial metabolome suggest that augmented anaplerotic

channeling of carbon moieties from amino acids into the CAC

contributes to the viability of Fh1-deficient hearts. These meta-

bolic adaptations, coupled with fumarate-related upregulation

of an Nrf2 antioxidant response—a response substantially reca-

pitulated by DMF—result in cardioprotection.

The surprisingly mild phenotype of renal (Pollard et al., 2007)

and cardiac Fh1 deficiency (despite an incomplete CAC) is not

easily explained by our current knowledge. In order to discern

the consequences of such metabolic perturbations, we used

a FBAmodel of metabolism to simulate the effect of Fh1 deletion

(Smith and Robinson, 2011). These simulations suggest that as

compensation for Fh1 depletion, there is substantial metabolic

remodeling, with likely carbon influx into the CAC from gluta-

mate/glutamine, aspartate, and branched chain amino acids

that reconstitutes and maintains oxidative flux. As a corollary,

our in vivo metabolic imaging (Schroeder et al., 2008, 2009),

biochemical measures of glycolysis, mitochondrial electron

chain complex activity, and myofiber oxygen consumption

studies confirm that Fh1 KO hearts largely maintain oxidative

metabolism. Our observation of increased steady-state lactate

levels in Fh1 KO hearts also raises the possibility of increased

glycolytic flux through LDH in Fh1KOhearts. However, our in vivo

assessment of LDH and PDH fluxes by [1-13C]pyruvate and

[2-13C]pyruvate, that might have been expected to show

increased LDH exchange flux in the context of increased

steady-state lactate, increased LDH activity, and/or increased

NADH:NAD+, did not confirm such an increased LDH flux (Wit-

ney et al., 2011). Nonetheless, the application of complimentary

techniques, including in vivo 18-fluorodeoxyglucose PET or

ex vivo perfusion with labeled glucose, along with measures of

lactate production, especially during stress, are needed to

confirm this observation. One mechanism contributing to the

maintenance of CAC activity, as predicted by the simulations,

is increased amino acid-derived anaplerosis (the nonoxidative

influx of metabolites into the CAC) as manifested by increased

label incorporation into aspartate and pyruvate in Fh1 KO hearts

perfused with [3-13C]glutamate. While metabolic inferences from

perfused hearts should be related to in vivo cardiac physiology

cautiously (due to the unphysiological substrate profile and

loading conditions used ex vivo), these observations underline

the potential importance of amino acid flux to Fh1 KO hearts.

We also report that fumarate potently increased the expres-

sion of antioxidant response element (ARE)-regulated genes

(e.g., Gsta1, Nqo1, and Hmox1) (Kwak et al., 2003; Hayes
anaplerotic carbon flux is balanced by cataplerosis through succinate export

of one-carbon metabolism are significantly upregulated in Fh1-KO hearts as

emonstrating the downregulation of Keap1 and upregulation of Nrf2, Hmox1,

to WT.

sessed by the extent of necrosis resulting from ex vivo cardiac I/R. Values are

ll Metabolism 15, 361–371, March 7, 2012 ª2012 Elsevier Inc. 367



Figure 5. Administration of Fumarate Attenuates Ischemia-Reperfusion Injury

(A) Representative immunoblots and densitometric analysis of murine hearts gavaged with dimethylfumarate (DMF) at a dose of 15 mg/kg twice daily for 5 days,

demonstrating the upregulation of Nrf2 (left). DMF (10 mM) for 6 hr promoted nuclear translocation and localization of Nrf2 in HL-1 cells as assessed by confocal

microscopy (right).

(B) Oral DMF upregulates Nrf2 target genes as assessed by Taqman qPCR.

(C) Representative immunoblots (upper panel) and densitometric analysis (lower panel) of protein products of Nrf2 targets.

(D and E) Oral DMF treatment significantly attenuatedmyocardial necrosis resulting from ex vivo cardiac I/R and (E) was accompanied by an improved recovery in

coronary flow.

(F) To assess the cardioprotective effect of fumarate in vivo and the pertinence of Nrf2 to this protection, a coronary artery ligation model of acute MI was applied

toWT andNrf2-KOmice both treatedwith DMF and vehicle (n = 12 in each of the four groups). The average surgical mortality of coronary ligation surgery was 24%

and did not differ significantly across the groups.WT andNrf2-KOmice treatedwith vehicle (WT/V andNrf2-KO/V, respectively) or 5 days of DMF (15mg/kg) twice

daily (WT/F and Nrf2-KO/F, respectively) via oral gavage as above. Representative sections of the myocardium from each group are presented stained with 4%

TTC, with the necrotic area represented in white, the area at risk (AAR) in red, and the nonischemic area in blue. There was no significant difference in the size of

the underperfused area (AAR/LV) for each group (data not shown). While DMF reduced MI size in the WT animals treated with DMF compared to vehicle-treated

controls (MI/AAR by ANOVAwith Bonferroni post hoc comparison to vehicle-treatedWTmice), there was no difference in theMI size in Nrf2-KO-treated DMF and

vehicle-treated control mice, nor was there a difference in MI size as a percentage of the LV area. Values are mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001.
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et al., 2010) through activation of the redox-sensitive transcrip-

tion factor Nrf2 (Hayes and McMahon, 2009; Taguchi et al.,

2011). In the Fh1 KO hearts, the coregulated enzymes of one

carbon metabolism (e.g., Mthfd2) were also raised (He et al.,

2001; Harding et al., 2003; Adams, 2007; Afonyushkin et al.,

2010; Lewerenz andMaher, 2011). Unstimulated, Nrf2 is seques-

tered by Keap1, promoting Nrf2 ubiquitination and degradation.

During cell stress, Keap1, a cysteine-rich protein sensitive to

oxidants/electrophiles, is modified on one or more of its func-

tional cysteines (e.g., Cys151, Cys288, and Cys273), releasing the

sequestered Nrf2 and permitting Nrf2 to activate its target genes

(Taguchi et al., 2011).

FADs are known to be biologically active electrophiles and

inducers of glutathione transferases and NAD(P)H:quinone

reductases (Spencer et al., 1990). Recently, FADs have been
368 Cell Metabolism 15, 361–371, March 7, 2012 ª2012 Elsevier Inc.
shown to modify Cys151 and Cys288 of Keap1 in vitro (Linker

et al., 2011; Adam et al., 2011; Ooi et al., 2011). Although we

were unable to immunoprecipitate sufficient protein in vivo

from hearts to demonstrate Keap1 modification, using an anti-

body directed against (S-[2-succinyl] cysteine [2SC]) formed by

a reaction between fumarate and cysteines in proteins (Blatnik

et al., 2008), we demonstrated substantial 2SC modification in

Fh1 KO hearts (Figure 3D). Similar fumarate-dependent succina-

tion has been observed in FH-deficient cells and HLRCC cancer

tissuewith corresponding Nrf2 stabilization (Bardella et al., 2011;

Adam et al., 2011; Ooi et al., 2011). Thus, although we cannot

exclude other Nrf2-stabilizing influences (Rada et al., 2011),

given Keap1’s sensitivity to electrophiles and its proximity to

mitochondria (Lo and Hannink, 2008) (where fumarate concen-

trations are likely to be highest), coupled with increased
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succination and the findings in FH-deficient cells (Adam et al.,

2011; Ooi et al., 2011), we propose this represents strong, albeit

circumstantial evidence that Keap1 is succinated in fumarate-

replete hearts, explaining Nrf2 target gene upregulation by

both Fh1 deletion and DMF treatment. That DMF promotes

nuclear translocation of Nrf2 and that the protective properties

of DMF are abolished in Nrf2-KO mice further support our

proposal that Nrf2 has a central role in fumarate-related cardio-

protection in vivo.

To reconcile the cardioprotection noted in young Fh1-deficient

mice with the subsequent development of significant left ventric-

ular dysfunction after 3months of age, we propose that fumarate

accumulation triggers both adaptive and maladaptive re-

sponses, respectively. While Nrf2 activation is known to be

cardioprotective when acutely activated (Calvert et al., 2009;

Motohashi and Yamamoto, 2004; Zhang et al., 2010), there is

emerging evidence that chronic Nrf2 activation results in exper-

imental and human cardiomyopathy (Rajasekaran et al., 2007,

2011). Thus, while Nrf2 activation by fumarate is beneficial in

the context of ischemic stress, chronic Nrf2 activation is likely

to be harmful and cause heart failure. A similarly biphasic pattern

has been noted in animals with graded decrements in Keap1.

While Keap1(flox/�) mice with increased Nrf2 levels are pro-

tected from the oxidative insults, a decrease in Keap1 levels to

<50% results of controls increased long-term mortality (Taguchi

et al., 2010).

A variety of interventions have been shown to reduce myocar-

dial infarct size in animals; however, these interventions have

translated poorly to man (Yellon and Hausenloy, 2007). While

other Nrf2 inducers may be cardioprotective, including sulfora-

phane (found in broccoli) (Mukherjee et al., 2008), hydrogen

sulphide (Calvert et al., 2009), and triterpenoid CDDO-imidazo-

lide (Sussan et al., 2009), they lack human safety data, may be

difficult to administer, and may have a low therapeutic index.

In contrast, we demonstrate that oral FADs, which have already

been successfully trialed in patients with psoriasis or multiple

sclerosis (Kappos et al., 2008), are cytoprotective agents. This

provides a strong rationale to investigate these safe and well-

tolerated agents in clinical trials, for example to assess the

impact of FADs in reducing myocardial injury in acute coronary

syndromes or in patients undergoing predictable organ injury,

e.g., surgery.
EXPERIMENTAL PROCEDURES

Mouse Husbandry

Procedures involving live animals were in accordance with UK Home

Office guidelines and licensing regulations (project license 30/2444).

MLC2v-cre mice were a kind gift from Professor Ken Chien (Chen et al.,

1998). All mice were backcrossed onto a C57BL/6 genetic background

for at least five generations. Male 4-month-old Nrf2 knockout (KO; n =

24) and WT (n = 24) mice, all on a CD-1 genetic background, were obtained

from breeding colonies of the National Institute on Aging (Baltimore, MD).

The mice were maintained on a 12 hr light/dark cycle with food and water

available ad libitum. Experimental procedures were performed in accor-

dance with the UK Home office and National Institutes of Health guidelines

and approved by respective institutional review boards. In some experi-

ments, Fh1 KO mice were treated with a specific heme oxygenase-1

inhibitor, ZnBG, once daily (30 mg/kg, i.p.) for 4 days prior to heart cannu-

lation. For experiments investigating the role of oral FADs, C57Bl/6 mice

(Harlan) were gavaged (15 mg/kg) twice daily for 5 days with dimethyl
Ce
fumarate (DMF; Sigma) diluted in 0.08% methocel/H2O before heart

cannulation.

Cardiac Magnetic Resonance Scans, Cine

Animals were imaged using a standard cine MR imaging protocol (TR/TE, 4.6/

1.755 ms; flip angle, 21�; averages, 4; slice thickness, 1.2 mm; matrix, 128 3

128; zero filled to 2563 256; field of view, 51.23 51.2 mm). Scanning was per-

formed on seven to eight contiguous slices in the short-axis orientation

covering the entire heart. This was used to assess left ventricular mass and

cardiac function in the 7 T MR scanner (Schroeder et al., 2008).

In Silico Analysis

Simulations were performed using the mitochondrial metabolic model iAS253

(Smith and Robinson, 2011) that was modified to include cytosolic reactions

involved in the degradation of heme and an unconstrained boundary condition

to allow the efflux of bilirubin. Additional constraints were applied to the fuma-

rate and succinate inner mitochondrial membrane transport steps to represent

restricted transport (especially for fumarate, as a specificmammalian fumarate

transporter has not been identified). To determine the effect of increased

metabolite uptakes on central metabolism, separate simulations were per-

formed in which the allowable uptake range was increased. As uptake fluxes

for metabolites were not available under perturbed conditions, these ranges

were arbitrarily increased up to a maximum of 5 mmol/min/gDW. FBA was

used to simulate the system using MATLAB (MathWorks, Inc., Natick, MA)

and the COBRA toolbox in conjunction with the linear programming solver

GLPK (http://www.gnu.org/software/glpk/). The resultant flux distributions

were analyzed in Microsoft Excel and Cytoscape (Shannon et al., 2003).

Cardiac Magnetic Resonance Scans, Hyperpolarized 13Cs

Hyperpolarized 13C MRS Protocol [1-13C]pyruvate or [2-13C]pyruvate was

hyperpolarized and dissolved as previously described. An aliquot of 0.2 ml

of 80 mM hyperpolarized [1-13C]pyruvate or [2-13C]pyruvate solution was

then injected over 10 s via a tail vein catheter into an anaesthetised mouse

positioned in a 7 T MR scanner. Spectra were acquired for 1 min following

injection with 1 s temporal resolution, and signal was localized to the heart

using a home-built 13C RF surface coil. Quantified peak areas were input

into a kinetic model described by Atherton et al. (Atherton et al., 2011) and

plotted against time in Microsoft Excel. This model fits the spectral peak areas

as a function of time and accounts for several factors, including rate of injec-

tion, rate of signal decay for pyruvate and metabolites, and time of arrival for

pyruvate and metabolites. This model determines the rate constant for pyru-

vate to metabolite exchange (kpyr-x, s-1), which is a measure of 13C label

incorporation into lactate, alanine, or bicarbonate pools.

Statistics

All data are expressed as mean ± standard error of the mean (SEM). Statistical

analysis was performed using unpaired Student’s t test or one-way ANOVA fol-

lowed by the Bonferroni correction, where appropriate. Time course relation-

ships were evaluated using two-way ANOVA. Statistical analysis was carried

out using Graphpad Prism statistics software v.4. Differenceswere considered

significant when p < 0.05.

Standard molecular and histologic methodology is described in the Supple-

mental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes two tables, six figures, Supplemental

Experimental Procedures, and Supplemental References and can be found

with this article online at doi:10.1016/j.cmet.2012.01.017.
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