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Abstract

We study the π-adic completion D̂[1] of Berthelot's di�erential operators of level one on

the projective line over a complete discrete valuation ring of mixed characteristic (0, p).

The global sections are shown to be isomorphic to a Morita context whose objects are

certain fractional ideals of primitive factor rings of the π-adic completion of the universal

enveloping algebra of sl2(R). We produce a bijection between the coadmissibly primitive

ideals of the Arens Michael envelope of a nilpotent �nite dimensional Lie algebra and the

classical universal enveloping algebra. We make limited progress towards characterizing

the primitive ideals of certain a�noid enveloping algebras of nilpotent Lie algebras un-

der restrictive conditions on the Lie algebra. We produce an isomorphism between the

primitive factor rings of these a�noid enveloping algebras and matrix rings over certain

deformations of Berthelot's arithmetic di�erential operators over the a�ne line.
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Chapter 1

Introduction

1.1 Primitive Ideals

In non-commutative algebra, the notion of the prime spectrum and its associated geo-

metric implications become signi�cantly less useful. However, various people have tried

to �nd an alternative geometric perspective on certain simple classes of mildly noncom-

mutative rings. An example is the so-called Dixmier program, wherein Dixmier proposes

to study simple modules over non-commutative rings by classifying their annihilators and

their corresponding factor rings. This program has had mixed success. A great example of

its strength is the complete classi�cation of the primitive ideals of the enveloping algebra

of a nilpotent lie algebra g over a �eld of characteristic zero, and an isomorphism theorem

for their factor rings. More precisely, he proves that the primitive ideals are parametrized

by the coadjoint orbits on g∗ and that the factor ring of the enveloping algebra by any

primitive ideal is isomorphic to a Weyl algebra over a �nite �eld extension of the ground

�eld. In this thesis, some mild progress will be made towards �nding an analogue of this

result in a rigid analytic setting.
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1.2 Rigid Analytic Geometry

When working over R or C there is a notion of analytic manifolds and analytic functions

on these manifolds. If one is to naively try and de�ne an analytic manifold and K-

analytic functions on that manifold over a p-adic �eld K in the same manner as one

would over R or C, one might �nd the results disappointing. For instance, due to the total

disconnectedness of the topology on p-adic �elds, manifolds may have a ring of analytic

functions which is a domain, but �nd themselves being disconnected, so that there is

a weaker correspondence between geometric and algebraic properties compared to the

archimedean case. Tate solved this problem while studying elliptic curves by de�ning

the category of rigid analytic spaces which carry a special Grothendieck topology. Since

Tate's work there have been a plethora of results in algebraic number theory that have

depended rigid analytic geometry.

One might wonder whether in the same manner that Dixmier creates a non-commutative

geometry using the set of coadjoint orbits on g∗, there might be some similar rigid analytic

non-commutative geometry. This paper does not answer that question. It does take some

steps in the direction of describing the primitive spectrum of the π-adic completion of

nilpotent enveloping algebras in a restrictive setting.

1.3 A�noid Enveloping and Weyl Algebras

According to one point of view, one might view the universal enveloping algebra of a

K-Lie algebra g as an alternative multiplicative structure on Sym(g). For each separated

R-submodule L of g such that L ⊗R K = g, where R is the ring of integers of K, there
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is an associated Tate algebra

lim←−
i∈N

Sym(L )/πiSym(L )⊗R K.

It might seem interesting to ask whether one might de�ne a similar alternative multiplica-

tive structure on these Tate algebras.

De�nition 1.3.0 Let g be a K-Lie algebra, and let L be a �nitely generated R-submodule

of g such that L ⊗R K = g and [L ,L ] ⊂ L . Then we de�ne the a�noid enveloping

algebra of L to be the ring

Û(L )K = lim←−
i∈N

U(L )/πiU(L )⊗K.

There have been numerous advances in the study of a�noid enveloping algebras, mostly

around semisimple Lie algebras, see for instance [2]. A version of Quillen's lemma holds.

In this thesis, some modest results are given concerning the primitive spectrum of a�-

noid enveloping algebras over �nite dimensional nilpotent Lie algebras under some strong

restrictive conditions.

In studying a�noid enveloping algebras over a �nite dimensional nilpotent Lie algebra

g over K, we will soon �nd that certain completions of the Weyl algebra play a central

role. The Weyl algebra Ws(K) over K for s ∈ N∪{0} can be de�ned in various ways - we

can think of it as being isomorphic as a K-vector space to the polynomial algebra in the

variables ti and ∂i for 1 ≤ i ≤ s, with multiplication de�ned by the relation [∂i, tj] = δij.

We de�ne the a�noid Weyl algebras to be the rings

Ŵs,i,K = lim←−
j∈N

Ws,j/π
jWs,j ⊗R K

where Ws,i is the R-subalgebra of Ws(K) generated by πi∂j and πitj for 1 ≤ j ≤ s and

i ∈ N ∪ {0}.
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1.4 Fréchet-Stein Algebras and Coadmissible Modules

As an example of a rigid analytic space we could, for instance, wonder whether there

is an analyti�cation of the a�ne line over a p-adic �eld K. The answer is yes, but the

construction is non-obvious. A�noid spaces, which are the rigid analogue of a�ne spaces,

have an inherent boundedness which the a�ne line lacks. If K is an algebraic closure of

K, then we know that the a�ne line A1
K over K can be viewed as the Galois orbits of

K. The norm ‖‖K on K extends uniquely to a norm on K. For any r ∈ ‖K×‖, the set

Br(0) = {λ ∈ K : ‖λ‖K ≤ r} is an a�noid domain, and we can view the analyti�cation

of A1
K as the direct limit of a sequence of these Bri(0) for an increasing sequence (ri)i∈N

with ri ∈ ‖K
×‖, ri →∞ as i→∞.

The ring of analytic functions on each Bri(0) can be viewed as the set of power series

in a coordinate t for A1
K which converge everywhere on Bri(0), so that the global sections

on the analyti�cation of A1
K are the set of power series in t converging for all values in K.

This ring is non-Noetherian and it is asking too much to understand its entire structure.

However, we can restrict our attention to those modules over it which can be viewed as

inverse limits of �nitely generated modules over the coordinate rings of the Bri(0) for

i ∈ N, with certain compatibility conditions. We call these modules coadmissible.

This construction can be generalized, as in [1], to a setting wherein we are given an

almost commutative algebra B, and we de�ne a Fréchet-Stein completion of B to be the

projective limit of the completions Bq of B with respect to all of the seminorms q on B.

A similar notion of coadmissibility can be de�ned. There have been a number of results

concerning the coadmissible modules of such rings in papers such as [17] and [16]. These

completions give examples of what Schneider and Teitelbaum call Fréchet-Stein algebras

in [18]. See section 2.6 for the de�nition used in this thesis.
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Given a K-Lie algebra g its enveloping algebra U(g) is almost commutative and we

call the associated Fréchet-Stein algebra the Arens-Michael envelope of g. Here is the

precise de�nition:

De�nition 1.4.0 Let g be a K-Lie algebra, and let J be the set of �nitely generated

R-submodules L of g such that L ⊗R K = g and [L ,L ] ⊂ L . Then we de�ne the

Arens-Michael envelope Ũ(g) to be the ring

Ũ(g) = lim←−
L∈J

Û(L )K

Another example that will play a prominent role is the Fréchet-Stein completion W̃s

of the s-th Weyl algebra. It can be de�ned using the a�noid Weyl algebras as follows:

W̃s = lim←−i∈N Ŵs,i,K .

1.5 Sheaves of Arithmetic Di�erential Operators

When studying the primitive factor rings of certain a�noid enveloping algebras, we shall

see that they embed into the global sections of sheaves of arithmetic di�erential operators

over the a�ne line. These sheaves were introduced by Berthelot.

Describing the sheaf of di�erential operators DX of a smooth scheme X over the

spectrum of a ring other than a �eld of characteristic zero presents new challenges. In the

case of a �eld of characteristic zero the sheaf of di�erential operators is a locally Noetherian

sheaf of rings generated by the structure sheaf OX and its tangent sheaf TX . On the other

hand, if we work over R, then the sheaf of di�erential operators is signi�cantly more

complicated - for instance if X is a copy of the a�ne line over R and ∂ is a generator

for T (X) then D(X) is generated over O(X) by the operators ∂[pn] = ∂p
n

pn!
for all n ∈ N,

the 'divided powers' of ∂. This ring isn't even Noetherian. Reduction modulo p provides
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a similar example over a �eld of characteristic p. In [3], Berthelot introduced the sheaf

D[m]
X of divided powers of di�erential operators of level m ∈ N on a smooth R-scheme X.

The sheaves D[m]
X carry data about the classical sheaf of di�erential operators, but retain

nice properties like Noetherianity by restricting attention to divided powers of a 'level'

bounded by m. For example, over the a�ne line of R, the sheaf of partial di�erential

operators of level m is generated as an algebra over the structure sheaf by the elements

∂[pi] for 0 ≤ i ≤ m.

The π-adic completion of D[m]
X is an object of interest for various applications, see

for instance [6]. In [11] a version of Beilinson-Bernstein localization is proved for these

completions over �ag varieties of semisimple algebraic groups.

1.6 The Main Results

1.6.1 Coadmissible Primitive Spectrum of Arens Michael Enve-

lope of a Finite Dimensional Nilpotent K-Lie algebra

A bijection is given between the primitive spectrum Prim(U(g)) of the enveloping al-

gebra U(g) of a �nite dimensional nilpotent Lie algebra g and the set of annihilators

c.Prim(Ũ(g)) of coadmissible simple modules of the Arens-Michael envelope Ũ(g) of g.

The result is summed up in theorem 3.2.1:

Theorem 1.6.1 Let g be a �nite dimensional nilpotent Lie algebra. Then the map J 7→

J ∩ U(g) induces a bijection c.Prim(Ũ(g))→ Prim(U(g)).

In proving this theorem, we also get an isomorphism theorem regarding the factor

rings of Ũ(g):
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Proposition 1.6.1 Let I be a closed ideal of Ũ(g) such that Z(Ũ(g)/I) is isomorphic to

K. Then there is an surjection

Ũ(g)→ W̃s

with kernel I for some s ∈ N.

1.6.2 The primitive spectrum of nilpotent a�noid enveloping al-

gebras of powerful non-Abelian lattices with an Abelian

ideal of codimension one

We say that an R-Lie algebra g is powerful if [g, g] ⊂ πg. Given the strong result concern-

ing the Arens-Michael envelope, we shouldn't be blamed for imagining that there exists

some analogous result for the various a�noid enveloping algebras Û(L )K over a �nite

dimensional nilpotent Lie algebra g.

Let W1(K) be the �rst Weyl algebra over K, and for i ∈ N, let Vi be the R-subalgebra

of W1(K) generated by πit and ∂, and de�ne V̂i,K = lim←−j∈N Vi/π
jVi ⊗R K.

With a signi�cant amount of work, it is possible to extract the following theorem:

Theorem 1.6.2 Let g be a non-Abelian �nite dimensional nilpotent Lie algebra with an

Abelian ideal of codimension one. Let L be a �nitely generated R-submodule of g such

that L ⊗R K = g and [L ,L ] ⊂ πKL . Let P be a primitive ideal of Û(L )K such that

P ∩ g = 0. For some m ∈ N, i ∈ N and �nite Galois extension L of K, we have an

isomorphism of K-algebras

Û(L )K/P →Mpm(V̂i,L)Gal(L/K)

This theorem suggests that unlike in the classical case, primitive factors of nilpotent

a�noid enveloping algebras need not be domains. One can produce an example of a
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Lie algebra of dimension pm + 2 which has a lattice whose associated a�noid enveloping

algebra admits a primitive factor ring of uniform dimension pm for any m ∈ N.

From this, assuming the notation of the theorem, we can extract the following result:

Corollary 1.6.2 Let g and L be de�ned as in the above theorem.

1. If I is a primitive ideal of Û(L )K then I ∩ U(g) is a primitive ideal of U(g).

2. J 7→ J ∩ U(g) de�nes a map Prim(Û(L )K)→ Prim(U(g)) with �nite �bres.

3. For an ideal I ⊂ Û(L )K the following are equivalent:

(a) Z(Û(L )K/I) is algebraic over K.

(b) I is primitive.

(c) I is maximal.

When there is no Abelian ideal in g of codimension one, the methods used to prove

the theorem fail, and there are many examples where no obvious analogue holds. There

are numerous ways in which the conditions on g might be relaxed but they will not be

discussed in this thesis.

1.6.3 Artihmetic Di�erential Operators

Proving theorem 1.6.2 utilizes the Dixmier map, in which divided powers of a coordinate

appear. Given that, we should not be surprised that Berthelot's notion of arithmetic

di�erential operators plays a role in the proof.

An explicit description of the ring structure of the global sections of D̂[m]
X for m ∈ N

is given when X = A1
R. The following main result is proved in section 4.3.1:
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Theorem 1.6.3 Let X and Y be two copies of A1
R. Let t be a coordinate for X, τ a

coordinate for Y , and let F be the morphism X → Y ; τ 7→ tp. There is an isomorphism

of OY -rings

Mpm(D̂[0]
Y )→ F∗D̂[m]

X

such that, on global sections, Id∂τ 7→ γ∂
[pm]
t for some γ ∈ 1 + πD̂[m]

X (X).

This result plays an essential role in our proof of theorem 1.6.2.

1.6.4 Over the Projective Line

Using theorem 1.6.3, an explicit description of the ring structure of the global sections of

D̂[1]
X is given when X = P1

R. The following main result is proven in section 6.1.8:

Theorem 1.6.4 Let X and Y be two copies of P1
R. Let t be a coordinate for X, τ a

coordinate for Y , and let F be the morphism X → Y ; τ 7→ tp. Let L be the Serre

twisting sheaf OY (1) of Y . Then there is an isomorphism of OY -rings F∗D̂[1]
X → M,

whereM is the following Morita context of sheaves

M =


Mp−1

(
L⊗−1 ⊗ D̂[0]

Y ⊗ L
) (

L⊗−1 ⊗ D̂[0]
Y

)p−1

(
D̂[0]
Y ⊗ L

)p−1

D̂[0]
Y

 .
Using this information, in a manner similar to the classical case described in [20]

we can describe the global sections of D̂[1]
X : if we let L = sl2(R) = eR ⊕ hR ⊕ fR, Ω

be the Casimir invariant of U(L ) and let Ûn = Û(L )/(Ω − n2 − 2n), where Û(L ) =

lim←−i∈N U(L )/πiU(L ) then we obtain the following corollary

Corollary 1.6.4 Assume that char(κ) 6= 2. The global sections of D̂[1]
X are isomorphic to

the following Morita context

D̂[1](X) ∼=

 Mp−1

(
Û−1

)
P̂0

p−1

Î0

p−1
Û0


14



where P̂0 is the right ideal of U0 generated by e and h and Î0 is the left fractional ideal of

Û0 generated by 1 and he−1.

There are various corollaries to this result, for instance it follows that D̂[1](X) is a

prime ring of uniform dimension p, and that D̂[1](X) is Morita equivalent to D̂[0](X)

(theorem 6.2.4). This was already known - see [5, Théorème 2.3.6].

15



Chapter 2

Preliminaries

2.1 Filtrations

2.1.1 Inverse Limits

Let C be a category, and let I be a directed partially ordered set (that is, for each i, j ∈ I,

there is some k ∈ I such that i ≤ k and j ≤ k.) Then a directed system (Ci, φij) in C (over

I) is a collection of objects Ci ∈ C for each i ∈ I, along with morphisms φij : Cj → Ci for

each i, j ∈ I such that i ≤ j, subject to the condition that φii is the identity morphism

on Ci for all i ∈ I and φijφjk = φik for all i, j, k ∈ I such that i ≤ j and j ≤ k.

Then an inverse limit C = lim←−i∈I Ci for the directed system (Ci, φij), if it exists, is an

object in C ∈ C along with a set of morphisms φi : C → Ci for i ∈ I with the universal

property that, for any D ∈ C and collection of morphisms ψi : D → Ci for i ∈ I such that

φijψi = ψj for all i, j ∈ I, there is a unique morphism ψ : D → C such that the following
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diagram commutes

D

ψj

��

ψi

��

ψ
��
C

φj ��φi~~
Cj φij

// Ci

. In this thesis, we will only have cause to deal with the inverse limit of directed systems

in subcategories of the category of groups. In this case, we have a fundamental structure

theorem:

Proposition 2.1.1 Let I be a directed partially ordered set and let (Gi, φij) be a directed

system in the category of groups (over I). Then the group{
(αi)i∈I ∈

∏
i∈I

Gi : φij(αj) = αi for all i, j ∈ I such that i ≤ j

}

is an inverse limit for (Gi, φij).

2.2 Filtrations

2.2.1 Filtered Rings and Modules

Let A be a ring. Then a �ltration on A is a set FA of additive subgroups FiA of A for

i ∈ Z such that

1. 1 ∈ F0A

2. FiA ⊂ Fi+1A for all i ∈ Z.

3. (FiA)(FjA) ⊂ Fi+jA for all i, j ∈ Z.

4.
⋃
i∈Z FiA = A.

17



A �ltered ring (A,FA) is a ring A equipped with a �ltration FA. We say that a ring

homomorphism φ : A → B between two �ltered rings (A,FA) and (B,FB) is a �ltered

ring homomorphism of degree d if φ(FiA) ⊂ Fi+dBS for all i ∈ Z.

If (A,FA) is a �ltered ring andM is an A-module, then a �ltration onM is a set FM

of additive subgroups FiM of M for i ∈ Z such that

1. FiM ⊂ Fi+1M for all i ∈ Z.

2. (FiR)(FjM) ⊂ Fi+jM for all i, j ∈ Z.

3.
⋃
i∈Z FiM = M .

We de�ne a �ltered A-module (M,FM) to be an A-module M equipped with a �ltration

FM . The set of all �ltered A-modules forms a category A-�lt, with morphisms M → N

de�ned to be A-linear maps M → N such that the image of FiM is a subset of FiN for

all i ∈ N.

If φ : M → N is a �ltered A-module homomorphism then we say that φ is strict if

φ(FiM) = φ(M) ∩ FiN for all i ∈ Z.

2.2.2 Filtration Topology

Let (A,FA) be a �ltered ring and let (M,FM) be a �ltered A-module. Then M carries

a topology, which we will call the topology on M de�ned by FM , which is de�ned by

taking the cosets m + FiM for m ∈ M and i ∈ Z to be a base of open sets. A �ltered

ring carries a �ltration topology if we consider it as a �ltered module over itself. When

references are made to topological properties of a �ltered module without reference to the

underlying topology it is always assumed that that topology is the �ltration topology.
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2.2.3 Completions

Let (A,FA) be a �ltered ring and let (M,FM) be a �ltered module in A-�lt. Then

we de�ne the completion of M to be the object M̂ = lim←−i∈ZM/FiM , where the maps

M/Fi+1M →M/FiM are the natural projections. By proposition 2.1.1 we know that M̂

is isomorphic to{
(αi)i∈Z ∈

∏
i∈Z

M/Fi+1M : αi+1 + FiM = αi for all i ∈ Z

}
.

There is a canonical homomorphism M → M̂ obtained by sending m→ (m+Fi+1M)i∈N,

called the diagonal homomorphism.

We say that the �ltration FM is separated if
⋂
i∈Z FiM = 0. The �ltration FM is

separated if and only if the diagonal homomorphism is an embedding. We say that M is

complete if the diagonal homomorphism is an isomorphism.

2.2.4 Complete Discrete Valuation Rings

A discrete valuation ring R is a commutative PID with a unique maximal ideal m. A

uniformizer π for R is a generator of m. The residue �eld κ of R is the factor ring R/m.

R carries a separated �ltration FR, called the π-adic �ltration where F−iR = πiR and

FiR = R for i ∈ N. If R is complete with respect to this �ltration we say that R is a

complete discrete valuation ring, or c.d.v.r. If K is the �eld of fractions of R, then the π-

adic �ltration on R can be extended to a separated �ltration of K by setting FiK = π−iR

for i ∈ Z. If R is a c.d.v.r, then K is complete with respect to this �ltration.

2.2.5 Graded Rings and Modules

We say that a ring A is a graded ring if there exist some additive subgroups Ai ⊂ A for

i ∈ Z such that A = ⊕i∈ZAi and AiAj ⊂ Ai+j for i, j ∈ Z.
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A graded module over a graded ring A = ⊕i∈ZAi is a left A-module M along with

some additive subgroups Mi for i ∈ Z such that M = ⊕i∈ZMi and AiMj ⊂ Mi+j for all

i, j ∈ Z.

We say that a ring homomorphism A → B between graded rings A and B is graded

if φ(Ai) ⊂ Bi for all i ∈ Z.

2.2.6 Associated Graded Rings and Modules

Let (A,FA) be a �ltered ring, and de�ne Ai = FiA/Fi−1A for i ∈ Z. Then we can

form a graded ring Gr(A) = ⊕i∈ZAi, where the multiplication is de�ned by setting (a +

Fi−1A)(b+Fj−1A) = ab+Fi+j−1A ∈ Ai+j for a, b ∈ A, and extending these rules bilinearly

to all of Gr(A)×Gr(A). Given a �ltered ring homomorphism φ : (A,FA)→ (B,FB) we

can de�ne a graded ring homomorphism

Gr(φ) : Gr(A)→ Gr(B) ; a+ Fi−1A 7→ φ(a) + Fi−1B.

In this way Gr becomes a functor from �ltered rings to graded rings.

Similarly, if (M,FM) is a �ltered A-module, then we de�ne Mi = FiM/Fi−1M for

i ∈ Z, and Gr(M) = ⊕i∈ZMi. Gr(M) becomes a graded A-module by setting (a +

Fi−1A)(m + Fj−1M) = am + Fi+j−1M , and extending this de�nition linearly to all of

Gr(A)×Gr(M). Given a homomorphism of �ltered A-modules ψ : (M,FM)→ (N,FN)

we can de�ne a homomorphism of graded A-modules

Gr(ψ) : Gr(M)→ Gr(N) ; m+ Fi−1M 7→ φ(m) + Fi−1N.

In this way Gr becomes a functor from �ltered A-modules to graded Gr(A)-modules.

Proposition 2.2.6 Let M , M ′, and M ′′ be �ltered A-modules, and let

M
φ //M ′ ψ //M ′′
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be a sequence of �ltered A-module homomorphisms.

1. If M and M ′ are complete then Gr(φ) is a graded isomorphism if and only if φ is

an isomorphism in A-�lt.

2. If M is complete and M ′ is separated then the graded sequence

Gr(M)
Gr(φ) // Gr(M ′)

Gr(φ) // Gr(M ′′)

is exact if and only if the original sequence is strict exact.

Proof: [9, Corollary 1.4.2.5(2)] for part 1, and [9, Theorem 1.4.2.4(5)] for part 2. �

2.2.7 Zariskian Filtrations

Let A be a ring with �ltration F∗. Then we say that F∗ is a Zariskian �ltration on A if F∗

is separated, gr(A) is a left Noetherian ring, F−1A is contained in the Jacobson radical

of A, and A has the left Artin-Rees property, that is, for all �nitely generated left ideals

I =
∑n

i=1Axi of A, there exists some c ∈ Z such that for all j ∈ Z,

FjA ∩ I =
n∑
i=1

F(j+c)Axi.

The main result we need is the following:

Proposition 2.2.7 1. Let A be a ring with left Zariskian �ltration F∗. Then every

left ideal of A is closed with respect to the F∗-topology.

2. Suppose that A is complete with respect to the F∗-topology and gr(A) is left Noethe-

rian. Then F∗ is a left Zariskian �ltration.

Proof:

1. [9, Theorem 2.1.2].
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2. [9, Proposition 2.2.1].

�

2.3 Complete sliced K-algebras

2.3.1 Complete sliced K-vector spaces

Let R be a discrete valuation ring and let A be a right R-module. Then we de�ne the

π-adic �ltration on A to be the �ltration FA where F−iA = Aπi and FiA = A for

i ∈ N. This �ltration can be extended to the π-adic �ltration on A ⊗R K by setting

Fi(A⊗R K) = π−iA for i ∈ Z. If A is complete with respect to its π-adic �ltration then

so is A⊗R K.

If (V, FV ) is a complete �ltered K-vector space such that V has a presentation V =

L ⊗R K where L is a �at right R-module such that FV is equal to the π-adic �ltration

on V induced by L, then we say that V is a complete sliced K-vector space. If L is itself

complete with respect to its π-adic �ltration, then we say that L is a lattice in V .

Given a π-adically �ltered right R-module A, the K-vector space Â⊗RK is a complete

sliced K-vector space with lattice Â. We will often abbreviate Â⊗R K as ÂK .

If V is a complete sliced K vector space with lattice L, FiV/Fi−1V = πiL/πi−1L for

all i ∈ Z. Since L is separated, there is an isomorphism of R-modules πiL/πi+1L →

L/πL ; πia+ πi+1L 7→ a+ πi+1L, and an isomorphism of graded Gr(R) modules

Gr(L)→ L/πL [s] ; πia+ πi+1L 7→ (a+ πL)si,

and this isomorphism extends to an isomorphism of Gr(R) modules

Gr(V )→ L/πL
[
s, s−1

]
.
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We call L/πL the slice of V .

A complete sliced K-algebra is a complete sliced K-vector space with the structure of

a K-algebra.

Proposition 2.3.1 1. Let A be a π-adically �ltered Noetherian R-algebra, and assume

that the �ltration on A is separated. Then Â and Â⊗R K are �at A-modules.

2. Let V , V ′, and V ′′ be complete sliced K-algebras with lattices L, L′ and L′′. Then a

sequence

V → V ′ → V ′′

of �ltered K-vector space homomorphisms is exact if the induced sequence

L/πL→ L′/πL′ → L′′/πL′′

on slices is exact.

Proof:

1. [4, 3.2.3(iv)] for the �rst statement, and the second follows by the transitivity of

�atness and the fact that Â⊗R K is a �at Â-module.

2. Since L is complete and L′ is separated we can invoke [9, Theorem 1.4.2.4(5)], and

it will be enough to show that if the sequence L/πL → L′/πL′ → L′′/πL′′ is exact

then the sequence gr(L) → gr(L′) → gr(L′′) is exact. Using the example above,

since L, L′, and L′′ are π-torsion free, we have a commutative diagram

L/πL [s] //

��

L′/πL′ [s]

��

// L′′/πL′′ [s]

��
gr(L) // gr(L′) // gr(L′′)

where the vertical arrows are isomorphisms, and the top horizontal arrows corre-

spond to the induced sequence L/πL → L′/πL′ → L′′/πL′′ while sending s 7→ s.
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Therefore the if the induced sequence L/πL→ L′/πL′ → L′′/πL′′ is exact then the

sequence L→ L′ → L′′ is exact.

�

2.3.2 Idempotents

Recall that if A is a ring then an idempotent e ∈ A is an element with the property that

e2 = e.

Proposition 2.3.2 Let K be a complete �eld of mixed characteristic (0, p). Let A be

a complete sliced K-algebra and let L be a multiplicatively closed lattice in A such that

1 ∈ L. Let e be an idempotent in L.

1. If ẽ ∈ L is an element such that e+πL is an idempotent of L/πL then the sequence

(ẽp
i
)i∈N converges to an idempotent of L (and A).

2. If e and f are commuting idempotents of A such that e+ πL = f + πL then e = f .

3. If f is an idempotent of A such that ef = fe and ef ∈ πL then ef = 0.

Proof:

1. Suppose for induction that en is an idempotent of L/πnL, so that e2
n = en +πnλ for

some λ ∈ L. Then for i ∈ N, working in L/πn+1L, we have

ein = ei−2
n (e+ πnλ) = ei−3

n (e+ (1 + e)πnλ) = ... = e+ (1 + (i− 2)e)πnλ mod πn+1L

so that

e2p
n = e+ (1 + (2p− 2)e)πnλ = e+ (1− 2e)πnλ = epn mod πn+1L.

Hence, the limit of the sequence ẽp
n
as n→∞ is an idempotent of A.
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2. Suppose that e + πnλ = f for some λ ∈ L, n ∈ N. It will be enough to show that

e+ πn+1λ′ = f some some λ′ ∈ L. For this we simply observe that

f = fp =

p∑
i=0

(
p

i

)
eiπn(p−i)λp−i = e+ πn+1λ′,

proving the claim.

3. Since e and f commute, ef is idempotent. Since ef ∈ πL, we have that (ef)n =

ef → 0 as n→∞. Therefore ef = 0.

�

2.4 Lie Algebras

2.4.1 Lie Algebras

Let A be a commutative ring. Then an A-Lie algebra is a free A-module g along with an

operation [·, ·] : g× g→ g, called the Lie bracket, such that

1. [·, ·] is A-bilinear.

2. [x, y] = − [y, x] for all x, y ∈ g.

3. [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 for all x, y, z ∈ g.

De�ne g0 = g, and for i ∈ N de�ne gi = [g, gi]. Then we say that g is nilpotent if for some

i ∈ N, gi = 0. A homomorphism of Lie algebras φ : g→ g′ is an A-linear map such that

φ([x, y]) = [φ(x), φ(y)] for all x, y ∈ g.

If B is a free A-algebra then B can be given the structure of a A-Lie algebra by setting

[a, b] = ab − ba for all a, b ∈ A. Given a A-module M , a representation ρ of g (in M) is

an A-Lie algebra homomorphism g→ EndA(M).
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If x ∈ g, then we de�ne adx : g→ g to be the K-linear map y 7→ [x, y].

A sub-Lie-algebra of a Lie algebra g over A is an A-submodule h closed under the

Lie bracket. If [g, h] ⊂ h then we say that h is an ideal, and we may form the factor Lie

algebra g/h, which is isomorphic as an A-module to g/h, with the Lie bracket de�ne as

[x+ h, y + h] = [x, y] + h.

If R is a c.d.v.r, K is the �eld of fractions of R, and g is a K-Lie algebra, then an

R-lattice L ⊂ g is an R-Lie-subalgebra of g such that L ⊗R K = g.

2.4.2 Universal Enveloping Algebras

Let A be a ring and let g be an A-Lie algebra. Then the universal enveloping algebra

U(g) is an A-algebra along with an A-Lie algebra homomorphism g → U(g) such that

for any A-Lie representation ρ of g in M , there is a unique A-algebra homomorphism

U(g)→ EndA(M) such that the following diagram commutes

g //

##

U(g)

��
EndA(M)

Proposition 2.4.2 1. Let K be a �eld and let L be a �eld extension of K. Let g be a

K-Lie algebra and let g′ be the L-Lie algebra g⊗K L. Then U(g′) is isomorphic to

U(g)⊗K L.

Proof:

1. [7, Section 2.2.20]

�
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Theorem 2.4.2 (Poincaré-Birkho�-Witt (PBW) Theorem) Let A be a ring and let g be

an A-Lie algebra. Let x1, . . . , xn be a basis for g. Then U(g) is a free A-module, and the

monomials xi11 . . . x
in
n for ij ∈ N, 1 ≤ j ≤ n, form a basis for U(g).

Proof: [19] �

2.4.3 Quillens Lemma

Theorem 2.4.3 Let g be a �nite dimensional Lie algebra over a �eld K, and let M be a

simple left U(g)-module. Then EndU(g)(M) is algebraic over K.

Proof: [13] �

2.4.4 Primitive Ideals in Nilpotent Enveloping Algebras

Proposition 2.4.4 Let g be a �nite dimensional nilpotent Lie algebra over a �eld K of

characteristic zero. Then the following sets are equal:

1. The maximal ideals of U(g)

2. The primitive ideals of U(g)

3. The ideals I of U(g) such that the center of U(g)/I is algebraic over K.

Proof: [7, Proposition 4.7.4] �

2.4.5 Weyl Algebras

The Weyl algebras are of central importance to understanding the primitive ideals of a

nilpotent universal enveloping algebra over a �eld of characteristic zero.
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Let A be a commutative ring and let s ∈ N. Let h2s(A) (or just h2s when no confusion

will arise) be the free left A-module

Az ⊕

(
s⊕
i=1

Ati ⊕ A∂i

)
.

Then we can de�ne an A-lie algebra structure on h2s by setting

1. [z, x] = 0 for all x ∈ h2s.

2. [ti, tj] = 0 and [∂i, ∂j] = 0 whenever 1 ≤ i, j ≤ s.

3. [ti, ∂j] = δijz whenever 1 ≤ i, j ≤ s.

We de�ne the s-th Weyl algebra over A to be the ring Ws(A) = U(h2s)/(z − 1)U(h2s).

When A is a �eld of characteristic zero, Ws(A) is simple for all s ∈ N (see [7, Section

4.6.6]).

2.4.6 A�noid Weyl Algebras

Let K be the �eld of fractions of a complete discrete valuation ring R of mixed charac-

teristic (0, p) with uniformizer π.

For j ∈ N, let Wj be the R-subalgebra of Ws(K) generated by πj∂i and πjti for

1 ≤ i ≤ s. Then we de�ne

Ŵs,j,K = lim←−
i∈N

Wj/π
iWj ⊗R K.

We also use an alternative presentation of these algebras in a special case: For j ∈ N, let

Vj be the R-subalgebra of W1(K) generated by πjt and ∂. Then we de�ne

V̂i,K = lim←−
i∈N

Vj/π
iVj ⊗R K.
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2.4.7 Dixmier Map

Let K be a �eld and let A be a K-algebra. Then we say that an ideal I ⊂ A is weakly

rational if I is prime and the center of A/I is isomorphic to K. By 2.4.4, weakly rational

ideals of the universal enveloping algebra of a �nite dimensional nilpotent Lie algebra over

a �eld K of characteristic zero are always primitive.

Let g be a �nite dimensional nilpotent Lie algebra over a �eld K of characteristic zero.

We de�ne a reducing quadruple for g to be a quadruple (x, y, z, h) where

1. [x, y] = z.

2. z ∈ h is central in g.

3. h is a K-Lie-subalgebra of g of codimension one such that h⊕Kx = g.

4. y is central in h.

Proposition 2.4.7 Let (x, y, z, h) be a reducing quadruple for g. Let λ ∈ K×. Let

J = yU(h) + (z − λ)U(h) Then there is an isomorphism

Φ : U(g)/(z − λ)U(g)→ U(h)/J ⊗K W1(K)

sending

1. α + (z − λ)U(g) 7→
∑

i∈N
(
adix(α) + J

)
⊗ ti

i!
for all α ∈ U(h).

2. x+ (z − λ)U(g) 7→ ∂.

Φ has the property that ΦadxΦ
−1 = d

dt
.

Proof: Use [7, Lemma 4.7.8(i)], reducing both sides by (z − λ). �

If A is a ring, B is a subring, and I is an ideal of A, we say that I is controlled by B

if I = (I ∩B)A.
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The following corollary is a weakened version of a much stronger result that can be

easily proved using similar methods.

Corollary 2.4.7 Let I be a proper ideal of U(g) such that z − λ ∈ I for some λ ∈ K×.

Then I is controlled by U(h).

Proof: Let U = U(g)/(z − λ)U(g), let H = U(h)/(z − λ)U(h), and let H ′ = U(h)/J .

Using proposition 2.4.7 we have an isomorphism

Φ : U → H ′ ⊗K W1(K)

Since (z−λ)U(g) ⊂ I and Φ(x) = 1⊗∂, using [7, Lemma 4.5.1] we have Φ(Ī) = I ′⊗W1(K)

for some ideal I ′ of H ′, where Ī is the image of I in U . Note that here I ′ = Φ(I) ∩ H ′

and that from the theorem Φ(H) = H ′ ⊗K [t]. Hence

Φ(Ī) ∩ Φ(H) = (I ′ ⊗W1(K)) ∩ (H ′ ⊗K [t]) = I ′ ⊗K [t]

and hence

(Φ(Ī) ∩ Φ(H))Φ(U) = I ′ ⊗W1(K) = Φ(Ī),

proving the claim. �

Theorem 2.4.7 Let I be a weakly rational ideal of U(g). Then for some s ∈ N there is

an isomorphism U(g)/I → Ws(K).

Proof: [7, Theorem 4.7.9]. �

2.5 A�noid Enveloping Algebras

In this section we let R be a c.d.v.r. with uniformizer π, we let K be the �eld of fractions

of R, and we let κ be the residue �eld of R.
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2.5.1 A�noid Enveloping Algebras

Let g be a �nite dimensional Lie algebra over K. Then for each lattice L ⊂ g in g, the

a�noid enveloping algebra de�ned by L (in g) is the ring Û(L )K = Û(L )⊗RK, where

we take U(L ) to be π-adically �ltered, so that Û(L ) = lim←−i∈N U(L )/πiU(L ).

Proposition 2.5.1 1. Let x1, . . . , xn be an R-basis for L . Then there is a natural iso-

morphism of �ltered R-modules R〈x1, . . . , xn〉 → Û(L ) and a natural isomorphism

of K-vector spaces K〈x1, . . . , xn〉 → Û(L )K

2. Let g be a �nite dimensional K-Lie algebra and let L be an R-Lie lattice in g. Then

Û(L )K is a �at U(g)-module.

Proof:

1. The PBW theorem gives an �ltered isomorphism of R-modules R [x1, . . . , xn] →

U(L ) and a �ltered isomorphism of K-vector spaces R [x1, . . . , xn]→ U(L ). These

lift to �ltered isomorphisms R〈x1, . . . , xn〉 → Û(L ) and K〈x1, . . . , xn〉 → Û(L )K .

2. This is a straightforward application of proposition 2.3.1(1)

�

Here is an a�noid version of Quillen's lemma

Theorem 2.5.1 Let g be a �nite dimensional K-Lie algebra and let L be a lattice in g

such that [L ,L ] ⊂ πL . Let M be a simple left Û(L )K-module. Then End
Û(L )K

(M) is

algebraic over K.

Proof: [2, Corollary 8.6] �
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2.6 Arens Michael Envelope

Let R be a c.d.v.r with uniformizer π, let K be its �eld of fractions, and let κ be its

residue �eld

2.6.1 Fréchet-Stein Algebra

For the general de�nition see [18, Section 3]. Here, we will give a somewhat restricted

de�nition.

Let A be a K-algebra. Then we say that A is a Fréchet algebra if there is a sequence

(Li)i∈N of R-lattice subrings in A such that Li+1 ⊂ Li for i ∈ N
⋂
i∈N Li = 0, and the

diagonal homomorphism A → lim←−i∈N L̂i ⊗R K is an isomorphism. Let L̂i,K = L̂i ⊗R K.

We say that A is a Fréchet-Stein algebra if there exists such a sequence (Li)i∈N with the

additional property that each L̂i is Noetherian and the canonical embedding L̂i+1,K →

L̂i,K gives L̂i,K the structure of a �at L̂i+1,K-module for all i ∈ N. We will denote such

a Fréchet-Stein algebra by (A,Li) when we want to emphasize the de�ning lattices. The

topologies induced by the lattice �ltrations de�ned by the Li on A de�ne an inverse limit

topology, which called the Fréchet topology on A.

A coadmissible left A-module is a left A-module M such that there exists some col-

lection of �nitely generated left L̂i,K-modules Mi for i ∈ N along with L̂i+1,K-linear maps

Mi+1 →Mi for i ∈ N such thatM is isomorphic to lim←−i∈NMi, and such that the canonical

A-linear map

L̂i,K ⊗L̂i+1,K
Mi+1 →Mi

is an isomorphism for i ∈ N. As a �nitely generated L̂i,K-module, Mi is naturally a

complete �ltered L̂i,K-module, and the connecting maps Mi+1 → Mi are �ltered L̂i+1,K-

module homomorphisms. ThenM carries an inverse limit topology as lim←−i∈NMi, called the
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Fréchet topology on M . In these circumstances, we call the sequence (Mi)i∈N a coherent

sheaf for A.

Proposition 2.6.1 Let (A,Li) be a K-Fréchet-Stein algebra.

1. L̂i,K is a �at A-module for all i ∈ N.

2. Any �nitely presented left A-module is coadmissible.

3. The kernel, image, cokernel, and coimage of an A-linear map between two coadmis-

sible A-modules are all coadmissible.

4. If M is a coadmissible module and N is a submodule of M then the following are

equivalent

(a) N is coadmissible

(b) M/N is coadmissible

(c) N is closed w.r.t. the Fréchet topology on M

5. Let I be a closed ideal of a K-Fréchet-Stein algebra A. Then A/I is a K-Fréchet-

Stein algebra, de�ned by the lattices Li/(I ∩ Li) for i ∈ N.

Proof: See section 3 of [18] �

Our principal interest in de�ning Fréchet-Stein algebras is the study of those de�ned

by universal enveloping algebras of Lie algebras. Let g be a �nite-dimensional K-Lie

algebra, and let L be a lattice in g. Then we de�ne the Arens Michael envelope Ũ(g) of

g to be the ring lim←−i∈N
̂U(πiL )K .

Proposition 2.6.1 Ũ(g) is a K-Fréchet-Stein algebra.

Proof: [15, 2.3] �
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2.7 Morita Contexts

2.7.1 Morita Contexts

Let A and B be rings, M an A-B-bimodule, N a B-A-bimodule, φ : M ⊗B N → A,

ψ : N ⊗AM → B homomorphisms of A-A and B-B bimodules respectively such that for

all m,m′ ∈M and n, n′ ∈ N ,

φ(m⊗ n)m′ = mψ(n⊗m′) and ψ(n⊗m)n′ = nφ(m⊗ n′).

Then we can construct a ring C from this data in the following manner: As an Abelian

group, we de�ne that C = A×M ×N ×B. We write an element (a,m, n, d) ∈ C, where

a ∈ A, b ∈ B, m ∈ M , and n ∈ N in the form

 a m

n b

. Multiplication in C is de�ned

by the equation a m

n b


 a′ m′

n′ b′

 =

 aa′ + φ(m⊗ n′) am′ +mb′

na′ + bn′ ψ(n⊗m′) + bb′

 .
We write

C =

 A M

N B


when the maps φ and ψ are understood. We call C the Morita context de�ned by A, M ,

N , B, ψ, and φ (see [10, Section 1.1.6].)

We say that A and B are Morita equivalent if there is a �nitely generated projective

right A-moduleM such that B is isomorphic as a ring to EndA(M) [10, Proposition 3.5.5].

If this is the case, then M has the structure of a B-A bimodule, and ifM(A) andM(B)

are the categories of right modules of A and B, then the functorM(A)→M(B) ; N 7→

N ⊗A HomA(M,A) is a natural isomorphism [10, Proposition 3.5.7(i)].
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Proposition 2.7.1 Two rings A and B are Morita equivalent if and only if there exist

some A-B-bimodule M and some B-A-bimodule N such that there exists a surjective

homomorphism φ : M ⊗B N → A and a surjective homomorphism ψ : N ⊗AM → B.

Proof: [10, 3.5.4] �
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Chapter 3

Coadmissible primitive spectrum of the

Arens-Michael Envelope of a nilpotent

enveloping algebra

3.1 The Arens-Michael Envelope of a nilpotent envelop-

ing algebra

3.1.1 Arens-Michael Envelope of g

Let g be a K-Lie algebra. The Arens-Michael envelope of g is the completion of U(g)

with respect to all submultiplicative seminorms. For a Lie-lattice L ⊂ g, we set Û(L ) =

lim←−i∈N U(L )/πiU(L ) and Û(L )K = Û(L )⊗K.

When L ⊂ T there is an embedding Û(L )→ Û(T ). We set Ũ(g) = lim←−L
Û(L )K ,

where L runs over the set of all lattices in g. We can show that Ũ(g) is isomorphic to

the Arens Michael envelope of g.
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Theorem 3.1.1 Let M be a simple, coadmissible left Ũ(g)-module, and let 0 6= φ ∈

End
Ũ(g)

(M). Then φ is algebraic over K.

Proof: Since M is simple, every element of End
Ũ(g)

(M) is invertible, so the �eld K(φ) ⊂

End
Ũ(g)

(M). Let L be a lattice in g such that [L ,L ] ⊂ πL . M is coadmissible, so

by [18, Corollary 3.3], M = lim←−i∈N
̂U(πiL )K ⊗Ũ(g)

M . Hence, since M is non-zero, for

some i ∈ N, ̂U(πiL )K ⊗Ũ(g)
M is non-zero. We assume without loss of generality that

N = Û(L )K ⊗Ũ(g)
M 6= 0. We can see that the map ρ : End

Ũ(g)
(M) → End

Û(L )K
(N)

that sends ψ to the linear extension of ψ to N is a ring homomorphism, so ρ|K(φ) is a

ring embedding with image K(φ′), where φ′ is the linear extension of φ to N . Hence

every element of K [φ′] is invertible. Of course N is �nitely generated as a Û(L )K-

module sinceM is �nitely generated as a Ũ(g)-module, Û(L )K is an almost commutative

a�noid algebra per the de�nition given in [2], and since [L ,L ] ⊂ πL , Û(L )/πÛ(L )

is isomorphic to Symκ(L ), so is commutative and Gorenstein, so applying [2, Corollary

8.6] we have that φ′ is algebraic over K, and hence φ is algebraic over K. �

3.1.2 A�noid Weyl Algebras

For a commutative ring S, the Weyl algebra An(S) over S is generated over S by ti and

∂i for 1 ≤ i ≤ n, subject only to the relations [ti, tj] = 0 and [∂i, ∂j] = 0 for 1 ≤ i, j ≤ n

and [ti, ∂j] = δij for 1 ≤ i, j ≤ n.

For i ∈ N let Ŵs,i,K be de�ned as in section 2.4.6 and de�ne W̃s = lim←−i∈N Ŵs,i,K . If

we set h2s to be the K-lie algebra generated by z, x1, y1, ..., xs, ys with the xi pairwise

commuting for 1 ≤ i ≤ s, the yi commuting for 1 ≤ i ≤ s, z central, and [xi, yj] = δijz

for 1 ≤ i, j ≤ s, and for i ∈ N we set Hi to be the R-lie lattice in g generated by
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πiz, πix1, π
iy1, ..., π

ixs, π
iys, then

Ũ(h3) = lim←−
i∈N

Û(Hi)K ,

while Ŵs,i,K = Û(Hi)K/zÛ(Hi)K , so that W̃s = Ũ(h3)/zŨ(h3), a Fréchet-Stein algebra.

For each i ∈ N, there is a natural left action of Ŵs,i,K on Ms,i = K〈πit1, . . . , πits〉,

where tj acts by multiplication and ∂j acts by α 7→ [∂j, α] for α ∈ Ms,i, 1 ≤ j ≤ s.

There is a natural embedding σi : Ms,i → Ŵs,i,K . σi is characterized by the fact that

σi(α) · 1 = α for all α ∈Ms,i.

Proposition 3.1.2 Let s ∈ N. Then the Ms,i form a coherent sheaf for (W̃s, qi), where

qi is the norm induced on W̃s by the norm on Ŵs,i,K.

Proof: For each i ∈ N we need to produce an isomorphism Ŵs,i,K ⊗ ̂Ws,i+1,K
Ms,i+1 →Ms,i.

Let i ∈ N and set N = Ms,i, N ′ = Ms,i+1, V = Ŵs,i,K and V ′ = Ŵs,i+1,K . Let φ be the

homomorphism of left V -modules

φ : V ⊗V ′ N ′ → N ; α⊗ n 7→ α · ρi(n)

where ρi is the natural embedding of left V ′-modules N ′ → N . It is clear that φ is a well

de�ned homomorphism of left V -modules. Consider the map

φ′ : N → V ⊗V ′ N ′ ; α 7→ σi(α)⊗ 1.

Since σi(α) · 1 = α, we deduce that φ(σi(α) ⊗ 1) = α. Then φ′ is a right inverse to φ,

so φ is surjective. It remains to show that φ is injective. For this we �rst observe that

α⊗ n = ασi(ρi(n))⊗ 1 for all n ∈ N ′. Now we can write

ασi(ρi(n)) =
∑
λ∈Ns

σi(γλ)∂
λ
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where γλ ∈ N , π−i|λ|γλ → 0 as |λ| → ∞, and ∂λ = ∂λ11 . . . ∂λnn . Now, whenever λ 6= 0, we

have that ∂λ ⊗ 1 = 1⊗ (∂λ · 1) = 0, so by producing an obvious convergent series we �nd

that ασi(ρi(n))⊗ 1 = σi(γ0)⊗ 1. Now we �nd that

φ′φ(α⊗ n) = φ′φ(σi(γ0)⊗ 1) = φ′(γ0) = σi(γ0)⊗ 1.

Hence φ′ is also a left inverse to φ, and φ is an isomorphism of left Vi-modules. �

By proposition 3.1.2 we can form a coadmissible module M̃s = lim←−i∈NMs,i with a

natural left action from W̃s. Clearly the following diagram commutes

W̃s × M̃s

ι
��

// M̃s

ι

��
Ŵs,i,K ×Ms,i

//Ms,i

where the vertical arrows are homeomorphisms onto their images, and the bottom hori-

zontal map is continuous, so it follows the action of W̃s on M̃s is continuous.

Now, we identify Ms−1,i with its image in Ms,i under the map sending ti 7→ ti for

1 ≤ i ≤ j, and M̃s−1 with the induced image in M̃s.

Given a K-Banach space B, we de�ne B〈t〉 as the algebra

B〈t〉 =

{
∞∑
i=0

ait
i ∈ B [[t]] : ai → 0 as i→∞

}
.

as in [1, 4.1]. Note that B is a K〈t〉 module.

Lemma 3.1.2 1. Let B be a K-Banach space. For j ∈ N, let ωj = 1 − t∂
j
and let

Ωj = ωj . . . ω1. Then if α = α0 + α′ ∈ B〈t〉 where α0 ∈ B and α′ ∈ tB〈t〉, then

Ωj(α)→ α0 as j →∞.

2. Let 0 6= α ∈ M̃s. Then W̃sα contains a sequence converging to a non-zero element

of K.

3. W̃s has no non-trivial closed ideals.
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Proof:

1. Let α ∈ B〈t〉. Let ∂ = d
dt
∈ EndK(B〈t〉). Write α =

∑
i∈N αit

i for αi ∈ B, where

αi → 0 in B as i→∞. We can calculate that

ωjα =
∑
i∈N

(1− i

j
)αit

i.

Noting that
(
j
i

)
= 0 when j < i, for all l ∈ N we have

l∏
j=1

(1− i

j
) = (−1)l

(
i− 1

l

)
for i > 0, and is equal to 1 for all l ∈ N when i = 0. Then we �nd

Ωlα = α0 +
∑
i≥1

(−1)l
(
i

l

)
αit

i.

Since vK
((
i
l

))
≥ 0 for all i, l ∈ N, the sequence (Ωjα)j∈N converges to α0 in B〈t〉,

proving the claim.

2. We proceed by induction on s. The base case s = 0 is obvious since M̃0 = K.

Now assume that the theorem holds for M̃s−1. For each i ∈ N, let Ni be the closed

submodule of Ms,i generated by the tj for 1 ≤ j ≤ s− 1, so that Ms,i = Ni〈πits〉.

For j ∈ N, let ρj be the natural embedding M̃s → M̂s,j,K . We can write α =∑
i∈N αit

i
s for some αi ∈ M̃s−1 such that π−niαi → 0 as i→∞ for all n ∈ N. Then

by part 1 Ωkρj(α) → ρj(α0) as k → ∞ for all j ∈ N. It follows that Ωkα → α0 as

k →∞.

In the case that α0 = 0, since α 6= 0 for some i ∈ N we must have that ∂i(α)0 6= 0,

so we simply replace α with ∂i(α).

3. From [12, Proposition 1.4.6] Ŵs,i,K is simple for i ∈ N. Let I be a closed non-zero

ideal of W̃s. Then the closure of I in Ŵs,i,K is equal to Ŵs,i,K for i ∈ N. It follows

that I = lim←−i∈N Ŵs,i,K = W̃s, so W̃s has no non-trivial ideals.
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�

Theorem 3.1.2 W̃s has a faithful coadmissible simple module.

Proof: We will show that M̃s is a coadmissible simple faithful left W̃s-module. We have

already seen that the action of W̃s on M̃s is continuous. By [18, 3.4(ii)], the coimage of

any linear map between coadmissible modules is coadmissible, hence for any α ∈ M̃s we

have that W̃sα is coadmissible in Ms. Now, by lemma 3.1.2(2) W̃sα contains an element

of K, and since W̃sα is closed it follows that it contains a non-zero element of K. The

map M̃s → W̃s × {1} ; α 7→ (α, 1) is a section to the restriction of the action of W̃s on

M̃s to W̃s × {1}, so it follows W̃sα = M̃s, and hence M̃s is simple.

To see that M̃s is faithful, let a, b ∈ W̃s. Write a =
∑

i∈N ai∂
i and b =

∑
i∈N bi∂

i

with ai, bi in the image of M̃s in W̃s. Choose the smallest i ∈ N such that ai 6= bi. Then

ati = a0t
i + ia1t

i−1 + ... + i!ai while bti = a0t
i + ... + (i − 1)!ai−1t

i−1 + i!bi. Therefore

ati 6= bti, proving the claim. �

3.2 Coadmissible Primitive Spectrum of the Arens Michael

Envelope of a Primitive Lie Algebra

3.2.1 Correspondence Theorem

If A is a K algebra and I is an ideal of A such that Z(A/I) is isomorphic to K, then we

say that I is weakly rational.

In this section, we let g be a �nite dimensional nilpotent K-Lie algebra. By [7,

Proposition 4.7.4, Theorem 4.7.8(ii)], the set of rational, primitive, and maximal ideals

of U(g) are equal, and if I is a weakly rational ideal, then for some s ∈ N we have a
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surjection of K-algebras U(g)/I → As(K) with kernel I, and call such a map a Dixmier

map. We abuse notation and use ι to refer to the canonical embedding of any topological

ring in its completion.

Lemma 3.2.1 1. If J is a closed primitive ideal of Ũ(g) then J ∩ U(g) is primitive,

and if J is a closed weakly rational ideal then J ∩ U(g) is weakly rational.

2. Let J be a closed weakly rational ideal of Ũ(g), and let I be a closed weakly rational

ideal of U(g). Then IŨ(g) is a closed weakly rational ideal of Ũ(g), and (J ∩

U(g))Ũ(g) = J .

3. Ũ(g) is �at as a U(g)-module.

Proof:

1. Let J ′ = J ∩ U(g). By theorem 3.1.1 the center L of Ũ(g)/J is an algebraic �eld

extension of K. U(g) is dense in Ũ(g), so U(g)/J ′ is dense in Ũ(g)/J and

K ⊂ Z(U(g)/J ′) ⊂ L.

It follows that Z(U(g)/J ′) is a �eld, and by [7, Proposition 4.7.4] it follows that J ′

is primitive. Clearly when L = K we have Z(U(g)/J ′) = K, so that J ′ is weakly

rational.

2. First of all, IŨ(g) is a �nitely generated right Ũ(g)-module so it is closed, and since

I is dense in IŨ(g), I is an ideal since the closure of an ideal is an ideal.

Let Ψ be a Dixmier map U(g) → As(K) with kernel I. Choose a lattice L in

g and for i ∈ N let Li = πiL . Then Ψ(L ) is a �nitely generated R-module in

As(K). Fix j ∈ N. Then Ws,j ⊗K = As(K), so it follows that for some n ∈ N we

have Ψ(Ln) ⊂ Ws,j. Hence Ψ(U(Ln)) ⊂ Ws,j, so Ψ is bounded with respect to the
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norms induced on U(g) by U(Ln) and on As(K) by Ws,j. Then there is a unique

continuous extension

Ψj : Û(Ln)K → Ŵs,j,K

of Ψ. Û(Ln)K is a �at U(g)-module by [4, 3.2.3(iv)], so the kernel of Ψj is IÛ(Ln)K .

Let ρj be the canonical embedding of Ũ(g) into Û(Ln)K , and let Ψ′j = Ψjρj (Ψ′j

doesn't depend on the choice of n.) Then for all j ∈ N we have Ψj|U(g)= ιΨ, where

ι is the embedding Ws → Ŵs,j,K . Noting that U(g) is dense in Ũ(g), we deduce that

the following diagram commutes

Ũ(g)
Ψ′i

""

Ψ′j

||

Ŵs,j,K
// Ŵs,i,K

whenever j ≥ i. Hence we obtain a continuous map Ũ(g) → W̃s whose restric-

tion to U(g) is Ψ and whose kernel contains IŨ(g). Let χ be the induced map

Ũ(g)/IŨ(g)→ W̃s. We will produce an inverse map to χ.

From the proof of [18, 3.7], we have that

lim←−
i∈N

Û(Li)K/IÛ(Li)K = Ũ(g)/IŨ(g).

I is a maximal ideal of U(g) so clearly we have that I = IŨ(g)∩U(g). Hence U(g)/I

is dense in each Û(Li)K/IÛ(Li)K . By similar reasoning to above, if we �x i ∈ N

we can �nd some n ∈ N such that Ψ−1(Wn) ⊂ U(Li)/(I ∩ U(Li)) and construct

a continuous morphism χ′ : W̃s → Ũ(g)/IŨ(g) such that χ′|As(K)= Ψ−1. Then

(χχ′)|As(K)= idAs(K) and (χ′χ)|U(g)/I= idU(g)/I . Since U(g)/I is dense in Ũ(g)/IŨ(g)

and As(K) is dense in W̃s, it follows that χ is an isomorphism. Since the center of

W̃s is K, this proves the �rst statement.
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By lemma 3.1.2(3) W̃s has no non-trivial closed ideals so it follows that IŨ(g) is

maximal within the lattice of closed ideals of Ũ(g). Then if we take I to be the ideal

J ∩ ˜U(U(g)), a weakly rational ideal by part 1, then (J ∩ U(g))Ũ(g) ⊂ J implies

J = (J ∩ U(g))Ũ(g), proving the second statement.

3. By [18, Remark 3.2], for any lattice L ⊂ g, Û(L )K is a �at Ũ(g)-module, and

by [4, 3.2.3(iv)] Û(L )K is a �at U(g) module. Let 0 → M1 → M2 → M3 → 0

be an exact sequence of U(g) modules. Let L be a lattice in g and for n ∈ N let

Ln = πnL . Then the map

Û(Ln)K ⊗U(g) M1 → Û(Ln)K ⊗U(g) M2

is an embedding for all n ∈ N since Û(Ln)K is �at over U(g).

It follows that the map lim←−n∈N Û(Ln)K ⊗M1 → lim←−n∈N Û(Ln)K ⊗M2 is an embed-

ding. Let M̃i = Ũ(g)⊗U(g) Mi for i = 1, 2. From [18, Corollary 3.3], for i = 1, 2 we

have that M̃i = lim←−n∈N Û(Ln)K ⊗Ũ(g)
M̃i. Of course, for n ∈ N we have that

lim←−
n∈N

Û(Ln)K ⊗Ũ(g)
M̃i = lim←−

n∈N
Û(Ln)K ⊗U(g) Mi,

so the map M̃1 → M̃2 is an embedding, and Ũ(g) is a �at U(g)-module.

�

We de�ne c.Prim(Ũ(g)) to be the set of ideals which annihilate simple coadmissible

Ũ(g)-modules.

Theorem 3.2.1 The map J 7→ J ∩ U(g) induces a bijection between c.Prim(Ũ(g)) and

Prim(U(g)).

Proof: By lemma 3.2.1(i) the map Ψ : c.Prim(Ũ(g)) → Prim(U(g)) ; J 7→ J ∩ U(g) is

well de�ned. We aim to prove that the map Ψ′ : I 7→ Ũ(g)I is inverse to Ψ. Let I
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be a primitive ideal of U(g). Let L be the center of U(g)/I. Then L is an algebraic

�eld extension of K by Quillen's lemma. Let M be a simple left U(g)-module such that

I is the annihilator of M . Then there is a natural extension of the action of U(g) to

U(g)L = U(g) ⊗ L. Let I ′ be the annihilator of M in U(g)L with respect to this action.

Then since L ⊂ U(g)/I, we deduce that U(g)/I is isomorphic as a K-algebra to U(g)L/I
′.

Of course I ′ is a weakly rational ideal of U(g)L so by lemma 3.2.1(ii), Ũ(g)LI
′ is a closed

weakly rational ideal of Ũ(g)L = Ũ(g)⊗K L.

Now, the sequence

0→ Ũ(g)I → Ũ(g)→ Ũ(g)⊗U(g) U(g)/I → 0

is exact. But since Ũ(g)⊗U(g) (U(g)/I) is isomorphic to Ũ(g)⊗U(g) (U(g)L/I
′), a primitive

ring, it follows that Ũ(g)I is primitive. Moreover, since Ũ(g)⊗U(g) (U(g)/I ′) has no non-

trivial closed ideals, we �nd that Ũ(g)I is maximal within the lattice of closed ideals of

Ũ(g).

Since Ũ(g)I is �nitely generated it is coadmissible, so the map Ψ′ is well de�ned,

and it is trivial that if I ∈ Prim(U(g)) then I ⊂ ΨΨ′(I). But by [7, Proposition 4.7.4]

I is maximal, so I = ΨΨ′(I). On the other hand if J ∈ c.Prim(Ũ(g)) then Ψ(J) is

primitive, and as shown above Ψ′Ψ(J) is maximal within the lattice of closed ideals. But

Ψ′Ψ(J) ⊂ J , so Ψ′Ψ(J) = J . Hence Ψ′ is inverse to Ψ. �
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Chapter 4

Arithmetic di�erential operators over

the a�ne line

4.1 Some Notation From Algebraic Geometry

It is assumed that the reader is familiar with the basic notions of algebraic geometry

as an account here would be awkward. For an introduction you could see, for instance,

Hartshorne or EGA. I will try and explain the important mechanics at play in the paper,

which are all quite simple and fundamental.

Let R be a c.d.v.r, π a uniformizer of R, κ its residue �eld, and K its �eld of fractions.

Let S = Spec(R).

4.1.1 A�ne and Projective Line

Let A be a ring, and let V = Spec(A). Then we de�ne the a�ne line A1
A over A to be the

spectrum of the one dimensional polynomial algebra over A. By choosing a coordinate t

for A1
A we are simply choosing a presentation A1

A = Spec(A [t]).
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Now let A and A′ be two copies of A1
A. Let t be a coordinate for A and let s be a

coordinate for A′. Then the natural A-algebra homomorphism

O(A)→ O(A\0)

and the A-algebra homomorphism

O(B)→ O(A\0) ; s 7→ t−1

induce a diagram of X-schemes

A\{0} //

��

A

A′

. We de�ne P1
A to be the colimit of of this diagram. When we choose a coordinate t for

P1
A, we are simply choosing a presentation of P1

A as the colimit of a diagram as above (and

abusing notation by identifying s with t−1.)

4.1.2 Completion of OX-modules

Now let X be an S-scheme, and let M be an OX -module. Then we de�ne M̂ =

lim←−i∈NM/πiM , whose module of sections on an open U ⊂ X can be shown to be the

R-module lim←−i∈NM(U)/πiM(U) (see [8, Proposition 9.2].) We de�ne M̂K to be the OX-

module whose sections on an open subset U of X are the R-module M̂(U)⊗R K.

4.2 Berthelot's Arithmetic Di�erential Operators

4.2.1 The Sheaf of Divided Powers of level m over A1

The sheaf of divided powers D[m]
X of a smooth S-scheme X of level m is de�ned in [4,

Section 2.2.1] (D[m]
X is written D(m)

X/S in that paper.) D[0]
X is naturally an OX-module by [4,
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Section 2.2.1, Equation 2.2.1.4]. We will investigate the structure of the π-adic completion

of the sheaf D[m]
X where X is in dimension one, so we will only recall the properties we

will need for this speci�c case.

First, let X = A1
R. Let t be a coordinate for X, let dt be the basis element for

Ω1
X/S(X) corresponding to t, and let ∂t be the dual operator to dt in TX(X), where TX is

the tangent sheaf of X. Then D[0]
X is a sheaf of Noetherian rings generated over OX by ∂t

(for a proof see [4, Corollaire 2.2.5], and [4, Remarque 2.2.5(i)].) Now, let p be the residue

characteristic of R, let i ∈ N and let qi ∈ N be the unique integer such that i = pmqi + r

with 0 ≤ r < pm.

Using [4, Proposition 2.2.4] we set D[m]
X =

⊕
i∈N ∂

[i]
t OX as an OX-module, with mul-

tiplication de�ned on an open U ⊂ X by the following equations:

1. For all i ∈ N, the action of ∂[i]
t on OX(U) is given by

∂
[i]
t (tj) = qi!

(
j

i

)
tj−i ∈ OX(U) for all j ∈ N.

2. For all i, j ∈ N,

∂
[i]
t ∂

[j]
t =

(
i+ j

i

)
qi!qj!

qi+j!
∂

[i+j]
t ∈ D[1]

X .

3. For all i ∈ N, α ∈ OX(U)

∂
[i]
t α =

∑
k+l=i

qi!

qk!ql!
∂

[k]
t (α)∂

[l]
t .

(∂[p]
t is written ∂

〈p〉(m)

t or just ∂〈p〉t in [4].)

D[m]
X is a sheaf of Noetherian rings generated over OX by ∂[pi]

t for 0 ≤ i ≤ m by [4,

Corollaire 2.2.5]. From the equations we can see that the morphism of sheaves (X,D[0]
X )→

(X,D[m]
X ) which is the identity on X and sends ∂it 7→ i!

qi!
∂

[i]
t is injective. For this reason

we write ∂[1]
t = ∂t and think of D[0]

X as a subsheaf of D[m]
X . Whenever 0 ≤ i ≤ pm, we have

that qi! = 1, so ∂t∂
[i]
t = (i+ 1)∂

[i+1]
t . Hence ∂p

m

t = pm!∂
[pm]
t .
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4.2.2 Completion of the Sheaf of Divided Powers

Let X be a copy of P1
R or A1

R. Then we set D̂[m]
X = lim←−i∈N D̂

[m]
X /πiD̂[m]

X for m ∈ N (The

de�nition of an inverse limit of sheaves is given in [8, Chapter 2, Proposition 9.2].)

Proposition 4.2.2 Let X be a copy of A1
R.

1. D̂[0]
X (X)⊗K is a simple domain.

2. Let Np = {0, . . . , p− 1}. Every element α of D̂[m]
X (X) can be written uniquely in the

form

α =
∑

i,j∈N,λ∈Nm
p

αijλt
i∂λ1t (∂

[p]
t )λ2 . . . (∂

[pm−1]
t )λm(∂

[pm]
t )j

with αijλ ∈ R, αijλ → 0 as i+ j →∞.

3. D̂[m]
X is �at over R.

4. ∂it
i!
∈ D[m]

X (X) for all i < pm+1.

Proof:

1. From the de�nitions we can see that D̂[0]
X (X) is the π-adic completion of the R-

algebra generated by t and ∂t, subject only to the relation [∂t, t] = 1. Then [2, 7.3]

provides a proof that D̂[0]
X (X)⊗K is simple.

2. Since X is a�ne, we know from [8, Proposition 9.2] that

D̂[m]
X (X) = lim←−

i∈N
D[m]
X (X)/πiD[m]

X (X) = D̂[m]
X (X).

Let

A = R [a, b0, . . . , bm] /(bpi−1 −
pi!

(pi−1!)p
bi)

49



Then, if we give the R module A the structure of a topological R-module with the

πA-topology, and give D[m]
X (X) its πD[m]

X (X)-adic topology, then there is a topolog-

ical isomorphism

A→ D[m]
X (X) ; a 7→ t ; bi 7→ ∂

[pi]
t ,

which gives us an isomorphism

lim←−
i∈N

A/πiA→ D̂[m]
X (X).

Now, from the de�nition of A, there is exactly one way of writing each element

α ∈ A (and each element α ∈ lim←−i∈NA/π
iA in the form

α =
∑

i,j∈N,λ∈Nm
p

αijλa
ibλ10 b

λ2
1 . . . bλmm−1b

j
m

proving the proposition.

3. Since D[m]
X (X) is a free R-module it is �at over R, and by [4, 3.2.3(4)], D̂[m]

X (X) is

�at over D[m]
X (X), it follows D̂[m]

X (X) is �at over R.

4. Since i < pm+1 we can write i = amp
m + am−1p

m−1 + . . . + a0 with 0 ≤ aj < p for

0 ≤ j ≤ m. Then by [6, 1.2.3.3]

vK(i!) =
m∑
j=1

ajvK(pj!).

Then, for some ε ∈ R×

∂i

i!
= ε∂a0

(
∂[p]
)a1

. . . (∂[pm])am ,

proving the claim.

�
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4.3 Sections over the A�ne Line

4.3.1 The Main Theorem

Let X and Y be two copies of A1
R, and let t be a coordinate for X and τ a coordinate for

Y . Let F : (X,OX) → (Y,OY ) be the morphism of formal schemes induced by the ring

homomorphism O(Y )→ O(X) ; τ 7→ tp
m
. Let ∂τ ∈ T (Y ) be the operator dual to dτ and

let ∂t ∈ T (X) be the operator dual to dt.

If A is a sheaf of R-algebras over an S-scheme Z, we de�neMn(A) to be the sheaf such

that Mn(A)(U) = Mn(A(U)) for all open U ⊂ Z, where Mn(A(U)) is the n-th matrix

ring over A(U). We set {ẽij}1≤i,j≤n to be the set of standard matrix units for Mn(A(Z)).

We will prove the following theorem:

Theorem 4.3.1 There is an isomorphism of OY -rings

Mpm(D̂[0]
Y )→ F∗D̂[m]

X

such that, on global sections, ∂τ 7→ γ∂
[pm]
t for some γ ∈ 1 + πD̂[m]

X (X).

Let Am = F∗D̂[m]
X (Y ) and A0 = D̂[0]

Y (Y ).

Lemma 4.3.1 Suppose that there is a map ω : Mpm(A0)→ Am which is an isomorphism

of OY (Y )-rings such that ∂τ 7→ γ∂
[pm]
t for some γ ∈ 1 + πAm. Then there exists an

isomorphism of OY -rings Ω : Mpm(D̂[0]
Y )→ F∗D̂[m]

X such that Ω(Y ) = ω.

Proof: Set A0 = D̂[0]
Y and Am = D̂[m]

Y . Let U be an open subset of Y . For n ∈ N, the

isomorphism ω : Mpm(A0(X))→ Am(Y ) induces an isomorphism

ωn : Mp(A0(Y )/πnA0(Y ))→ Am(Y )/πnAm(Y ).
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For i = 0,m, n ∈ N, we have Ai(Y )/πnAi(Y ) = D[i]
Y /π

nD[i]
Y . As explained in section 4.2.1,

D[i]
Y is generated over OY by its global sections, so we can deduce that D[i]

Y /π
nD[i]

Y (U) =

OY (U)⊗O(Y ) D[i]
Y /π

nD[i]
Y (Y ). So we can construct a commutative square

OY (U)⊗O(Y ) Mpm(D[0]
Y /π

nD[0]
Y )(Y ) //

��

OY (U)⊗O(Y ) D[m]
Y /πnD[m]

Y (Y )

��

Mpm(D[0]
Y /π

nD[0]
Y )(U) // D[m]

Y /πnD[m]
Y (U)

where the vertical arrows are equalities, and the top horizontal arrow is induced by ωn.

Now, we construct Ω by setting Ω(U) : Mp(A0)(U) → Am(U) to be the inverse limit of

the bottom horizontal arrows. �

Now, using lemma 4.3.1, we can prove theorem 4.3.1 by constructing an isomorphism

ω : D̂[m](Y )→Mpm(D̂[0](Y )).

We will proceed in the following manner:

1. Identify a commutative subalgebra C ⊂ Am containing a complete set of non-zero

distinct orthogonal idempotents {eii}0≤i≤pm−1.

2. Find γ ∈ 1 + πC such that
[
γ∂

[pm]
t , tp

m
]

= 1, and prove that the closed R-algebra

generated by OY (Y ) and γ∂[pm]
t is isomorphic to A0.

3. De�ne a set of elements {eij}1≤i,j≤pm ⊂ Am which form a set of matrix units for Am,

and show that they commute with OY (Y ) and γ∂[pm]
t .

4. Use the set {eij}1≤i,j≤pm and the element γ∂[pm]
t to construct the required isomor-

phism of OY (Y )-rings ω : Mp(A0)→ Am.

Throughout this section, we will abbreviate ∂t to ∂.
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4.3.2 Facts about Binomials

For the rest of this section, we de�ne w = pm, and if 0 ≤ i ≤ w− 1, we set i∗ = w− 1− i.

Lemma 4.3.2 1. Let x and y be some formal variables. Then(
x+ y

n

)
=

n∑
i=0

(
x

j

)(
y

n− j

)

2. Let x ∈ N and let n ∈ N. Then

n∑
i=0

(
i

x

)
=

(
n+ 1

x+ 1

)

3. For all k ∈ Z

(
k

w − 1

)
≡


1 mod pZp if k ≡ −1 mod wZp

0 mod pZp otherwise

4. (Newton Interpolation Formula:) Let f(x) ∈ K [x], and for j ∈ N let Cj(f) =∑
k≤j(−1)j−k

(
j
k

)
f(k). Then f(x) =

∑
j∈NCj(f)

(
x
j

)
.

5. For all 0 ≤ i ≤ w − 1,
(
w−1
i

)
≡ (−1)i mod pZ.

Proof: Parts 1 and 2 are well known identities that can be easily found in a set of

introductory lecture notes - the �rst is known as the Vandermonde identity and the

second is the known as the �sum of binomial coe�cients over upper index� identity. Part

4 can be viewed as a special case of Mahler's theorem. For part 5, use the identity

(1−X)w−1 ≡ (1 +Xw)

1−X
= (1 +Xw)(

∑
i∈N

(−1)iX i) mod pK [[X]] .

For part 3, write k = am′p
m′+am−1p

m−1+. . .+a0 withm′ ≥ m, 0 ≤ ai < p for 0 ≤ i ≤ m′.

Then by Lucas' theorem(
k

w − 1

)
≡
(
am′

0

)(
am′−1

0

)
. . .

(
am
0

)(
am−1

p− 1

)(
am−2

p− 1

)
. . .

(
a1

p− 1

)
mod pZ.

from which part 3 follows immediately. �
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4.3.3 The Diagonal Algebra

Let C be the closed R-subalgebra of Am generated over R by di = ti∂[i] for 0 ≤ i < pm+1.

To ease notation, set ci = tp
i
∂[pi] for 0 ≤ i ≤ m.

Proposition 4.3.3 1. For all n ∈ N,
∏n−1

i=0 (t∂ − i) = tn∂n

2. i!di =
∏i

j=0(c0 − j) for 1 ≤ i ≤ w (recall w = pm), aidi =
∏i

j=0(c0 − j) for some

ai ∈ R for all i ∈ N, and C is a commutative R-algebra.

3. For all 0 ≤ a ≤ w and b ∈ Z the element
(
c0+b
a

)
∈ C ⊗R K belongs to the image of

C in C ⊗R K.

4. There is a continuous automorphism φ of C such that φ(c0) = c0 + 1. φ can be

extended to an automorphism of D̂[m]
X (X\{0}) which sends α 7→ t−1αt for all α ∈

D̂[m]
X (X\{0}).

5. For all α ∈ C, ∂α = φ(α)∂ and tα = φ−1(α)t.

6. For all i ∈ N, vK(i!)
i

< vK(p)
p−1

.

Proof:

1. We proceed by induction on n. For n = 0 the statement is tautological, so suppose

the statement is true for all m < n. Then
∏n

i=0(t∂ − i) = (tn−1∂n−1)(t∂ − n). But

[∂n−1, t] = (n− 1)∂n−2, so

(tn−1∂n−1)(t∂ − (n− 1)) = tn∂n + (n− 1)tn−1∂n−1 − (n− 1)tn−1∂n−1 = tn∂n,

completing the proof.

2. Since di = ti∂[i], from section 4.2.1 we have i!di = ti∂i when 1 ≤ i ≤ w. From

the de�nition of ∂[i] we have ai∂[i] = ∂i for some ai ∈ Z, and we know ai = i! for
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1 ≤ i ≤ w. Using part 1 we have

aidi = ti∂i =
i−1∏
j=0

(t∂ − j) =
i−1∏
j=0

(c0 − j),

proving the �rst two parts of the statement. By proposition 4.2.2(3), C is contained

in a �at R-algebra, so it follows that the di pairwise commute for 1 ≤ i ≤ w − 1 ,

and C is a commutative R-algebra.

3. Let 0 ≤ a ≤ w − 1. Using lemma 4.3.2(1) we can see that

(
c0 + b

a

)
=

b∑
i=0

(
c0

j

)(
b

n− j

)
=

k∑
i=0

(
b

n− j

)
dj

proving the claim.

4. By proposition 4.2.2(2), C can be viewed as an R-subalgebra of D̂[m]
X (X\{0}), we

will prove that C is an invariant of the automorphism a 7→ t−1at of D̂[m]
X (X\{0}).

This will be enough, as we can directly calculate that t−1c0t = ∂t = t∂+ 1 = c0 + 1.

Clearly c0 + 1 ∈ C, so we only need to show that t−1dit ∈ C for 1 ≤ i ≤ w.

Let 1 ≤ i ≤ w. Using the equation i!di =
∏i−1

j=0(c0 − j) from part 2 gives us the

equation (working in C ⊗R K)

t−1cit = t−1

(
c0

i

)
t =

(
c0 + 1

i

)

which belongs to C by part 3.

5. Again treating C as an R-subalgebra of D̂[m]
X (X\{0}), we have that φ(α) = t−1αt

for all α ∈ C. Then we can calculate that tα = tαt−1t = φ−1(α)t for all α ∈ C. We

can see that ∂c0 = (c0 + 1)∂, so ∂i!di =
∏p−1

i=0 (d+ 1− i)∂ = φ(i!di)∂ for 0 ≤ i ≤ w.

Since C is contained in a �at R-algebra by 4.2.2(3), it follows that ∂α = φ(α)∂ for

all α ∈ C.
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6. If i = anp
n + an−1p

n−1 + . . .+ a0 for some n ∈ N, an 6= 0, 0 ≤ aj < p for 0 ≤ j ≤ n,

then

vK(i!) = vK(p)

(
an
pn − 1

p− 1
+ an−1

pn−1 − 1

p− 1
+ . . .+ a1

p− 1

p− 1

)
≤ vK(p)

p− 1
i,

proving the claim.

�

Lemma 4.3.3 let A be a π-adically complete R-algebra. If ê ∈ A is an element such that

ê+ πA is an idempotent of A/πA, then limn→∞ ê
pn is an idempotent of A.

If e and f are idempotents of A such that e ≡ f mod π then e = f Also, if ef = fe,

then ef ∈ πA implies ef = 0.

Proof: These facts are well known but a proof is given for the bene�t of the reader.

Set An = A/πnA. For the �rst statement, we will prove that given an element en ∈ A

such that en + πnA is an idempotent of An then epn + πn+1A is an idempotent of An+1.

This is enough since the condition of idempotence then guarantees that if e1 + πA is

idempotent, then ep
i

1 ≡ ep
j

1 mod πjA whenever j ≤ i, so (ep
i

i + πiA)i∈N ∈ lim←−n∈NAn is an

idempotent.

So let en ∈ A such that en + πnA is an idempotent of An. Then e2
n = en + πnα for

some α ∈ A. Of course πnα = e2
n− en, so πnα commutes with en. Then we can apply the

binomial theorem to see that

e2p
n =

p∑
i=0

(
p

i

)
ein(πnα)p−i ≡ epn mod πn+1A.

So epn + πn+1A is an idempotent of An+1, as required.

We now prove the second claim. Let e and f be idempotents of A such that e ≡ f

mod πA. We aim to show that e ≡ f mod πnA for all n ∈ N. We proceed by induction
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on n, so suppose that f ≡ e mod πnA, i.e. f = e + πnα for some α ∈ A. Then we can

calculate that

f = fp =

p∑
i=0

(
p

i

)
eiπn(p−i)αp−i ≡ e mod πn+1A.

Now suppose that ef ≡ 0 mod πA and assume that A is commutative. From commu-

tativity we have that ef is idempotent, so ef = (ef)n for all n ∈ N. Of course ef ∈ πA,

so ((ef)n)n∈N → 0 as n→∞. Then the sequence (ef)n∈N → 0 as n→∞, so ef = 0. �

4.3.4 Idempotents in the Slice of C

For 0 ≤ i ≤ w − 1, set

êii =

(
c0 + i

w − 1

)
.

The following proposition will be used to demonstrate that the êii+πC form a complete set

of orthogonal idempotents in C/πC (that is, a set of idempotents ei such that eiej = δijei

and
∑
ei = 1).

Proposition 4.3.4 1.
∑w−1

i=0 êii + πC = 1 + πC.

2. φ(êii) ≡ ê(i+1)(i+1) mod πC for 0 ≤ i ≤ w − 2, and φ(ê(p−1)(p−1)) ≡ ê00 mod πC.

3. ê00êii ∈ pC for 1 ≤ i ≤ w − 1, and ê00ê00 + pC = ê00 + pC.

Proof:

1. Using lemma 4.3.2(1) we have
(
x+y
n

)
=
∑n

i=0

(
x
j

)(
y

n−j

)
, so we can write

êii =

(
c0 + i

w − 1

)
=

w−1∑
j=0

(
c0

j

)(
i

w − 1− j

)
.

Then we conclude that

w−1∑
i=0

êii =
w−1∑
j=0

(
c0

j

)(w−1∑
i=0

(
i

w − 1− j

))
.
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Using lemma 4.3.2(2) we have

w−1∑
i=0

(
i

w − 1− j

)
=

(
w

w − j

)
,

hence
w−1∑
i=0

êii =
w−1∑
j=0

(
w

j

)
dj.

Since
(
w
j

)
∈ pR for 1 ≤ j ≤ w − 1 we �nd that

∑w−1
i=0 êii ∈ 1 + πC.

2. Since φ(êii) = φ(
(
c0+i
w−1

)
) =

(
c0+i+1
w−1

)
, the statement is obvious for 0 ≤ i ≤ w − 2.

Applying lemma 4.3.2(2)

φ(ê(w−1)(w−1)) =

(
c0 + w

w − 1

)
=

w−1∑
i=0

(
c0

j

)(
w

w − 1− j

)
.

Since
(

w
w−1−j

)
∈ πR for 0 ≤ j ≤ w−2 we �nd that φ(êw−1)(w−1))+πC =

(
c0
w−1

)
+πC =

ê00 + πC.

3. First assume that 1 ≤ i ≤ w − 1. Then, treating the êjj as elements of K [c0] we

can write

ê00êii =

(
c0

w − 1

)(
c0 + i

w − 1

)
.

Now, by lemma 4.3.2(4) we have ê00êii =
∑

j∈NCj(ê00êii)
(
c0
j

)
where

Cj(ê00êii) =

j∑
k=0

(−1)j−k
(
j

k

)(
k

w − 1

)(
k + i

w − 1

)
.

Now, suppose that i 6= 0. By lemma 4.3.2(3) we have that
(

k
w−1

)
∈ pZp whenever

k 6≡ −1 mod w. Since 1 ≤ i ≤ w − 1, it is true that for all k ∈ N, either k 6≡ −1

mod w or k + i 6≡ −1 mod w. Therefore
(

k
w−1

)(
k+i
w−1

)
∈ pZp for all k ∈ N, and

consequently Cj(ê00eii) ∈ pZp for all j ∈ N. On the other hand, if i = 0, then

(
k

w − 1

)(
k

w − 1

)
∈


pZp if k 6≡ −1 mod w − 1

1 + pZp if k ≡ −1 mod w − 1
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Consequently we �nd that

ê00êii ∈


pC if i 6= 0

ê00 + pC if i = 0

.

�

4.3.5 Idempotents of the Diagonal algebra

For 0 ≤ i ≤ w − 1, set

αi =
1

(w − 1)!

∏
0≤j≤w−1 and w−1−i 6=j

(c0 − j) ∈ C ⊗R K.

The following lemma is an example of lemma 4.3.2(4)

Lemma 4.3.5 Let 0 ≤ i ≤ w − 1. Then

αi =
w−1∑
j=0

(−1)j
(
i

j

)(
w − 1

j

)−1

dj∗ .

Proof: Let 0 ≤ j ≤ w− 1. Let B be the K-subalgebra of C ⊗R K generated by c0. Then

we can see that α is the unique solution in B to the equation (c0− (w− 1− i))X = wcm.

Hence, it will be enough to show that

(c0 − i∗)

(
w−1∑
j=0

(−1)j
(
i

j

)(
w − 1

j

)−1

dw−1−j

)
= wcm.

We already know that c0dj = (j + 1)dj+1 + jdj, so the above product can be written as a

telescoping sum. We can calculate that

(c0 − i∗)
(
i

j

)(
w − 1

j

)−1

dj∗ =

(
i

j

)(
w − 1

j

)−1

((j∗ + 1)dj∗+1 + (i− j)dj∗).

So the coe�cient of dj∗ in the sum is

(
i

j + 1

)(
w − 1

j + 1

)−1

(w − (j + 1))−
(
i

j

)(
w − 1

j

)−1

(i− j)
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whenever 0 ≤ j ≤ w − 1. The boundary terms are(
i

0

)(
w − 1

0

)−1

wcm − i∗(−1)w−1

(
i

w − 1

)(
w − 1

w − 1

)−1

d0 = wcm,

proving the claim. �

Proposition 4.3.5 1. For 0 ≤ i ≤ w − 1 we have αi ∈ C and

êii ≡ αi mod pC.

2. The êii + πC for 0 ≤ i ≤ w− 1 form a complete set of non-zero orthogonal idempo-

tents in C/πC.

3. For 0 ≤ i ≤ w−1, the sequences (êp
n

ii )n∈N are Cauchy and setting eii := limn→∞ ê
pn

ii ,

the idempotents eii for 0 ≤ i ≤ w − 1 are a complete set of non-zero orthogonal

idempotents in C.

4. φ(eii) = e(i+1)(i+1) for 0 ≤ i ≤ w − 2, and φ(e(w−1)(w−1)) = e00. Furthermore

φw(eii) = eii for 0 ≤ i ≤ w − 1.

Proof:

1. Let 0 ≤ i ≤ w − 1. We will prove that êii − αi ∈ πC. Using lemma 4.3.5 we can

write

αi =
w−1∑
j=0

(−1)j
(
i

j

)(
w − 1

j

)−1

dw−1−j

and using lemma 4.3.2(1) we can write

êii =

(
c0 + i

w − 1

)
=

w−1∑
j=0

(
i

j

)
dw−1−i

So that êii−α =
∑w−1

j=0 (1−(−1)j
(
w−1
j

)−1
)
(
i
j

)
dw−1−i. Then it will be enough to show

that

1− (−1)j
(
w − 1

j

)−1

∈ pC
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whenever 0 ≤ j ≤ w − 1.
(
w−1
j

)
≡ (−1)j mod pZp by 4.3.2(5), proving the claim.

2. By proposition 4.3.4(3) ê00 + πC is an idempotent of C/πC, and since the auto-

morphism φ acts transitively on the êii for 0 ≤ i ≤ w − 1 mod πC by proposi-

tion 4.3.4(2), all of the êii + πC are idempotent. By proposition 4.3.4(1), the êii

form a complete set of idempotents. Finally, if 0 ≤ i, j ≤ w − 1 and i < j then

êiiêjj = φi(ê00ê(j−i)(j−i)) ∈ πC by proposition 4.3.4(3), so the êii+πC are orthogonal.

3. Given part 2, this is a straightforward application of lemma 4.3.3.

4. Given part 3 and proposition 4.3.4(2), this is a straightforward application of lemma

4.3.3.

�

4.3.6 Existence of a di�erential for τ

In this section we will �nd an element γ ∈ 1 + πC such that
[
γ∂[w], τ

]
= 1.

Lemma 4.3.6 There exists γi ∈ eii(1 + πC) such that φ−w(γi)αi = eii. Moreover, for

0 ≤ i ≤ w − 1,

wcmφ
−w(γi) = eii(c0 − (w − 1− i)).

Proof: By proposition 4.3.5(1) we have

αi ≡ êii mod πC.

It follows that eiiαi ≡ eii mod πC, so eiiαi = eii(1 + πλi) for some λi ∈ C. Since C is

π-adically complete, for all x ∈ C, 1 + πx is invertible, so set

γi = φw
(
eii(1 + πλi)

−1
)
.
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Then we have that φ−w(γi)αi = eii(1 + πλ)(1 + πλi)
−1 = eii.

Using the equation w!cm =
∏w−1

i=0 (c0 − i), we have that (c0 − (p − 1 − i))αi = wcm.

Then

wcmφ
−w(γi) = (c0 − (w − 1− i))αiφ−w(γi) = eii(c0 − (w − 1− i)).

�

Theorem 4.3.6 Let the elements γi ∈ C for 0 ≤ i ≤ w− 1 be de�ned as in lemma 4.3.6.

Set γ =
∑w−1

i=0 γi. Then
[
γ∂[w], tw

]
= 1.

Proof:

Again using proposition 4.3.3, and (calculating inside the over-ring D̂[m]
X (X\{0})) the

fact that φw(cm) = φw(tw∂[w]) = t−wtw∂[w]tw = ∂[w]tw, we can calculate that

[
γ∂[w], tw

]
= γ∂[w]tw − twγ∂[w] = φw(cm)γ − cmφ−w(γ) = (φw − id)(cmφ

−w(γ)).

So we need to show that (φw − id)(cmφ
−w(γ)) = 1.

Fix 0 ≤ i ≤ w−1. Since φw(c0) = c0+w, we can see that (φw−id)(x−(w−1−i)) = w,

so using the fact that φw(eii) = eii, by lemma 4.3.6 we see that

(φw − id)(wcmφ
−w(γi)) = eii (φ

w − id) (x− (w − 1− i)) = weii.

Finally, by linearity we deduce that

(φw − id)(cmφ
−w(γ)) =

w−1∑
i=0

(φw − id)(cmφ
−w(γi)) =

w−1∑
i=0

eii = 1.

�

4.3.7 Matrix Units

Lemma 4.3.7 For 0 ≤ i, j ≤ w − 1, set eij = eiit
j−iejj ∈ D̂[m]

X (X\{0}). Then, if we

consider Am as a subset of D̂[m]
X (X\{0}), each of the eij belong to Am.
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Proof: Am is complete, and Am/πAm is �nite over A0/πA0, so it is Noetherian. Therefore

by proposition 2.2.7(2) Am is a Zariskian ring, and its ideals are closed by proposition

2.2.7(1) By proposition 4.3.3 and proposition 4.3.3(1) we know that (êii)
pn = φi(ê00)p

n
=

(t−itp−1∂
[p−1]
t ti)p

n
=
(
tp−1−i∂

[p−1]
t ti

)pn
∈ Amt

i for all n ∈ N, so it follows that eii =

limn→∞ ê
pn

ii ∈ Amti, so that eiit−i ∈ Am. Then eij = eiit
−i(tjejj) ∈ Am. �

Proposition 4.3.7 The {eij}0≤i,j≤w−1 form a set of matrix units in Am.

Proof: We need to check that eijei′j′ = δji′eij′ . Note that since ejjei′i′ = δji′ejj, so

eijei′j′ = eiit
j−iejjei′i′t

j′−i′ej′j′ = δji′eiit
j−i+j′−i′ej′j′

It is easy to see that this coincides with eij′ when j = i′. �

4.3.8 Proof of Theorem 4.3.1

For this section, we de�ne that δ = γ∂[w], where γ is de�ned as in Theorem 4.3.6, so that

[δ, τ ] = 1.

Proposition 4.3.8 1. For all α ∈ C, ατ = φw(α)τ , ∂[w]
t α = φw(α)∂

[w]
t and δα =

φw(α)δ.

2. Let 0 ≤ j < w. Then for 0 ≤ i ≤ w − 1

φj(eiiτδ) =


e(i+j)(i+j)τδ if i+ j < w

e(i+j−p)(i+j−p)(τδ + 1) if i+ j ≥ w

3. τeij = eijτ and δeij = eijδ for 0 ≤ i, j ≤ w − 1.

4. φw(τδ) = τδ + 1

5. For 0 ≤ i ≤ w − 1, eii(c0 − (w − 1− i)) = eiiwτδ.
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6. The map A0 → Am ; τ 7→ τ ; ∂τ 7→ δ is a well de�ned injective homomorphism of

O(Y )-rings.

Proof:

1. This follows from proposition 4.3.3 since τ = tw, and δ di�ers from ∂[w] by an

element of C.

2. From lemma 4.3.6, using the fact that wyφ−w(γi) = weiiτδ we can write

eiiwτδ = eii(c0 − (w − 1− i)).

Write k = i + j. By proposition 4.3.5(4) φj(eii) = ekk when k < w and e(k−w)(k−w)

when w ≤ k < 2w. Now, φ(c0) = c0 + 1, so φj(c0 − (p− 1− i)) = c0 − (p− 1− k).

Putting these together, when k < w it is clear that φj(eiiτδ) = ekkτδ. When

w ≤ k < 2w observe that c0 − k∗ = c0 − (w − 1− (k − w))− w to get that

φj (eii(c0 − i∗)) = e(k−w)(k−w)(c0 − (w − 1− (k − w)) + w)

= e(k−w)(k−w)(w(τδ + 1)).

3. Since τ commutes with ti−j and the eii, τ commutes with the eij. Then to show that

δ commutes with the eij it will be enough to show that τδ commutes with the eij:

if so, then working in D̂[m]
X (X\{0}), we have eijδ = τ−1eijτδ = δeij. Now, eijτδ =

eiit
j−iτδejj = eiiφ

i−j(ejjτδ)t
j−iejj. Using part 2, since (i − j) + j = i < w, and

both eii and τδ belong to the commutative algebra C, φi−j(ejjτδ) = eiiτδ = τδeii,

proving the statement.

4. Since τδ = φ−w(γ)cm, theorem 4.3.6 tells us that (φw − id)(τδ) = 1.

5. Of course, τδ = φ−w(γ)cm, so lemma 4.3.6 tells us that eiiwτδ = eiiwcmφ
−w(γ) =

eii(c0 − (w − 1− i)).
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6. The homomorphism of O(Y )-rings A0 → Am ; ∂τ 7→ δ ; τ 7→ τ is well de�ned since

[δ, τ ] = 1. It induces a K-algebra homomorphism A0 ⊗ K → Am ⊗ K which is

injective since A0 ⊗ K = D̂[0]
Y (Y ) ⊗ K is simple by proposition 4.2.2. Since A0

embeds into A0 ⊗K, the map A0 → Am is injective.

�

Lemma 4.3.8 1. Let A be a ring and {eij}1≤i,j≤n be a set of matrix units for A. Let C

be the centralizer of the set {eij}1≤i,j≤n. Then there is an isomorphism Mn(C)→ A

sending ẽij 7→ eij and mapping C onto C.

2. Let α =
∑w−1

i,j=0

(
i
j

)
eij ∈Mw(K). Then α is invertible and α−1 =

∑w−1
i,j=0(−1)i−j

(
i
j

)
eij

3. eijdk ≡ (−1)k
∗−j(k∗

j

)
eij mod pC for all 0 ≤ i, j, k ≤ w − 1 (recall di = ti∂[i] for

0 ≤ i ≤ m.)

Proof:

1. By [14, 1.10.34] if we set T = {
∑n

i=1 ei1ae1i : a ∈ A}, then there is an isomorphism

of rings Mn(T ) → A sending ẽij 7→ eij and sending t 7→ t for t ∈ T , so it will be

enough to show that T = C. Since the map Mn(T ) → A is a ring homomorphism

and T centralizes the {ẽij} by the de�nition of Mn(T ), we must have T ⊂ C. On

the other hand, let c ∈ C. Then c commutes with the eij, so we have
∑n

i=1 ei1ce1i =∑n
i=1 ei1e1ic = c. Hence c ∈ T .

2. The algebra homomorphism ψ : K [t] → K [t] ; t 7→ t + 1 is an isomorphism with

inverse t 7→ t − 1. ψ preserves the K-submodule V =
⊕w−1

i=0 Kti of K [t], and

ψ(ti) =
∑w−1

j=0

(
i
j

)
tj. Then the matrix of ψ|V is

∑w−1
i,j=0

(
i
j

)
eij, and the matrix of

ψ−1|V is
∑w−1

i,j=0(−1)i−j
(
i
j

)
eij.
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3. First we observe that using the lemma 4.3.2

êii =

(
x+ i

w − 1

)
=

w−1∑
j=0

(
i

j

)(
x

j∗

)
=

w−1∑
j=0

(
i

j

)
dj∗

So using part 2 we have

di∗ =
w−1∑
j=0

(−1)i−j
(
i

j

)
êjj.

So we can write

eijdk = eijd(k∗)∗ = eij

w−1∑
a=0

(−1)k
∗−a
(
k∗

a

)
eaa = (−1)k

∗−j
(
k∗

j

)
eij,

working in C/pC.

�

We are now ready to prove the main theorem.

Proof:(Proof of Theorem 4.3.1) By 4.3.8(6) the R-algebra homomorphism A0 → Am

which sends ∂τ 7→ δ and τ 7→ τ is an embedding. By proposition 4.3.8(3) τ and δ

commute with the eij so the image of A0 is contained in the centralizer of the matrix units

{eij}0≤i,j<w, therefore by lemma 4.3.8 the induced R-algebra homomorphism Mw(A0)→

Am which sends ẽij 7→ eij and corresponds to the above homomorphism A0 → Am on A0

is an embedding. We will prove the theorem by showing that it is an isomorphism. Using

proposition 2.2.6(2) it will be enough to show that the induced map f : Mw(A0/πA0)→

Am/πAm is an isomorphism. Let B be the sub-κ-algebra of Am/πAm generated by ∂[w]

and τ .

We have that δ ≡ ∂[w] mod πAm, and so the map f maps A0/πA0 onto B. Am/πAm

is generated over κ by t, and the ∂[pi] for 0 ≤ i ≤ m. Then it is clear that Am/πAm =∑w−1
i,j=0 t

i∂[j]B, while Mw(A0/πA0) =
⊕w−1

i,j=0 ẽijA0/πA0. From section 4.2.1 we know that

∂w = w!∂[w] ≡ 0 mod πAm and tw = τ , so Am/πAm is generated as a B-module by the

set {ti∂[j] : 0 ≤ i, j ≤ w − 1}. Therefore, if we can show that t and the ∂[pi] belongs
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to the image of f for 0 ≤ i ≤ w − 1, then f is surjective. First of all we can calculate

that eiit = eii(eiit) = eiitei+1,i+1 = ei,i+1 for 0 ≤ i ≤ w − 1, and we can calculate that

ew−1,w−1t = twew−1,0 so that t =
(∑w−2

i=0 ei(i+1)

)
+ twew−1,0. Using this, we claim that

eii∂
[j] ≡


(−1)i

∗( j∗
i−j

)
ei,i−j if j ≤ i ≤ w − 1

0 if j > i.

mod pAm

To see this, let 0 ≤ i, j ≤ w − 1, and �rst assume that j ≤ i. Then we can write

eii∂
[j] = ei,i−jt

j∂[j] = ei,i−jdj. By lemma 4.3.8(3), noting that j∗ − (i − j) = i∗, we �nd

that

ei,i−jdj = (−1)j
∗−(i−j)

(
j∗

i− j

)
ei,i−j = (−1)i

∗
(

j∗

i− j

)
ei,i−j.

Now assume that i < j. Then

tweii∂
[j] = eiit

w−jdj = ei,i+w−jdj.

By lemma 4.3.8(3) we �nd that

ei,i+w−jdj = (−1)j
∗−i−w+j

(
j∗

i+ w − j

)
ei,i+w−j.

Now, j∗ = w − 1 − j < w + i − j since i ≥ 0, so tweii∂[j] = 0. t is a regular element of

Am/πAm, so eii∂[j] = 0.

�
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Chapter 5

Description of the primitive spectrum

of certain nilpotent a�noid enveloping

algebra

5.1 Some results around the Newton Polygon Theorem

5.1.1 The Newton Polygon Theorem

Fix an algebraic closure K of K and let R be the integral closure of R in K. We implicitly

extend vK to K, so that the valuation vK(λ) of an element λ ∈ K is a well de�ned element

of Q.

Let g(t) = a0 + . . . + ant
n ∈ K [t], and assue that a0 and an are non-zero. Set

S = {(i, v(ai)) : 0 ≤ i ≤ n}. Then we de�ne N(g) to be the smallest subset of S such

that (0, v(a0)), (n, v(an)) ∈ N(g), the slopes of the lines between the points of N(g) are

strictly increasing, and every point of S lies above the path traced by these lines (N(g)

can be viewed as the vertices of the lower convex hull or the lower convex envelope of the
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set S.)

Theorem 5.1.1 Let g(t) = a0 + . . . + ant
n ∈ K [t], and assume that a0 and an are non-

zero. Let (j1, v(aj1)), . . . , (js, v(ajs)) be the vertices of N(g). Then there are precisely

jr − jr−1 roots of g(t) of valuation
v(ajr−1

)−v(ajr )

jr−jr−1
for 1 ≤ r ≤ s.

Proof: (proposition 1.6.3) neukirch, but the proof is fairly instructive so it is given below.

First of all, changing the value of an only shifts the polygon up and down so we

assume that an = 1. Let µ1, . . . , µn be the roots of g(t) in K, organized so that vK(µ1) ≤

vK(µ2) ≤ . . . ≤ vK(µn). We let {i1, . . . , is} be the largest set of numbers between 1 and n

where vK(µir) < vK(µir+1) for 1 ≤ r ≤ s, so that setting i0 = 0 the sets {µir+1, . . . , µir+1}

partition the roots of g(t) by value.

For 1 ≤ i ≤ n, let Ii be the set of subsets of {1, . . . , n} of cardinality n− i. Then we

have the equality

ai = ±
∑
J∈Ii

∏
j∈J

µj.

Applying the ultrametric ineqality to these sums, we �nd that if ir < i ≤ ir+1 then setting

mr = i0 + . . .+ ir−1. Then

vK(an−i) ≥ i1vK(µi1) + (i2 −m2)vK(µi2) + . . .+ (ir −mr)vK(µir) + (i−mr+1)vK(µir+1)

with equality when i = ir+1. From this we �nd

{(0, v(a0)), (i1, v(ai1)), . . . , (is, v(ais)), (n, v(an))} = N(g),

and setting i0 = 0 and is+1 = n, we can calculate that

v(air−1)− v(air)

ir − ir−1

= vK(µir),

proving the claim. �
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5.1.2 Some seemingly arbitrary calculations

Let g(t) = a0 + . . .+ ant
n ∈ K [t] such that a0 ∈ R and a0, an 6= 0. Then we de�ne

χ(g) := max
1≤i≤n

{
−vK(ai)

i

}
.

Lemma 5.1.2 Let M be the number of roots of g(t) of valuation greater than or equal to

χ(g). Let µ1, . . . , µn be the roots of g(t), ordered so that

vK(µ1) ≤ vk(µ2) ≤ . . . ≤ vK(µn).

1. M > 0.

2. vK(aM) = vK(an) +
∑n−M

i=1 vK(µi).

3. χ(g) = −v(aM )
M

.

4. Let α ∈ K. If vK(α) ≥ χ(g) then v(g(α)) ≥ 0.

5. For some l ∈ Q ∪ {−∞} such that l < χ(g) we have that if l ≤ v(α) < χ(g) then

vK(g(α)) < 0.

Proof: Let {(i0, v(ai1)), . . . , (is, v(ais))} = N(g), organized so that i0 < . . . < is. Choose

1 ≤ S ≤ n such that χ(g) = −vK(aS)
S

. For 1 ≤ i ≤ n, let Ii be the set of subsets of

{1, . . . , n} of cardinality n− i. Recall that for 1 ≤ i ≤ n, we have

aia
−1
n = ±

∑
J∈Ii

∏
j∈J

µj.

We can deduce that

vK(ai) ≥ vK(an) +
n−i∑
j=0

vK(µj).

We will use this fact repeatedly throughout the proof without reference.
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1. By theorem 5.1.1, for some root µ of g(t), since i0 = 0, we must have

vK(µ) =
vK(a0)− vK(ai1)

i1
.

Since the slopes of the line segments between the points of N(g) are strictly increas-

ing and all of the points (i, v(ai)) for 1 ≤ i ≤ n lie above these lines we have

vK(µ) = max
1≤i≤n

{
vK(a0)− vK(ai)

i

}
.

Since vK(a0) ≥ 0, we deduce that

vK(µ) ≥ max
1≤i≤n

{
−vK(ai)

i

}
= χ(g).

2. From the ultrametric inequality we know that

vK(aM) ≥ min
J∈IM
{vK(an) +

∑
j∈J

vK(µj)}

with equality when the minimum is attained uniquely. From the de�nition of M

we know that for n − M < i ≤ n we have vK(µi) ≥ χ(g) = −vK(aS)
S

, and for

1 ≤ i ≤ n − M we have vK(µi) < χ(g). Therefore, the minimum is attained

uniquely at vK(an) +
∑n−M

j=1 vK(mui).

3. It will be enough to show that vK(aM )
M

≤ vK(aS)
S

(If S = M we are done so we only

need to prove the statement for S < M and S > M). From the de�nition of M we

know that for n−M < i ≤ n we have vK(µi) ≥ χ(g) = −vK(aS)
S

. . First assume that

S < M . Then using part 2,

vK(aS) ≥ vK(an) +
n−S∑
i=1

vK(µi) = vK(an) +
n−M∑
i=1

vK(µi) +
n−S∑

i=n−M+1

vK(µi)

≥ vK(aM)− (n− S − (n−M))
−vK(aS)

S

= vK(aM) + vK(aS)− M

S
vK(aS),
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proving the claim. Now assume that M < S. Then, again using part 2 and the fact

that vK(µi) <
−vK(aS)

S
for 1 ≤ i ≤ n−M , we can write

vK(aM) = vK(an) +
n−M∑
i=1

vK(µi) = vK(an) +
n−S∑
i=1

vK(µi) +
n−M∑

i=n−S+1

vK(µi)

≤ vK(aS)− (n−M − (n− S))
vK(aS)

S
=
M

S
vK(aS)

proving the claim.

4. Let r = χ(g). If vK(α) ≥ χ(g), then write α = πrε with ε ∈ R. Then we can write

g(α) = g(πrε) = a0 + (πrKa1)ε+ . . .+ (πrnK an)εn.

By the de�nition of r, we of course have that πriKai ∈ R for 1 ≤ i ≤ n, so the

statement follows immediately.

5. Let l be a rational number strictly between the value of a root of g(t) that is

strictly less than r and r if such a root exists, otherwise set l = −∞. Suppose that

l ≤ vK(α) < r. Since vK(µi) ≥ χ(g) = r if and only if n−M < i ≤ n we have that

vK(α− µi) = vK(α) whenever n−M < i ≤ n and since vK(α) ≥ l, we deduce that

vK(α − µi) = vK(µi) whenever 1 ≤ i ≤ n −M . Since g(α) = an
∏n

j=1(α − µj) we

have

vK(g(α)) =
n−M∑
i=1

vK(µi) +MvK(α) + vK(an) = vK(aM) +MvK(α).

Of course, using part 3, since vK(α) < r we have vK(α) < −vK(aM )
M

, so it follows

that vK(g(α)) < 0.

�

Theorem 5.1.2 Let g(t) = a0 + . . .+ant
n ∈ K [t] such that a0 ∈ R and an 6= 0. De�ne X

to be the set {λ ∈ A1,an
K : vK(g(λ)) ≥ 0}. Then X is an a�noid subdomain of A1,an

K and

the G-connected component of X about 0 is the closed disk {λ ∈ A1,an
K : vK(λ) ≥ χ(g)}.
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Proof: Note that a0 ∈ R forces 0 ∈ X, so that the G-connected component of X about

0 is non-empty. For vK(λ) < −N for N large we will have vK(g(λ)) < 0, so X can

be realized as the spectrum of a Weierstrass extension K〈πN t〉〈g(t)〉, and hence X is an

a�noid subdomain of A1,an
K .

Using lemma 5.1.2(4, 5) there is an some l ∈ Q, l > χ(g) such that the intersection

of X with the disk B = {λ ∈ A1,an
K : vK(λ) ≥ l} is the disk {λ ∈ A1,an

K : vK(λ) ≥ χ(g)}.

Then X ∩B and X ∩{λ ∈ A1,an
K : vK(λ) ≤ l} is a disjoint admissible open covering of X,

proving the second part of the statement. �

Corollary 5.1.2 Adopting the notation of the theorem, X is a �nite union of disjoint

closed disks.

Proof: For f ∈ K [t] let X(f) = {λ ∈ X : vK(f(λ)) ≥ 0}. Suppose α ∈ X(f). Then it

will su�ce to prove that the G-connected component of X about α is a closed disk of �nite

radius. If α is a root of f(t), then replace α with some other point in the G-connected

component of α which is not a root. Let f ′(t) = f(α − t). Then using theorem 5.1.2,

since 0 ∈ X(f ′), the G-connected component about 0 in X(f ′) is a closed disk of �nite

radius. But this implies the G-connected component of X(f) about α is a closed disk of

�nite radius. It is a fact of p-adic geometry that two disks are either disjoint, or one is

contained in the other, proving the claim. �

5.2 Working with ∂t-stable disks

5.2.1 De�ning Skew Tate Extensions

Let A be an a�noid algebra, and let δ be a derivation of A. Then we say that a sub-R-

algebra B of A◦ = {α ∈ A : ‖α‖ ≤ 1} is a δ-lattice if δ(β) ∈ B for all β ∈ B, and A◦ is a
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B-module of �nite type. We de�ne

B〈x ; δ〉 = lim←−
i∈N

B [x ; δ] /πiB [x ; δ] .

(where the ring B [x ; δ] is isomorphic as a left B-module to B [x], with multiplication

de�ned by the rule xb− bx = δ(b).

Proposition 5.2.1 Let A be an a�noid algebra, let δ be a derivation of A, and suppose

that B and B′ are δ-lattices in A such that B ⊂ B′. Then the natural homomorphism

B〈x ; δ〉 ⊗R K → B′〈x ; δ〉 ⊗R K

is an isomorphism.

Proof: The decomposition B [x ; δ] =
⊕

i∈NBx
i induces an isomorphism of R-modules

B〈Z〉 → B〈x ; δ〉, and using these isomorphisms we get a commutative square

B〈Z〉 ⊗R K //

��

B′〈Z〉 ⊗R K

��
B〈x ; δ〉 ⊗R K // B′〈x ; δ〉 ⊗R K

Since B and B′ are lattices in A, the top arrow is an isomorphism, and thus the bottom

arrow is an isomorphism. �

We say that A has a δ-stable lattice if there exists some δ-lattice in A, and if A has a

δ-stable lattice B then we de�ne

A〈x ; δ〉 = B〈x ; δ〉 ⊗R K.

In light of proposition 5.2.1, this de�nition is independent of the choice of a δ-lattice.
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5.2.2 Skew Tate Example

Similarly to the previous chapter, for an element α ∈ A where A is some complete sliced

K-algebra, we de�ne α[i] = αi

i!
. For i ∈ N, we set

Ni = vK(p)
pi − 1

pi(p− 1)
.

Note that Ni is a strictly increasing sequence of rational numbers converging to vK(p)
p−1

. Let

r = a
b
, a, b coprime, and b ∈ N.

Let A = K〈π−rK y〉 with r ∈ Z and suppose Nm−1 < r ≤ Nm, and let s = pm(Nm− r) ∈

Z. Let T be the set of power series α which can be written uniquely in the form

α =
∑

λ∈Nm
p ,i∈N

αλiy
λ1(y[p])λ2 . . . (y[pm−1])λm(πsKy

[pm])i

where Ni = {0, 1, ...i− 1}, with αλi ∈ R, αλi → 0 as i→∞.

Proposition 5.2.2 1. T ⊂ A◦.

2. T is a ∂y-lattice in A.

Proof:

1. To show T ⊂ A◦ = R〈π−rK y〉, we �rst observe that y[pi] ∈ A◦ for 0 ≤ i ≤ m− 1 since

−r < −Ni = −vK(pi!)
pi

for 0 ≤ i ≤ m− 1. Furthermore we have that

πsKy
[pm] = π

pm(Nm−r)
K

yp
m

pm!
= ε(π−rK y)p

m

for ε ∈ R×. It follows that πsKy[pm] ∈ A◦.

2. T is a lattice in A because πp
mr
K R〈π−rK y〉 ⊂ T ⊂ R〈π−rK y〉 so T is a lattice in A

since R〈π−rK y〉 is a lattice in A. On the other hand we have ∂y(y[pi]) = y[pi−1] for

0 ≤ i ≤ m− 1. But for some ε ∈ R×,

y[pi−1] = εyp−1(y[p])p−1 . . . (y[pi−1])p−1 ∈ T
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Similarly

πsy[pm−1] = επsyp−1(y[p])p−1 . . . (y[pm−1])p−1 ∈ T

since s ≥ 0. Since T is an R-subalgebra of A◦, T is ∂y-stable and thus a ∂y-lattice

in A.

�

5.2.3 Base Change

Let A be a K-a�noid algebra. Let α ∈ A and let a
b
∈ Q, a and b coprime, b ∈ N. Let K ′

be a �nite Galois extension of K containing K(π
1
b
K). Then we de�ne

A〈πrKα〉 = (A⊗K K ′) 〈πaK′α〉Gal(K′/K).

Lemma 5.2.3 1. Let A be a K-a�noid algebra and let B be a multiplicatively closed

lattice in AK′ = A⊗KK ′. Let G = Gal(K ′/K). Then A = BG⊗RK and BG⊗RR′

is a lattice in AK′.

2. If A is a simple K ′-algebra and B is a K-algebra such that A = B⊗K K ′ then B is

simple.

Proof:

1. Every element of B⊗R′K ′ can be written in the form β⊗λ with β ∈ B and λ ∈ K ′.

B is a lattice in AK′ and AGK′ = A, so taking A as a subset of AK′ , and writing β⊗λ

as βλ for brevity, we have

A = {βλ ∈ AGK′ : β ∈ B, λ ∈ K ′}

Therefore, to show that A = BG⊗RK it is enough to observe βλ ∈ AGK′ with β ∈ B

and λ ∈ (K ′)×, then for some µ ∈ K× we have βλµ−1 ∈ B or βλµ ∈ B, as then we
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can write either βλ = (βλµ)µ−1 or βλ = (βλµ−1)µ. Set

µ =
∏
σ∈G

σ(λ).

Then µ ∈ K, and vL(µ) = #(G)vK′(λ). Since #(G) ≥ 1, we must have vK′(µλ) ≥ 0

or vK′(µ−1λ) ≥ 0. It follows that either βλµ−1 ∈ B or βλµ ∈ B, proving that A =

BG⊗RK. Finally, since B is an R′-module we must have BG⊗RR′ ⊂ B, and using

the fact that A = BG⊗RK and AK′ = A⊗KK ′, we have (BG⊗RR′)⊗R′K ′ = AK′ .

2. Let I be an ideal of B. Then I⊗KK ′ is an ideal of A, so I⊗KK ′ = 0 or I⊗KK ′ = A.

But K ′ is a faithfully �at K-module so I = 0 or I = A.

�

Proposition 5.2.3 Let A be a K-a�noid algebra and let δ be a derivation of A. Let K ′ be

an algebraic �eld extension of K and let δ′ be the linear extension of δ to AK′ = A⊗KK ′.

Let G = Gal(K ′/K)

1. A has a δ-lattice if and only if AK′ has a δ′-lattice.

2. If B is a δ′-lattice in AK′ then BG is a δ-lattice in A and BG⊗R R′ is a δ-lattice in

AK′.

Proof: Suppose that AK′ has a δ′ lattice B. δ′ �xes A◦, so (δ′)i and consequently δi �xes

BG for all i ∈ N. By lemma 5.2.3 BG ⊗R K = A so BG is a δ-lattice in A, proving the

�rst statement of part 2.

Now suppose that A has a δ lattice B′. K'et α ∈ B′ and let λ ∈ R′. Then (δ′)i(α⊗λ) =

δi(α)⊗λ. Since α ∈ C, δi(α) ∈ B′, and consequently δi(α)⊗λ ∈ B′⊗RR′. It follows that

B′ ⊗R R′ is (δ′)i invariant for all i ∈ N. On the other hand B′ ⊗R R′ is a lattice in AK′ ,
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so B′ ⊗R R′ is a δ′-lattice, proving part 1, and if B is a δ′-lattice in AK′ , then applying

the same proof to BG yields that BG ⊗R R′ is a δ-lattice in AK′ , completing the proof.

�

5.2.4 Computing the ∂t lattice for disks

Let Z be a copy of A1,an
K . Let t be a coordinate for Z. Let ∂t ∈ TZ(Z) be the dual operator

to dt ∈ Ω1
Z(Z).

Let r ∈ Q, µ ∈ A1,an
K . Then we de�ne Ur(µ) = {λ ∈ A1,an

K : vK(λ − µ) ≥ r}. De�ne

Ar(µ) = O(Ur(µ)) = K〈π−rK (t+ µ)〉.

Then set K ′ = K(π
1
b
K). Let R′ be the unit ball of K ′. Let T be de�ned as in section

5.2.2 over K ′.

Lemma 5.2.4 Set y = t − µ. Let A = OZ(Ur(µ)). Let G = Gal(K ′/K). Then TG is a

∂t-lattice in A.

Proof: Using lemma 5.2.2(2), T is a ∂t-lattice in A⊗K K ′, so by lemma 5.2.3(2) TG is a

∂t-lattice in A. �

5.3 Skew-Tate extension of disks as Matrix Algebras

over A�noid Weyl Algebras

5.3.1 Building the isomorphism

Let r ∈ Q, µ ∈ Z, 0 < r < vK(p) 1
p−1

. Choose m such that Nm−1 < r ≤ Nm. Let

s = pm(Nm − r). Let r = a
b
, a, b coprime, and b ∈ N. Let K ′ be a Galois extension of K

such that π
1
b
K ∈ K ′. De�ne Dr(µ) = O(Ur(µ))〈x ; ∂〉. Let T be de�ned as in 5.2.2 over
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R′. Let D = T 〈∂t〉.

Lemma 5.3.1 Let X = A1
R′. De�ne

ω : D → D̂[m]
X (X) ; t[p

i] → ∂
[pi]
t ; ∂t 7→ −t

Let C be the diagonal algebra of D̂[m]
X (X) de�ned in section 4.3.3.

1. ω is a G-equivariant R′-algebra embedding.

2. C ′ = ω(D) ∩ C is φ-invariant.

3. Let f(c0) ∈ K [c0] and suppose that deg(f) ≤ 2w − 1. Then f(c0) ∈ pC implies

f(c0) ∈ πC ′.

4. Let eij be de�ned as in section 4.3. Then eij ∈ ω(D) for all 0 ≤ i, j ≤ w − 1.

5. Let γ be de�ned as in section 4.3. Then γ ∈ ω(D).

Proof:

1. We will prove that every element α ∈ D̂[m]
X (X) can be written uniquely in the form

α =
∑

i,j∈N,λ∈Nm
p

αijλt
i(∂t)

λ1 . . . (∂
[pm−1]
t )λm(∂

[pm]
t )j

where Np = {0, . . . , p − 1}, with αijλ ∈ R′, αijλ → 0 as i + j → ∞. Thus, there is

an embedding of R′-modules

D → D̂[m]
X (X) ; ∂ 7→ −t ; t[pi] 7→ ∂

[pi]
t .

It is trivial to verify this is an R′-algebra homomorphism as an extension of the

Fourier transform. G-equivariance is obvious from the de�nition of ω.

2. Let Cm−1 be the closed sub-R′-algebra of C generated by the ci for 0 ≤ i ≤ m− 1.

Then C ′ = Cm−1〈πscm〉. Cm−1 is �xed by φ, and φ(cm) ∈ cm + Cm−1, so φ �xes C ′.
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3. Recalling the de�nition di =
(
c0
i

)
for 0 ≤ i ≤ 2w, we can write

f(c0) =

2q−1∑
i=0

aidi

for some ai ∈ K. Then

f(c0) ∈ pC if and only if ai ∈ pR′ for 0 ≤ i ≤ 2q − 1.

Then it will su�ce to prove that pdi ∈ πC ′ for 0 ≤ i ≤ 2q−1. Since C ′ = ω(D)∩C,

it will be enough to show pdi ∈ πω(D). For 0 ≤ i ≤ q− 1 this is obvious so suppose

that i = q + j, with 0 ≤ j ≤ q − 1. Then we can write

di = ti∂
[i]
t =

(
i

q

)−1

ti∂
[pm]
t ∂

[j]
t .

We have i = q+ im−1p
m−1 + . . .+ i0 for some 0 ≤ ij < p for 0 ≤ j ≤ m− 1, so using

Lucas' theorem (
i

q

)
≡
(

1

1

)m−1∏
j=0

(
ij
0

)
= 1 mod pZ.

So that
(
i
q

)−1 ∈ (R′)×. Then for some ε ∈ (R′)× we have

pdi = π
vK(p)−s
K ε

(
ti(πsK∂

[pm]
t )∂

[j]
t

)
proving the claim since vK(p) > s and 0 ≤ j < pm.

4. We will �rst show that eii ∈ C ′ for 0 ≤ i ≤ q − 1. φ �xes C ′ by part 2 so since

φ(eii) = e(i+1)(i+1) for 0 ≤ i ≤ q − 1 it will be enough to show that e00 ∈ C ′. For

this, it will be enough to show that ê00 is idempotent in C ′/πC ′ as then ê00 will

converge to e00 in C ′.

If we consider ê00 ∈ K [c0], then deg(ê2
00 − ê00) < 2q − 1, so to show that ê00 is

idempotent in C ′/πC ′ it will be enough to show that ê2
00 − ê00 ∈ pC by part 3. But

this follows by proposition 4.3.4(3).

To see that the eij ∈ ωC one uses a proof similar to that in lemma 4.3.7.
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5. By part 4 we have each of the eii ∈ C ′. From the de�nition of γ, we can see that is

will be su�cient to prove that αi− eii ∈ πC ′ for all 0 ≤ i ≤ pm− 1. By proposition

4.3.5(1), αi − êii ∈ pC, and if we consider αi − êii as an element of K [c0] then

deg(αi − êii) < 2pm, so it follows that αi − êii ∈ πC ′ and hence αi − eii ∈ πC ′ by

part 3, proving the claim.

�

Theorem 5.3.1 There is a G-equivariant isomorphism D →Mpm(V̂s,K′).

Proof: Since eij ∈ ω(D) for 0 ≤ i, j ≤ pm−1 by part 4 of lemma 5.3.1� using lemma 4.3.8,

there is an isomorphism Mpm(Z) → ω(D), where Z is the centralizer of the eij in ω(D)

for 0 ≤ i, j ≤ pm−1. Now, if Z ′ is the centralizer of the eij in D̂[m]
X (X) then it is clear that

Z = Z ′ ∩ ωD , and we know that Z ′ is the closed subring of D̂[m]
X (X) generated by γ∂[pm]

t

and tp
m
. γ ∈ C ′ by part 5 of lemma 5.3.1 and we have a ring isomorphism Z ′ → D̂[0]

X (X)

sending γ∂[pm]
t to ∂t and tp

m 7→ t. Now, let Vs be the R′-subalgebra of D̂[0]
X (X) generated by

t and πsK∂t. We can see that Z/πZ is isomorphic to the commutative κ-algebra generated

by t[p
m] and πsK∂

pm

t , so the induced map Vs/πVs → Z/πZ is an isomorphism. It follows

that Vs,K′ → Z is an isomorphism, proving the claim.

�

Corollary 5.3.1 There is an isomorphism of K-algebra Dr(µ)→Mq(V̂s,K′)
G.

Proof: Using theorem 5.3.1, we have a G-equivariant isomorphism of K ′-algebras

Dr(µ)→Mq(V̂s,K′).

The statement immediately follows. �
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5.3.2 Skew-Tate Extensions of A�noid Algebras De�ned by Poly-

nomials

Let Z be a copy of A1,an
K and let f(t) ∈ K [t]. Then de�ne X(f) = {λ ∈ Z : vK(f(λ)) ≥

0}. Let f1(t), . . . , fn(t) ∈ K [t]. Let ∂ = d
dt
. Then we de�ne

X∂(f1, . . . , fn) = {λ ∈ Z : vK(∂j(fi(λ))) ≥ 0 for 1 ≤ i ≤ n and j ∈ N}.

Theorem 5.3.2 Let f1(t), . . . , fn(t) ∈ K [t]. If X∂(f1(t), . . . , fn(t)) is non-empty, it is

a �nite union of closed disks Uri(µi) for some ri ∈ Q, µi ∈ Z for 1 ≤ i ≤ s. Each

ri <
−vK(p)
p−1

.

Proof: From the de�nition, we can see that

X∂(f1, . . . , fn) =
⋂

1≤i≤n

⋂
j∈N

X(∂jfi).

Since the intersection of two disks in Z is either empty or the disk of lesser radius, it will

su�ce to prove the statement for X∂(f), where f(t) ∈ K [t]. Using corollary 5.1.2 each

X(∂if) is a �nite union of disks and hence X∂(f) is a �nite union of disks. Now, to prove

the theorem it will be enough to show that each of the disks is equal to Uri(µi) for some

ri ∈ Q such that ri <
−vK(p)
p−1

. So let µ be an arbitrary point in X∂f . By translating Z

we can assume w.l.o.g. that µ = 0. Write f(t) = a0 + . . . + amt
m.Then the fact that

0 ∈ X(∂j(f)) for all j ∈ N forces i!ai ∈ R for 1 ≤ i ≤ m. The radius of the connected

component of X(∂j(f)) about 0 is χ(∂jf) by theorem 5.1.2. Then the radius r ∈ Q of

the connected component of X∂(f) about 0 is

r = max
j∈N
{χ(∂jf)} = max

0≤j≤m−1
max

j+1≤i≤m

{
− 1

i− j
vK

(
i!ai

(i− j)!

)}
Then i!ai ∈ R for 1 ≤ i ≤ m forces

r ≤ max
0≤j≤m and j≤i≤m

{
vK((i− j)!

i− j

}
.
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But for all i ∈ N, vK(i!)
i

< vK(p)
p−1

by lemma 4.3.3(6), proving the claim. �

In light of this proof, given f1(t), . . . , fn(t) ∈ K [t], we de�ne

K〈f1(t)(∂), . . . , fn(t)(∂)〉 = OZ(X∂(f1, . . . , fn))).

Corollary 5.3.2 Let A = K〈f1(t)(∂), . . . , fn(t)(∂)〉. Then if A is non-zero, then for some

s ∈ N, mi ∈ N, ri ∈ N, and Li extending Ki for 1 ≤ i ≤ s, there is an isomorphism

A〈x ; ∂〉 →
s∏
i=1

Mpmi

(
V̂ri,Li

Gi
)

where Gi = Gal(Li/K) for 1 ≤ i ≤ s.

Proof: By theorem 5.3.2 there is an open immersion Sp(A)→ A1,an
K whose image is a �nite

union of closed disks Uri(µi) with ri ∈ Q, µi ∈ A1,an
K , and ri < vK(p) 1

p−1
. By theorem

5.3.1 each Ori(µi)〈x ; d
dt
〉 is isomorphic to Mpmi (V̂ri,Li

)Gi for some mi ∈ N and ri ∈ N,

and Li/K. Now, there is an isomorphism A →
∏s

i=1 Li〈π
ri
K(t + µi)〉. Let e1, ..., es be the

primitive idempotents of this presentation. Then each Ij =
∑

i 6=j eiLi〈π
ri
K(t + µi)〉 is a

minimal prime over the ideal {0} in A, so by [7, Lemma 3.3.3] Ij is invariant under ∂t. It

follows that each Li〈πriK(t+ µi)〉 is invariant under ∂t, so we get a chain of isomorphisms

A〈x ; ∂〉 →
s∏
i=1

Li〈πriK(t+ µi)〉〈x ; ∂〉 →
s∏
i=1

Mpmi

(
V̂ri,Li

Gi
)
.

�

5.4 Primitive Ideals in Weight One Powerful Nilpotent

Enveloping Algebras

Let g be a �nite dimensional non-Abelian nilpotent K-Lie algebra, containing an Abelian

sub-Lie algebra h of codimension one. Let x ∈ g\h. Let D = adx. Then ker(D)∩h = Z(g)
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Let 0 6= y be an element of h such that y 6∈ Z(g) and y + Z(g) is central in g/Z(g). Let

z = [x, y]. Then 0 6= z ∈ Z(g) since y + Z(g) = y + (ker(D) ∩ h) 6= 0. It follows that

(x, y, z, h) forms a reducing quadruple for g.

5.4.1 The factor ring as a Skew-Tate-Extension

Let L ⊂ g be an R-Lie lattice in g such that [L ,L ] ⊂ πL . Let H = L ∩ h. Let

P be a weakly rational ideal of U(g) such that P ∩ g = 0, and set P ′ = Û(L )KP . Let

Ph = P ∩ U(h) and let P ′h = Û(H )K ∩ P ′. For ease of notation we further de�ne

1. U = U(g)

2. Û = Û(L )K .

3. Ĥ = Û(H )K ⊂ Û .

Let I be an ideal of Û such that Z(Û/I) is isomorphic to K. Let I ′ = I ∩ U . Let A

be the R-subalgebra of Û generated by Û(H ) and x.

Lemma 5.4.1 1. I ′ is a weakly rational ideal of U .

2. P ′ = ÛPh.

3. ĤPh = P ′h.

4. Let A = Ĥ/(P ′ ∩ Ĥ). Then A is a lattice in Ĥ/P ′h.

5. A is dense in Û . P ′∩A is controlled by Û(H ). A is isomorphic to Û(H ) [x ; D].

Proof:

1. K ⊂ Z (U/I ′) ⊂ Z
(
Û/I

)
= K.

84



2. P ′ = ÛP and P = UPh by corollary 2.4.7. Of course ÛU = Û , so

ÛPh = ÛUPh = P ′.

3. We need to show that ĤPh ⊂ P ′h and P
′
h ⊂ ĤPh. We have

P ′h = Ĥ ∩ ÛPh,

so clearly ĤPh ⊂ P ′h. Now let α ∈ P ′h. Then we can write α = uβ for some u ∈ Û

and β ∈ Ph. Now, by proposition 2.5.1(1), u can be written uniquely in the form

u =
∑
i∈N

xiui with ui ∈ Ĥ and ui → 0 as i→∞.

Then since Û is a domain using the uniqueness of the expression and the fact that

uiβ ∈ Ĥ for all i ∈ N,

uβ =
∑
i∈N

xiuiβ ∈ Ĥ if and only if uiβ = 0 for all i > 0.

This only occurs when u ∈ Ĥ, so that α = uβ ∈ ĤPh. It follows that P ′h ⊂ ĤPh,

proving the claim.

4. We �rst observe that (P ∩ Û(H ))⊗RK = P ′h. Then since K is a �at R-module we

have that following commutative diagram

0 // P ′ ∩ Û(H ) //

��

Û(H ) //

��

A //

��

0

0 // P ′h
// Ĥ // A⊗R K // 0

with exact rows. It follows that A is a lattice in Ĥ/P ′h.

5. The natural Û(H )-module homomorphism

⊕
i∈N

Û(H )xi → Û
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is an embedding by proposition 2.5.1(1). A is the image of this homomorphism, so

it is clear that A is isomorphic as an R-algebra to Û(H ) [x ; D].

Let Q = P ′ ∩ A , and let α =
∑n

i=0 aix
i ∈ Q, ai ∈ Û(H ) for 0 ≤ i ≤ n. Then to

show that Q is controlled by Û(H ), it is enough to show that ai ∈ Q for 0 ≤ i ≤ n.

By induction on the degree of α, it will be enough to simply show that an ∈ Q.

For this we note that α ∈ Q implies adny (α) = n!znan ∈ Q. Now, Q = P ′ ∩ A ,

an ∈ Û(H ). Z(Û/P ′) = K and P ′ ∩ Z(g) = 0 so z − µ ∈ P ′ for some µ ∈ K×.

It follows that n!µnan ∈ P ′. Since P ′ is a K-vector space, n!µnan ∈ P ′ implies

an ∈ P ′, so an ∈ Û(H ) ∩ Q, proving the claim. Since A contains U(L ), A is

dense in Û(L ).

�

Now, let B be the R-subalgebra of Û generated by H and x. Then U(L ) ⊂ B ⊂

Û(L ), so B is a lattice in Û .

Proposition 5.4.1 Let A = Ĥ/P ′h as de�ned in lemma 5.4.1(3).

1. Let δ be the restriction of the action of D|Ĥ to A. Then there is an isomorphism of

K-algebras

Û/P ′ → A〈x ; δ〉.

2. For some collection of polynomials fi(t) ∈ K [t] for 1 ≤ i ≤ s, there is an isomor-

phism A→ K〈f1(t)(∂), . . . , fs(t)
(∂)〉.

Proof:

1. Let J = P ′ ∩A . A is a lattice in Û , J is controlled by Û(H ) by lemma 5.4.1(5).

Let J ′ = P ′ ∩ Ĥ. A is isomorphic to Û(H ) [x ; δ] by lemma 5.4.1(5), so we have
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an isomorphism

A /J → B [x ; δ]

where B = Û(H )/J ′. As A /J is a lattice in Û/P ′, we get an isomorphism

Û/P ′ → lim←−
i∈N

B [x ; δ] /πiB [x ; δ]⊗R K.

Of course, since B is a δ-lattice in A, by de�nition lim←−i∈NB [x ; δ] /πiB [x ; δ]⊗RK =

A〈x ; δ〉, completing the proof.

2. By proposition 2.4.7 we have a ring homomorphism

Φ : U(g)→ W1(K) ; x 7→ ∂ and α 7→
∑
i∈N

Di(α)t[i]

with primitive kernel P generated by the ideal (z − 1)U(g) and the preimage of

U(h)/J as described in proposition 2.4.7. Let Φh be the restriction of Φ to U(h).

Then Φh(U(h)) = K [t]. If we choose a basis h1, . . . , hn for H , we can see that

Φh(U(H )) is the sub-R-algebra generated by

fi(t) =
∑
j∈N

Dj(hi)t
[j] for 0 ≤ i ≤ d− 1

Thus, we have an exact sequence

0→ P̂h → Ĥ → K〈fi(t) ; 0 ≤ i ≤ d− 1〉 → 0.

By [4, 3.2.3(iii)] P̂h = ĤPh. Then by lemma 5.4.1(2) P̂h = P ′h. Now, it is enough

to note that ΦδΦ−1 = ∂t, so the fact that Û(H ) is closed under the Lie bracket

implies that ∂jt (fi(t))) is power bounded for all j ∈ N and 0 ≤ i ≤ d− 1. Then we

can choose a presentation of K〈fi(t) : 0 ≤ i ≤ d− 1〉 as in the statement.

�
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Theorem 5.4.1 For some n ∈ N, some mi ∈ N, si ∈ N and some �nite Galois extensions

Li of K with Galois groups Gi for 1 ≤ i ≤ n, we have an isomorphism of K-algebras

Û/P ′ →
n∏
i=1

Mpmi (V̂si,Li
)Gi

Proof: Using proposition 5.4.1(1) and (2), noting that the Dixmier map sends δ to ∂t,

there is an isomorphism

Û/P ′ → K〈f1(t)(∂), . . . , fs(t)
(∂)〉〈x ; ∂〉.

Then the statement follows from corollary 5.3.2. �

Corollary 5.4.1 1. If I is a primitive ideal of Û then I ∩U(g) is a primitive ideal of

U(g).

2. There is a surjective map Prim(Û)→ Prim(U(g)) with �nite �bres.

3. For an ideal I ⊂ Û the following are equivalent:

(a) Z(Û/I) is algebraic over K.

(b) I is primitive.

(c) I is maximal.

Proof: We �rst observe that each V̂si,Li
is simple: to see this we can use a similar method

to that in lemma 3.1.2 part 1 to show each ideal in V̂si,Li
contains an element of K.

Let I be a primitive ideal of Û . Let J = I ∩ U(g). Then by theorem 2.5 L = Z(Û/I)

is an algebraic �eld extension of K. It follows that Z(U(g)/J = L, so J is primitive by

proposition 2.4.4, proving part 1. On the other hand, let M be a simple U(g)-module

with annihilator J . Then there is a natural UL = U ⊗K L-module structure on M . Let J ′

be the annihilator of M in UL. Then J ′ is weakly rational, so there are only �nitely many
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primitives ideals in ÛL/J ′ÛL by theorem 5.4.1. ÛL/J ′ÛL is isomorphic to Û/JÛ , so JÛ

is semiprime as well, proving the second claim.

Now, for the the third claim, we �rst observe that we know (b) implies (a) by theorem

2.5. It is trivial that (c) implies (b) so it will be enough to prove that (a) implies (c). So

suppose that Z(Û/I) is algebraic over K. Then by theorem 5.4.1 we �nd that Û/(I∩U)Û

is a product of galois invariants of matrix rings over deformed a�noidWeyl algebras, which

are simple by lemma 5.2.3(2). Then it is clear that the condition on I implies that I is

maximal. �
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Chapter 6

An analogue to Beilinson-Bernstein for

the global sections of the arithmetic

di�erential operators over the

projective line

6.1 De�nitions

6.1.1 OX-rings

We de�ne the category of OX-rings over a scheme X in the following manner: Objects

are pairs (F , ι) where F is a sheaf of R-algebras over a scheme X and ι is a morphism of

sheaves of rings OX → F . Morphisms (F , ι)→ (G, ι) between OX-rings are de�ned to be
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morphisms of sheaves of R-algebras F → G such that the following diagram commutes

F

  
OX

ι

OO

ι // G

. We simply refer to (F , ι) as F when no confusion will arise.

6.1.2 Notation and Preliminaries

Let X and Y be two copies of P1
R. Let t be a coordinate for X and τ a coordinate for

Y . Let F : (X,OX) → (Y,OY ) be the morphism of schemes de�ned by τ 7→ tp. We

explicitly construct OY in the following manner: Let X and X ′ be two copies of A1
R. Let

x, x′ be coordinates for X and X ′ respectively. Then we view (Y,OY ) as the colimit of

the following diagram

OX // OX(X\{0})

OX′

OO

where the horizontal arrow is the sheaf map, and the vertical arrow maps x′ 7→ x−1. We

identify x with τ , x′ with τ−1, and de�ne Y0 to be the image of X in Y , Y∞ the image of

X ′ in Y , and Y0∞ the image of X\{0} in Y .

Let ∂t, ∂t−1 be the dual operators to dt and dt−1 respectively.

Using theorem 4.3.1 we have isomorphisms of OY -rings Mp(D̂[0]
Y )|Y0→ F∗D̂[1]

X |Y0 and

F∗D̂[1]
X |Y∞→ Mp(D̂[0]

Y )|Y∞ , so using the language of section 4.3 we de�ne the following

variables:

1. Let D0 = D̂[1]
X (X0), D∞ = D̂[1]

X (X∞), and D0∞ = D̂[1]
X (X0∞).

2. Let C0 be the closed sub-R-algebra of D0 generated by x0 = t∂t and y0 = tp∂
[p]
t (so

that they satisfy the conditions of c0 and c1 as in 4.3.3), and let C∞ be the closed
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sub-R-algebra of D∞ generated by x∞ = t−1∂t−1 and y∞ = t−p∂
[p]

t−1 . Let φ0 be the

automorphism x0 7→ x0 + 1 of C0 and let φ∞ be the automorphism x∞ 7→ x∞+ 1 of

C∞.

3. For 0 ≤ i ≤ p− 1 let êii =
(
t∂t+i
p−1

)
and let f̂ii =

(
t−1∂t−1+i

p−1

)
. Let eii be the unique lifts

of the idempotents êii+πC0 to C0, and let fii be the unique lifts of the idempotents

f̂ii + πC∞ to C∞. Set eij = eiit
j−iejj ∈ D0 and fij = fiit

i−jfjj ∈ D∞, so that

the {eij}0≤i,j≤p−1 form a set of matrix units for D0 and {fij}0≤i,j≤p−1 form a set of

matrix units for D∞.

4. Let γ0 be the element given by lemma 4.3.6 such that
[
γ0∂

[p]
t , τ

]
= 1. Set δ0 = γ0∂

[p]
t .

Similarly let γ∞ be the element given by lemma 4.3.6 such that
[
γ∞∂

[p]

t−1 , τ
−1
]

= 1

and set δ∞ = γ∞∂
[p]

t−1 .

We will see that in transferring between charts, the indices of the matrix units are

shifted. To ease notation, for 0 ≤ i ≤ p− 1 we set

i∗ =


p− 2− i if 0 ≤ i ≤ p− 2

p− 1 if i = p− 1.

6.1.3 The Global Diagonal Algebra

Proposition 6.1.3 The image of C0 under the restriction map D0 → D0∞ and the image

of C0∞ under the restriction map D∞ → D0∞ are identical. The automorphisms φ0 and

φ∞ are inverse.

Proof: In this proof, we identify C0 and C∞ with their images in D0∞. C0 is the closed

sub-R-algebra generated by x0 and y0 and C∞ is the closed sub-R-algebra generated by

x∞ and y∞, so to prove C0 = C∞ it will be enough to check that x0, y0 ∈ C∞ and x∞,

y∞ ∈ C0.
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Since ∂t−1 7→ −t2∂t, we can calculate that x0 = t∂ = −t−1∂t−1 = −x∞. Hence x0 ∈ C∞

and x∞ ∈ C0. Using proposition 4.3.3(1) we can see that p!y∞ = t−p∂pt−1 =
∏p−1

i=0 (t−1∂t−1−

i) = (−1)p
∏p−1

i=0 (x0+i). Of course, (−1)p
∏p−1

i=0 (x0+i) = −
∏p−1

i=0 (x0+p−1−i), so recalling

that by de�nition φp−1
0 (x0) = x0 + p− 1, and again using lemma 4.3.3(1) we have

p!y∞ = t−p∂pt−1 = −φp−1
0

(
p−1∏
i=0

(x0 − i)

)
= −φp−1

0 (tp∂pt ) = −p!φp−1
0 (y0).

SinceD0∞ is π-torsion free, it follows that y∞ = −φp−1
0 (y0). Hence y∞ ∈ C0. By symmetry

y0 = −φ∞(y∞)p−1 so y0 ∈ C∞, proving that C∞ = C0. Then φ0 and φ∞ are inverse, since

φ0 sends x0 7→ x0 + 1 and φ∞ sends x0 = −x∞ 7→ −(x∞ + 1) = x0 − 1. � Due to

proposition 6.1.3 we now let C be the image of C0 (and C∞) in D0∞.

Corollary 6.1.3 All of the idempotents eii and the elements êii are global.

Proof: Each eii is global as they all belong to C, so they form a complete set of orthogonal

idempotents in D̂[1]
X (X). �

6.1.4 Restriction of Matrix Units

Recall that we have de�ned, for 0 ≤ i ≤ p− 1, that

i∗ =


p− 2− i if 0 ≤ i ≤ p− 2

p− 1 if i = p− 1.

Let θ be the restriction map D̂[1]
X (X∞)→ D̂[1]

X (X0∞).

Proposition 6.1.4 Let µ = e(p−1)(p−1) + τ−1(1 − e(p−1)(p−1)). Then the restriction map

θ : D̂[1]
X (X∞)→ D̂[1]

X (X0∞) acts on the matrix units {fij}0≤i,j≤p−1 so that θ(fij) = µei∗j∗µ
−1.

Proof:
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From proposition 4.3.3(1) we can calculate that that f̂00 = t−(p−1)∂
[p−1]

t−1 =
(
t−1∂t−1

p−1

)
.

From proposition 4.3.3(1) we know that θ(t−1∂t−1) = −t∂t, so we deduce that θ(f̂00) =(−t∂t
p−1

)
=
(
t∂t+p−2
p−1

)
. Then for 0 ≤ i ≤ p− 2, using the fact that φ0 and φ∞ are inverse from

proposition 6.1.3, and that φ0(t∂t) = t∂t + 1,

θ(f̂ii) = θ(φi∞(f̂00)) = φ−i0

((
t∂t + p− 2

p− 1

))
=

(
t∂t + i∗

p− 1

)
= êi∗i∗ .

so we can see that for 0 ≤ i ≤ p− 2,

θ(fii) ≡ θ(φi∞(f̂00)) = êi∗i∗ ≡ ei∗i∗ mod πD̂[1]
X (X0∞).

Now, by lemma 4.3.3, since θ(fii) is equivalent to ei∗i∗ mod πD̂[1]
X (X0∞) we must have

θ(fii) = ei∗i∗ .

From the de�nitions we know that θ(t) = t, and noting that i − j = j∗ − i∗ for

0 ≤ i, j ≤ p− 2, we can observe that for 0 ≤ i, j ≤ p− 2,

θ(fij) = θ(fiit
i−jfjj) = ei∗i∗t

j∗−i∗ej∗j∗ = ei∗j∗ .

Since τ commutes with the ei∗i∗ , we �nd that θ(fii) = µei∗i∗µ
−1 for 0 ≤ i, j ≤ p− 2.

In a similar manner to above we can calculate that θ(f̂(p−1)(p−1)) = θ(φp−1
∞ (f̂00)) =

φ
−(p−1)
0

(
t∂t+p−2
p−1

)
=
(
t∂t−1
p−1

)
= φ−p0 (ê(p−1)(p−1)). φ−p0 is the identity mod πD̂[1]

X (X0∞), so

φ−p0 (ê(p−1)(p−1)) ≡ ê(p−1)(p−1) mod πD̂[1]
X (X0∞). Hence

θ(f(p−1)(p−1)) ≡ θ(f̂(p−1)(p−1)) ≡ ê(p−1)(p−1) ≡ e(p−1)(p−1) mod πD̂[1]
X (X0∞).

As before, we conclude that θ(f(p−1)(p−1)) = e(p−1)(p−1). Since (p − 1)∗ = p − 1, we have

that θ(f(p−1)(p−1)) = µe(p−1)∗(p−1)∗µ
−1.
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Finally, for 0 ≤ i ≤ p− 2, noting that τ = tp commutes with the eii, we can calculate

that

θ(f(p−1)i) = θ(f(p−1)(p−1)t
(p−1)−ifii) = e(p−1)(p−1)t

1+i∗ei∗i∗

= τe(p−1)(p−1) = ti
∗−(p−1)ei∗i∗ = τe(p−1)i∗ = µe(p−1)i∗µ

−1

and similarly

θ(fi(p−1)) = ei∗i∗t
−(i∗+1)e(p−1)(p−1) = τ−1ei∗i∗t

(p−1)−i∗e(p−1)(p−1)

= τ−1ei∗(p−1) = µei∗(p−1)µ
−1.

�

6.1.5 Restriction of the τ -di�erential

Proposition 6.1.5 Let µ = e(p−1)(p−1) +τ−1(1−e(p−1)(p−1)). The restriction D̂[1]
X (X∞)→

D̂[1]
X (X0∞) sends

δ∞ 7→ −
(
e(p−1)(p−1)τ

2δ0 + (1− e(p−1)(p−1))τδ0τ
)

= µ(−τ 2δ0)µ−1.

Proof: Since the eii commute with τ , δ0, and δ∞ and −τδ0τ = τ−1(−τ 2δ0)τ , we have

−
(
e(p−1)(p−1)τ

2δ0 + (1− e(p−1)(p−1))τδ0τ
)

= µ(−τ 2δ0)µ−1.

Let θ be the restriction map D̂[1]
X (X∞)→ D̂[1]

X (X0∞).

Applying proposition 4.3.8(5) to D̂[1]
X (X∞) we know that fiipτ−1δ∞ = fii(t

−1∂t−1 −

(p− 1− i)), so we can write

pτ−1δ∞ =

p−1∑
i=0

fii
(
t−1∂t−1 − (p− 1− i)

)
From the de�nitions we know that θ(t−1∂t−1) = −t∂, and using proposition 6.1.4 we know

that for 0 ≤ i ≤ p − 1, θ(fii) = ei∗i∗ . From the de�nition of φ0 we know φp0(t∂t + i) =

(t∂t + p+ i), so for 0 ≤ i ≤ p− 2 we can calculate

θ(fiipτ
−1δ∞) = −ei∗i∗(t∂t + 1 + i∗) = −ei∗i∗φp0(t∂t − (p− 1− i∗)) = −φp0(ei∗i∗pτδ0).
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From proposition 4.3.8(4) we have φp0(τδ0) = τδ0 + 1 = δ0τ , and we know that φp0 �xes

ei∗i∗ so we deduce that

θ(fiiδ∞) = −ei∗i∗τφp0(τδ0) = −ei∗i∗τδ0τ.

Summing over 0 ≤ i ≤ p− 2 we have that

θ((1− f(p−1)(p−1))δ∞) = −(1− e(p−1)(p−1))τδ0τ.

Finally, using proposition 4.3.8(5) we can see that f(p−1)(p−1)pτ
−1δ∞ = f(p−1)(p−1)t

−1∂t−1

and e(p−1)(p−1)pτδ0 = e(p−1)(p−1)t∂t, so

θ(f(p−1)(p−1)pτ
−1δ∞) = −e(p−1)(p−1)(t∂t) = −e(p−1)(p−1)pτδ0.

So we get that θ(f(p−1)(p−1)δ∞) = −e(p−1)(p−1)τ
2δ0, proving the claim. �

6.1.6 Twisted Sheaves of Algebras

Let X be a scheme, let C be some category, and let F be a C-sheaf over X.

We de�ne an F -twist to be a C-sheaf G such that there exists an open cover {Ui}i∈I

of X and isomorphisms of C-sheaves ωi : G|Ui
→ F|Ui

for i ∈ I.

Lemma 6.1.6 Suppose that F is a C-sheaf on X, and that G and H are F-twists. Choose

an open cover {Ui}i∈I such that there exist isomorphisms gi : G|Ui
→ F|Ui

and hi : H|Ui
→

F|Ui
for i ∈ I. Write Uij for Ui ∩ Uj for i, j ∈ I. Suppose that gi|Uij

gj|−1
Uij

= hi|Uij
hj|−1

Uij
.

Then the morphism ρ : G → H de�ned locally by ρ|Ui
= h−1

i gi for i ∈ I is an isomorphism

of C-sheaves.

Proof: Since gi and hi are isomorphisms of C-sheaves for i ∈ I, ρ|Ui
is an isomorphism of

C-sheaves for i ∈ I. Since gi|Uij
gj|−1

Uij
= hi|Uij

hj|−1
Uij

we have

ρ|Ui
|Uij

= hi|−1
Uij
gi|Uij

= hj|−1
Uij
gj|Uij

= ρ|Uj
|Uij
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for all i, j ∈ I. Hence ρ is a well de�ned isomorphism. �

Now let L and K be invertible OX-modules. If F is an OX-module then we de�ne

LFK = L ⊗OX
F ⊗OX

K.

If X trivializes both L and K, and a ∈ L(X), b ∈ K(X) are global generators for L and

K, then for all open U ⊂ X, every element of LFK(U) can be written in the form a⊗α⊗b

for some α ∈ F(U).

If U is an open subset of X which trivializes L and a ∈ L(U) then we write a∗ for the

element of L−1(U) such that the canonical isomorphism L ⊗OX
L−1(U) → OX(U) sends

a⊗ a∗ to 1.

If A is an OX-rings then LAL
−1

is also an OX-ring with multiplication de�ned as the

composite of the canonical isomorphism L ⊗OX
L−1 → OX and the multiplication on A.

If A and B are OX-rings, and M is an A-B-bimodule, then LMK is an LAL−1
-

K−1BK-bimodule, with left action de�ned as the composite of the canonical isomorphism

L ⊗OX
L−1 → OX and the left action of A onM, and the right action de�ned similarly.

This construction is functorial in the sense that ifM→ N is a homomorphism of A-B-

bimodules then LMK → LNK is a homomorphism of LAL−1
-K
−1BK-bimodules.

Proposition 6.1.6 Let A and B be OX-ring, letM be an A-B bimodule and let N be a

B-A-bimodule. Let

Φ : M⊗B N → A

be a homomorphism of A-bimodules. Then the morphism

Φ(L,K) : LMK ⊗K−1BK
K−1N L−1 → LAL−1

de�ned as the composite of the canonical isomorphism K⊗OX
K−1 → OX and Φ is a well

de�ned homomorphism of LAL−1
-bimodules.
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Proof: Let

ψ : LMK ⊗OX

K−1N L−1 → LAL−1

be the homomorphism of LAL−1
-bimodules de�ned as the composite of the canonical

isomorphism K⊗OX
K−1 → OX and Φ. Then to prove that Φ(L,K) is well de�ned it will

be enough to show that for all open U ⊂ X, for all µ ∈ LMK(U), ν ∈ K−1N L−1
(U), and

β ∈ K−1BK(U) we have ψ(µβ⊗ ν) = ψ(µ⊗βν). We can assume without loss of generality

that U trivializes L and K, so that we have global generators a ∈ L(U) of L|U and

b ∈ K(U) of K|U . Then it will be equivalent to show that for all µ ∈ M(U), ν ∈ N (U),

and β ∈ B(U) we have ψ((a⊗ µβ ⊗ b)⊗ (b∗ ⊗ ν ⊗ a∗)) = ψ((a⊗ µ⊗ b)⊗ (b∗ ⊗ βν ⊗ a∗)).

Now we can calculate that

ψ((a⊗ µβ ⊗ b)⊗ (b∗ ⊗ ν ⊗ a∗))

= a⊗ Φ(µβ ⊗ ν)⊗ a∗ = a⊗ Φ(µ⊗ βν)⊗ a∗

= ψ((a⊗ µ⊗ b)⊗ (b∗ ⊗ βν ⊗ a∗)),

proving the claim. �

6.1.7 Twisted Morita Contexts

Let A and B be OX-rings over an S-scheme X,M a sheaf of A-B-bimodules, N a sheaf B-

A-bimodules, Φ : M⊗B N → A a morphism of A-A-bimodules, and Ψ : N ⊗AM→ B

a morphism of B-B-bimodules, with the condition that for all open U ⊂ X, and all

m,m′ ∈M(U) and n, n′ ∈ N (U) we have

Φ(U)(m⊗ n)m′ = mΨ(U)(n⊗m′) and nΦ(U)(m⊗ n′) = Ψ(U)(n⊗m)n′.

Then we can construct an OX-ring C over X from this data in the following manner: As

a sheaf of Abelian groups we de�ne that C = A⊕M⊕N ⊕B. If U ⊂ X is an open set,
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we write an element (a,m, n, d) ∈ C(U), where a ∈ A(U), b ∈ B(U), m ∈ M(U), and

n ∈ N (U) in the form

 a m

n b

. Multiplication in C(U) is de�ned by the equation

 a m

n b


 a′ m′

n′ b′

 =

 aa′ + Φ(m⊗ n′) am′ +mb′

na′ + bn′ Ψ(n⊗m′) + bb′

 .
We write

C =

 A M

N B


when the maps Φ and Ψ are understood. We call C the Morita context over X de�ned by

A,M, N , B, Ψ, and Φ.

Now suppose that L and K are invertible OX-modules. Then we de�ne a Morita

context

C(L,K) =

 LAL−1 LMK−1

KN L−1 KBK−1


with bimodule morphisms

Φ(L,K) : LMK−1 ⊗KBK−1
KN L−1 → LAL−1

and

Ψ(L,K) : KN L−1 ⊗LAL−1
LMK−1 → KBK−1

de�ned as in proposition 6.1.6.

Proposition 6.1.7 1. Assume that a ∈ L(X), b ∈ K(X) are global generators of L

and K over OX . Then there exists an isomorphism of OX-rings

ρX(a, b) : C(L,K)→ C ;

 a⊗ α⊗ a∗ a⊗ µ⊗ b∗

b⊗ ν ⊗ a∗ b⊗ β ⊗ b∗

 7→
 α µ

ν β

 .
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2. Choose open U , V ⊂ X and suppose that U and V trivialize L and K. Let aU

and aV be global generators for L|U and L|V respectively, and let bU and bV be

global generators for K|U and K|V respectively. Let ε, θ ∈ OX(U ∩ V )× such that

aV |U∩V = εaU |U∩V and bV |U∩V = θbU |U∩V . Let x =

 ε 0

0 θ

 ∈ C(U ∩ V ). Let

ρU = ρU(aU , bU) and ρV = ρV (aV , bV ) as de�ned in part 1. Then ρU |U∩V ρV |−1
U∩V

sends c to xcx−1 for all c ∈ C(W ) and all open W ⊂ U ∩ V .

Proof:

1. ρX(a, b) is clearly an isomorphism of OX-modules, so we only need to check multi-

plicativity. We will drop tensor symbols for ease of notation, so that e.g. a⊗α⊗ a∗

is written aαa∗. Let U be an open subset of X , let α, α′ ∈ A(U), β, β′ ∈ B(U),

µ, µ′ ∈M(U), and ν, ν ′ ∈ N (U). Then

ρX(a, b)


 aαa∗ aµb∗

bνa∗ bβb∗


 aα′a∗ aµ′b∗

bν ′a∗ bβ′b∗




=ρX(a, b)


 aαα′a∗ + Φ(L,K)(aµb∗ ⊗ bν ′a∗) aαµ′b∗ + aµβ′b∗

bνβ′a∗ + bβν ′a∗ bββ′b∗ + Ψ(L,K)(bνa∗ ⊗ aµ′b∗)




=ρX(a, b)


 a(αα′ + Φ(µ⊗ ν ′))a∗ a(αµ′ + µβ′)b∗

b(νβ′ + βν ′)a∗ b(ββ′ + Ψ(ν ⊗ µ′))b∗




=

 αα′ + Φ(µ⊗ ν ′) αµ′ + µβ′

νβ′ + βν ′ ββ′ + Ψ(ν ⊗ µ′)

 =

 α µ

ν β


 α′ µ′

ν ′ β′

 .
Hence ρX(a, b) is multiplicative, proving the claim.
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2. Let W be an open subset of U ∩ V and let c =

 α µ

ν β

 ∈ C(W ). Then

ρV (W )−1(c) =

 aV αa
∗
V aV µb

∗
V

bV νa
∗
V bV βb

∗
V

 =

 aUεαε
−1a∗U aUεµθ

−1b∗U

bUθνε
−1a∗U bUθβθ

−1b∗U

 .
Hence

ρU(W )ρV (W )−1(c) =

 εαε−1 εµθ−1

θνε−1 θβθ−1

 = xcx−1,

proving the claim.

�

6.1.8 The Main Theorem

Let C = Mp(D̂[0]
Y ), let e = ẽ(p−1)(p−1) ∈ C(Y ) and let f = (1− ẽ(p−1)(p−1)), so that we have

C =

 fCf fCe

eCf eCe

 ,
and throughout this section we will consider C as a Morita context with respect to this

structure. Let L = OY (1), the Serre twisting sheaf. Given an OY -module F , for i, j ∈ Z

we will write (i)F(j) for L
⊗iFL⊗j

, and (i)F for (i)F(−i). We will prove the following

theorem

Theorem 6.1.8 Let

M = C(L−1,OY ) =

 (−1)fCf (−1)fCe

eCf(1) eCe

 .
Then there exists an isomorphism of OY -rings F∗D̂[1]

X →M.

In order to do so we will need the following proposition.
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Proposition 6.1.8 F∗D̂[1]
X |Y0 is an Mp(D̂[0]

Y )-twist, with local isomorphisms of OY -rings

θ0 : F∗D̂[1]
X |Y0→Mp(D̂[0]

Y )|Y0 ; δ0 7→ ∂τ and eij 7→ ẽij for 0 ≤ i, j ≤ p− 1

and

θ∞ : F∗D̂[1]
X |Y∞→Mp(D̂[0]

Y )|Y∞ ; δ∞ 7→ ∂τ−1 and fij 7→ ẽi∗j∗ for 0 ≤ i, j ≤ p− 1.

Let χ = e+ τ−1f . Then θ0|Y0∞θ∞|−1
Y0∞

: Mp(D̂[0]
Y )|Y0∞→Mp(D̂[0]

Y )|Y0∞ sends α 7→ χαχ−1.

Proof:

Applying theorem 4.3.1 to Y0 and Y∞, θ0 and θ∞ are isomorphisms of OY -rings Hence

from the de�nitions in section 6.1.6, F∗D̂[1]
X is an Mp(D̂[0]

Y )-twist.

So we only need to prove that θ0|Y0∞θ∞|−1
Y0∞

: Mp(D̂[0]
Y )|Y0∞→ Mp(D̂[0]

Y )|Y0∞ is de�ned

by α 7→ χαχ−1.

Let U be an open subset of Y0∞. We will abuse notation and write θ† for θ†(U) for

† ∈ {0,∞}. Then it will su�ce to prove that for all α ∈Mp(D̂[0]
Y )(U) we have θ0θ

−1
∞ (α) =

χαχ−1. Since θ0θ
−1
∞ is a morphism of O(U)-rings, we have θ0θ

−1
∞ (τ) = τ = χτχ−1, so it will

su�ce to prove that θ0θ
−1
∞ (∂τ−1) = χ∂τ−1χ−1 and θ0θ

−1
∞ (ẽij) = χẽijχ

−1 for 0 ≤ i, j ≤ p−1.

Let µ = e(p−1)(p−1) + τ−1(1 − e(p−1)(p−1)) = θ−1
0 (χ) ∈ F∗D̂[1]

X (U). By proposition 6.1.5

we have θ−1
∞ (∂τ−1) = δ∞|U= µ(−τ 2δ0)|Uµ−1, so

θ0θ
−1
∞ (∂τ−1) = χ(−τ 2∂τ )χ

−1 = χ∂τ−1χ−1.

By proposition 6.1.4 we have θ−1
∞ (ẽij) = fi∗j∗|U= µeij|Uµ−1, so

θ0θ
−1
∞ (ẽij) = χẽijχ

−1,

proving the claim. �
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Now we are ready to prove the main theorem. Proof:[Proof of the Main Theorem]

For † ∈ {0,∞} choose a generator a† ∈ L(X†) for L|X† such that a∞ = τ−1a0, and let

ρ† = ρX†(a†, 1) be de�ned as in proposition 6.1.6(1).

Then by proposition 6.1.7(1) ρ0|X0∞ρ∞|−1
X0∞

sends

α→

 τ−1 0

0 1

α
 τ 0

0 1



for all α ∈ C(U) and all open U ⊂ Y0∞. Of course,

 τ−1 0

0 1

 = fτ−1 + e, so by

proposition 6.1.8 ρ0|X0∞ρ∞|−1
X0∞

= θ0|X0∞θ∞|−1
X0∞

. Hence, by lemma 6.1.6 there exists an

isomorphism of OY -rings Φ : F∗D̂[1]
X →M such that Φ|Y†= ρ−1

† θ† for † ∈ {0,∞}. � Now

we can prove the theorem 1.6 from the introduction.

Corollary 6.1.8 There exists an isomorphism of OY -rings

F∗D̂[1]
X →

 (−1)Mp−1(D̂[0]
Y ) ((−1)D̂[0]

Y )p−1

(D̂[0]
Y (1))p−1 D̂[0]

Y

 .
Proof: This just follows from the fact that there are isomorphisms of OY -rings fCf →

Mp−1(D̂[0]
Y ) and eCe → D̂[0]

Y , as well as isomorphisms of fCf -eCe-bimodules fCe →

(D̂[0]
Y )p−1 and eCe-fCf -bimodules eCf → (D̂[0]

Y )p−1, and that (n)F i(m) = ((n)F(m))i

for all OY -modules F . �
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6.2 Global Sections of Twists

6.2.1 De�nitions

Set D = D̂[0]
Y . L = OY (1) and for † ∈ {0,∞} let ε† : L|Y†→ OY |Y† be de�ned so that

ε0|Y0∞ε∞|−1
Y0∞

sends 1 7→ τ . Let C, e, and f be de�ned as in section 6.1.8, so that

C = Mp(D) =

 eMp(D)e eMp(D)f

fMp(D)e fMp(D)f

 .
For n ∈ Z setMn = C(L⊗n−1,L⊗n). For † ∈ {0,∞}, let a† be a global generator for L⊗n−1

such that ε⊗n−1
† (a†) = 1 and let b† be a global generator for L⊗n|Y† such that ε⊗n† (b†) = 1.

Let ρ† = ρY†(a, b) be de�ned as in proposition 6.1.7.

For n ∈ Z set

Dn = {α ∈ D(Y0) : τ−nα|Y0∞τn ∈ resY∞Y0∞D(Y∞)}.

and

Rn = {α ∈ D(Y0) : τ−(n−1)α|Y0∞τn ∈ resY∞Y0∞D(Y∞)}

Ln = {α ∈ D(Y0) : τ−nα|Y0∞τn−1 ∈ resY∞Y0∞D(Y∞)}.

Proposition 6.2.1 The image of the R-algebra embedding ρ0(Y0)resYY0 : Mn(Y )→ C(Y0)

is the set

A =

 Mp−1(Dn−1) (Rn)p−1

(Ln)p−1 Dn

 .
Proof: From the �ech complex we know that

resYY0(M
n(Y )) = {α ∈Mn(Y0) : α|Y0∞∈ resY∞Y0∞M

n(Y∞)}.

Hence, noting that ρ0(Y0∞) is an isomorphism, we have

ρ0(Y0)resYY0(M
n(Y )) = {α ∈ C(Y0) : α|Y0∞∈ ρ0(Y0∞)resY∞Y0∞M

n(Y∞)}.
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Noting that ρ∞(Y0∞)(resY∞Y0∞M
n(Y∞)) = resY∞Y0∞C(Y∞) we conclude that

ρ0(Y0)resYY0(M
n(Y )) = {α ∈ C(Y0) : ρ∞(Y0∞)ρ0(Y0∞)−1(α|Y0∞) ∈ resY∞Y0∞C(Y∞)}.

Now, by proposition 6.1.7(2), φ = ρ∞(Y0∞)ρ0(Y0∞)−1 sends α 7→

 τ−(n−1) 0

0 τ−n

α
 τn−1 0

0 τn


for all α ∈ C(Y0∞). Now, let {ẽi}0≤i≤p−1 be an orthogonal set of idempotents for C(Y0)

such that
∑p−2

i=0 ẽi = f and ẽp−1 = e. Let α ∈ ẽiC(Y0)ẽj. We identify α with an element

of D(Y0) and we �nd

φ(α|Y0∞) =



τ−(n−1)α|Y0∞τn−1 if 0 ≤ i, j ≤ p− 2

τ−(n−1)α|Y0∞τn if 0 ≤ i ≤ p− 2 and j = p− 1

τ−nα|Y0∞τn−1 if 0 ≤ j ≤ p− 2 and i = p− 1

τ−nα|Y0∞τn if i, j = p− 1

Proving the claim. �

6.2.2 Beilinson Bernstein for sl2

In this section we assume the char(κ) 6= 2. Let g = sl(2, R), the R-Lie algebra which

is free as an R-module on the basis {E,F,H} where [E,F ] = H, [H,E] = 2E, and

[H,F ] = −2F . We set U = U(g), the universal enveloping algebra of g. Set Ω =

4FE + H2 + 2H be the Casimir element of U . Ω is a central element of U . For λ ∈ R,

set Uλ = U/U(Ω − λ2 − 2λ). Set Uκ = U/πU , and Uλ,κ = Uλ/πUλ. Uκ carries the PBW

�ltration, and Uλ,κ carries the quotient of the PBW �ltration P∗. Their is an isomorphism

of κ-algebras

gr(Uκ)→ Sym(g/πg) ; e+ P0(Uκ) 7→ ẽ ; h+ P0(Uκ) 7→ h̃ ; f + P0(Uκ) 7→ f̃ ,
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where ẽ = E+πg, f̃ = F +πg and h̃ = H +πg. Set Ω = Ω +πU and set Ω̃ = Ω +P1(U).

Then the above isomorphism sends Ω̃ to 4f̃ ẽ + h̃2, and the surjection gr(Uκ) → gr(Uλ,κ)

has kernel Ω̃gr(Uκ).

Set Û = lim←−n∈N U/π
nU , and for λ ∈ R, Ûλ = lim←−n∈N Uλ/π

nUλ. The diagonal homo-

morphism U → Ûλ lifts to a surjection Û → Ûλ with kernel Û(Ω−λ2−2λ) [2, Proposition

6.10]. The graded ring of Û with respect to the π-adic �ltration is isomorphic to Uκ(g) [s],

a left and right Noetherian ring, so by proposition 2.2.7(2), Û is left and right Zariskian,

so that for each λ ∈ R, Ûλ is complete with respect to its π-adic �ltration.

Fix n ∈ Z. Write en, fn, hn for the images of E,F , and H in Ûn respectively. If no

confusion will arise, we simply write e, f and h for en, fn, and hn respectively.

Throughout this section we will be using various graded arguments, so set D = D/πD.

If U is an open subset of Y and α ∈ D(U), then we will write α for α + πD(U) ∈ D(U),

or just α when no confusion will arise.

D is a �ltered OY -ring, where for an open U ⊂ Y0 the �ltration F∗ on D(U) is de�ned

so that Fi(D(U)) is the set of elements of D(U) of ∂τ -degree less than or equal to i.

For a general open U ⊂ Y we de�ne the �ltration on D(U) to be the subspace �ltration

induced by the embedding resUU∩Y0 : D(U)→ D(U∩Y0). Let G be the sheaf of graded rings

associated to F∗ on Y . Then G|Y0 is generated over OY /πOY |Y0 by ∂̃τ = ∂τ + F0(D(Y0)),

subject only to the relation ∂̃ττ = τ ∂̃τ . Similarly G|Y∞ is generated over OY /πOY |Y∞ by

∂̃τ−1 = ∂τ−1 + F0(D(Y∞)). Of course ∂̃τ−1|Y0∞= −τ 2∂̃τ |Y0∞ .

Lemma 6.2.2 1. Let X be a copy of A1
R and choose a coordinate t for X. Let ∂t be

the operator dual to dt ∈ Ω1
X(X). Then there is an R-algebra embedding

γX(t, n) : Ûn → D̂[0](X) ; e 7→ ∂t ; h 7→ tn(−2t∂t)t
−n − n ; f 7→ tn(−t2∂t)t−n

2. Set γ0 = γY0(τ, n) and set γ∞ = γY∞(τ−1, n). Let ω : Ûn → Ûn by the R-algebra
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isomorphism that sends e 7→ f , f 7→ e, and h 7→ −h. De�ne

ψ : Ûn → D(Y0)⊕D(Y∞) ; u 7→ (γ0(u), γ∞(ω(u))

and

φ : D(Y0)⊕D(Y∞)→ D(Y0∞) ; (α, β) 7→ α|Y0∞−τnβ|Y0∞τ−n.

Then ψ(Ûn) ⊂ ker(φ).

Proof:

1. R-algebra homomorphism γ : Un → D[0](X) to be the restriction of γX(t, n) to Un.

Using the fact that tn(−2t∂t)t
−n − n = −2t∂t + n and tn(−t2∂t)t−n = −t2(∂t − n),

we can calculate that

(a)

[γ(e), γ(f)] = [∂t,−t(t∂t − n)] = −2t∂t + n = γ(h) = γ([e, f ])

(b)

[γ(h), γ(e)] = [−2t∂t + n, ∂t] = 2∂t = 2e = γ([h, e]).

(c)

[γ(h), γ(f)] = [−2t∂t + n,−t(t∂t − n)]

= 2
(
t
[
∂t, t

2∂t − nt
]

+
[
t, t2∂t − nt

]
∂t
)

= 2
(
2t2∂t − nt− t2∂t

)
= −2f = γ([h, f ])

so that γ in an R-algebra homomorpism, and we have an R-algebra homomorphism

γ̂ : Ûn → D̂[0](X).
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To see that it is an embedding, by proposition 2.2.6(2) it will be enough to show

that the associated sequence

0→ Ûn/πÛn
γ−→ D̂[0](X)/πD̂[0](X) = D(X)

is exact. Ûn/πÛn is isomorphic to Un/πUn = Un,κ, and γ is �ltered if Un,κ is equipped

with the �ltration P∗ and D(X) is equipped with the �ltration F∗. Then to show

the above sequence is exact it will be enough to show that the associated graded

sequence

0→ gr(Un,κ)→ gr(D(X))

is exact. gr(D̂[0](X)) is generated over κ by t and ∂̃t = ∂t +F0(D(X)), subject only

to the relation
[
∂̃t, t

]
= 0. We identify gr(Uκ) with A = Sym(g/πg) and let ẽ, f̃

and h̃ be de�ned as above, so that the natural surjection A → gr(Un,κ) has kernel

Ω̃A = (4f̃ ẽ+ h̃2)A, so we just need to show that the κ-algebra homomorphism

γ̃ : A→ κ
[
t, ∂̃t

]
; ẽ 7→ ∂̃t ; h̃ 7→ −2t∂̃t ; f 7→ −t2∂̃t

has kernel (4f̃ ẽ+ h̃2)A. If we localize A at ẽ and κ
[
t, ∂̃t

]
at ∂̃t then since γ̃(ẽ) = ∂̃t

we can extend γ̃ to a homomorphism Aẽ → κ
[
t, ∂̃t

]
∂̃t
. Now, since (f̃ + 4h̃2ẽ−1)A =

(4f̃ ẽ+h̃2)A, we have an isomorphism κ
[
ẽ, h̃
]
ẽ
→ Aẽ/(4f̃ ẽ+h̃

2)A, so it will be enough

to show that the induced map γ̃ : κ
[
ẽ, h̃
]
ẽ
→ κ

[
t, ∂̃t

]
∂̃t

; ẽ 7→ ∂̃τ ; h̃ 7→ −2τ ∂̃τ is

an embedding. In fact, it is an isomorphism with inverse sending t 7→ −1
2
h̃ẽ−1 and

∂̃t 7→ e.

2. It will be enough to show that ψ(e), ψ(f) and ψ(h) ∈ ker(φ). Noting that ∂τ |Y0∞=

−τ−1∂τ−1|Y0∞ , we can see that

φψ(e) = φ(γ0(e), γ∞(f)) = φ(∂τ , τ
−n(−τ−2∂τ−1)τn) = ∂τ |Y0∞−(−τ−2∂τ−1|Y0∞) = 0,
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so ψ(e) ∈ ker(φ). Similarly

φψ(f) = φ(γ0(f), γ∞(e)) = φ(τn(−τ 2∂τ )τ
−n, ∂τ−1)

= τn(−τ 2∂τ |Y0∞−∂τ−1|Y0∞)τ−n = 0,

and �nally, noting that τn(−2τ∂τ )τ
−n − n = −2τ∂τ + n, we have

φψ(h) = φ(γ0(h), γ∞(−h)) = φ(−2τ∂τ + n, τ−n(2τ−1∂τ−1)τn + n) =

−2τ∂τ |Y0∞−2τ−1∂τ−1|Y0∞= 0.

Hence ψ(Ûn) ⊂ ker(φ).

�

Theorem 6.2.2 The image of the R-algebra embedding θn = γY0(τ, n) : Ûn → D(Y0) is

Dn.

Proof: Let φ and ψ be de�ned as in lemma 6.2.2(2). Let p : D(Y0) ⊕ D(Y∞) → D(Y0)

be the projection map (α, β) 7→ α. Since the restriction maps D(Y†) → D(Y0∞) are

embeddings for † ∈ {0,∞}, we can see that the restriction of p to ker(φ) is an isomorphism

onto Dn. By lemma 6.2.2(1) we know that ψ is an embedding, so if we can show that

ψ(Ûn) = ker(φ) then pψ = θn is an isomorphism from Ûn to Dn. By lemma 6.2.2(2),

ψ(Ûn) ⊂ ker(φ), so it will be enough to prove that ker(φ) ⊂ ψ(Ûn).

By lemma 2.2.6(2) it will be enough to show that the induced sequence

Un,κ
ψ−→ D(Y0)⊕D(Y∞)

φ−→ D(Y0∞)

is exact. Equivalently, we can show that the sequence

Uκ
ψr−→ D(Y0)⊕D(Y∞)

φ−→ D(Y0∞)
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is exact, where r is the projection Uκ → Un,κ. Set A = κ
[
ẽ, f̃ , h̃

]
. Then using lemma

2.2.6(1) it will be enough to show that the associated graded sequence

κ
[
ẽ, f̃ , h̃

]
ψ̃−→ G(Y0)⊕ G(Y∞)

gr(φ)−−−→ G(Y0∞)

is exact.

The restriction maps G(Y†)→ G(Y0∞) are embeddings for † ∈ {0,∞}, so if l : G(Y0)⊕

G(Y∞) → G(Y0) is the projection map (α, β) 7→ α, then ker(gr(φ)) = ψ̃(A) if and only if

l(ker(gr(φ))) = lψ̃(A).

Since G(Y0∞) is a commutative ring we have that

gr(φ)(α, β) = α|Y0∞−τnβ|Y0∞τ−n = α|Y0∞−β|Y0∞

for all α ∈ G(Y0), β ∈ G(Y∞). Hence, if α =
∑

i,j∈N αijτ
i∂̃jτ ∈ G(Y0), we have α ∈

l(ker(gr(φ))) if and only if α|Y0∞∈ resY∞Y0∞G(Y∞). Since resY∞Y0∞G(Y∞) is generated by τ−1

and ∂̃τ−1|Y0∞= −τ 2∂̃τ , we can see that this is the case if and only if αij = 0 whenever

2i > j. Now, if i, j ∈ N and 2i ≤ j, then it is a trivial fact that we can �nd k1, k2, k3 ∈ N

such that k1 + k2 + k3 = j and k2 + 2k3 = i. Then τ i∂̃jτ = ∂̃k1τ (τ ∂̃τ )
k2(τ 2∂̃τ )

k3 . Hence

l(ker(gr(φ))) is generated as a κ-algebra by ∂̃τ , τ ∂̃τ , and τ 2∂̃τ .

Now, lψ̃(A) is generated over κ by lψ̃(ẽ) = ∂̃τ , lψ̃(h̃) = −ττ ∂̃τ−n and lψ̃(f̃) = −τ 2∂̃τ ,

so clearly l(A) coincides with l(ker(gr(φ))), proving the theorem. �

6.2.3 Construction of a Morita context

Let P̂ (r)
n be the right ideal

P̂
(r)
n = (h+ n)Ûn + eÛn ⊂ Ûn

and let P̂ (l)
n be the left ideal

P̂
(l)
n = Ûn(h+ n+ 2) + Ûne ⊂ Ûn.
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Let Î(l)
n be the left Ûn-module

Î
(l)
n = Ûn + Ûn((h− n)e−1) ⊂ Q(Ûn)

(where Q(Ûn) is the skew-�eld of fractions of Ûn,) and let Î(r)
n be the right Ûn-module

Î
(r)
n = Ûn + ((h− n)e−1)Ûn ⊂ Q(Ûn).

In this section we will construct a Morita context

B =

 Mp−1(Ûn−1) (P̂
(r)
n )p−1

(Î
(l)
n )p−1 Ûn

 ,
and show that there is an isomorphism of R-algebras B → A, where

A =

 Mp−1(Dn−1) (Rn)p−1

(Ln)p−1 Dn

 ⊂Mp(D(Y0)).

A priori P̂ (r)
n is not a Ûn−1-Ûn-bimodule and Î(l)

n is not a Ûn-Ûn−1-bimodule, but in propo-

sition 6.2.3(1) we will show that there are isomorphisms of Abelian groups P̂ (r)
n → P̂

(l)
n−1

and Î(l)
n → Î

(r)
n−1 which give P̂ (r)

n the structure of a Ûn−1-Ûn-bimodule and Î(l)
n the struc-

ture of a Ûn-Ûn−1-bimodule. We will then show that multiplication in Q(Ûn) de�nes a

homomorphism of Ûn-bimodules

Î
(l)
n ⊗Ûn−1

P̂
(r)
n → Ûn

and the multiplication in Q(Ûn−1) de�nes a homomorphism of Ûn−1-bimodules

P̂
(r)
n ⊗Ûn

Î
(l)
n → Ûn−1

which satisfy the necessary compatibility conditions to de�ne a Morita context.

Proposition 6.2.3 1. θn(P̂
(r)
n ) = Rn = θn−1(P̂

(l)
n−1).
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2. If we extend θn to a homomorphism of R-algebras Q(Ûn)→ Q(Dn) then

θn(Î
(l)
n ) = Ln = θn−1(Î

(r)
n−1).

Proof:

1. From the de�nitions if α ∈ D(Y0), then α ∈ Rn if and only if τ−nα|Y0∞τn ∈

τ−1resY∞Y0∞D(Y∞) if and only if τα ∈ Dn, and α ∈ Ln if and only if τ−nα|Y0∞τn ∈

resY∞Y0∞D(Y∞)τ . Since τ−1 ∈ resY∞Y0∞D(Y∞), Rn is a right ideal of Dn. Similarly,

we can say that α ∈ Rn if and only if ατ ∈ Dn−1, and α ∈ Ln if and only if

τ−(n−1)α|Y0∞τn−1 ∈ τresY∞Y0∞D(Y∞).

First we will show that Rn contains θn(P̂
(r)
n ), i.e. we need to show that τθn(e)

and τθn(h + n) ∈ Dn as then τθn(eα + (h + n)β) ∈ Dn for all α, β ∈ Ûn. First

τθn(e) = τ∂τ = −1
2
(θn(h)− n) ∈ Dn and second τθn(h + n) = τ(τn(−2τ∂τ )τ

−n) =

2θn(f) ∈ Dn, so θn(P̂
(r)
n ) ⊂ Rn.

Now we will show that Rn contains θn−1(P̂
(l)
n−1). For this it will be enough to show

that θn−1(e)τ ∈ Dn−1 and θn−1(h+n+1)τ ∈ Dn−1 as then θn−1(αe+β(h+n+1))τ ∈

Dn−1 for all α, β ∈ Dn−1. Clearly θn−1(e)τ = τ∂τ + 1 ∈ Dn−1, and

θn−1(h+ (n+ 1)) = τn−1(−2τ∂τ )τ
−(n−1) + 2 = τn−1(−2(τ∂τ − 1))τ−(n−1),

hence

θn−1(h+ (n+ 1))τ = τn−1(−2(τ∂τ − 1))τ−(n−1)τ =

τ(τn−1(−2τ∂τ )τ
−(n−1)) = 2θn−1(f).

Hence θn−1(P̂
(l)
n−1) ⊂ Rn.

Now we need to show θn(P̂
(r)
n ) contains Rn. Let M = Dn/θn(P̂

(r)
n ). Then the map

η : Dn →M sends θn(e) 7→ 0 and θn(h) 7→ −n, so the restriction of η to R〈θn(f)〉,

the closed R-subalgebra of Dn generated by θn(f), is a surjection.
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For a contradiction, suppose that Rn strictly contains θn(P̂
(r)
n ). Then some non-

zero element F (θn(f)) ∈ R〈θn(f)〉 must belong to Rn. Now, τ−nθn(f)|Y0∞τn =

∂τ−1|Y0∞ , so from the assumptions we get that τ−nF (θn(f))|Y0∞τn = F (∂τ−1|Y0∞) ∈

τ−1resY∞Y0∞D(Y∞). But every element λ ∈ resY∞Y0∞D(Y∞) can be written uniquely in

the form

λ =
∑
i,j∈N

λijτ
−i∂τ−1|jY0∞

with λij ∈ R, λij → 0 as i + j → ∞, a contradiction. Hence Rn = θn(P̂
(r)
n ). A

similar proof shows that Rn = θn−1(P̂
(l)
n−1).

2. It remains to show that Ln = θn(Î
(l)
n ). We will �rst show that Ln contains θn(Î

(l)
n ).

Since Ln = {α ∈ D(Y0) : τ−nα|Y0∞τn ∈ resY∞Y0∞D(Y∞)τ}, and resY∞Y0∞D(Y∞) ⊂

resY∞Y0∞D(Y∞)τ we have that Dn ⊂ Ln. Of course τ ∈ Ln, since τ ∈ resY∞Y0∞D(Y∞)τ .

Let µ = −1
2

(h− n)e−1 ∈ Q(Ûn). Then

θn(µ) =
−1

2
(−2τ∂τ )∂

−1
τ = τ ∈ Ln.

Of course Î(l)
n = Ûn + Ûnµ, so θn(Î

(l)
n ) = Dn + Dnτ . Now Ln is a left Dn module

under multiplication, so we �nd that θn(Î
(l)
n ) ⊂ Ln. A similar argument shows that

θn−1(Î
(r)
n−1) ⊂ Ln.

Now, set A = τnresY∞Y0∞D(Y∞)τ−n. From the de�nitions, if α ∈ D(Y0) then α|Y0∞∈ A

if and only if α ∈ Dn and α|Y0∞∈ Aτ if and only if α ∈ Ln. For the rest of the proof,

we will abuse notation and identify Dn with resY0Y0∞(Dn) and Ln with resY0Y0∞(Ln).

Then A ∩ Ln = Dn, so

Ln/Dn = Ln/(Ln ∩ A) ⊂ Aτ/A.

Let σ = τn∂τ−1|Y0∞τ−n. Then every λ ∈ A can be written uniquely in the form
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λ =
∑

i,j∈N λijσ
iτ−j with λij ∈ R and λij → 0 as i+ j →∞, so

λτ − (
∑
i∈N

λi0(σ)i)τ ∈ A.

Hence the embedding R〈σ〉τ → Aτ/A is an isomorphism.

Now, θn(µ) = τ , so θn(Î
(l)
n ) = Dnτ + Dn. In the proof of part 1 we have seen that

θn(e)τ and θn(h+ n+ 2)τ ∈ Dn, so we have a surjection

R〈θn(f)〉τ = R〈σ〉τ → θn(Î
(l)
n )/Dn

Which gives us the following commutative diagram

R〈σ〉τ

yy
##

θn(Î
(l)
n )/Dn // Ln/Dn // Aτ/A

where the left diagonal arrow is a surjection, the right diagonal arrow is an iso-

morphism, and the other maps are inclusions. It follows that all of the maps are

isomorphisms, so Ln ⊂ θn(Î
(l)
n ). Hence Ln = θn(Î

(l)
n ), and a similar argument shows

that Ln = θn−1(Î
(r)
n−1).

�

Now we can see that the isomorphisms of Abelian groups P̂ (r)
n → P̂

(l)
n−1 ; µ 7→ θ−1

n−1θn(µ)

and Î(l)
n → Î

(r)
n−1 ; ν 7→ θ−1

n−1θn(ν) satisfy the properties we described at the beginning of

this section. If we let β · µ be the unique solution to the equation

θn(β · µ) = θn−1(β)θn(µ)

and

θn(ν · β) = θn(ν)θn−1(β)
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for all µ ∈ P̂ (r)
n , ν ∈ Î(l)

n , and β ∈ Ûn−1 then for α ∈ Ûn we can calculate that

θn(β · (µα)) = θn−1(β)θn(µα) = θn−1(β)θn(µ)θn(α) = θn((β · µ)α),

so that P̂ (r)
n has the structure of a Ûn−1-Ûn-bimodule, and a similar calculation shows that

Î
(l)
n has the structure of a Ûn-Ûn−1-bimodule. Furthermore we can calculate that

θn((ν · β)µ) = (θn(µ)θn−1(β))θn(ν) = θn(µ)(θn−1(β)θn(ν)) = θn(ν(β · µ))

so that we have a homomorphism

ω : Î(l)
n ⊗Ûn−1

P̂
(r)
n → Ûn ; ν ⊗ µ 7→ νµ.

Similarly, the multiplication in Q(Ûn) de�nes a homomorphism of Ûn−1-bimodules

ε : P̂ (r)
n ⊗Ûn

Î
(l)
n → Ûn−1 ; µ⊗ ν 7→ θ−1

n−1θn(µν).

Since θn and θn−1 are ring embeddings, we can calculate that for all µ, µ′ ∈ P̂
(r)
n and

ν ∈ Î(l)
n

µω(ν ⊗ µ′) = µνµ′ = θ−1
n θn−1(θ−1

n−1θn(µν))µ′ = ε(µ⊗ ν) · µ′,

and a similar calculation shows that for all ν ′ ∈ Î(l)
n ,

νε(µ⊗ ν ′) = ω(ν ⊗ µ)ν ′.

Hence, we have constructed a well de�ned Morita context

B =

 Mp−1(Ûn−1) (P̂
(r)
n )p−1

(Î
(l)
n )p−1 Ûn

 .
We are now ready to prove corollary 1.6.

Corollary 6.2.3 1. Let

A =

 Mp−1(Dn−1) (Rn)p−1

(Ln)p−1 Dn

 ⊂Mp(D(Y0)),
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and let B be de�ned as above. Then the map Θ : B → A which acts by θn on Ûn,

(Î
(l)
n )p−1, and (P̂

(r)
n )p−1 and by θn−1 onMp−1(Ûn−1) is an isomorphism of R-algebras.

2. If n ∈ R× then LnRn = Dn and if n+ 1 ∈ R× then RnLn = Dn−1.

Proof:

1. That Θ is an isomorphism on the level of R-modules follows from theorem 6.2.2

and proposition 6.2.3(1) and (2), so we only need to check multiplicativity. Set

γ = θ−1
n−1θn. Then, since θn and θn−1 are multiplicative, we can calculate that

Θ


 u a

b v


 u′ a′

b′ v′




=Θ


 uu′ + γ(a)Tγ(b′) γ−1(uγ(a′)) + av′

γ−1(γ(b)u′) + vb′ b(a′)T + vv′




=

 θn−1(uu′) + θn(a)T θn(b′) θn−1(u)θn(a′) + θn(av′)

θn(b)θn−1(u′) + θn(vb′) θn(b)θn(a′)T + θn(vv′)



=Θ


 u a

b v


Θ


 u′ a′

b′ v′


 ,

proving the statement.

2. By proposition 6.2.1 LnRn is a two-sided ideal ofDn and RnLn is a two-sided ideal of

Dn−1 so we just need to show that 1 ∈ LnRn and 1 ∈ RnLn. From proposition 6.2.3

we have that Ln = θn(Î
(l)
n ) = Dn +Dnτ and Rn = θn(P̂

(r)
n ) = ∂τD

n + (τ∂τ − n)Dn.

Hence τ∂τ ∈ LnRn and τ∂τ − n ∈ LnRn, so n ∈ LnRn, and if n ∈ R×, it follows

that 1 ∈ LnRn. On the other hand ∂ττ = τ∂τ + 1 ∈ RnLn and τ∂τ − n ∈ RnLn, so

n+ 1 ∈ RnLn, and if n+ 1 ∈ R× it follows that 1 ∈ RnLn.

�
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6.2.4 Morita Equivalence of Global Sections

Theorem 6.2.4 D̂[1]
X (X) is Morita equivalent to D0.

Proof: Let W = D̂[1]
X (X). Let e be the global idempotent e(p−1)(p−1) of W de�ned

in section 6.1. Let C be de�ned as in section 6.2.1 and let M = C(L⊗−1,OY ). Let

Φ : F∗D̂[1]
X → M be the isomorphism of OY -rings provided by theorem 6.1.8. Let

Ψ : M(Y ) →

 Mp−1(D−1) (R0)p−1

(L0)p−1 D0

 be the isomorphism of R-algebras de�ned in

proposition 6.2.1. By corollary 6.2.3(2) R0L0 = D−1, so

ΨΦ(Y )(WeW ) =

 0 (R0)p−1

0 D0


 0 0

(L0)p−1 D0



=

 Mp−1(R0L0) (R0)p−1

(L0)p−1 D0

 =

 Mp−1(D−1) (R0)p−1

(L0)p−1 D0

 .
Hence WeW = W , and we of course know that eWe is isomorphic as an R-algebra to D0,

so by [10, Proposition 3.5.6] D0 is Morita equivalent to W . �
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