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Abstract—Sparse linear arrays (SLAs) can be designed in
a systematic way, with the ability for underdetermined DOA
estimation where a greater number of sources can be detected
than that of sensors. In this paper, as the first stage, a new
systematic design named multi-subarray dilated nested array
(MDNA), whose difference co-array (DCA) can be proved to
be hole-free, is firstly proposed by introducing a sparse ULA
and multiple identical dense ULAs with appropriate sub-ULA
spacings. The MDNA will degenerate into the nested array under
specific conditions, and the uniform degrees of freedom (uDOFs)
of MDNA is larger than that of its parent nested array. On
the basis of MDNA, to reduce the mutual coupling effect, an
augmented multi-subarray dilated nested array (AMDNA) is
constructed by migrating some elements of the dense segments
of MDNA, without reducing the number of uDOFs. Several
theoretical properties of the proposed array structures are
proved, and simulation results are provided to demonstrate the
effectiveness and superiority of the proposed AMDNA over some
existing sparse arrays.

Index Terms—Sparse array, DOA estimation, nested array,
multi-subarray dilated nested array, augmented multi-subarray
dilated nested array.

I. INTRODUCTION

UNiform linear arrays (ULAs) are widely used in array
processing applications [1], which with N equidistant

physical sensors can detect N -1 sources using either subspace-
based methods [2] or sparsity-based methods [3]. Meanwhile,
the spacing between adjacent sensors in ULAs is usually
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confined within λ/2 to circumvent spatial aliasing, where λ
denotes the operating wavelength. This rather limited inter-
element spacing inevitably results in strong mutual coupling
(MC) effects, which has a negative impact on direction of ar-
rival (DOA) estimation performance if not dealt with properly.

As compared to ULAs, sparse linear arrays (SLAs) have
attracted strong interest over the past decade [4]–[16]. By
vectorizing the covariance matrix of the observed array data,
an increased number of degrees of freedom (DOFs) is achieved
based on the idea of difference co-array (DCA), which makes
it possible for underdetermined DOA estimation [17], where a
greater number of sources can be detected than that of physical
sensors. Early representative configurations of sparse arrays
are the minimum redundancy array (MRA) [8] and minimum
hole array (MHA) [9]. Although MRA and MHA are effective
in increasing the number of achievable DOFs, they don’t have
closed-form expressions for sensor locations as well as the
number of DOFs. Therefore, it is challenging to design MRAs
and MHAs for a large number of sensors, which limits their
applications in practice.

On the other hand, nested arrays (NAs) [10]–[12] and co-
prime arrays (CPAs) [13]–[16], [18] can be systematically
designed with closed-form expressions for the number of
achievable DOFs, as compared to the shortcomings of MRA
and MHA. By increasing the spacing of elements, nested
arrays obtained by combining two or more ULAs can provide
O(N2) DOFs with N physical sensors. Especially by inter-
leaving two ULAs in different ways, a two-level nested array
(NA) can achieve a hole-free virtual DCA.

However, the NAs are less resistant to MC due to the dense
ULA employed in the physical array, while the CPAs can
reduce MC between elements. Following the ideas of CPAs
and NAs, a variety of new sparse arrays including evolutionary
NAs [19]–[23] and CPAs [24]–[28] have been developed.
For nested-type evolutionary arrays, the proposed one-side
extended nested array (OS-ENA) and two-side extended nested
array (TS-ENA) are proposed in [19], which only focus on
large DOFs, ignoring the strong MC of the extended NAs.
To alleviate the MC effect while retaining advantages of the
parent NA, a (second-order) super nested array (2-SNA) is
designed to reduce the number of sensor pairs with small inter-
sensor spacings [20], whose key design idea is to rearrange the
dense ULA portion of the parent NA. Then, an extension of
2-SNA, named as high-order SNA is proposed in [21], which
can maintain the positive properties of 2-SNA while further
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reducing the MC effect. In addition, by dividing the dense
sub-ULA of the parent NA into two or four parts, augmented
nested arrays (ANAs) [22] are configured with four different
structural designs, namely ANAI-1, ANAI-2, ANAII-1 and
ANAII-2, where the MC of the first two arrays is not signifi-
cantly reduced, while the latter two need complex conditions
to meet the requirements of the hole-free virtual DCA. In [23],
composed of three sub-ULAs, the dilated nested array (DNA),
is developed, and further evolves into the super DNA (SDNA)
with effective highest-order extension procedures that alleviate
the first three critical weight functions.

For coprime-type evolutionary arrays, two generalized CPAs
named as the coprime array with compressed inter-element
spacing (CACIS) and coprime array with displaced subarrays
(CADiS) have been suggested in [24], where the former em-
ploying the compressed inter-sensor spacing has stronger MC
effects than parent CPA, while the latter is unable to produce
the consecutive lags connected the negative and positive co-
arrays. Then, aiming to further increase the uDOFs of CPA and
at the same time reduce the MC effects, a series of improved
CPAs, such as thinned coprime array (TCA) [25], relocating
ECA (RECA) [26], extended padded coprime array (ePCA)
[27] and enhanced and generalized coprime array (EGCA) [28]
have been designed by dealing with the redundant sensors in
the parent CPA or filling the holes in the corresponding DCA.

In general, the above-mentioned coprime-type evolutionary
arrays can increase the uDOFs of the CPA, but still cannot
catch with that of the nested-type evolutionary arrays, despite
reduced MC. Besides, in [29], the minimum inter-sensor
spacing constraint (MISC) array is introduced by constructing
three sparse ULAs and two separate sensors with appropriate
inter-element spacing, with the array configured in terms of
the inter-element spacing set. With an arbitrary number of sub-
ULAs, a new design principle called ULA fitting is proposed
[30] for SLAs, whose design requirements (like large uDOFs
and low MC) are transferred into pseudo-polynomial equation,
which has found its application in MIMO radar [31].

In this paper, a new array scheme called multi-subarray di-
lated nested array (MDNA) is first introduced, which maintains
all beneficial properties of the parent NA. By introducing a
sparse ULA and multiple identical dense ULAs with appro-
priate sub-ULA spacings, the DOFs of the MDNA with hole-
free DCA is enhanced compared to that of the parent NA.
By systematically redistributing the elements of the multiple
identical dense ULAs of the MDNA, we finally propose a
new array configuration called augmented MDNA (AMDNA).
Compared with the MDNA, the AMDNA greatly reduces the
MC effects without decreasing the uDOFs. The contributions
of this paper are summarized as below:

1) A novel structure with hole-free DCA, referred to as
MDNA, is proposed with NA being one of its special case.
After investigating the performance limit of the MDNA by
optimizing its design settings, increased number of uDOFs
can be achieved compared with existing structures.

2) Considering the MC effect, a displaced arrangement to
the dense elements of MDNA is introduced to obtain the
configuration of AMDNA, and it is proved that AMDNA has
almost the same number of uDOFs but less MC compared

with the MDNA.
The rest of this paper is organized as follows. Sparse array

processing with DCA generation and MC models are briefly
reviewed in Section II. The proposed MDNA and AMDNA
are presented respectively in Sections III and IV. In Section
V, performance of the proposed MDNA and AMDNA is
demonstrated through computer simulations, and conclusions
are drawn in Section VI.

Notations: In this paper, upper-case bold characters rep-
resent matrices, and lower-case bold characters represents
vectors. (·)T, (·)∗ and (·)H, respectively, stand for the trans-
pose, conjugation and conjugate transpose of a matrix or
vector. E {·} is the statistical expectation operator. diag {p}
generates a diagonal matrix, whose diagonal elements are
given by p. vec (·) denotes the vectorization operator that
turns a matrix into a vector by stacking all columns on top
of the other, and ⊙ denotes the Khatri-Rao product. ⌈b⌉
returns the smallest integer larger than b. ∥·∥F denotes the
Frobenius norm. For two given sets of integers P1 and P2,
diff(P1,P2) = {ρ1−ρ2|∀ρ1 ∈ P1, ρ2 ∈ P2} is the set of cross
differences of P1 with P2.

II. PRELIMINARIES FOR SPARSE ARRAY

A. Difference Co-Array Generation Model

Assume that there are K far-field uncorrelated sources
with incident angles of θ1, θ2, · · · , θK , which are received
by a sparse array of N elements with array positions of
P = {p1, p2, · · · pN} d, and unit spacing d = λ

2 , where λ
is the wavelength of the incident signal. Then, the received
array data model at the time instant t is given by

x (t) = As (t) + n (t) , (1)

where A = [a (θ1) ,a (θ2) , · · ·a (θK)] is the N × K array
steering matrix, whose columns are steering vectors in the for-
m of a (θk) =

[
ejπp1 sin(θk), ejπp2 sin(θk), · · · , ejπpN sin(θk)

]T
.

s (t) = [s1 (t) , . . . sK (t)]
T is the source signal vector and

n (t) the noise vector. The covariance matrix is given by

Rx = E
[
x (t)xH (t)

]
= ARsA

H + σ2
nIN , (2)

where Rs = E
[
s (t) sH (t)

]
= diag {p}, and p =[

δ21 , δ
2
2 , · · · δ2K

]
with δ2k representing the power of the k-th

source.
Then, vectorizing Rx yields the following virtual array

model:

zP = vec (Rx) = (A∗ ⊙A)p+ σ2
n1N , (3)

where 1N = vec (IN ), and A∗ ⊙ A is the steering matrix
for the virtual array D, whose sensor locations are obtained
explicitly as:

D = {pi − pj |pi, pj ∈ P} . (4)

The virtual array D is also called the virtual co-array of
the original array P. As compared to (1), the vector zP in (3)
can be considered as a single snapshot of the virtual array
D, whose observations behave like the data from the coherent
source signal vector p.
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After removing the repetitive elements in the co-array, from
which the longest possible continuous segment of D, namely
U = [−Lu, Lu], is selected, the corresponding measurements
can be rearranged to form a new (2Lu + 1) × 1 vector zU
expressed as:

zU = JzP = Bp+ σ2
n1

′
n, (5)

where B denotes the manifold matrix of the virtual ULA
with dimension (2Lu + 1)×K, 1′

n = [01×Lu 1 01×Lu ]
T,

and J denotes a selection matrix of (2Lu + 1) × N2, where
each row contains one non-zero element with its position
corresponding to the index of the virtual element selected
among the N2 virtual sensors. Based on (5), underdetermined
DOA estimation can be achieved using traditional subspace-
based algorithms such as MUSIC and TLS-ESPRIT together
with the spatial smoothing (SS) scheme [32], [33]. Besides,
sparse representation based methods like LASSO [3] can also
be used for DOA estimation, with higher estimation accuracy
as well as higher computational complexity.

B. Mutual Coupling Model

The model in (1) does not consider MC between the
physical sensors, which in practice can not be ignored, espe-
cially between sensors with small separations. Incorporating a
coupling matrix C to the observation, Eq. (1) can be modified
as

x (t) = CAs (t) + n (t) , (6)

where C is determined by a variety of factors such as operating
frequency, antenna type, sensor spacing, etc., which lead to a
complicated expression for C. In this paper, only the linear
array geometry is of interest, and the MC effect is mainly
determined by sensor spacing, and according to [34]–[37], C
can be expressed as

Ci,j =

{
c|ai−aj |

0

|ai − aj | ≤ B,

|ai − aj | ≥ B,
(7)

where the magnitude of c|ai−aj | is inversely proportional to
the sensor spacing |ai − aj |, satisfying 1 = c0 > |c1| > |c2| >
· · · > |cB | > |cB+1| = 0. Here, the MC coefficients in [37]
are adopted as follows cl = c1e

−j(l−1)/8, 2 ≤ l ≤ B, and
thus C is completely determined by c1 and sensor spacing.
The larger c1 is, the greater the coupling magnitude. For a
given NLA, the level of total MC can be evaluated by the
coupling leakage L (N) [20] defined as:

L (N) =

∥∥∥C− C̃
∥∥∥
F

∥C∥F
, (8)

where

C̃i,j =

{
Ci,j ,

0,

i = j

i ̸= j
(9)

and
∥∥∥C− C̃

∥∥∥
F

is the energy of all non-diagonal components,
characterizing the amount of MC. L (N) is also called the
energy ratio between two components, and theoretically, the
larger L (N) is, the greater the MC is.

In addition, the weight function w (l) of a physical array P
is defined as the number of sensor pairs in P that engender
the co-array index l, that is,

w (l) =
∣∣{(n1, n2) ∈ P2|n1 − n2 = l

}∣∣ , l ∈ D. (10)

The notation P2 indicates that both elements n1 and n2 are
selected from the set P.

The weight function w (l) of any linear array with N sensors
has the following properties [34]

w (0) = N,
∑
l∈D

w (l) = N2, w (l) = w (−l) . (11)

III. THE STRATEGY OF MULTI-SUBARRAY DILATED
NESTED ARRAY (MDNA)

In this section, we present a systematic design named
MDNA, which expands the sparse subarrays of nested arrays
to increase the virtual aperture, and lays the foundation for the
introduction of the AMDNA in the subsequent section.

A. Introduction to NA

A nested array consists of a dense ULA (ULA0) spaced
d = λ

2 with N1 elements, and a sparse ULA (ULA1) of N2

elements with spacing (N1 + 1) d. It has been demonstrated
that the cross-difference between ULA1 and ULA0 leads to
a virtual co-array without holes. The holes in the sparse
ULA1 are filled by the virtual elements generated from the
cross-difference to ULA0, which can be considered as virtual
migration of ULA0 by N1d to form a hole-free virtual array.

Fig. 1: An NA example and its DCA with N1 = N2 = 3.

For example, Fig. 1 shows an NA with N1 = N2 = 3. By
calculating the difference between the element labeled 5 in
ULA1 and all the elements in ULA0, the virtual array elements
{3, 4, 5} in ULA1 are obtained, which can be regarded as the
virtual array elements obtained by shifting ULA0 to the right
by a distance of 3d, and then filling the holes between elements
labeled 2 and 5. The same procedure can be performed to
fill the remaining holes in ULA1 by shifting ULA0 by an
appropriate distance.

B. Proposed MDNA Scheme

Inspired by the idea of virtual migration of a dense ULA0
in NA, a novel systematic strategy called MDNA is designed
by firstly sparsifying the ULA0 in NA into a new array named
ULA(0) with spacing Dd and N1 elements, and starting from
the element labeled 0. Further, in order to obtain a DCA
without holes, each element of ULA1 in NA is changed into
several ULAs named from ULA(1) to ULA(X), and each sub-
ULA is spaced by d = λ

2 and the number of elements is D.
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This result motivates the multi-subarray dilated nested array
(MDNA) scheme, as described below.

Definition 1: The MDNA can be represented by N1, X,D,
defined as:

S=
∪

i=0,1,···X

ULA(i), (12)

where
ULA(0)= {0, D, ..., (N1 − 1)D} , (13)

ULA(1)= {0,−1, ...,− (D − 1)} , (14)

ULA(X) = ULA(X−1)− (N1D +D − 1) , (X≥ 2) . (15)

Obviously, the difference between ULA(0) and ULA(1) can
form a hole-free virtual ULA [0, N1D − 1], denoted as S1.
For example, in Fig. 2, with D = 3, N1 = 4, the virtual
array elements are obtained from the cross-difference between
ULA(0) and ULA(1), which can be considered as the case that
ULA(0) is shifted right by d and 2d, respectively; thus, it is
able to fill all the holes in ULA(0) exactly, forming a virtual
DCA without holes. Furthermore, we can adjust the spacing
of ULA(1) and ULA(2) as N1D +D − 1. In the same way,
the cross-difference between ULA(0) and ULA(2) can form
a hole-free virtual ULA [N1D +D − 1, 2N1D +D − 2], de-
noted as S2. It can be seen that the result of S2 is right shifted
by N1D + D − 1 from S1, but unfortunately S1 and S2 are
not seamlessly connected. In order to fill the holes between
S1 and S2, the cross-difference between ULA(1) and ULA(2)
can be exploited. Similar procedures can be followed for the
cross-difference between ULA(X) and ULA(0), along with
the cross-difference between ULA(X) and ULA(1), where the
maximum number of DOFs is larger than the parent NA. It can
be seen that the structural design of MNA is limited by the
total number of array elements, i.e. N1 + N2 = N , where
N2 = DX − 1, D and X are arbitrary positive integers.
Compared to NA, MDNA increases the number of DOFs
by selecting the appropriate spacing among the subarrays
ULA(1), ULA(2),..., ULA(X), while maintaining the hole-free
DCA with the following two properties:

Property 1: The DCA of MDNA is hole-free and has a
maximum virtual array aperture of L = N1XD+DX−D−X .

Proof : Firstly, the DCA between ULA(0) and ULA(1) (due
to symmetry of the DCA, only positive part is considered here)
is given by:

diff [ULA (0) ,ULA(1)] = [0, N1D − 1] . (16)

Similarly, we have

diff [ULA (0) ,ULA(x)] = diff [ULA (0) ,ULA (1)]

+ (x− 1) (N1D +D − 1)

= [0, N1D − 1] + (x− 1) (N1D +D − 1)

(17)

diff [ULA (1) ,ULA (x)] = diff [ULA (1) ,ULA (1)]

+ (x− 1) (N1D +D − 1)

= [− (D − 1) , D − 1] + (x− 1) (N1D +D − 1)

(18)

diff [ULA (0) ,ULA(x+ 1)] = diff [ULA (0) ,ULA(1)]

+x (N1D +D − 1)

= [0, N1D − 1] + x (N1D +D − 1)
(19)

diff [ULA (1) ,ULA(x+ 1)] = diff [ULA (1) ,ULA(1)]

+x (N1D +D − 1)

= [− (D − 1) , D − 1] + x (N1D +D − 1) .
(20)

Combining Eqs. (17) and (18), the consecutive range
for the DCA of the proposed MDNA set is obtained as
Lx = [− (D − 1) , N1D − 1] + (x− 1) (N1D +D − 1);
similarly, the DCA set Lx+1 = [− (D − 1) , N1D − 1] +
x (N1D +D − 1) is obtained with Eqs. (19) and (20). It can
be readily seen that the minimum of Lx+1 is

x (N1D +D − 1)− (D − 1)

= xN1D + (x− 1) (D − 1) ,
(21)

while the maximum of Lx is

(x− 1) (N1D +D − 1) +N1D − 1

= xN1D + (x− 1) (D − 1)− 1,
(22)

where x = 1, ..., X − 1. Obviously, when X ≥ 2, Lx and
Lx+1 are seamlessly connected to each other proving that the
DCA of MDNA is hole-free. The maximum aperture can be
calculated directly from the largest distance of virtual DCA,
whose rightmost end is D (N1 − 1) and the leftmost end is
− (D − 1)− (X − 1) (N1D +D − 1). Therefore, the DCA’s
maximum continuous segment of MDNA on one side is:

L = D (N1 − 1) + [(D − 1) + (X − 1) (N1D +D − 1)]

= N1XD +DX −D −X.
(23)

This completes the proof.
Property 2: If D > 1, X > 1, the number of DOFs of

MDNA is higher than that of NA, and if D = 1 or X = 1,
MDNA and NA have the same number of DOFs.

Proof : The number of DOFs of MDNA is derived for a
given fixed total number of sensors N as shown in Eq. (24),
and the optimal closed-form expression for three parameters
N , D and X is introduced to achieve the highest number of
DOFs of MDNA as follows

N = N1 +N2 = N1 +DX − 1. (24)

Substituting Eq. (24) into Eq. (23), we have

L = (N1 + 1) (N + 1−N1)−D −X. (25)

Then, Eq. (25) is solved with respect to variable N1 by
taking the partial derivative of L, while keeping D and X as
a constant, which gives the following result

L′
N1

= N − 2N1. (26)

In the following, two cases are considered with N being
even and odd, respectively. When N is even, from Eq. (26), the
largest number of DOFs can be obtained with N1 = N

2 , and
thus, we have N2 = DX − 1 = N

2 . By substituting N1 = N
2

into Eq. (25), we have:

L =
(
N
2 + 1

) (
N + 1− N

2

)
−D −X

= N2

4 +N + 1− (D +X) .
(27)
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Fig. 2: An MDNA example and its DCA with D = 3 and N1 = 4.

Therefore, the maximum aperture L is determined by D and
X with fixed N1. In the case of DX = N

2 +1, it is obvious that

the longest L can be obtained when D = X =
√

N
2 + 1. Since

both D and X need to be integers, it is not always possible to
obtain the theoretically optimum integer value, and thus, the
closest possible integers D and X should be chosen, which in
turn should reconsider the value of N1 to be N1 =

⌈
N
2

⌉
+ 1.

Note that if DX is a prime number, only D = 1 or X = 1
can be chosen, leading to the maximum value D+X = 2+N

2 .
By substituting the maximum value D + X into Eq. (27),
the theoretical minimum value for the maximum aperture of
MDNA is calculated as follows

Lmin =
N2

4
+

N

2
− 1, (28)

whose corresponding number of DOFs is:

DOF = 2L+ 1 =
N2

2
+N − 1. (29)

Compared to the DOF achieved by NA with the same total
number of array elements N , it can be shown that Lmin =
Lnest (Lnest is the maximum aperture of the NA). Thus, it can
be concluded that the number of DOFs of MDNA is greater
than NA under the condition that neither D nor X equals 1.

When N is odd, we have N1 = N+1
2 and N2 = N−1

2 ,
which are substituted into Eq. (25) as follows

L =
(
N+1
2 + 1

) (
N−1
2 + 1

)
−D −X

= N2

4 +N + 3
4 − (D +X) .

(30)

Thus, we get DX = N−1
2 + 1 = N+1

2 . Similarly, when
D = 1 or X = 1, D +X reaches the maximum value:

D +X =
N + 3

2
. (31)

Substituting (31) into Eq. (30), we obtain:

Lmin =
N2

4
+

N

2
− 3

4
, (32)

whose corresponding number of DOFs is

DOF = 2L+ 1 =
N2

2
+N − 1

2
. (33)

The same conclusion for MDNA in comparison with NA
can be drawn for the even case. This completes the proof.

C. Relationship with NA

From property 2, it can be seen that MDNA has the same
number of DOFs as NA in the case of D = 1 or X = 1,
where the structure of MDNA is reduced into NA, and thus
NA can be treated as a special case of MDNA.

For X = 1, MDNA only has two U-
LAs: ULA(0)= {0, D, ..., (N1 − 1)D} d and
ULA(1)= {0,−1, ...,− (D − 1)} d. It can be seen that
ULA(1) is exactly the dense ULA with number D and
spacing d in the NA, and ULA(0) is the sparse ULA with
number N1 and spacing Dd in the NA. When D = 1,
the ULA(0) of MDNA is equivalent to the dense ULA
in NA, whose sparse ULA is formed with the sub-ULAs
from ULA(1) to ULA(X) of MDNA. Fig. 3 shows the two
special cases of MDNA, when D = 1, X = 3, N1 = 4 and
D = 3, X = 1, N1 = 4 respectively. In Fig. 3 (a), MDNA is
consistent with NA, while in Fig. 3 (b), MDNA is a mirrored
NA.

ULA(0)

ULA(1)

0-1-2 3 6 9

ULA(0)

ULA(1)

0-4 31 2

ULA(2)ULA(3)

(a)

(b)
-8

Fig. 3: Two special cases of MDNA: (a) D = 3, X = 1 (b)
D = 1, X = 3.

IV. THE PROPOSED AMDNA
The proposed MDNA earlier n has more DOFs than NA and

less MC through the expansion of multi-subarray. Yet there
are still dense multiple sub-ULAs in the proposed MDNA.
In this section, an augmented MDNA (AMDNA) is proposed
by migrating some of the dense elements in MDNA, which
further reduces the MC while still maintaining a reasonable
number of DOFs. The specific form of the AMDNA is given
as follows:

Definition 2: (Augmented multi-subarray dilated nested
array) AMDNA can be represented by N1, X,D, defined as:

S′=
∪

i=0,1,···X
ULA(i) (34)
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ULA(0)= {0, D, ..., (N1 − 1)D} (35)

ULA(x) = ULA (x.1) ∪ULA(x.2) ,x = 1, 2, ...X. (36)

If D is odd: where if x is odd,

ULA(x.1)= { (1− x) (N1D +D − 1)− 2l1|
0 ≤ l1 ≤ D−1

2 }
(37)

ULA(x.2)= { (x− 1) (N1D +D − 1) + (N1 − 1)D

+ 1 + 2l2 | 0 ≤ l2 ≤ D−3
2 },

(38)
if x is even,

ULA(x.1)= { (1− x) (N1D +D − 1)− 2l2 − 1|
0 ≤ l2 ≤ D−3

2 }
(39)

ULA(x.2)= { (x− 1) (N1D +D − 1) + (N1 − 1)D + 2l1|
0 ≤ l1 ≤ D−1

2 }.
(40)

If D is even: where if x is odd,

ULA(x.1)= { (1− x) (N1D +D − 1)− 2l1|
0 ≤ l1 ≤ D−2

2 }
(41)

ULA(x.2)={(x− 1) (N1D +D − 1)+

(N1 − 1)D + 1 + 2l2|0 ≤ l2 ≤ D−2
2 }

(42)
if x is even,

ULA(x.1)= { (1− x) (N1D +D − 1)− 2l2 − 1|
0 ≤ l2 ≤ D−2

2 }
(43)

ULA(x.2)={(x− 1) (N1D +D − 1) + (N1 − 1)D + 2l1|
0 ≤ l1 ≤ D−2

2 }.
(44)

Comparing Eqs. (14) and (15) in Definition 1 with E-
q. (36) in Definition 2, it can be seen that AMDNA is
designed by removing some elements of the dense sub-
ULAs in MDNA, so that the MC level can be reduced.
To minimize the MC, considering the MDNA, the elements
in ULA(x) = {(1− x) (N1D +D − 1)− l|0 ≤ l ≤ D − 1}
are divided into odd parts and even parts, named ULA(x.a)
and ULA(x.b), respectively.

When D is odd,

ULA(x.a) = {(1− x) (N1D +D − 1)− 2l |
0 ≤ l ≤ D−1

2 },
(45)

ULA(x.b) = {(1− x) (N1D +D − 1)− 2l − 1 |
0 ≤ l ≤ D−3

2 }.
(46)

and when D is even,

ULA(x.a) = {(1− x) (N1D +D − 1)− 2l |
0 ≤ l ≤ D−2

2 },
(47)

ULA(x.b) = {(1− x) (N1D +D − 1)− 1− 2l |
0 ≤ l ≤ D−2

2 }.
(48)

Then, the corresponding ULA(x.a) or ULA(x.b) is selected
to migrate symmetrically related to ULA(0) according to the
parity of x. When x is even, the elements in ULA(x.a)

migrates symmetrically with respect to ULA(0), and if x
is odd, the elements in ULA(x.b) migrates symmetrically
with respect to ULA(0). As a result, the new position of the
moved element constitutes ULA(x.2) in AMDNA, and the
elements in ULA(x.1) are the remaining unmoved elements.
Each moved element in AMDNA and its original position in
MDNA are symmetrical with respect to ULA(0). For example,
in Fig. 4, we show how the AMDNA with D = X =
3, N1 = 5 evolves from MDNA. Specifically for MDNA,
ULA(1.a) = {0,−2}, ULA(1.b) = {−1}, ULA(2.a) =
{−17,−19}, ULA(2.b) = {−18}, ULA(3.a) = {−34,−36},
ULA(3.b) = {−35}. Therefore, the elements in ULA(1.a),
ULA(2.b) and ULA(3.a) are migrated symmetrically with re-
spect to ULA(0), which correspondingly constitute ULA(1.2),
ULA(2.2) and ULA(3.2) in AMDNA, respectively..

After the above-mentioned migration, the DOFs of the
proposed AMDNA can be maintained as compared to MDNA,
while the MC is greatly reduced. Two properties of the
proposed AMDNA are given as follows.

Property 3: The number of one-side uniform DOFs of the
proposed AMDNA is L = N1XD+DX −D−X when the
parity of D and X is different, and L = N1XD+DX−D−
X + 1 if parity is the same.

Proof: It can be seen that since the element in ULA(x.2)
of AMDNA and its original position in MDNA are symmet-
rical with respect to ULA(0), the cross-difference between
ULA(x.1) and ULA(0) as well as ULA(x.2) and ULA(0) in
AMDNA is equivalent to the cross-difference between ULA(x)
and ULA(0) in MDNA, i.e.

diff (ULA (x) ,ULA(0))

= diff (ULA (x.1) ,ULA (0)) ∪ diff (ULA (x.2) ,ULA (0)) .
(49)

Therefore, the DCA of AMDNA is given by:

X∪
i=1

diff (ULA (i) ,ULA (0))

= {(i− 1) (N1D +D − 1) + l|
0 ≤ l ≤ N1D − 11 ≤ i ≤ X}.

(50)

From Eq. (50), it can be seen that there are some holes
defined as:

{i (N1D +D − 1) + l|l ∈ V, 0 ≤ i ≤ X − 2} , (51)

where V = [N1D,N1D +D − 2].
Next, we show that the cross-difference between sub-ULAs

of AMDNA, namely ULA(x) in Eq. (34), can completely fill
the holes in Eq. (51) (only the positive half of the DCA is
considered).

When D is odd: if x is odd, where x ≥ 3, we have

diff (ULA (x.1) ,ULA(1.1))

= {l + (x− 2) (N1D +D − 1) |l ∈ V11}
(52)

diff (ULA ((x− 1) .2) ,ULA(1.1))

= {l + (x− 2) (N1D +D − 1) |l ∈ V12} ,
(53)

where V11 = {N1D,N1D + 2, · · ·N1D + 2D − 2} and
V12 = {N1D −D,N1D −D + 2, · · · , N1D +D − 2}.
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Fig. 4: An example for the change from MDNA to AMDNA with N1 = 5, D = 3 and X = 3.

It should be noted that (52) and (53) both have a numerical
span of 2. Since D is an odd number, the parity of (52)
and (53) is different. By combining (52) and (53), we can
extrapolate:

diff (ULA ((x− 1) .2) ,ULA(1.1))∪
diff (ULA (x.1) ,ULA(1.1))

⊇ {l + (x− 2) (N1D +D − 1) |l ∈ V} ,
(54)

if x is even, where x ≥ 2,

diff (ULA (1.1) ,ULA(x.1))

= {l + (x− 2) (N1D +D − 1) |l ∈ V21}
(55)

diff (ULA (1.2) ,ULA((x− 1) .1))

= {l + (x− 2) (N1D +D − 1) |l ∈ V22} ,
(56)

where V21 = {N1D + 1, N1D + 3, · · ·N1D + 2D − 3} and
V22 = {N1D −D + 1, N1D −D + 3, · · · , N1D +D − 3}.

Combining Eqs. (55) and (56), we obtain

diff (ULA (1.1) ,ULA(x.1))∪
diff (ULA (1.2) ,ULA((x− 1) .1))

⊇ {l + (x− 2) (N1D +D − 1) |l ∈ V} .
(57)

It can be known from Eqs. (54) and (57) that for x =
2, 3, ...X , the holes described in (51) can be filled. Therefore,
when D is odd, the maximum number of DOFs is the same
as the MDNA.

Similarly, when D is even: if x is odd, where x ≥ 3,

diff (ULA (1.2) ,ULA((x− 1) .1))

= {l + (x− 2) (N1D +D − 1) |l ∈ V31}
(58)

diff (ULA (1.1) ,ULA(x.1))

= {l + (x− 2) (N1D +D − 1) |l ∈ V32} ,
(59)

where V31 = {N1D −D + 2, N1D −D + 4, · · ·N1D +D − 2}
and V32 = {N1D + 1, N1D + 3, · · ·N1D + 2D − 3}.

Combining Eqs. (58) and (59), we obtain,

diff (ULA (1.2) ,ULA((x− 1) .1))∪
diff (ULA (1.1) ,ULA(x.1))

⊇ {l + (x− 2) (N1D +D − 1) |l ∈ V} ,
(60)

if x is even, where x ≥ 2,

diff (ULA (1.1) ,ULA(x.1)) ∪ diff (ULA (x.2) ,ULA(1.2))

⊇ {l + (x− 2) (N1D +D − 1) |l ∈ V41}
(61)

diff (ULA ((x− 1) .2) ,ULA(1.1))

⊇ {l + (x− 2) (N1D +D − 1) |l ∈ V42} ,
(62)

where V41 = {N1D,N1D + 2, · · ·N1D + 2D − 2} and
V42 = {N1D −D + 1, N1D −D + 3, · · · , N1D +D − 3}.

Combining Eqs. (61) and (62) leads to

diff (ULA (1.1) ,ULA(x.1)) ∪ diff (ULA (x.2) ,ULA(1.2))

∪diff (ULA ((x− 1) .2) ,ULA(1.1))

⊇ {l + (x− 2) (N1D +D − 1) |l ∈ V} .
(63)

Therefore, when D is even, the maximum number of DOFs
is also the same as the MDNA. Specifically, when D and
X have the same parity, the leftmost element of AMDNA
is labeled by − (D − 1) − (X − 1) (N1D +D − 1), and its
DCA with the (N1 − 1)D+1 element in ULA(1.2) yields the
virtual element labeled by N1DX +DX −D −X + 1.

This completes the proof.
Next, to show the difference in uDOFs of the MDNA and

AMDNA along with other considered sparse arrays, we list
the number of uDOFs of nine types of arrays for comparison
in Table I. It should be noted that when the number of
sensors is less than 13 in the table, there is no corresponding
configurations for ePCA and TS-ENA. When the number of
sensors is larger than 13, it is observed that ePCA has the least
number of uDOFs among all arrays, while TS-ENA offers the
maximum number. In addition, it can be seen that MDNA and
AMDNA provide a higher number of uDOFs than the NA, 2-
SNA and D-DNA, but a less number than the MISC, ANAI-2
and TS-ENA.

It is well-known that the weight functions at small separa-
tions of sensor pairs are of great importance for MC evaluation
[20]. Especially, the first three weight functions, w (1), w (2)
and w (3) have a dominated impact on the MC of a physical
array. Therefore, the first three weight functions of AMDNA
are given in Property 4 to evaluate the MC level.

Property 4: The weight function w (m) of AMDNA at m =
1, 2, 3, with the required condition D ≥ 2, N1 ≥ 2, is given
as follows:

w (1) = 1,

w (2) =

{
(D − 2) ∗X, ifD > 2,

N1 − 1, ifD = 2,

w (3) =

{
1, ifD ̸= 3,

N1 − 1, ifD = 3.

(64)

Proof: AMDNA can be divided into X+1 ULAs, as shown
by (34). For the DCA of S′, obviously, it can be achieved as
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TABLE I: A summary of uDOFs of nine types of arrays for different number of sensors (N ).

Sensors number NA 2-SNA MISC D-DNA ePCA ANAI-2 MDNA AMDNA TS-ENA

9 49 49 59 49 � 53 51 51 �
17 161 161 187 161 157 173 169 171 203

21 241 241 275 241 217 257 247 247 293

28 419 419 467 421 359 443 435 437 489

31 511 511 563 513 445 537 529 531 589

35 647 647 707 649 541 677 667 667 735

TABLE II: A summary of weight functions and MC leakage of eight types of arrays.

Array config. 2-SNA MISC D-DNA ePCA ANAI-2 MDNA AMDNA TS-ENA

17 sensors N1 = 8 N1 = 8 M = 5 N1 = 8 N1 = 9 N1 = 9 N1 = 10

N2 = 9 N = 17 N2 = 5 Nc = 8 N2 = 9 D = 3 D = 3 N2 = 6

X = 3 X = 3

w(1) 2 1 1 1 2 6 1 4

w(2) 5 6 7 1 7 3 3 2

w(3) 4 1 1 1 2 8 8 1

L 0.2113 0.1848 0.1731 0.1462 0.2176 0.2827 0.1810 0.2267

28 sensors N1 = 14 N1 = 15 M = 8 N1 = 14 N1 = 14 N1 = 14 N1 = 10

N2 = 14 N = 28 N2 = 7 Nc = 13 N2 = 14 D = 3 D = 3 N2 = 6

X = 5 X = 5

w(1) 2 1 1 1 2 10 1 8

w(2) 11 12 11 1 12 5 5 6

w(3) 4 1 1 1 2 13 13 5

L 0.2027 0.1859 0.1760 0.1139 0.2007 0.2833 0.1688 0.2531

31 sensors N1 = 15 N1 = 16 M = 9 N1 = 15 N1 = 16 N1 = 16 N1 = 16

N2 = 16 N = 31 N2 = 8 Nc = 14 N2 = 16 D = 4 D = 4 N2 = 14

X = 4 X = 4

w(1) 1 1 1 1 2 12 1 10

w(2) 14 12 13 1 14 8 8 8

w(3) 1 1 1 1 2 4 1 7

L 0.1887 0.1773 0.1790 0.1056 0.2013 0.2916 0.1624 0.2700

follows

DCA =
X∑
i=0

X∑
j=0

diff (ULA (i) ,ULA (j)), (65)

which is the self-difference and cross-difference of sub-ULAs
for the cases of i = j and i ̸= j. We mainly focus on the
self-difference of sub-ULAs and the cross-difference between
adjacent ULAs to calculate the first three weight functions of
AMDNA.

Obviously, according to Definition 2, it can be seen that the
inter-sensor spacing of ULA(0) is D, whose self-differences
contain ±D, ±2D, and so on. The inter-sensor spacing of the
ULA(x.1) and ULA(x.2) is 2, whose self-differences include
±2, ±4, and so on. Thus, we can obtain

(D − 2) ∗X (66)

sensor pairs with separation 2 and

(N1 − 1) (67)

sensor pairs with separation D.
Next, for the cross-differences between ULA(1.1) and

ULA(x.1), along with ULA(1.2) and ULA(x.2), it can be

clearly seen from Definition 2, that the minimum inter-sensor
spacing is greater than N1D ≥ 4. Therefore, we only
consider the cross-differences between ULA(1.1), ULA(1.2)
and ULA(0) to calculate the first three weight functions. In
Definition 2, ULA(0) and ULA(1.1) have a common sensor
labeled 0; to facilitate analysis, it is considered as part of
ULA(1.1), and we have

min diff (ULA (1.1) ,ULA(0)) = D. (68)

Furthermore, the first and second minimum elements of
diff(ULA(1.2), ULA(0)) are given as follows:

min
1

diff (ULA (1.2) ,ULA(0)) = N1D+1−N1D = 1. (69)

When D > 3, we have

min
2

diff (ULA (1.2) ,ULA(0)) = N1D+3−N1D = 3, (70)

when D = 2, we have

min
2

diff (ULA (1.2) ,ULA(0)) = N1D+1−(N1 − 1)D = 3.

(71)
Therefore, according to (66) to (71), Property 4 is proved.
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Fig. 5: The positions of the array elements and their weight functions where the number of sensors (N ) is 2: (a) D-DNA, (b)
ePCA, (c) MDNA, (d) AMDNA, (e) MISC, (f) TS-ENA.

V. SIMULATION RESULTS

As shown in Tables I and II, and also demonstrated in
[29], the MISC array outperforms the NA [10], 2-SNA [20],
ANAI-2 [22] in terms of both number of DOFs and mutual
coupling, so we will only compare our proposed arrays with
MISC, D-DNA [23], ePCA [27] and TS-ENA [19]. In this
section, to demonstrate the performance of the proposed
AMDNA, a comparison of the DOA estimation performance
among all arrays is conducted with the sparse representation
based method like LASSO [3], as well as SS-based subspace
method like TLS-ESPRIT [22]. The estimation performance
for different array configurations is evaluated in terms of the
root mean square error (RMSE), defined as

RMSE =

√√√√ 1

1000K

1000∑
q=1

K∑
k=1

(
θ̂k,q − θk

)2

(72)

where θk represents the true DOA of the k-th source and
θ̂k,q denotes the corresponding estimate obtained at the q-th
trial. Similar to [20], the uniform DOFs, rather than the array
aperture, is employed in the following to investigate the overall
estimation performance.

A. Mutual Coupling Evaluated for Sparse Array

To illustrate the MC level of the above-mentioned six
types of 28-sensor sparse arrays, the weight function and
corresponding MC leakage are given in Fig. 5, along with

the position of physical sensors. A summary of the weight
functions (w(1), w(2) and w(3)) and MC leakage (L) is
provided in Table II. It can be seen that TS-ENA and MDNA
produce a higher value of L than other arrays except that
ePCA has the least value of L. According to the value of
L, MISC, D-DNA and AMDNA are much less sensitive to
the MC effect. As the number of sensors increases, more
specifically when N = 31, the value of L of AMDNA is
smaller than that of other arrays except for ePCA, implying
that it experiences the least MC effect. Combined with Table
I, it is clearly seen that the proposed AMDNA has achieved a
good compromise in terms of uDOFs and MC leakage among
arrays being considered, which will also be demonstrated in
DOA estimation results next.

B. DOA Estimation in the Absence of Mutual Coupling

Note that, sparse representation based method can utilize
all unique lags in the difference coarray, thus achieving better
DOA estimation accuracy than the subspace based methods
which can only utilize those continuous lags. However, as here
we focus on the uniform DOFs, in the following simulations,
we only use the continuous segment of DCA for sparse
reconstruction.

In the absence of mutual coupling, the simulation parameter-
s are set as follows: 27 sources uniformly distributed between
−60◦ to 60◦ impinge on the array with 17 sensors, with 2000
snapshots. The RMSE curves against the signal-to-noise ratio
(SNR) are shown in Figs. 6 and 7 and the Cramér-Rao Bound
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(CRB) is also plotted for comparison. In this case, the DOA
estimation performance of the array depends on the (uniform)
DOFs. It can be seen that for both the subspace based method
and the sparse reconstruction based method, TS-ENA and
MISC have achieved the best performance given their high
uDOFs. AMDNA and D-DNA take the second place while e-
PCA is the worst. This is consistent with the uDOFs provided
in Table I.
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Fig. 6: RMSE of DOA estimation versus SNR in the absence
of MC using TLS-ESPRIT, with K=27 and T=2000.
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Fig. 7: RMSE of DOA estimation versus SNR in the absence
of MC using LASSO, with K=27 and T=2000.

The RMSE results versus the number of snapshots using
TLS-ESPRIT and LASSO are given in Fig. 8 and 9 as well
as the CRB curve, where SNR=20dB. It is observed that in
all cases, the RMSE decreases as the number of snapshots
increases and that those arrays with more uDOFs exploit the
increase in the number of snapshots to further improve their
performance compared to the other sparse arrays with less
uDOFs.

C. DOA Estimation in the Presence of Mutual Coupling

In the presence of mutual coupling, the simulation parame-
ters are set as: 33 sources, which are uniformly distributed
between −64.6◦ to 64.6◦, impinge on the array with 28
sensors, and the number of snapshots is 2000. As shown
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Fig. 8: RMSE versus the number of snapshots in the absence
of MC using TLS-ESPRIT, with K=27 and SNR=20dB.
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Fig. 9: RMSE versus the number of snapshots in the absence
of MC using LASSO, with K=27 and SNR=20dB.

in Figs. 10 and 11, the subspace based method and sparse
reconstruction based method perform a little differently. For
the subspace based method, its conclusion is consistent with
the one drawn in the manuscript, that is, AMDNA achieves
a good balance between uDOFs and mutual coupling, thus
achieving better performance than MISC and TS-ENA in
strong mutual coupling situations. Note that in this case,
the performance of TS-ENA with higher uDOFs but more
severe coupling leakage has deteriorated significantly, which
is worse than MISC. However, in the LASSO method, there
are some subtle changes in the results. AMDNA still has
the lowest RMSE, representing the best performance. But
in this case, the performance of TS-ENA surpasses MISC
at a high SNR. This might be because sparse reconstruction
based methods are relatively less sensitive to mutual coupling
effects, which is beneficial for TS-ENA. In both simulations,
AMDNA consistently demonstrates outstanding performance
across various algorithms.

The RMSE results versus the number of snapshots using
TLS-ESPRIT and LASSO are plotted in Figs. 12 and 13
respectively, where SNR=20dB. It can be seen that the RMSEs
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Fig. 10: RMSE of DOA estimation versus SNR in the presence
of MC using TLS-ESPRIT, with c1 = 0.3ejπ/3, K=33 and
T=2000.
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Fig. 11: RMSE of DOA estimation versus SNR in the presence
of MC using LASSO, with c1 = 0.3ejπ/3, K=33 and T=2000.

of TS-ENA decrease slowly, and AMDNA achieves the lowest
RMSE, as it has both large uDOFs and low MC.

In addition, Fig. 14 illustrates the RMSE results versus the
MC coefficient |c1| when SNR=20dB and T=2000. Along with
the increase of |c1|, indicating a heavy MC effect, the RMSEs
of all arrays increase. In Fig. 14, when |c1| ≤ 0.2, it can
be seen that TS-ENA performs best in all arrays, which is
less sensitive to the MC effect, and meanwhile has the largest
number of uDOFs. But when |c1| > 0.2, TS-ENA estimation
begins to degrade, and the remaining arrays tend to perform
better. As seen for |c1| = 0.3, AMDNA and D-DNA show an
effective resistance to strong MC effects through providing
accurate estimates compared to other sparse arrays. When
|c1| = 0.4, TS-ENA fails to provide accurate estimates due
to strong MC, even though it has the largest uDOFs, while
AMDNA performs best with the medium uDOFs.

To demonstrate the estimation performance of AMDNA for
closely spaced DOAs, we consider 33 uncorrelated sources
with an angular interval of 2 degree, and the number of sensors
is 28. Then, the curve of RMSE versus SNR is provided in
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Fig. 12: RMSE versus the number of snapshots in the presence
of MC using TLS-ESPRIT, with c1 = 0.3ejπ/3, K=33 and
SNR=20dB.
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Fig. 13: RMSE versus the number of snapshots in the pres-
ence of MC using LASSO, with c1 = 0.3ejπ/3, K=33 and
SNR=20dB.

Fig. 15, where |c1|=0.3 and T=2000. It can be seen from Fig.
15 that AMDNA also enjoys the best estimation performance
for closely spaced DOAs.

To further show its ability to resolve closely spaced DOAs,
we also provide the curves of RMSE against the number
of sources when SNR=20 dB, |c1|=0.3, T=2000 and angle
spacing is 2 degree. From Fig. 16, it can be seen that the
AMDNA again has the best performance among all compared
arrays.

VI. CONCLUSION

In this paper, a new systematic sparse array design scheme
called MDNA has been proposed at first, which is composed
of a sparse ULA and multiple identical dense ULAs with
appropriate sub-ULA spacing. It is proved that the DCA of the
MDNA is hole-free. For a given number of sensors with the
optimal parameters, the closed-form expressions for the sensor
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Fig. 14: RMSE versus |c1|, where K=33, SNR=20dB,
T=2000.
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Fig. 15: RMSE versus SNR with small angle intervals (2
degree), where c1 = 0.3ejπ/3 and T=2000.

locations and the number of uDOFs of the proposed array can
be uniquely derived. More importantly, evolved from the MD-
NA scheme, AMDNA is proposed with less MC effects than
other sparse arrays, while achieving a considerable number of
uDOFs, leading to a robust DOA estimation performance. In
the end, simulation results have demonstrated the effectiveness
of the proposed configurations.
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