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Abstract

—

We study the m-adic completion DI of Berthelot’s differential operators of level one on
the projective line over a complete discrete valuation ring of mixed characteristic (0, p).
The global sections are shown to be isomorphic to a Morita context whose objects are
certain fractional ideals of primitive factor rings of the m-adic completion of the universal
enveloping algebra of sly(R). We produce a bijection between the coadmissibly primitive
ideals of the Arens Michael envelope of a nilpotent finite dimensional Lie algebra and the
classical universal enveloping algebra. We make limited progress towards characterizing
the primitive ideals of certain affinoid enveloping algebras of nilpotent Lie algebras un-
der restrictive conditions on the Lie algebra. We produce an isomorphism between the
primitive factor rings of these affinoid enveloping algebras and matrix rings over certain

deformations of Berthelot’s arithmetic differential operators over the affine line.
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Chapter 1

Introduction

1.1 Primitive Ideals

In non-commutative algebra, the notion of the prime spectrum and its associated geo-
metric implications become significantly less useful. However, various people have tried
to find an alternative geometric perspective on certain simple classes of mildly noncom-
mutative rings. An example is the so-called Dixmier program, wherein Dixmier proposes
to study simple modules over non-commutative rings by classifying their annihilators and
their corresponding factor rings. This program has had mixed success. A great example of
its strength is the complete classification of the primitive ideals of the enveloping algebra
of a nilpotent lie algebra g over a field of characteristic zero, and an isomorphism theorem
for their factor rings. More precisely, he proves that the primitive ideals are parametrized
by the coadjoint orbits on g* and that the factor ring of the enveloping algebra by any
primitive ideal is isomorphic to a Weyl algebra over a finite field extension of the ground
field. In this thesis, some mild progress will be made towards finding an analogue of this

result in a rigid analytic setting.



1.2 Rigid Analytic Geometry

When working over R or C there is a notion of analytic manifolds and analytic functions
on these manifolds. If one is to naively try and define an analytic manifold and K-
analytic functions on that manifold over a p-adic field K in the same manner as one
would over R or C, one might find the results disappointing. For instance, due to the total
disconnectedness of the topology on p-adic fields, manifolds may have a ring of analytic
functions which is a domain, but find themselves being disconnected, so that there is
a weaker correspondence between geometric and algebraic properties compared to the
archimedean case. Tate solved this problem while studying elliptic curves by defining
the category of rigid analytic spaces which carry a special Grothendieck topology. Since
Tate’s work there have been a plethora of results in algebraic number theory that have
depended rigid analytic geometry.

One might wonder whether in the same manner that Dixmier creates a non-commutative
geometry using the set of coadjoint orbits on g*, there might be some similar rigid analytic
non-commutative geometry. This paper does not answer that question. It does take some
steps in the direction of describing the primitive spectrum of the m-adic completion of

nilpotent enveloping algebras in a restrictive setting.

1.3 Affinoid Enveloping and Weyl Algebras

According to one point of view, one might view the universal enveloping algebra of a
K-Lie algebra g as an alternative multiplicative structure on Sym(g). For each separated

R-submodule .Z of g such that £ ®p K = g, where R is the ring of integers of K, there



is an associated Tate algebra

Jim Sym(.Z)/7'Sym (L) ®r K.

€N
It might seem interesting to ask whether one might define a similar alternative multiplica-

tive structure on these Tate algebras.

Definition 1.3.0 Let g be a K-Lie algebra, and let £ be a finitely generated R-submodule
of g such that £ ®r K = g and [£, L] C £. Then we define the affinoid enveloping

algebra of £ to be the ring

U(L) =limU(2L)/m'U(ZL)® K.

ieN
There have been numerous advances in the study of affinoid enveloping algebras, mostly
around semisimple Lie algebras, see for instance [2]. A version of Quillen’s lemma holds.
In this thesis, some modest results are given concerning the primitive spectrum of affi-
noid enveloping algebras over finite dimensional nilpotent Lie algebras under some strong
restrictive conditions.

In studying affinoid enveloping algebras over a finite dimensional nilpotent Lie algebra
g over K, we will soon find that certain completions of the Weyl algebra play a central
role. The Weyl algebra W (K) over K for s € NU{0} can be defined in various ways - we
can think of it as being isomorphic as a K-vector space to the polynomial algebra in the
variables t; and 0; for 1 <1i < s, with multiplication defined by the relation [0;,t;] = J;;.
We define the affinoid Weyl algebras to be the rings
Waix = lim W, /m/W,; @ K

€N

where W ; is the R-subalgebra of W,(K) generated by 7'0; and 7't; for 1 < j < s and

i€ NU{0}.



1.4 Fréchet-Stein Algebras and Coadmissible Modules

As an example of a rigid analytic space we could, for instance, wonder whether there
is an analytification of the affine line over a p-adic field K. The answer is yes, but the
construction is non-obvious. Affinoid spaces, which are the rigid analogue of affine spaces,
have an inherent boundedness which the affine line lacks. If K is an algebraic closure of
K, then we know that the affine line A}, over K can be viewed as the Galois orbits of
K. The norm ||||x on K extends uniquely to a norm on K. For any r € ||K ||, the set
B.(0) ={\ € K : |\|x < r}is an affinoid domain, and we can view the analytification
of AL as the direct limit of a sequence of these B, (0) for an increasing sequence (r;)ien
with r; € | K|, 7 — o0 as i — oc.

The ring of analytic functions on each B, (0) can be viewed as the set of power series
in a coordinate t for AL which converge everywhere on B,.(0), so that the global sections
on the analytification of A} are the set of power series in ¢ converging for all values in K.
This ring is non-Noetherian and it is asking too much to understand its entire structure.
However, we can restrict our attention to those modules over it which can be viewed as
inverse limits of finitely generated modules over the coordinate rings of the B, (0) for
1 € N, with certain compatibility conditions. We call these modules coadmissible.

This construction can be generalized, as in [1], to a setting wherein we are given an
almost commutative algebra B, and we define a Fréchet-Stein completion of B to be the
projective limit of the completions B, of B with respect to all of the seminorms ¢ on B.
A similar notion of coadmissibility can be defined. There have been a number of results
concerning the coadmissible modules of such rings in papers such as [17] and [16]. These
completions give examples of what Schneider and Teitelbaum call Fréchet-Stein algebras

in [18]. See section 2.6 for the definition used in this thesis.



Given a K-Lie algebra g its enveloping algebra U(g) is almost commutative and we
call the associated Fréchet-Stein algebra the Arens-Michael envelope of g. Here is the

precise definition:

Definition 1.4.0 Let g be a K-Lie algebra, and let J be the set of finitely generated
R-submodules £ of g such that £ @r K = g and [£, %] C L. Then we define the

—_—~—

Arens-Michael envelope U(g) to be the ring

Another example that will play a prominent role is the Fréchet-Stein completion V[A/;
of the s-th Weyl algebra. It can be defined using the affinoid Weyl algebras as follows:

o —

Ws = II&HZEN Ws,i,K~

1.5 Sheaves of Arithmetic Differential Operators

When studying the primitive factor rings of certain affinoid enveloping algebras, we shall
see that they embed into the global sections of sheaves of arithmetic differential operators
over the affine line. These sheaves were introduced by Berthelot.

Describing the sheaf of differential operators Dx of a smooth scheme X over the
spectrum of a ring other than a field of characteristic zero presents new challenges. In the
case of a field of characteristic zero the sheaf of differential operators is a locally Noetherian
sheaf of rings generated by the structure sheaf Oy and its tangent sheaf Ty. On the other
hand, if we work over R, then the sheaf of differential operators is significantly more
complicated - for instance if X is a copy of the affine line over R and 0 is a generator
for T(X) then D(X) is generated over O(X) by the operators 9"l = 2’—:; for all n € N,

the ’divided powers’ of 0. This ring isn’t even Noetherian. Reduction modulo p provides

10



a similar example over a field of characteristic p. In [3]|, Berthelot introduced the sheaf
DET] of divided powers of differential operators of level m € N on a smooth R-scheme X.
The sheaves DL’(”] carry data about the classical sheaf of differential operators, but retain
nice properties like Noetherianity by restricting attention to divided powers of a 'level’
bounded by m. For example, over the affine line of R, the sheaf of partial differential
operators of level m is generated as an algebra over the structure sheaf by the elements
o'l for 0 < i < m.

The m-adic completion of Dg(n] is an object of interest for various applications, see
for instance [6]. In [11] a version of Beilinson-Bernstein localization is proved for these

completions over flag varieties of semisimple algebraic groups.

1.6 The Main Results

1.6.1 Coadmissible Primitive Spectrum of Arens Michael Enve-
lope of a Finite Dimensional Nilpotent K-Lie algebra

A bijection is given between the primitive spectrum Prim(U(g)) of the enveloping al-

gebra U(g) of a finite dimensional nilpotent Lie algebra g and the set of annihilators

—_~— —_~—

c.Prim(U(g)) of coadmissible simple modules of the Arens-Michael envelope U(g) of g.

The result is summed up in theorem 3.2.1:

Theorem 1.6.1 Let g be a finite dimensional nilpotent Lie algebra. Then the map J —

—~—

JNU(g) induces a bijection c.Prim(U(g)) — Prim(U(g)).

In proving this theorem, we also get an isomorphism theorem regarding the factor

—_~—

rings of U(g):

11



—_—~— —_~—

Proposition 1.6.1 Let I be a closed ideal of U(g) such that Z(U(g)/I) is isomorphic to

K. Then there is an surjection

P S

U(g) — W,

with kernel I for some s € N,

1.6.2 The primitive spectrum of nilpotent affinoid enveloping al-
gebras of powerful non-Abelian lattices with an Abelian
ideal of codimension one

We say that an R-Lie algebra g is powerful if [g, g] C mg. Given the strong result concern-
ing the Arens-Michael envelope, we shouldn’t be blamed for imagining that there exists
some analogous result for the various affinoid enveloping algebras U/(D?) ; over a finite
dimensional nilpotent Lie algebra g.

Let W1 (K) be the first Weyl algebra over K, and for ¢ € N, let V; be the R-subalgebra
of Wi (K) generated by 7't and 8, and define V; x = b V;/mV; @ K.

With a significant amount of work, it is possible to extract the following theorem:

Theorem 1.6.2 Let g be a non-Abelian finite dimensional nilpotent Lie algebra with an
Abelian ideal of codimension one. Let £ be a finitely generated R-submodule of g such
that £ @r K = g and [L, L] C nxL. Let P be a primitive ideal of [@K such that

PnNng=0. For some m € N, 1« € N and finite Galois extension L of K, we have an

wsomorphism of K-algebras
U(L) /P = Myn (Vi) S

This theorem suggests that unlike in the classical case, primitive factors of nilpotent
affinoid enveloping algebras need not be domains. Omne can produce an example of a

12



Lie algebra of dimension p™ + 2 which has a lattice whose associated affinoid enveloping
algebra admits a primitive factor ring of uniform dimension p™ for any m € N.

From this, assuming the notation of the theorem, we can extract the following result:

Corollary 1.6.2 Let g and £ be defined as in the above theorem.

—

1. If I is a primitive ideal of U(ZL), then I NU(g) is a primitive ideal of U(g).

—

2. J— JNU(g) defines a map Prim(U(L),) — Prim(U(g)) with finite fibres.

—

3. For an ideal I C U(ZL)y the following are equivalent:

—_—

(a) Z(U(ZL) /1) is algebraic over K.
(b) I is primitive.

(¢) I is mazimal.

When there is no Abelian ideal in g of codimension one, the methods used to prove
the theorem fail, and there are many examples where no obvious analogue holds. There
are numerous ways in which the conditions on g might be relaxed but they will not be

discussed in this thesis.

1.6.3 Artihmetic Differential Operators

Proving theorem 1.6.2 utilizes the Dixmier map, in which divided powers of a coordinate
appear. Given that, we should not be surprised that Berthelot’s notion of arithmetic

differential operators plays a role in the proof.

il

An explicit description of the ring structure of the global sections of Dy~ for m € N

is given when X = A}. The following main result is proved in section 4.3.1:

13



Theorem 1.6.3 Let X and Y be two copies of AL. Let t be a coordinate for X, 7 a
coordinate for'Y, and let F' be the morphism X —Y ; 7+ tP. There is an isomorphism
of Oy -rings

—_

M (DY) — F, DI

—

such that, on global sections, 1d0, — vf)t[pm} for some vy € 1+ WDE?] (X).

This result plays an essential role in our proof of theorem 1.6.2.

1.6.4 Over the Projective Line

Using theorem 1.6.3, an explicit description of the ring structure of the global sections of

Dg is given when X = P},. The following main result is proven in section 6.1.8:

Theorem 1.6.4 Let X and Y be two copies of Pk. Let t be a coordinate for X, 7 a
coordinate for Y, and let F' be the morphism X — Y ;7 +— tP. Let L be the Serre
twisting sheaf Oy (1) of Y. Then there is an isomorphism of Oy -rings F*DE] — M,
where M is the following Morita context of sheaves
— —\ p—1
Mpf]. (E@—l ® Dg?] ® ﬁ) (E@—l ® Dg?])
— p—1 —
(D@ ® ,c) Dl

Using this information, in a manner similar to the classical case described in [20]

M:

we can describe the global sections of Z/DE: if we let £ = slh(R) = eR® hR® fR, Q
be the Casimir invariant of U(.%) and let U, = U/(O?)/(Q —n? — 2n), where U/(,,?) =
m, U(ZL)/mU (&) then we obtain the following corollary

Corollary 1.6.4 Assume that char(k) # 2. The global sections on/?E are isomorphic to

the following Morita context

_ M (7)) B
Dl (X) =
~p—1 —
1, Uy



where 733 18 the right ideal of Uy generated by e and h and Z) 1s the left fractional ideal of

EB generated by 1 and he™.

—_—

There are various corollaries to this result, for instance it follows that DIN(X) is a
prime ring of uniform dimension p, and that ﬁ(X ) is Morita equivalent to 2/?@()( )

(theorem 6.2.4). This was already known - see [5, Théoréme 2.3.6]|.

15



Chapter 2

Preliminaries

2.1 Filtrations

2.1.1 Inverse Limits

Let C be a category, and let I be a directed partially ordered set (that is, for each i,j € I,
there is some k € I such that ¢ < k and j < k.) Then a directed system (Cj, ¢;;) in C (over
I) is a collection of objects C; € C for each ¢ € I, along with morphisms ¢;; : C; — C; for
each 4,5 € [ such that ¢ < j, subject to the condition that ¢;; is the identity morphism
on C; for all i € I and ¢;;¢;, = ¢y for all 7, j, k € I such that : < j and j < k.

Then an inverse limit C' = l'gliel C; for the directed system (Cj, ¢;5), if it exists, is an
object in C € C along with a set of morphisms ¢; : C' — C; for ¢ € I with the universal
property that, for any D € C and collection of morphisms ¢; : D — C; for ¢ € I such that

¢ijv; = ; for all 4, j € I, there is a unique morphism ¢ : D — C such that the following

16



diagram commutes

. In this thesis, we will only have cause to deal with the inverse limit of directed systems
in subcategories of the category of groups. In this case, we have a fundamental structure

theorem:

Proposition 2.1.1 Let I be a directed partially ordered set and let (G, ¢i;) be a directed

system in the category of groups (over I). Then the group

{(Oéi)ie[ € HGi s ¢ij(oy) = oy for alli,j € I such that i < j}

el

is an inverse limit for (G;, ¢ij).

2.2 Filtrations

2.2.1 Filtered Rings and Modules

Let A be a ring. Then a filtration on A is a set F'A of additive subgroups F;A of A for

it € Z such that
1. 1€ F,A
2. FACF1AforallieZ.
3. (FA)(F;A) C Fipjaforalli,j € Z.

4 Uy FA= A

17



A filtered ring (A, FA) is a ring A equipped with a filtration F*A. We say that a ring
homomorphism ¢ : A — B between two filtered rings (A, FA) and (B, F'B) is a filtered
ring homomorphism of degree d if ¢(F;A) C F;4BS for all i € Z.

If (A, F'A) is a filtered ring and M is an A-module, then a filtration on M is a set F'M

of additive subgroups F;M of M for ¢ € Z such that
1. M C F; (1M for all i € Z.
2. (FR)(F;M) C FipjM for all i, j € Z.
3. Ujeg FM = M.

We define a filtered A-module (M, F'M) to be an A-module M equipped with a filtration
FM. The set of all filtered A-modules forms a category A-filt, with morphisms M — N
defined to be A-linear maps M — N such that the image of F;M is a subset of F;N for
all © € N.

If : M — N is a filtered A-module homomorphism then we say that ¢ is strict if

S(F;M) = ¢(M) N E;N for all i € Z.

2.2.2 Filtration Topology

Let (A, FA) be a filtered ring and let (M, F'M) be a filtered A-module. Then M carries
a topology, which we will call the topology on M defined by F'M, which is defined by
taking the cosets m + F;M for m € M and ¢ € Z to be a base of open sets. A filtered
ring carries a filtration topology if we consider it as a filtered module over itself. When
references are made to topological properties of a filtered module without reference to the

underlying topology it is always assumed that that topology is the filtration topology.

18



2.2.3 Completions

Let (A, FA) be a filtered ring and let (M, FM) be a filtered module in A-filt. Then
we define the completion of M to be the object M = T&niez M/F;M, where the maps
M/F; 1M — M/F;M are the natural projections. By proposition 2.1.1 we know that M

is isomorphic to

{(ai>i€Z € HM/FlJrlM DGy —+ FZM = 4 for alli e Z} .

1EL

There is a canonical homomorphism M — M obtained by sending m — (m+ Fi11 M );en,
called the diagonal homomorphism.

We say that the filtration F'M is separated if (., F;M = 0. The filtration FM is
separated if and only if the diagonal homomorphism is an embedding. We say that M is

complete if the diagonal homomorphism is an isomorphism.

2.2.4 Complete Discrete Valuation Rings

A discrete valuation ring R is a commutative PID with a unique maximal ideal m. A
uniformizer 7 for R is a generator of m. The residue field x of R is the factor ring R/m.
R carries a separated filtration F'R, called the m-adic filtration where F_;R = 7'R and
F;R = R for i € N. If R is complete with respect to this filtration we say that R is a
complete discrete valuation ring, or c.d.v.r. If K is the field of fractions of R, then the 7-
adic filtration on R can be extended to a separated filtration of K by setting F; K = 7 'R

for7 € Z. If Ris a c.d.v.r, then K is complete with respect to this filtration.

2.2.5 Graded Rings and Modules

We say that a ring A is a graded ring if there exist some additive subgroups A; C A for
i € Z such that A = ®,ezA; and A;A; C A;yj for i, j € Z.

19



A graded module over a graded ring A = ®;czA; is a left A-module M along with
some additive subgroups M; for ¢ € Z such that M = ®,czM; and A;M; C M;,; for all
1,] € Z.

We say that a ring homomorphism A — B between graded rings A and B is graded

if $(A;) C B; for all i € Z.

2.2.6 Associated Graded Rings and Modules

Let (A, FA) be a filtered ring, and define A; = F;A/F; 1A for i € Z. Then we can
form a graded ring Gr(A) = @®;czA;, where the multiplication is defined by setting (a +
Fi_ 1 A)(b+F;_1A) = ab+Fi ;1A € Ay for a,b € A, and extending these rules bilinearly
to all of Gr(A) x Gr(A). Given a filtered ring homomorphism ¢ : (A, FA) — (B, F'B) we

can define a graded ring homomorphism
Gr(¢) : Gr(A) —» Gr(B) ; a+ Fi1A— ¢(a) + F,1 B.

In this way Gr becomes a functor from filtered rings to graded rings.

Similarly, if (M, F'M) is a filtered A-module, then we define M; = F;M/F,_1M for
i € Z, and Gr(M) = ®;ezM;. Gr(M) becomes a graded A-module by setting (a +
F,_1A)(m + F;_1M) = am + F,4;_1 M, and extending this definition linearly to all of
Gr(A) x Gr(M). Given a homomorphism of filtered A-modules ¢ : (M, FM) — (N, FN)

we can define a homomorphism of graded A-modules
Gr(¢) : Gr(M) — Gr(N) ; m+ F,_1M — ¢(m) + F;_1N.
In this way Gr becomes a functor from filtered A-modules to graded Gr(A)-modules.

Proposition 2.2.6 Let M, M’, and M" be filtered A-modules, and let

¢

M2 v

M/ Ml/
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be a sequence of filtered A-module homomorphisms.

1. If M and M’ are complete then Gr(¢) is a graded isomorphism if and only if ¢ is

an isomorphism in A-filt.

2. If M is complete and M’ is separated then the graded sequence

Gr(¢) Gr(¢)

Gr(M) 22 ar(ar) 22 Gr(mmy

15 exact if and only if the original sequence s strict exact.

Proof: [9, Corollary 1.4.2.5(2)| for part 1, and [9, Theorem 1.4.2.4(5)] for part 2. O

2.2.7 Zariskian Filtrations

Let A be a ring with filtration F,. Then we say that F} is a Zariskian filtration on A if F,
is separated, gr(A) is a left Noetherian ring, 1A is contained in the Jacobson radical
of A, and A has the left Artin-Rees property, that is, for all finitely generated left ideals

I=3%"" Ax; of A, there exists some ¢ € Z such that for all j € Z,

FANT =) Fjo A,

i=1

The main result we need is the following:

Proposition 2.2.7 1. Let A be a ring with left Zariskian filtration F,. Then every

left ideal of A is closed with respect to the F,-topology.

2. Suppose that A is complete with respect to the F.-topology and gr(A) is left Noethe-

rian. Then F, is a left Zariskian filtration.

Proof:

1. |9, Theorem 2.1.2].
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2. |9, Proposition 2.2.1].

2.3 Complete sliced K-algebras

2.3.1 Complete sliced K-vector spaces

Let R be a discrete valuation ring and let A be a right R-module. Then we define the
m-adic filtration on A to be the filtration FA where F_,A = An’ and F;,A = A for
i € N. This filtration can be extended to the m-adic filtration on A ®g K by setting
Fi(A®p K)=n"'Afori € Z. If Ais complete with respect to its 7-adic filtration then
sois A®pr K.

If (V, FV) is a complete filtered K-vector space such that V' has a presentation V' =
L ®r K where L is a flat right R-module such that F'V is equal to the m-adic filtration
on V induced by L, then we say that V' is a complete sliced K-vector space. If L is itself
complete with respect to its m-adic filtration, then we say that L is a lattice in V.

Given a m-adically filtered right R-module A, the K-vector space E@RK is a complete
sliced K-vector space with lattice A. We will often abbreviate /A1®R K as //1}

If V is a complete sliced K vector space with lattice L, F;V/F, |V = x'L/x*"'L for
all i € Z. Since L is separated, there is an isomorphism of R-modules 7'L/7"™'L —

L/mL ; wla+ 7L+ a+ 7" L, and an isomorphism of graded Gr(R) modules
Gr(L) — L/wL[s] ; m'a+ 7" 'L+ (a + 7L)s’,
and this isomorphism extends to an isomorphism of Gr(R) modules

Gr(V) — L/mL [s,s7"].
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We call L/7L the slice of V.
A complete sliced K-algebra is a complete sliced K-vector space with the structure of

a K-algebra.

Proposition 2.3.1 1. Let A be a w-adically filtered Noetherian R-algebra, and assume

that the filtration on A is separated. Then A and /A1®R K are flat A-modules.

2. Let V., V', and V" be complete sliced K -algebras with lattices L, L' and L”. Then a
sequence

VsV sV

of filtered K -vector space homomorphisms is exact if the induced sequence
L)L — L'/xLl' — L"/xL"
on slices 1s exact.

Proof:

1. [4, 3.2.3(iv)] for the first statement, and the second follows by the transitivity of

flatness and the fact that E®R K is a flat A-module.

2. Since L is complete and L’ is separated we can invoke [9, Theorem 1.4.2.4(5)|, and
it will be enough to show that if the sequence L/nL — L'/nL’ — L"/wL" is exact
then the sequence gr(L) — gr(L') — gr(L”) is exact. Using the example above,

since L, L', and L” are w-torsion free, we have a commutative diagram

L/nL[s]—=L'/nL'[s] —= L"/wL" [s]

| | |

gr(L) gr(L) gr(L")

where the vertical arrows are isomorphisms, and the top horizontal arrows corre-

spond to the induced sequence L/nL — L'/wL' — L"/wL"” while sending s + s.
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Therefore the if the induced sequence L/nL — L'/nL’ — L"/wL" is exact then the

sequence L — L' — L" is exact.

2.3.2 Idempotents

Recall that if A is a ring then an idempotent e € A is an element with the property that

e” = e.

Proposition 2.3.2 Let K be a complete field of mized characteristic (0,p). Let A be
a complete sliced K -algebra and let L be a multiplicatively closed lattice in A such that

1 € L. Let e be an idempotent in L.

1. If é € L is an element such that e+ L is an idempotent of L/mwL then the sequence

(6" );en converges to an idempotent of L (and A).
2. If e and f are commuting idempotents of A such that e+nL = f+ L thene = f.
3. If f is an idempotent of A such that ef = fe and ef € wL then ef = 0.
Proof:

1. Suppose for induction that e, is an idempotent of L/7™L, so that e = e, + 7"\ for

some A € L. Then for i € N, working in L/7"* L, we have
el =e2e+a"N)=ePle+ (1+e)m"\)=...=c+ (14 (i —2)e)m"A mod 7" L
so that

e’ =e+ (1+(2p—2)e)n"A=c+ (1 —2e)7"\ = e mod 7" L.

Hence, the limit of the sequence é”" as n — oo is an idempotent of A.
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2. Suppose that e + 7"\ = f for some A\ € L, n € N. It will be enough to show that

e+ "IN = f some some ) € L. For this we simply observe that

p

f — fp = Z (p) ei,n_n(p—i))\p—i —e4+ ,ﬂ_n—l-l)\/’

7
=0

proving the claim.

3. Since e and f commute, ef is idempotent. Since ef € wL, we have that (ef)" =

ef — 0 as n — oo. Therefore ef = 0.

2.4 Lie Algebras

2.4.1 Lie Algebras

Let A be a commutative ring. Then an A-Lie algebra is a free A-module g along with an

operation [-,-] : g X g — g, called the Lie bracket, such that
1. [-,-] is A-bilinear.
2. [z,y] = — [y, z] for all z,y € g.

3. [z, [y, z]] + [z, [z, y]] + [y, [z, 2]] = 0 for all z,y, z € g.

Define go = g, and for i € N define g; = [g, g;/. Then we say that g is nilpotent if for some
i € N, g; = 0. A homomorphism of Lie algebras ¢ : g — ¢’ is an A-linear map such that
¢([z,y]) = [¢(z), ¢(y)] for all 7,y € g.

If B is a free A-algebra then B can be given the structure of a A-Lie algebra by setting
[a,b] = ab — ba for all a,b € A. Given a A-module M, a representation p of g (in M) is
an A-Lie algebra homomorphism g — End4(M).
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If x € g, then we define ad, : g — g to be the K-linear map y — [z, y].

A sub-Lie-algebra of a Lie algebra g over A is an A-submodule h closed under the
Lie bracket. If [g,h] C b then we say that b is an ideal, and we may form the factor Lie
algebra g/h, which is isomorphic as an A-module to g/h, with the Lie bracket define as
[z +b,y+b] =[x, 9] +b.

If Ris a c.d.v.r, K is the field of fractions of R, and g is a K-Lie algebra, then an

R-lattice .Z C g is an R-Lie-subalgebra of g such that .Z ®r K = g.

2.4.2 Universal Enveloping Algebras

Let A be a ring and let g be an A-Lie algebra. Then the universal enveloping algebra
U(g) is an A-algebra along with an A-Lie algebra homomorphism g — U(g) such that
for any A-Lie representation p of g in M, there is a unique A-algebra homomorphism

U(g) — End 4 (M) such that the following diagram commutes

Ulg)

N

EHdA(M)

g

Proposition 2.4.2 1. Let K be a field and let L be a field extension of K. Let g be a
K-Lie algebra and let ¢’ be the L-Lie algebra g @ L. Then U(g') is isomorphic to

U(g) ®x L.

Proof:

1. |7, Section 2.2.20]
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Theorem 2.4.2 (Poincaré-Birkhoff-Witt (PBW) Theorem) Let A be a ring and let g be
an A-Lie algebra. Let xy,...,x, be a basis for g. Then U(g) is a free A-module, and the

monomials ' ... xi for i; €N, 1 <j<mn, form a basis for U(g).

Proof: [19] O

2.4.3 Quillens Lemma

Theorem 2.4.3 Let g be a finite dimensional Lie algebra over a field K, and let M be a

simple left U(g)-module. Then Endyg) (M) is algebraic over K.

Proof: [13] O

2.4.4 Primitive Ideals in Nilpotent Enveloping Algebras

Proposition 2.4.4 Let g be a finite dimensional nilpotent Lie algebra over a field K of

characteristic zero. Then the following sets are equal:
1. The mazimal ideals of U(g)
2. The primitive ideals of U(g)

3. The ideals I of U(g) such that the center of U(g)/I is algebraic over K.

Proof: |7, Proposition 4.7.4] O

2.4.5 Weyl Algebras

The Weyl algebras are of central importance to understanding the primitive ideals of a

nilpotent universal enveloping algebra over a field of characteristic zero.
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Let A be a commutative ring and let s € N. Let has(A) (or just has when no confusion

will arise) be the free left A-module

Az ® (@ At; @ A@Z) .
i=1
Then we can define an A-lie algebra structure on b, by setting
1. [z,2] =0 for all x € bos.
2. [ti,t;] =0 and [0;,0;] = 0 whenever 1 <i,j <s.
3. [ti, 0j] = 0;jz whenever 1 <4, j <s.

We define the s-th Weyl algebra over A to be the ring W(A) = U(has)/(z — 1)U (bas).
When A is a field of characteristic zero, Wy(A) is simple for all s € N (see |7, Section

4.6.6]).

2.4.6 Affinoid Weyl Algebras

Let K be the field of fractions of a complete discrete valuation ring R of mixed charac-
teristic (0, p) with uniformizer .

For j € N, let W; be the R-subalgebra of W,(K) generated by 7/0; and w’t; for
1 <7 <s. Then we define

Wajx = Im W, /7'W; @ K.
ieN

We also use an alternative presentation of these algebras in a special case: For j € N, let
V; be the R-subalgebra of W;(K) generated by m/t and 9. Then we define

Vi = lm V;/7'V; @ K.

1€EN
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2.4.7 Dixmier Map

Let K be a field and let A be a K-algebra. Then we say that an ideal I C A is weakly
rational if I is prime and the center of A/ is isomorphic to K. By 2.4.4, weakly rational
ideals of the universal enveloping algebra of a finite dimensional nilpotent Lie algebra over
a field K of characteristic zero are always primitive.

Let g be a finite dimensional nilpotent Lie algebra over a field K of characteristic zero.

We define a reducing quadruple for g to be a quadruple (z,y, z, §) where
L. [z,y] = =
2. z € b is central in g.
3. b is a K-Lie-subalgebra of g of codimension one such that h & Kx = g.
4. y is central in b.

Proposition 2.4.7 Let (x,y,z,b) be a reducing quadruple for g. Let X € K*. Let

J=yU(bh) 4+ (z — N)U(b) Then there is an isomorphism
® - Ug)/(z=NU(g) = U(b)/J @k Wi(K)
sending
1oat(z=NU(g) = Y,y (adi(e) + J) @ & for all a € U(H).
2. x4 (z—=AN)U(g) — 0.
® has the property that ®ad, ®~' = 4.

Proof: Use |7, Lemma 4.7.8(i)], reducing both sides by (z — \). O
If Ais aring, B is a subring, and [ is an ideal of A, we say that [ is controlled by B
if I = (InNB)A.
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The following corollary is a weakened version of a much stronger result that can be

easily proved using similar methods.

Corollary 2.4.7 Let I be a proper ideal of U(g) such that z — X\ € I for some \ € K*.

Then I is controlled by U ().

Proof: Let U = U(g)/(z — NU(g), let H = U(h)/(z — \)U(h), and let H = U(h)/J.

Using proposition 2.4.7 we have an isomorphism

®:U— H @k Wi(K)

Since (z—A)U(g) C I and ®(z) = 1®0, using |7, Lemma 4.5.1] we have ®(I) = I'@W;(K)
for some ideal I' of H', where I is the image of I in U. Note that here I' = ®(I) N H’

and that from the theorem ®(H) = H' ® K [t|. Hence

() NOH) =T @ W(K)N(H @K[t]) =I'® K [{]

and hence

(D(1) N (H))P(U) = I'® Wi(K) = ®(1),
proving the claim. U

Theorem 2.4.7 Let I be a weakly rational ideal of U(g). Then for some s € N there is

an isomorphism U(g)/I — W (K).

Proof: |7, Theorem 4.7.9]. O

2.5 Affinoid Enveloping Algebras

In this section we let R be a c.d.v.r. with uniformizer 7, we let K be the field of fractions
of R, and we let x be the residue field of R.
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2.5.1 Affinoid Enveloping Algebras

Let g be a finite dimensional Lie algebra over K. Then for each lattice .2 C g in g, the

—

affinoid enveloping algebra defined by . (in g) is the ring U(Z),, = U(Z) ®r K, where

—

we take U(Z) to be m-adically filtered, so that U(Z) = lim,_

U(L)/mU(L).

Proposition 2.5.1 1. Let xq,...,x, be an R-basis for £. Then there is a natural iso-

—

morphism of filtered R-modules R(xy,...,x,) — U(ZL) and a natural isomorphism

—

of K-vector spaces K(x1,...,x,) = U(ZL)

2. Let g be a finite dimensional K -Lie algebra and let £ be an R-Lie lattice in g. Then

—

U(ZL)y is a flat U(g)-module.

Proof:

1. The PBW theorem gives an filtered isomorphism of R-modules R [zq,...,x,] —

U(Z) and a filtered isomorphism of K-vector spaces R [z1,...,2,] — U(Z). These

— —

lift to filtered isomorphisms R(zy,...,z,) = U(ZL) and K(z1,...,2,) = U(ZL).

2. This is a straightforward application of proposition 2.3.1(1)

Here is an affinoid version of Quillen’s lemma

Theorem 2.5.1 Let g be a finite dimensional K-Lie algebra and let £ be a lattice in g

—

such that [£, L) C n L. Let M be a simple left U(L)-module. Then End[@ (M) is
K

algebraic over K.

Proof: |2, Corollary 8.6] O
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2.6 Arens Michael Envelope

Let R be a c.d.v.r with uniformizer 7, let K be its field of fractions, and let s be its

residue field

2.6.1 Fréchet-Stein Algebra

For the general definition see [18, Section 3|. Here, we will give a somewhat restricted
definition.

Let A be a K-algebra. Then we say that A is a Fréchet algebra if there is a sequence
(Li)ien of R-lattice subrings in A such that L; ., C L; for i € N (,.yL; = 0, and the
diagonal homomorphism A — @ieN El ®pr K is an isomorphism. Let ZZ} = Z: ®Qr K.
We say that A is a Fréchet-Stein algebra if there exists such a sequence (L;);eny with the
additional property that each [Z is Noetherian and the canonical embedding m{ —
IZ} gives I//l\K the structure of a flat m—module for all « € N. We will denote such
a Fréchet-Stein algebra by (A, L;) when we want to emphasize the defining lattices. The
topologies induced by the lattice filtrations defined by the L; on A define an inverse limit
topology, which called the Fréchet topology on A.

A coadmissible left A-module is a left A-module M such that there exists some col-
lection of finitely generated left [Z}—modules M; for ¢ € N along with m—linear maps
M; 1 — M, for ¢ € N such that M is isomorphic to @ieN M;, and such that the canonical
A-linear map

—_—

Li i O M1 — M;

is an isomorphism for ¢ € N. As a finitely generated L/Z~7\K—Ir10du1e7 M; is naturally a
complete filtered lZ}—module, and the connecting maps M;,; — M, are filtered m—

module homomorphisms. Then M carries an inverse limit topology as @ieN M;, called the
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Fréchet topology on M. In these circumstances, we call the sequence (M;);eny a coherent

sheaf for A.

Proposition 2.6.1 Let (A, L;) be a K-Fréchet-Stein algebra.
1. ITZ?( is a flat A-module for all i € N.
2. Any finitely presented left A-module is coadmissible.

3. The kernel, image, cokernel, and coimage of an A-linear map between two coadmis-

sible A-modules are all coadmissible.

4. If M is a coadmissible module and N is a submodule of M then the following are

equivalent

(a) N is coadmissible
(b) M/N is coadmissible

(¢c) N is closed w.r.t. the Fréchet topology on M

5. Let I be a closed ideal of a K-Fréchet-Stein algebra A. Then A/I is a K-Fréchet-

Stein algebra, defined by the lattices L; /(I N L;) for i € N.

Proof: See section 3 of [18] O
Our principal interest in defining Fréchet-Stein algebras is the study of those defined

by universal enveloping algebras of Lie algebras. Let g be a finite-dimensional K-Lie

—~—

algebra, and let .Z be a lattice in g. Then we define the Arens Michael envelope U(g) of

g to be the ring lim,_ U(rniZL),.

—_—~—

Proposition 2.6.1 U(g) is a K-Fréchet-Stein algebra.

Proof: [15, 2.3] O
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2.7 Morita Contexts

2.7.1 Morita Contexts

Let A and B be rings, M an A-B-bimodule, N a B-A-bimodule, ¢ : M ®g N — A,
Y : N®s M — B homomorphisms of A-A and B-B bimodules respectively such that for

all m,m’ € M and n,n’ € N,

d(m @n)m' = mi(n@m') and Y(n @ m)n' = ng(m @ n').

Then we can construct a ring C' from this data in the following manner: As an Abelian

group, we define that C' = A x M x N x B. We write an element (a,m,n,d) € C, where

a m
ac€ A, be B,me M, and n € N in the form . Multiplication in C'is defined
n b
by the equation
a m a m aa' + ¢(m @n’) am’ +mb/
n b n v na' + bn’ v(n@m') + bl
We write
A M
O —
N B

when the maps ¢ and ¢ are understood. We call C' the Morita context defined by A, M,
N, B, ¢, and ¢ (see [10, Section 1.1.6].)

We say that A and B are Morita equivalent if there is a finitely generated projective
right A-module M such that B is isomorphic as a ring to End 4 (M) [10, Proposition 3.5.5].
If this is the case, then M has the structure of a B-A bimodule, and if M(A) and M(B)
are the categories of right modules of A and B, then the functor M(A) - M(B) ; N

N ®4 Homu (M, A) is a natural isomorphism [10, Proposition 3.5.7(i)].
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Proposition 2.7.1 Two rings A and B are Morita equivalent if and only if there exist
some A-B-bimodule M and some B-A-bimodule N such that there exists a surjective

homomorphism ¢ : M ®@g N — A and a surjective homomorphism ¢ : N ® 4 M — B.

Proof: [10, 3.5.4] O
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Chapter 3

Coadmissible primitive spectrum of the
Arens-Michael Envelope of a nilpotent

enveloping algebra

3.1 The Arens-Michael Envelope of a nilpotent envelop-
ing algebra

3.1.1 Arens-Michael Envelope of g

Let g be a K-Lie algebra. The Arens-Michael envelope of g is the completion of U(g)

—

with respect to all submultiplicative seminorms. For a Lie-lattice .Z C g, we set U(Z) =

—_—

lim _ U(£L)/7'U(Z) and U(L), = U(ZL) @ K.

— Y~

When .2 C .7 there is an embedding U(Z) — U(.7). We set U(g) = lim , U(ZL),

where .Z runs over the set of all lattices in g. We can show that U(g) is isomorphic to

the Arens Michael envelope of g.
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—_~—

Theorem 3.1.1 Let M be a simple, coadmissible left U(g)-module, and let 0 # ¢ €

EndUA(g/)(M). Then ¢ is algebraic over K.

Proof: Since M is simple, every element of EndUA@(M) is invertible, so the field K(¢) C

End@(M). Let .Z be a lattice in g such that [.Z, %] C 7.Z. M is coadmissible, so

by [18, Corollary 3.3], M = Hm, U@)K D5 M. Hence, since M is non-zero, for

—

some i € N, U(1.Z) D5 M is non-zero. We assume without loss of generality that

—

N =U(ZL)x B M # 0. We can see that the map p: Endl/]@(M) — EndU/(\g)K(N)
that sends v to the linear extension of ¢ to N is a ring homomorphism, so p|k(g) is a
ring embedding with image K(¢'), where ¢’ is the linear extension of ¢ to N. Hence

L ——

every element of K [¢'] is invertible. Of course N is finitely generated as a U(.Z)-

—_

module since M is finitely generated as a U(g)-module, U(Z),, is an almost commutative

—

affinoid algebra per the definition given in [2]|, and since [Z,.¥] C 7.7, U(ZL)/7U(ZL)
is isomorphic to Sym, (%), so is commutative and Gorenstein, so applying [2, Corollary

8.6 we have that ¢’ is algebraic over K, and hence ¢ is algebraic over K. 0

3.1.2 Affinoid Weyl Algebras

For a commutative ring S, the Weyl algebra A, (S) over S is generated over S by t; and
0; for 1 <i < n, subject only to the relations [t;,¢;] = 0 and [0;,0;,] =0for 1 <i,j <mn
and [t;,0;] = d;; for 1 < 4,5 <n.

For 7 € N let T/I//s:( be defined as in section 2.4.6 and define W, = @ieNm. If
we set hos to be the K-lie algebra generated by z,x1,y1, ..., s, ys with the z; pairwise
commuting for 1 < ¢ <'s, the y; commuting for 1 < i <'s, z central, and [z;,y;] = J;;z

for 1 < 4,7 < s, and for © € N we set H; to be the R-lie lattice in g generated by
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'z, ey, ™Y, ..., T'Ts, T'Ys, then

— —_—~—

while W%K =U(H;) i /2U(Hi) g, so that W, = U(b3)/2U(b3), a Fréchet-Stein algebra.

For each ¢ € N, there is a natural left action of m on M; = K(r'ty,...,m'ts),
where t; acts by multiplication and 0; acts by o — [0;,a] for o € M,;, 1 < j < s.
There is a natural embedding o; : M,;, — m o, is characterized by the fact that
oi(a) -1 =afor all o € M.

Proposition 3.1.2 Let s € N. Then the M, form a coherent sheaf for (Wz,qi), where

—

q; 1s the norm induced on I/Iz by the norm on W ; k.

—

Proof: For each ¢ € N we need to produce an isomorphism W ; i ®W/‘-+\1K Mg i1 — M.

Let ¢ € Nand set N = M,;, N' = My, 11, V = m and V' = W;:K Let ¢ be the

homomorphism of left VV-modules
¢:Vy N = N;a®n— a-pin)

where p; is the natural embedding of left V'-modules N’ — N. It is clear that ¢ is a well

defined homomorphism of left V-modules. Consider the map
¢ N=>VeyN,;a—ola)el.

Since 0;(a) - 1 = «, we deduce that ¢(o;(a) ® 1) = . Then ¢’ is a right inverse to ¢,
so ¢ is surjective. It remains to show that ¢ is injective. For this we first observe that

a®@n=ac;(p;(n)) ®1 for all n € N'. Now we can write

aoi(pi(n)) = D oi(32)9*

AENS
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where vy € N, 77~y — 0 as |A| = oo, and 0* = 9" ... 9. Now, whenever \ # 0, we
have that 9’ ® 1 = 1® (0*- 1) = 0, so by producing an obvious convergent series we find

that ao;(p;(n)) ® 1 = 0;(7) ® 1. Now we find that

Pola@n) = ¢'d(oi(y) ®1) = ¢'(n) = 0i(n) @ 1.

Hence ¢ is also a left inverse to ¢, and ¢ is an isomorphism of left V;-modules. 0
By proposition 3.1.2 we can form a coadmissible module ]\Z = @ieN M;,; with a

natural left action from V[f7S Clearly the following diagram commutes

W x M, —— M,

lL
Ws,i,K X Ms,i —— Ms,i

where the vertical arrows are homeomorphisms onto their images, and the bottom hori-
zontal map is continuous, so it follows the action of I/IZ on ]\Z is continuous.

Now, we identify M,_;; with its image in M;; under the map sending t; — t; for
1 <1<, and ]\/4:,/1 with the induced image in ]\Z

Given a K-Banach space B, we define B(t) as the algebra

B(t) = {Zaiti eBI[t]] - ai—0asi— oo} :
i=0
as in |1, 4.1]. Note that B is a K (t) module.

Lemma 3.1.2 1. Let B be a K-Banach space. For j € N, let w; = 1 — %‘.9 and let
Qj =wj...w1. Then if @ = ap+ o' € B(t) where oy € B and o’ € tB(t), then

Qo) = ap as j — oo.

2. Let 0 # «a € ]\AfS Then V[A/;oz contains a sequence converging to a non-zero element

of K.

3. VIZ has no non-trivial closed ideals.
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Proof:

1. Let € B(t). Let 0 = 4 € Endg(B(t)). Write a = Y, st’ for o; € B, where
a; — 0in B as 1 — co. We can calculate that
1 )
Wit = Z(l — —,)Ckitz.
iEN J
Noting that (Z) =0 when j < 4, for all [ € N we have

[Ta-H=co (")

J=1

for © > 0, and is equal to 1 for all [ € N when ¢ = 0. Then we find

%

l)) > 0 for all 4,1 € N, the sequence (£2;&);en converges to g in B(t),

Since v ((

proving the claim.

2. We proceed by induction on s. The base case s = 0 is obvious since ]\% = K.
Now assume that the theorem holds for ]\/4;_/1 For each i € N, let V; be the closed

submodule of M; generated by the ¢; for 1 < j < s —1, so that M, = N;(n't,).

For 7 € N, let p; be the natural embedding M, — ]\ZJ\K We can write a =
> ey it for some «; € ]\/4_;_/1 such that 77™a; — 0 as ¢ — oo for all n € N. Then
by part 1 Qgp;(a) = p;(ap) as k — oo for all j € N. It follows that Qo — g as

k — oo.

In the case that ay = 0, since o # 0 for some i € N we must have that 9'(a)o # 0,

so we simply replace o with 9"(«).

3. From [12, Proposition 1.4.6] VI//M\K is simple for ¢ € N. Let I be a closed non-zero
ideal of I/IN/S Then the closure of I in m is equal to m for + € N. It follows
that [ = lim, m — W,, so W, has no non-trivial ideals.
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Theorem 3.1.2 VIA/; has a faithful coadmissible simple module.

Proof: We will show that ]\Z is a coadmissible simple faithful left Ws—module. We have
already seen that the action of W, on M, is continuous. By [18, 3.4(ii)], the coimage of
any linear map between coadmissible modules is coadmissible, hence for any o € ]\Z we
have that W,a is coadmissible in M,. Now, by lemma 3.1.2(2) W,a contains an element
of K, and since I/IA/;oz is closed it follows that it contains a non-zero element of K. The
map M, — W, x {1} ; a — (o, 1) is a section to the restriction of the action of W, on
]\Z to V[f7S x {1}, so it follows I/IZoz = ]\Z, and hence ]\AfS is simple.

To see that M, is faithful, let a,b € W,. Write a = Y, a0 and b = 3, b0’
with a;, b; in the image of ]\7[/8 in I/TA/fS Choose the smallest ¢+ € N such that a; # b;. Then
at’ = agt’ + iat" ' + ... + ila; while bt° = agt’ + ... + (i — 1)la;_1t""' + ilb;. Therefore

at® # bt', proving the claim. O

3.2 Coadmissible Primitive Spectrum of the Arens Michael

Envelope of a Primitive Lie Algebra

3.2.1 Correspondence Theorem

If Ais a K algebra and [ is an ideal of A such that Z(A/I) is isomorphic to K, then we
say that [ is weakly rational.

In this section, we let g be a finite dimensional nilpotent K-Lie algebra. By |[7,
Proposition 4.7.4, Theorem 4.7.8(ii)], the set of rational, primitive, and maximal ideals

of U(g) are equal, and if I is a weakly rational ideal, then for some s € N we have a
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surjection of K-algebras U(g)/I — As(K) with kernel I, and call such a map a Dixmier
map. We abuse notation and use ¢ to refer to the canonical embedding of any topological
ring in its completion.

—_~—

Lemma 3.2.1 1. If J is a closed primitive ideal of U(g) then J NU(g) is primitive,

and if J is a closed weakly rational ideal then J NU(g) is weakly rational.

—_~—

2. Let J be a closed weakly rational ideal of U(g), and let I be a closed weakly rational

ideal of U(g). Then IU(g) is a closed weakly rational ideal of U(g), and (J N

3. U(g) is flat as a U(g)-module.

Proof:

—~—

1. Let J' = JNU(g). By theorem 3.1.1 the center L of U(g)/J is an algebraic field

—_~— —_~—

extension of K. U(g) is dense in U(g), so U(g)/J’' is dense in U(g)/J and

KcZ(U(g)/J)C L.

It follows that Z(U(g)/J’) is a field, and by |7, Proposition 4.7.4] it follows that .J’
is primitive. Clearly when L = K we have Z(U(g)/J’) = K, so that J’ is weakly

rational.

—_—~— —_~—

2. First of all, IU(g) is a finitely generated right U(g)-module so it is closed, and since

—~—

I is dense in IU(g), I is an ideal since the closure of an ideal is an ideal.

Let ¥ be a Dixmier map U(g) — A,(K) with kernel I. Choose a lattice £ in
g and for i € N let 4 = 7°%Z. Then ¥(%) is a finitely generated R-module in
A (K). Fix j € N. Then W, ; ® K = A (K), so it follows that for some n € N we
have ¥(.Z,) C W;;. Hence U(U(Z,)) C Wy ;, so ¥ is bounded with respect to the
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norms induced on U(g) by U(%,) and on A (K) by Ws,;. Then there is a unique

continuous extension

—_— -

U, UL = Wik

— —

of W. U(Z,), is aflat U(g)-module by [4, 3.2.3(iv)], so the kernel of ¥; is IU(.Z},) -

P

Let p; be the canonical embedding of U(g) into []TZ)K, and let W = W;p; (W

J

doesn’t depend on the choice of n.) Then for all j € N we have U;|; = ¢V, where

¢ is the embedding W, — I/IZ]\K Noting that U(g) is dense in U(g), we deduce that

the following diagram commutes

Ws,j,K Ws,i,K

—~—

whenever j > i. Hence we obtain a continuous map U(g) — W, whose restric-

tion to U(g) is ¥ and whose kernel contains IU(g). Let x be the induced map

ag/)ﬂ%/) — W,. We will produce an inverse map to .

From the proof of [18, 3.7|, we have that

—— e~

U(L) ) TU(L) = Ulg)/TU(g).

15

Z

1€

—~—

I is a maximal ideal of U(g) so clearly we have that I = IU(g)NU(g). Hence U(g)/I

—

is dense in each (@K/IU(Z)K. By similar reasoning to above, if we fix i € N
we can find some n € N such that U~1(W,,) C U(Z)/(INU(%)) and construct

a continuous morphism \' : W, — a;)/[[?(\_gj) such that x'|4,x)= ¥~'. Then

—_~

As(K)= idAS(K) and (X/X)|U(g)/I: idU(g)/[. Since U(g)/] is dense in U(g)/IU(g)

(xx’)
and A (K) is dense in W,, it follows that y is an isomorphism. Since the center of

T/IN/S is K, this proves the first statement.

43



—_~—

By lemma 3.1.2(3) W, has no non-trivial closed ideals so it follows that IU(g) is

P

maximal within the lattice of closed ideals of U(g). Then if we take I to be the ideal

—~—

JNU(U(g)), a weakly rational ideal by part 1, then (J N U(g))ﬁ@/) C J implies

—_—~—

J=(JNU(g))U(g), proving the second statement.

P

. By |18, Remark 3.2], for any lattice £ C g, (]/(a?)K is a flat U(g)-module, and

—

by [4, 3.2.3(iv)] U(Z) is a flat U(g) module. Let 0 — M; — My — M3 — 0
be an exact sequence of U(g) modules. Let .Z be a lattice in g and for n € N let

%, = m"%Z. Then the map

— —

U(Zh) g ®ug) My = U(L) g ®u(g) Ma

o —

is an embedding for all n € N since U(.%},) . is flat over U(g).

— o ——

It follows that the map lim U(Z,) e @M — fm U(Z,) @ My is an embed-

ding. Let ]\7Z = ﬁz;) Qu(g) M; for i = 1,2. From [18, Corollary 3.3|, for i = 1,2 we

—

have that ]\AfZ = l'glneN U(ZL) ®(7@ ]\Z Of course, for n € N we have that

— —~ —

Wm U(Z) g ®ps Mi = im U(Z,,)  ®u(g) M,
neN neN

so the map M; — My is an embedding, and ﬁ(;) is a flat U(g)-module.

O

—_~—

We define c.Prim(U(g)) to be the set of ideals which annihilate simple coadmissible

U(g)-modules.

—_~—

Theorem 3.2.1 The map J — JNU(g) induces a bijection between c¢.Prim(U(g)) and

Prim(U(g)).

—~—

Proof: By lemma 3.2.1(i) the map ¥ : c.Prim(U(g)) — Prim(U(g)) ; J — JNU(g) is

—_~—

well defined. We aim to prove that the map W' : I — U(g)[ is inverse to W. Let [

44



be a primitive ideal of U(g). Let L be the center of U(g)/I. Then L is an algebraic
field extension of K by Quillen’s lemma. Let M be a simple left U(g)-module such that
I is the annihilator of M. Then there is a natural extension of the action of U(g) to
U(g)r = U(g) ® L. Let I’ be the annihilator of M in U(g); with respect to this action.

Then since L C U(g)/I, we deduce that U(g)/! is isomorphic as a K-algebra to U(g)./I’.

—_—~—

Of course 1" is a weakly rational ideal of U(g)., so by lemma 3.2.1(ii), U(g), I’ is a closed

—_—~—

weakly rational ideal of U(g), = U(g) ®x L.
Now, the sequence

—_—~

0—U(g)l — U(g) = U(g) @u(g) Ulg)/I — 0

—~— —~—

is exact. But since U(g) ®u g (U(g)/1) is isomorphic to U(g) ®u () (U(g)r/I’), a primitive

—_—~— —_~—

ring, it follows that U(g)/ is primitive. Moreover, since U(g) ®u(q) (U(g)/I") has no non-

—~—

trivial closed ideals, we find that U(g)/ is maximal within the lattice of closed ideals of

Ulg)-

Since (/]\(ﬁ/)] is finitely generated it is coadmissible, so the map W’ is well defined,
and it is trivial that if I € Prim(U(g)) then I C WW'(I). But by |7, Proposition 4.7.4|
I is maximal, so [ = WW'(I). On the other hand if J € C.Prim(ﬁ@/)) then W(J) is

primitive, and as shown above ¥/ W(.J) is maximal within the lattice of closed ideals. But

V'U(J) C J,so V'U(J)=.. Hence ¥ is inverse to . O
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Chapter 4

Arithmetic differential operators over

the affine line

4.1 Some Notation From Algebraic Geometry

It is assumed that the reader is familiar with the basic notions of algebraic geometry
as an account here would be awkward. For an introduction you could see, for instance,
Hartshorne or EGA. I will try and explain the important mechanics at play in the paper,
which are all quite simple and fundamental.

Let R be a c.d.v.r, 7 a uniformizer of R, x its residue field, and K its field of fractions.

Let S = Spec(R).

4.1.1 Affine and Projective Line

Let A be a ring, and let V' = Spec(A). Then we define the affine line Al, over A to be the
spectrum of the one dimensional polynomial algebra over A. By choosing a coordinate ¢

for Al; we are simply choosing a presentation Al = Spec(A [t]).
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Now let A and A’ be two copies of Aly. Let ¢ be a coordinate for A and let s be a

coordinate for A’. Then the natural A-algebra homomorphism
O(A) — O(A\0)
and the A-algebra homomorphism
O(B) — O(A\0) ; s+t

induce a diagram of X-schemes

A\{0} — A

l

A/

. We define P} to be the colimit of of this diagram. When we choose a coordinate ¢ for
PY,, we are simply choosing a presentation of P} as the colimit of a diagram as above (and

abusing notation by identifying s with t~1.)

4.1.2 Completion of Ox-modules

—~

Now let X be an S-scheme, and let M be an Ox-module. Then we define M =
l'glieN M /7'M, whose module of sections on an open U C X can be shown to be the
R-module Jim, _ M(U)/m"M(U) (see |8, Proposition 9.2].) We define My to be the Ox-

module whose sections on an open subset U of X are the R-module ]/\4\((]) ®pr K.

4.2 Berthelot’s Arithmetic Differential Operators

4.2.1 The Sheaf of Divided Powers of level m over A!

The sheaf of divided powers DE’{‘] of a smooth S-scheme X of level m is defined in [4,
Section 2.2.1] (DEQ”] is written Dg?;)s in that paper.) Dﬂ?l is naturally an Ox-module by [4,
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Section 2.2.1, Equation 2.2.1.4]. We will investigate the structure of the m-adic completion
of the sheaf D&n] where X is in dimension one, so we will only recall the properties we
will need for this specific case.

First, let X = AL. Let t be a coordinate for X, let dt be the basis element for
QY /(X)) corresponding to ¢, and let 0; be the dual operator to dt in Tx(X), where Tx is
the tangent sheaf of X. Then DE?] is a sheaf of Noetherian rings generated over Ox by 0,
(for a proof see [4, Corollaire 2.2.5], and [4, Remarque 2.2.5(i)|.) Now, let p be the residue
characteristic of R, let + € N and let ¢; € N be the unique integer such that ¢ = p™q; + r
with 0 < r < p™.

Using [4, Proposition 2.2.4] we set DEQ”] = D,cn MO as an Ox-module, with mul-

tiplication defined on an open U C X by the following equations:

1. For all i € N, the action of 8" on Ox(U) is given by

at[i](tj) — qi!<‘7)tﬂ'—i € Ox(U) for all j € N.

7

2. For all 7,7 € N,

I ; 1 gl .
gap = (+4 )8 iy

t Qitj-

3. Foralli e N, « € Ox(U)

. |
a[l]a _ La[lﬂ o a[l]‘
t ZQk'Ql' t ( ) t

k=i
(0 is written 8§p>(m) or just O in [4].)

DET(”] is a sheaf of Noetherian rings generated over Ox by 0? T for 0 <1< m by |4,
Corollaire 2.2.5|. From the equations we can see that the morphism of sheaves (X, DE?) —
(X, D&n}) which is the identity on X and sends 9} — q%c()t[i} is injective. For this reason
we write 8tm = 0; and think of DB((]] as a subsheaf of D;n]. Whenever 0 <7 < p™, we have

that ¢;! = 1, so 0,0" = (i + 1)(9?“}. Hence 97" = pm19l"".
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4.2.2 Completion of the Sheaf of Divided Powers

Let X be a copy of PL or AL. Then we set DI = Hm, DI/ for m € N (The

definition of an inverse limit of sheaves is given in |8, Chapter 2, Proposition 9.2].)

Proposition 4.2.2 Let X be a copy of Al,.

1. [)?}(X) ® K is a simple domain.

2. Let N, ={0,...,p—1}. Every element o of Dg?] (X) can be written uniquely in the

form

m,—l}

o = Z O‘ij)\tiﬁt)‘l (a}P])Az o (&t[P ))\m (agpm})j

i,jENAENT

with a;jx € R, ajx — 0 as it +j — oo.
3. D[;(n] is flat over R.
4. % € DET}(X) for all i < p™*+1.

Proof:

1. From the definitions we can see that DE(Q] (X) is the m-adic completion of the R-

algebra generated by t and J;, subject only to the relation [0;,t] = 1. Then |2, 7.3]

provides a proof that D[;;] (X) ® K is simple.

2. Since X is affine, we know from [8, Proposition 9.2| that

DY(X) = lim DY (x) /r DY (X)) = D).

ieN
Let
d]

A:R[a,bo,,bm]/(bf_l—@ﬁ—“)p@)
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Then, if we give the R module A the structure of a topological R-module with the
mA-topology, and give DET] (X) its WD[)?L](X )-adic topology, then there is a topolog-
ical isomorphism

A=DM(X) s amst ;b e oF

which gives us an isomorphism
lim A/ A — DI(X).
Now, from the definition of A, there is exactly one way of writing each element

a € A (and each element a € lim _ A/7'A in the form

o= E Qijna' by by? .. by b

m m
i,jEN,\eNm

proving the proposition.
. Since D[Xm] (X) is a free R-module it is flat over R, and by [4, 3.2.3(4)], DET](X) is

—_—

flat over D[Xm] (X), it follows DET] (X) is flat over R.

m-+1

. Since i < p we can write i = a;,p™ + apm1p™ '+ ...+ ap with 0 < a; < p for

0 < j < m. Then by [6, 1.2.3.3]

v (i) = Z a;vg(p’).

Jj=1

Then, for some ¢ € R*

az‘

il

= 0™ (9™ .. ("),

proving the claim.
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4.3 Sections over the Affine Line

4.3.1 The Main Theorem

Let X and Y be two copies of A}, and let ¢ be a coordinate for X and 7 a coordinate for
Y. Let F': (X,0x) — (Y,Oy) be the morphism of formal schemes induced by the ring
homomorphism O(Y) — O(X) ; 7+ t*". Let 0, € T(Y) be the operator dual to dr and
let 9, € T(X) be the operator dual to dt.

If A is a sheaf of R-algebras over an S-scheme Z, we define M,,(.A) to be the sheaf such
that M, (A)(U) = M,(A(U)) for all open U C Z, where M,(A(U)) is the n-th matrix
ring over A(U). We set {é;;}1<i j<n to be the set of standard matrix units for M, (A(Z)).

We will prove the following theorem:
Theorem 4.3.1 There is an isomorphism of Oy -rings
My (DY) » F.DY
such that, on global sections, 0, — ya}pm] for some vy €1+ WZ;EE] (X).
Let A, = Fﬂ;@(y) and Ay = 2/)@ (Y).

Lemma 4.3.1 Suppose that there is a map w : Mym(Ag) = Ay, which is an isomorphism

of Oy (Y)-rings such that 0, +— 76?7”] for some v € 1+ wA,,. Then there exists an

—

isomorphism of Oy -rings Q0 : Mym (Dg]) — F*DET} such that QYY) = w.

Proof: Set Ay = Dg(/)] and A, = D@”]. Let U be an open subset of Y. For n € N, the

isomorphism w : Mym(Ap(X)) = A, (Y) induces an isomorphism

My (Ao(Y)/m" Ao (Y)) = A (V) /7" A (V).
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Fori=0,m,n € N, we have A;(Y) /7" A;(Y) = D@/W”D@. As explained in section 4.2.1,
D@ is generated over Oy by its global sections, so we can deduce that D@/W”D@(U) =

Oy (U) @ov) D@ /WHD@ (Y). So we can construct a commutative square

Oy (U) o) My (DY /7" DY)(Y) — O (U) @0y DY /7" DY)

J |

My (DY /7 DI (U) DI D (U)

where the vertical arrows are equalities, and the top horizontal arrow is induced by w,,.
Now, we construct 2 by setting Q(U) : M,(A)(U) — A,,(U) to be the inverse limit of
the bottom horizontal arrows. 0

Now, using lemma 4.3.1, we can prove theorem 4.3.1 by constructing an isomorphism

—

w: DY) = My (DO(Y)),
We will proceed in the following manner:

1. Identify a commutative subalgebra C' C A,, containing a complete set of non-zero

distinct orthogonal idempotents {e;; }o<i<pm_1.

2. Find v € 1 4+ nC such that [yat“’”},tp’”} = 1, and prove that the closed R-algebra

generated by Oy (Y) and yat[” "1'is isomorphic to Aj.

3. Define a set of elements {e;;}1<; j<pm C A, which form a set of matrix units for A,,,

and show that they commute with Oy (Y') and ~olP",

4. Use the set {e;;}1<; j<pm and the element fyat“”"”] to construct the required isomor-

phism of Oy (Y)-rings w : M,(Ag) — A,

Throughout this section, we will abbreviate 0; to 0.
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4.3.2 Facts about Binomials
For the rest of this section, we define w = p™, and if 0 <i <w—1, weset t* =w—1—1.

Lemma 4.3.2 1. Let x and y be some formal variables. Then

(-2 000)

2. Let x € N and let n € N. Then

> (1) = ()

3. Foral kel

( L ) 1 mod pZ, if k= —1 mod wZ,

w—1
0 mod pZ,  otherwise

4. (Newton Interpolation Formula:) Let f(x) € K[z|, and for j € N let C;(f) =
Sk (FLTFE) F(R). Then f(a) = 32,05 Ci() ()

5. For all0 <i<w-—1, (w;l) (—1)" mod pZ.

Proof: Parts 1 and 2 are well known identities that can be easily found in a set of
introductory lecture notes - the first is known as the Vandermonde identity and the
second is the known as the “sum of binomial coefficients over upper index” identity. Part

4 can be viewed as a special case of Mahler’s theorem. For part 5, use the identity

(1+ X™)
1—X

(1—x)"" = (1+X")(Y_(~1)'X") mod pK [[X]].

1€EN

For part 3, write k = @y p™ +am_1p™ ' +...4+ag withm' > m, 0 < a; < pfor0<i<m'.

Then by Lucas’ theorem

(5= () ()G ) (o) e

from which part 3 follows immediately. 0
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4.3.3 The Diagonal Algebra

Let C be the closed R-subalgebra of A,, generated over R by d; = t*0/ for 0 < i < p™+1,

To ease notation, set ¢; = ' 9P for 0 < i < m.

Proposition 4.3.3 1. For alln € N, [[/2) (t0 — i) = t"9"

2. ild; = H;ZO(CO — ) for 1 <i < w (recall w = p™), a;d; = H;ZO(CO — j) for some

a; € R for alli € N, and C is a commutative R-algebra.

3. For all0 <a<w and b € Z the element (C‘):b) € C' ®gr K belongs to the image of

4. There is a continuous automorphism ¢ of C such that ¢(co) = co + 1. ¢ can be

extended to an automorphism of DE?}(X\{O}) which sends o — t~*at for all a €

DI\ {o}).

5. For alla € C, da = ¢(a)d and ta = ¢~ a)t.

6. For alli € N, 28 < 2,

Proof:

1. We proceed by induction on n. For n = 0 the statement is tautological, so suppose
the statement is true for all m < n. Then []}_(td — i) = (10" ')(td — n). But

[0t = (n—1)0" 2, so
"o H(t0 — (n— 1)) =t"0" + (n — 1)t" 10" — (n — D" tont = "0,
completing the proof.

2. Since d; = t'0, from section 4.2.1 we have ild; = t°0" when 1 < ¢ < w. From
the definition of 0 we have ;0" = 9" for some a; € Z, and we know a; = i! for
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1 <17 < w. Using part 1 we have

i—1 i—1
j=0 =0

proving the first two parts of the statement. By proposition 4.2.2(3), C' is contained
in a flat R-algebra, so it follows that the d; pairwise commute for 1 <7 < w — 1,

and C' is a commutative R-algebra.

. Let 0 <a <w — 1. Using lemma 4.3.2(1) we can see that

b k
= ) )= )d;
proving the claim.

. By proposition 4.2.2(2), C' can be viewed as an R-subalgebra of 7;@ (X\{0}), we
will prove that C' is an invariant of the automorphism a — ¢t 'at of 2;@] (X\{0}).
This will be enough, as we can directly calculate that t~lcot = Ot = t0+1 = ¢y + 1.
Clearly co + 1 € C, so we only need to show that t~1d;t € C for 1 <i < w.

Let 1 < ¢ < w. Using the equation i!d; = H;;B(co — j) from part 2 gives us the

equation (working in C' ®pg K)

1
et =t <C,O)t — (CO N )
1 ]

which belongs to C' by part 3.

—_

. Again treating C' as an R-subalgebra of DET] (X\{0}), we have that ¢(a) = t~'at
for all & € C. Then we can calculate that ta = tat ™'t = ¢~ (a)t for all a € C. We
can see that dcy = (co + 1), s0 dild; = [['=y (d + 1 — )0 = ¢(ild;)d for 0 < i < w.
Since C'is contained in a flat R-algebra by 4.2.2(3), it follows that da = ¢(a)0 for

all « € C.
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6. If i =a,p" +a,_1p" ' +...+ag for somen €N, a, #0,0<a; <pfor0<j<n,

then

proving the claim.
OJ

Lemma 4.3.3 let A be a m-adically complete R-algebra. If € € A is an element such that
€+ A is an idempotent of A/mA, then lim,_ €P" is an idempotent of A.
If e and f are idempotents of A such that e = f mod m then e = f Also, if ef = fe,

then ef € mA implies ef = 0.

Proof: These facts are well known but a proof is given for the benefit of the reader.

Set A, = A/n™A. For the first statement, we will prove that given an element e, € A
such that e, + 7" A is an idempotent of A, then e? + 7" A is an idempotent of A, ;.
This is enough since the condition of idempotence then guarantees that if e; + 7A is
idempotent, then e = ¥’ mod 7/ A whenever j < i, so (¢?' + 7 A);en € Im oA, is an

idempotent.

So let e, € A such that e, + 7"A is an idempotent of A,. Then €2 = ¢, + 7"« for

2

s —ep, so ™'a commutes with e,,. Then we can apply the

some a € A. Of course m"a = ¢

binomial theorem to see that
e = Z (,)e%(w”a)p‘ = e? mod 7" A.

So €2 + 7"t A is an idempotent of A, 1, as required.
We now prove the second claim. Let e and f be idempotents of A such that e = f

mod mA. We aim to show that e = f mod 7" A for all n € N. We proceed by induction
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on n, so suppose that f = e mod 7"A, i.e. f = e+ 7"« for some a € A. Then we can

calculate that

1
=0

P
f=f= (p) igP=) P~ = ¢ mod 7" A.

Now suppose that ef = 0 mod 7A and assume that A is commutative. From commu-
tativity we have that ef is idempotent, so ef = (ef)" for all n € N. Of course ef € TA,

so ((ef)")nen — 0 as n — oco. Then the sequence (ef),eny — 0 as n — 0o, so ef =0. O

4.3.4 Idempotents in the Slice of C

)
€ii = .
w—1

The following proposition will be used to demonstrate that the é;;+7C form a complete set

For 0 <i<w—1, set

of orthogonal idempotents in C/wC' (that is, a set of idempotents e; such that e;e; = d;je;

and Y e; = 1).

Proposition 4.3.4 1. Z;”:_Ol éi +mC =1+ nC.
2. $(€i) = €air1)+1y) mod wC for 0 < i < w — 2, and ¢(Ep_1)p-1)) = oo mod wC.
3. egoéii € pC for 1 <1 < w — 1, and égoéoy + pC = égo + pC'.

Proof:

1. Using lemma 4.3.2(1) we have (*7%) =37 (%) (), so we can write

n—=j

) co+i i o i
€ii = = . -
w—1 —\J w—1—7

Then we conclude that

< g
Il I
o —
£b>
Il
I é|
o =
VR
<. &
~~
VR
- e
I |
< —
N\
S
|
—_
|
<
~
N~



Using lemma 4.3.2(2) we have

hence

Since (J) € pR for 1 < j <w — 1 we find that Zwoléu el+nC.

. Since ¢(é;) = ((©°*)) = (), the statement is obvious for 0 < i < w — 2.

w—1 w—1

Applying lemma 4.3.2(2)

w—1
o= (V) S @),
=0

Since (w—li—]) € mRfor 0 < j < w—2we find that ¢(éy_1)(w-1))+7C = (wcfl) +7nC =

éo() +7C.

. First assume that 1 < i < w — 1. Then, treating the é;; as elements of K [cq] we

A A Co Cg—i-i
€00€i; — .
00 w—1/\w-1

Now, by lemma 4.3.2(4) we have ényé;; = Z]EN Cj(e0oéii) (CJO) where

Lo () (5) ()

Now, suppose that i # 0. By lemma 4.3.2(3) we have that ( ) € pZ, whenever

can write

kE % —1 mod w. Since 1 < i < w — 1, it is true that for all £ € N, either k£ # —1
mod w or k 4+ ¢ # —1 mod w. Therefore (w 1)(k“) € pZ, for all k € N, and

w—1

consequently C;(époe;;) € pZ, for all j € N. On the other hand, if i = 0, then
I e Py if k£ —1mod w—1
(w — 1) (w — 1) <
1+p7Z, itk=-1modw-—1
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Consequently we find that

pC if § £ 0

€00€i; €

é00+pC ifi=0

4.3.5 Idempotents of the Diagonal algebra

For 0 <i<w—1, set

1 .
o — 1 H (CO—]>€C®RK.

(w—=11 .
0<j<w-—1 and w—1—i#j

The following lemma is an example of lemma 4.3.2(4)

Lemma 4.3.5 Let 0 <i<w—1. Then

E ()Y

Proof: Let 0 < j <w — 1. Let B be the K-subalgebra of C' @ K generated by ¢y. Then
we can see that « is the unique solution in B to the equation (cy — (w —1 —14))X = wc,y,.
Hence, it will be enough to show that

w (B Q) o)

Jj=0

(]

We already know that cod; = (j + 1)dj11 + jd;, so the above product can be written as a

telescoping sum. We can calculate that

@-o(0)(" 1)_1@* - (G D + - 1),

So the coefficient of d;- in the sum is

()G =) oo
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whenever 0 < 7 < w — 1. The boundary terms are

) s ( L)) e

proving the claim. U

Proposition 4.3.5 1. For 0 <i<w—1 we have o;; € C' and

€ = a; mod pC.

2. The é;; +wC for 0 <i < w—1 form a complete set of non-zero orthogonal idempo-

tents in C/nC.

3. For (0 <1 <w-—1, the sequences (éﬁn)neN are Cauchy and setting e; = lim,, é‘Zn,

the idempotents e; for 0 <i<w —1 are a complete set of non-zero orthogonal

tdempotents in C.

4. dleii) = eqrnisn for 0 < i < w — 2, and d(ew—1)yw-1)) = €oo- Furthermore

o™ (es) = ey for 0 <i<w—1.
Proof:

1. Let 0 <7 < w— 1. We will prove that é; — o; € 7C. Using lemma 4.3.5 we can

write

and using lemma 4.3.2(1) we can write
co+ 1 — (i
. 0
i = = w1
o= (1) = ()

So that é; —a = SV (1 —(—1)/ (“’fl)_l) (Z) dy—1—;. Then it will be enough to show

j=0 J J

that



whenever 0 < j <w — 1. (wjfl) = (—1) mod pZ, by 4.3.2(5), proving the claim.

2. By proposition 4.3.4(3) égp + 7C' is an idempotent of C/wC, and since the auto-
morphism ¢ acts transitively on the é; for 0 < i < w — 1 mod 7wC' by proposi-
tion 4.3.4(2), all of the é; + wC are idempotent. By proposition 4.3.4(1), the é;
form a complete set of idempotents. Finally, if 0 < i,5 < w — 1 and 7 < j then

€€ = ¢'(€00€(j—i)(j—i)) € mC by proposition 4.3.4(3), so the é;+nC' are orthogonal.
3. Given part 2, this is a straightforward application of lemma 4.3.3.

4. Given part 3 and proposition 4.3.4(2), this is a straightforward application of lemma

4.3.3.

4.3.6 Existence of a differential for 7

In this section we will find an element v € 1 + 7C' such that [78[“)], T} =1.

Lemma 4.3.6 There exists v; € e;(1 + nC) such that ¢~ (vi)o; = €. Moreover, for
0<i<w-—1,

wemd () = ei(co — (w—1—1)).
Proof: By proposition 4.3.5(1) we have
o; = €;; mod wC.

It follows that e;a; = e;; mod 7C| so eja; = e;(1 + 7A;) for some \; € C. Since C'is

m-adically complete, for all x € C', 1 4+ 7z is invertible, so set

Yi = wa (6“(1 + W/\i)_l) .
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Then we have that ¢~ (7)) = e;(1+ 7A) (1 +7\) 7~ = ey
Using the equation w!c,, = [1' (co — i), we have that (co — (p — 1 — i)y = wey,.
Then
wem@ (%) = (co = (w =1 =1))aip™ () = eii(co — (w — 1 —1)).

O

Theorem 4.3.6 Let the elements v; € C' for 0 <i < w—1 be defined as in lemma 4.3.6.

Set v = Z;T”;Ol Yi. Then [y 1] = 1.

Proof:
Again using proposition 4.3.3, and (calculating inside the over-ring DBQ”] (X\{0})) the

fact that ¢¥(c,,) = ¢*(t*0")) = t—wtwolvltw = vl we can calculate that

[0, 1] = 7@ — 150 = 6 (e — () = (6" — i) (e (7)),

So we need to show that (¢* —id)(cno (7)) = 1.
Fix 0 <i <w—1. Since ¢"(cp) = co+w, we can see that (¢* —id)(x—(w—1—1)) = w,

so using the fact that ¢ (e;;) = e, by lemma 4.3.6 we see that

(9" —id)(wepnd™ (1) = € (¢ —id) (z — (w — 1 — 1)) = wey;.

Finally, by linearity we deduce that

—_
—_

g

w—

(6° — 1) (cnd ™" (1)) = D(6" — id) (o™ (1)) = e = 1.

I
=)

% =

4.3.7 Matrix Units

Lemma 4.3.7 For 0 < i,j < w — 1, set e;; = etV e;; € DV(X\{0}). Then, if we
consider A, as a subset of DE?] (X\{0}), each of the e;; belong to A,.
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Proof: A,, is complete, and A,,/7A,, is finite over Ay/mAg, so it is Noetherian. Therefore

by proposition 2.2.7(2) A,, is a Zariskian ring, and its ideals are closed by proposition

n

2.2.7(1) By proposition 4.3.3 and proposition 4.3.3(1) we know that (&;)P" = ¢'(ép0)?" =
) - 11\ P" . )
(tir—1oP iyt = <tp_1_18£p Ht’) € At for all n € N, so it follows that e; =

. ~ 7 . _ .z .
lim,, o €8 € Apt’, so that e;t7" € Ap,. Then e;; = e;t 7" (tej;) € An. d
Proposition 4.3.7 The {e;;}o<ij<w—1 form a set of matriz units in A,,.
Proof: We need to check that e;je;;; = d;ie;5. Note that since ej;e;r = 6055, S0
CiiCotir = et.]fzee . tjl*i/e./, — 5 etjfZJr.]/*Zle/ .
igCi'y’ — G jgCid’ 3’3" — Yj5iCqg 3’3

It is easy to see that this coincides with e;; when j =i’ U

4.3.8 Proof of Theorem 4.3.1

For this section, we define that § = 40!, where ~ is defined as in Theorem 4.3.6, so that

[0, 7] = 1.
Proposition 4.3.8 1. For all o € C, ar = ¢¥(a)T, oMl = (ﬁw(a)@t[w] and da =
ov()d.

2. Let 0 < j <w. Then for 0 <i<w-—1

e(i—l—j)(i—l—j)T(S Zf’l ‘|—j <w

W(eii75) =
elirjp)(itip)(TO+1) ifi+j>w

3. Te;; = e T and de;j = e;;0 for 0 <4, 5 <w — 1.
4. oY (16) =716+ 1

5. For0<i<w-—1, e;(co — (w—1—1)) = ejwro.
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6. The map Ag — A, ; T — 7 ; 0; — 0 is a well defined injective homomorphism of

O(Y)-rings.
Proof:

1. This follows from proposition 4.3.3 since 7 = t%, and § differs from 9! by an

element of C.
2. From lemma 4.3.6, using the fact that wy¢—"(v;) = we;7d we can write
eiin(S = 6ii<C0 — (w —1- Z))

Write k = i + j. By proposition 4.3.5(4) ¢/(e;;) = ex when k < w and €(—uw)(k—uw)
when w < k < 2w. Now, ¢(co) =co+ 1,50 ¢/(co—(p—1—14)) =co— (p—1—k).
Putting these together, when k& < w it is clear that ¢/(e;;70) = ew7d. When

w < k < 2w observe that ¢g — k* = ¢y — (w — 1 — (k —w)) — w to get that

¢’ (eii(co —i%)) = €p-w)(k—w) (o = (w = 1 = (k —w)) + w)

= €(hw)(h—w) (W (T + 1)).

3. Since 7 commutes with ¢~/ and the e;;, 7 commutes with the e;;. Then to show that
0 commutes with the e;; it will be enough to show that 70 commutes with the e;;:
if so, then working in 1;@ (X\{0}), we have e;;0 = 77'e;;78 = de;j. Now, ;70 =
eqt! “'rdej; = ;0" (e;;70)t 'e;;. Using part 2, since (i — j) +j = i < w, and

both e; and 78 belong to the commutative algebra C, ¢"7(e;;70) = e;70 = Tdey;,

proving the statement.
4. Since 79 = ¢7(y)Cpm, theorem 4.3.6 tells us that (¢* —id)(76) = 1.

5. Of course, 70 = ¢~ (y)Cm, so lemma 4.3.6 tells us that e;wrd = e;we,¢ () =
6“'(00 — (U) —1- Z))
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6. The homomorphism of O(Y)-rings Ay — A, ; 0r — & ; 7 +— 7 is well defined since
[0, 7] = 1. Tt induces a K-algebra homomorphism Ay ® K — A,, ® K which is

injective since Ay ® K = D@ (Y) ® K is simple by proposition 4.2.2. Since Ay

embeds into Ay ® K, the map Aqg — A,, is injective.
O

Lemma 4.3.8 1. Let A be a ring and {e;; }1<i j<n be a set of matriz units for A. Let C
be the centralizer of the set {e;j}1<ij<n. Then there is an isomorphism M, (C) — A

sending €;; — e;; and mapping C onto C.

2. Leta=Y""" (Ve € My(K). Then a is invertible and o=t = 31 (=1)77 (})eyy

1,7=0 \j 4,7=0 j

8. eijdy = (—1)F— (k*)eij mod pC for all 0 < i,j,k < w — 1 (recall d; = t'01 for

J

0<i<m.)
Proof:

1. By [14, 1.10.34] if we set T = {>"" | e;1aey; : a € A}, then there is an isomorphism
of rings M, (T) — A sending é;; — e;; and sending t — ¢ for t € T', so it will be
enough to show that 7' = C. Since the map M,(T) — A is a ring homomorphism
and T centralizes the {€;;} by the definition of M, (T"), we must have 7" C C. On
the other hand, let ¢ € C'. Then ¢ commutes with the e;;, so we have ZLI €;1061; =

o eaerc=c. Hence ceT.

2. The algebra homomorphism ¢ : K [t] = K [t| ; ¢t — ¢t + 1 is an isomorphism with
inverse t + t — 1. ¢ preserves the K-submodule V = @Y ' Kt' of K [t], and
P(t') = Z;":_Ol (;)tf Then the matrix of 4|y is S (;)eij, and the matrix of

i,j=0
v s Y (= 1) (D) e
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3. First we observe that using the lemma 4.3.2

()2 00) -2 0)
€ — 1 - . A R . dj*
w — —~\j) \J —\j

So using part 2 we have

So we can write

-1
* k* * . k*
cid = eydgey = ey _(=1)" _a<a)€aa = (-1 (j )%‘a

=0

e

working in C'/pC.

We are now ready to prove the main theorem.

Proof:(Proof of Theorem 4.3.1) By 4.3.8(6) the R-algebra homomorphism Ay — A,,
which sends 0, — § and 7 +— 7 is an embedding. By proposition 4.3.8(3) 7 and ¢
commute with the e;; so the image of Ay is contained in the centralizer of the matrix units
{€i;}o<ij<w, therefore by lemma 4.3.8 the induced R-algebra homomorphism M,,(4y) —
A, which sends é;; — e;; and corresponds to the above homomorphism Ay — A,, on Ay
is an embedding. We will prove the theorem by showing that it is an isomorphism. Using
proposition 2.2.6(2) it will be enough to show that the induced map f : M, (Ao/7Ay) —
Ay, /mA,, is an isomorphism. Let B be the sub-s-algebra of A,,/TA,, generated by ol
and 7.

We have that § = 9" mod 7A,,, and so the map f maps Ay/7Ay onto B. A,,/mAn,
is generated over k by ¢, and the o'l for 0 < i < m. Then it is clear that A,,/TA,, =
ij_:lo 0V B, while M, (Ay/mAg) = @Z]jo ¢;jAo/mAo. From section 4.2.1 we know that
0¥ = w!d™ = 0 mod 7A,, and t* = T, so A, /T A, is generated as a B-module by the

set {t'0Ul : 0 < 4,7 < w— 1}. Therefore, if we can show that ¢ and the o' belongs
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to the image of f for 0 < ¢ < w — 1, then f is surjective. First of all we can calculate
that e;t = e;(eit) = eyter1it1 = €41 for 0 < i < w — 1, and we can calculate that

Cw—1,w—1t = t¥€y_10 so that t = (Z;”:BQ ei(iﬂ)) + t"ey_10. Using this, we claim that

eiiﬁ J] = mod pAm

0 if j > 1.
To see this, let 0 < 4,5 < w — 1, and first assume that j < i. Then we can write

eV = e;; 70V = e;; ;d;. By lemma 4.3.8(3), noting that j* — (i — j) = i*, we find

A s
eivi_jdj = (_]‘>j ( j) <Z _]> ei,i—j - <_1) (Z . j> ei,i—j'

Now assume that ¢ < 5. Then

that

tweiiam = €iitw_jdj = ei,i—l—w—jdj-

By lemma 4.3.8(3) we find that

%

i wdd 7
€iivuw—jdy = (—1) i (Z Lw— j) Ciitw—j-

Now, j* =w —1—7j < w+i—j since i > 0, so tYe;0 = 0. t is a regular element of

A /T A, 50 ;09 = 0.
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Chapter 5

Description of the primitive spectrum
of certain nilpotent affinoid enveloping

algebra

5.1 Some results around the Newton Polygon Theorem

5.1.1 The Newton Polygon Theorem

Fix an algebraic closure K of K and let R be the integral closure of R in K. We implicitly
extend vg to K, so that the valuation vg (\) of an element \ € K is a well defined element
of Q.

Let g(t) = ap + ... + a,t"™ € K|[t], and assue that ap and a, are non-zero. Set
S ={(i,v(a;)) : 0 < i < n}. Then we define N(g) to be the smallest subset of S such
that (0,v(ao)), (n,v(a,)) € N(g), the slopes of the lines between the points of N(g) are
strictly increasing, and every point of S lies above the path traced by these lines (N(g)

can be viewed as the vertices of the lower convex hull or the lower convex envelope of the
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set S.)

Theorem 5.1.1 Let g(t) = ap+ ...+ ant™ € K [t], and assume that ay and a,, are non-

zero. Let (j1,v(aj,)),. .., (Js,v(aj,)) be the vertices of N(g). Then there are precisely

v(aj,_y)—v(aj,)

— for1 <r <s.
Jr—Jr—1

Jr — jr_1 ro0ts of g(t) of valuation

Proof: (proposition 1.6.3) neukirch, but the proof is fairly instructive so it is given below.
First of all, changing the value of a, only shifts the polygon up and down so we
assume that a, = 1. Let jy, ..., u, be the roots of ¢g(t) in K, organized so that vg (1) <
Vi (p2) < ... < wvg(p,). Welet {iy,...,is} be the largest set of numbers between 1 and n
where v (1) < Vi (s, 41) for 1 <r <'s, so that setting ip = 0 the sets {1, 41, ., fi, ., }
partition the roots of g(t) by value.
For 1 < i <, let I; be the set of subsets of {1,...,n} of cardinality n —i. Then we

have the equality

ai:j:ZH,uj.

Jel; jeJ

Applying the ultrametric ineqality to these sums, we find that if i, < ¢ <4, then setting

my :i0+---+ir—1- Then

Vi (An—i) 2 110k (i) + (12 — mo)vk (piy) + -+ (G — mp)vr (i) + (0 = mpy1)Vr (i, )

with equality when ¢ = 4,,1. From this we find

{(07 U(CLO))u (i1> U<ai1)>7 R (i87 U(ais))7 (n7 U(a’n>>} = N(Q)ﬂ
and setting ig = 0 and i51; = n, we can calculate that

U(az‘r‘fl) —v(a;,)

b — U1

= v (i, ),

proving the claim. U
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5.1.2 Some seemingly arbitrary calculations

Let g(t) = ap + ... + a,t™ € K [t] such that ay € R and ag, a,, # 0. Then we define

0= {2520}

Lemma 5.1.2 Let M be the number of roots of g(t) of valuation greater than or equal to

x(g). Let p1, ..., u, be the roots of g(t), ordered so that
v (1) < vppz) < oo < vk ()
1. M > 0.

2. UK(CLM) = UK(an) + Z?;1M UK(/M)'

4. Let a € K. If vg(a) > x(g) then v(g(a)) > 0.

5. For some |l € QU {—o0} such that | < x(g) we have that if | < v(a) < x(g) then

vi(g(a)) < 0.

Proof: Let {(ip,v(a;,)), ..., (is,v(a:,))} = N(g), organized so that ig < ... < i5;. Choose

1 < S < n such that x(g) = 7”KS(GS). For 1 < i < n, let I; be the set of subsets of

{1,...,n} of cardinality n — i. Recall that for 1 <i < n, we have

aa;' = :I:ZHuj.

Jel; jeJ

We can deduce that

n—i

vc(ai) > vic(an) + Y vic(py).

J=0

We will use this fact repeatedly throughout the proof without reference.
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1. By theorem 5.1.1, for some root p of ¢(t), since ig = 0, we must have

UK(M) _ UK<a0) ;UK<ai1>'

Since the slopes of the line segments between the points of N(g) are strictly increas-

ing and all of the points (i,v(a;)) for 1 < i < n lie above these lines we have

vk (a0) — vk (as) } ‘

olp) = e { 20

1<i<n

Since vk (ag) > 0, we deduce that

2. From the ultrametric inequality we know that

v (anr) > g}ﬁ{vK(an) + Z vr (1)}

with equality when the minimum is attained uniquely. From the definition of M

we know that for n — M < i < n we have vg(u;) > x(g9) = _UKS(GS), and for

1 < i < n—M we have vg(u;) < x(g). Therefore, the minimum is attained

uniquely at vg(a,) + Z?;M v (muy).

3. It will be enough to show that ”K](\ZM) < ”K(S“S) (If S = M we are done so we only

need to prove the statement for S < M and S > M). From the definition of M we

know that for n— M < i < n we have vi(;1;) > x(g) = =255} First assume that
S < M. Then using part 2,
n—=S n— n—=S
vc(as) > vi(an) + Y o) = viclan) + > vkl + Y vk (pa)
i=1 i=1 i=n—M+1
> () — (n = — (n — M) ~212)
M
= UK((IM) + UK<CL5) - —UK<CLS),

S
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proving the claim. Now assume that M < S. Then, again using part 2 and the fact

that v (p;) < WKT(GS) for 1 <i<n— M, we can write

o) = viclon) + 3 vi) = vclan) + S k() + 3 okl

i=n—S-+1
< vclas) — (n— M — (n— ) 29 _ )

proving the claim.
4. Let r = x(g). If vg(a) > x(g), then write o = 7"¢ with £ € R. Then we can write
g(a) = g(n"e) = ap + (mar)e + ... + (1 a,)e".

By the definition of r, we of course have that 7iia; € R for 1 < i < n, so the

statement follows immediately.

5. Let [ be a rational number strictly between the value of a root of ¢(t) that is
strictly less than r and r if such a root exists, otherwise set [ = —oo. Suppose that
I <wg(a) <r. Since vg(u;) > x(g) = r if and only if n — M < i <n we have that
vi (o — p;) = vg(a) whenever n — M < i < n and since vg(a) > [, we deduce that
vk (@ — pi) = vk (i) whenever 1 <4 <n — M. Since g(a) = a, [[j_, (o — p) we

have

n—

ilg(a)) = 3 viclyn) + Muicla) + vxc(an) = vic(arr) + Muie(a).

=1

. ) vic(anr) )
Of course, using part 3, since vg(a) < r we have vg(a) < —=7%, so it follows

that vk (g(a)) < 0.
U

Theorem 5.1.2 Let g(t) = ag+...+a,t" € K [t] such that ay € R and a,, # 0. Define X
to be the set {\ € Ap™ : vr(g(\)) > 0}. Then X is an affinoid subdomain of AR™ and
the G-connected component of X about 0 is the closed disk {\ € A™ : v (X\) > x(g)}.
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Proof: Note that ag € R forces 0 € X, so that the G-connected component of X about
0 is non-empty. For vg(A) < —N for N large we will have vg(g(\)) < 0, so X can
be realized as the spectrum of a Weierstrass extension K (7Vt){(g(t)), and hence X is an
affinoid subdomain of A"

Using lemma 5.1.2(4, 5) there is an some [ € Q, [ > x(g) such that the intersection
of X with the disk B = {\ € A™ : vg(\) > 1} is the disk {)\ € A : vg(\) > x(9)}.

Then X N B and X N{\ € A" : vg(N) <1} is a disjoint admissible open covering of X,

proving the second part of the statement. O

Corollary 5.1.2 Adopting the notation of the theorem, X 1is a finite union of disjoint

closed disks.

Proof: For f € K[t] let X(f) = {A€ X : vg(f(N\)) > 0}. Suppose o € X(f). Then it
will suffice to prove that the G-connected component of X about « is a closed disk of finite
radius. If «v is a root of f(t), then replace o with some other point in the G-connected
component of o which is not a root. Let f'(t) = f(a —t). Then using theorem 5.1.2,
since 0 € X (f’), the G-connected component about 0 in X (f’) is a closed disk of finite
radius. But this implies the G-connected component of X (f) about « is a closed disk of
finite radius. It is a fact of p-adic geometry that two disks are either disjoint, or one is

contained in the other, proving the claim. 0

5.2 Working with 0;-stable disks

5.2.1 Defining Skew Tate Extensions

Let A be an affinoid algebra, and let ¢ be a derivation of A. Then we say that a sub-R-
algebra B of A° ={a € A: ||a| < 1} is a d-lattice if §(3) € B for all § € B, and A° is a
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B-module of finite type. We define

B<$;5>:@B[l‘;5]/ﬂi3[x;5].

ieN
(where the ring B[z ; d] is isomorphic as a left B-module to B [z], with multiplication

defined by the rule zb — bx = (b).

Proposition 5.2.1 Let A be an affinoid algebra, let § be a derivation of A, and suppose

that B and B’ are §-lattices in A such that B C B'. Then the natural homomorphism
B(z ;) ®@r K — B'(x ; §) @r K
18 an 1somorphism.

Proof: The decomposition B[z ; 0] = @D,y Ba' induces an isomorphism of R-modules

B(Z) — B(x ; §), and using these isomorphisms we get a commutative square

B(Z)®r K B(Z) ®r K

L l

Bl{x;0)r K——=B'(x ; §) @p K

Since B and B’ are lattices in A, the top arrow is an isomorphism, and thus the bottom
arrow is an isomorphism. [l
We say that A has a d-stable lattice if there exists some d-lattice in A, and if A has a

d-stable lattice B then we define

Az ;0) = B{x ; §) ®@g K.

In light of proposition 5.2.1, this definition is independent of the choice of a d-lattice.
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5.2.2 Skew Tate Example

Similarly to the previous chapter, for an element o € A where A is some complete sliced

K-algebra, we define all = O;—, For 1 € N, we set

p—1
N; = vg(p)———.
pp—1)
Note that N; is a strictly increasing sequence of rational numbers converging to UKT(?. Let
p

r =%, a, b coprime, and b € N.
Let A = K(rg"y) with r € Z and suppose N,,,_1 <1 < N,,, and let s = p"™(N,, —r) €

Z. Let T be the set of power series a which can be written uniquely in the form

m—1 s ™y
a= Y aM ) G ()
AEN iEN

where N; = {0,1,...i — 1}, with a; € R, ay; — 0 as i — 0.
Proposition 5.2.2 1. T C A°.
2. T is a Oy-lattice in A.

Proof:

1. To show T C A° = R{m"y), we first observe that y"'l € A° for 0 <i < m — 1 since

—r < —N; = _”‘;%,-(pi!) for 0 < i < m — 1. Furthermore we have that

m

777.] _ pm(N'm—T’) yp

ol e(mi"y)”

Ty
for e € R*. Tt follows that 75yP"l € A°.

2. T is a lattice in A because 7% "R(ng"y) C T C R{ry"y) so T is a lattice in A
since R(m"y) is a lattice in A. On the other hand we have 9,(y) = y"~1 for

0 <7< m—1. But for some ¢ € R*,

y[p"'—l] — Eyp—l(y[p])p—l o (y[pi‘l])p—l eT
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Similarly

Wsy[pmfl] — gﬂsypfl(y[pupfl o (y[pm‘l])pfl eT

since s > 0. Since 7' is an R-subalgebra of A°, T"is J,-stable and thus a 0,-lattice

in A.

5.2.3 Base Change

Let A be a K-affinoid algebra. Let a € A and let § € Q, a and b coprime, b € N. Let K’

be a finite Galois extension of K containing K (7). Then we define
Alrha) = (A @k K') (1%, o) Gl /K

Lemma 5.2.3 1. Let A be a K-affinoid algebra and let B be a multiplicatively closed
lattice in Agr = A®g K'. Let G = Gal(K'/K). Then A= B¢ ®r K and B @ R’

18 a lattice in Agr.

2. If A is a simple K'-algebra and B is a K-algebra such that A = B @y K' then B is

simple.
Proof:

1. Every element of B®p K’ can be written in the form S® \ with § € B and A € K'.
B is a lattice in A and A%, = A, so taking A as a subset of Ag/, and writing 3® \

as fA for brevity, we have
A={Br e A%, : pe B, e K'}

Therefore, to show that A = B¢ ®@p K it is enough to observe 8\ € A%, with 3 € B
and A € (K’)*, then for some y € K* we have fAu~! € B or B\u € B, as then we
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can write either S\ = (B )=t or SA = (BA™1)p. Set

= H a(A).

Then p € K, and vy (u) = #(G)vg/(X). Since #(G) > 1, we must have v (uA) > 0
or vg:(~tA) > 0. It follows that either A=t € B or S \u € B, proving that A =
BY ®p K. Finally, since B is an R’-module we must have B @z R’ C B, and using

the fact that A = BY®@p K and Ag) = A®k K’, we have (B¢ @p R') @p K' = Ak

2. Let I be an ideal of B. Then I® K’ isanideal of A, s0 IQx K' = 0or IQxg K' = A.

But K’ is a faithfully flat K-module so I =0 or I = A.
U

Proposition 5.2.3 Let A be a K-affinoid algebra and let & be a derivation of A. Let K’ be
an algebraic field extension of K and let 0 be the linear extension of 6 to Agr = AQg K.

Let G = Gal(K'/K)
1. A has a 6-lattice if and only if Axr has a 0'-lattice.

2. If B is a §'-lattice in A then BC is a §-lattice in A and B® @ R’ is a d-laltice in

AK/.

Proof: Suppose that Ax has a ¢ lattice B. ¢’ fixes A°, so (¢')" and consequently ¢° fixes
B¢ for all i € N. By lemma 5.2.3 B¢ ®p K = A so BY is a d-lattice in A, proving the
first statement of part 2.

Now suppose that A has a ¢ lattice B’. K’et a € B"and let A € R'. Then (§')'(a®)\) =
§(a)®@ \. Since a € C, §'(a) € B, and consequently §'(a) @ X € B'®g R'. Tt follows that

B’ ®g R’ is (¢')" invariant for all ¢ € N. On the other hand B’ ®x R’ is a lattice in Ag,
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so B’ ®r R is a ¢'-lattice, proving part 1, and if B is a ¢’-lattice in Ay, then applying
the same proof to BY yields that BY @y R’ is a d-lattice in Ags, completing the proof.

U

5.2.4 Computing the 0; lattice for disks

Let Z be a copy of A™. Let t be a coordinate for Z. Let 8, € Tz(Z) be the dual operator
to dt € QL (Z).
Let r € Q, u € AR™. Then we define U, (1) = {\ € A : vg(\ — p) > r}. Define

K (" (t+ )

e
E
=
I
S
=
=
I

Then set K’ = K (7). Let R’ be the unit ball of K’. Let T be defined as in section

5.2.2 over K'.

Lemma 5.2.4 Set y =t — pu. Let A= Oz(U,(n)). Let G = Gal(K'/K). Then TC is a

O;-lattice in A.

Proof: Using lemma 5.2.2(2), T is a O,-lattice in A @ K, so by lemma 5.2.3(2) T¢ is a

O,-lattice in A. O

5.3 Skew-Tate extension of disks as Matrix Algebras

over Affinoid Weyl Algebras

5.3.1 Building the isomorphism

Let r €e Q pue Z, 0<r< UK(p)Iﬁ. Choose m such that N,,_; < r < N,,. Let
§ = p"(Nm —1). Let r = £, a, b coprime, and b € N. Let K’ be a Galois extension of K

such that WI%( € K'. Define D,(u) = O(U,(u)){x ; 9). Let T be defined as in 5.2.2 over
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R'. Let 9 =T(d,).
Lemma 5.3.1 Let X = A}, Define
w:D > E@(X) St ol 9, s —t
Let C be the diagonal algebra of 7;[)(;] (X) defined in section 4.3.3.
1. w is a G-equivariant R'-algebra embedding.
2. C"=w(2)NC is ¢p-invariant.

3. Let f(co) € K [co] and suppose that deg(f) < 2w — 1. Then f(cy) € pC implies

f(co) € mC".
4. Let e;; be defined as in section 4.3. Then e;; € w(D) for all 0 <i,j <w — 1.
5. Let 7y be defined as in section 4.3. Then v € w(2).

Proof:

1. We will prove that every element o € D?}(X ) can be written uniquely in the form

o = Z aij)\ti(at))q o (at[pm7 }))\m(at[pm])]

i jENAEN
where N, = {0,...,p — 1}, with a;;, € R, a;;» — 0 as i + j — oo. Thus, there is

an embedding of R’-modules

—

2 —DIN(X) ;0 —t 5 1P O,

It is trivial to verify this is an R’-algebra homomorphism as an extension of the

Fourier transform. G-equivariance is obvious from the definition of w.

2. Let C),_1 be the closed sub-R'-algebra of C' generated by the ¢; for 0 <i <m — 1.
Then C" = C,,,_1(7%¢cp). Cyq is fixed by ¢, and ¢(c,,) € ¢ + Cru_1, s0 ¢ fixes C”.
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3. Recalling the definition d; = (CZO) for 0 <1 < 2w, we can write

2q—1

f(Co) = Z a;d;

i=0
for some a; € K. Then

f(co) € pC' if and only if a; € pR' for 0 <i <2¢ — 1.

Then it will suffice to prove that pd; € 7C" for 0 < i < 2¢—1. Since C' = w(2)NC,
it will be enough to show pd; € 7w(Z). For 0 <i < ¢ — 1 this is obvious so suppose

that ¢ = g+ 7, with 0 < j < ¢— 1. Then we can write
. i\ .
d; = tiol) = ( ) tiolP" bl
q

We have i = ¢+ iy, 1p™ '+ ... +ig for some 0 < i; < p for 0 < j < m—1, so using

CJ) - G) ﬁj (25) = 1 mod pZ.

So that (;)_1 € (R')*. Then for some ¢ € (R')* we have

Lucas’ theorem

nd; = 71_Tliér((p)—sg (ti(ﬂ%ggpm])a‘m)
proving the claim since vk (p) > s and 0 < j < p™.

4. We will first show that e; € C’' for 0 < i < g — 1. ¢ fixes C’ by part 2 so since
P(eii) = e@t1yv1) for 0 < i < ¢ — 1 it will be enough to show that ey € C’. For
this, it will be enough to show that éy is idempotent in C’/7C” as then éyy will

converge to egg in C’.

If we consider ég € K [co], then deg(é3, — épn) < 2¢ — 1, so to show that égg is
idempotent in C’/7C" it will be enough to show that é3, — éyy € pC' by part 3. But

this follows by proposition 4.3.4(3).

To see that the e;; € wC one uses a proof similar to that in lemma 4.3.7.
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5. By part 4 we have each of the e; € C’. From the definition of v, we can see that is
will be sufficient to prove that o; —e;; € 7C” for all 0 < i < p™ — 1. By proposition
4.3.5(1), ay — é; € pC, and if we consider a; — é; as an element of K [¢y] then
deg(ay; — €;) < 2p™, so it follows that «; — é; € 7C”" and hence «; — e;; € 7C’" by

part 3, proving the claim.

Theorem 5.3.1 There is a G-equivariant isomorphism 9 — Mpm(@).

Proof: Since e;; € w(Z) for 0 <4, j < p™—1 by part 4 of lemma 5.3.1,, using lemma 4.3.8,
there is an isomorphism M,m(Z) — w(Z), where Z is the centralizer of the e;; in w(2)
for 0 <i,7 <p™—1. Now, if Z’ is the centralizer of the e;; in 5@ (X) then it is clear that
Z =7'"Nw9, and we know that Z’ is the closed subring of BX;] (X)) generated by ”y@t[pm]

and t*". v € C’ by part 5 of lemma 5.3.1 and we have a ring isomorphism 2’ — Dgg] (X)

sending yat“’"”} to 0, and t*" + t. Now, let V; be the R'-subalgebra of DE(;} (X)) generated by

t and 75.0;. We can see that Z/7Z is isomorphic to the commutative x-algebra generated
by tP" and ﬁ%@fm, so the induced map V,/nV, — Z/nZ is an isomorphism. It follows

that V; x» — Z is an isomorphism, proving the claim.

O
Corollary 5.3.1 There is an isomorphism of K-algebra D,.(u) — Mq(@)c.
Proof: Using theorem 5.3.1, we have a G-equivariant isomorphism of K’-algebras
Dy(p) = My(Voser).
The statement immediately follows. 0
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5.3.2 Skew-Tate Extensions of Affinoid Algebras Defined by Poly-

nomials

Let Z be a copy of A" and let f(t) € K [t]. Then define X(f) = {\ € Z : v (f(\) >

0}. Let fi(t),..., fu(t) € K [t]. Let & = &L Then we define
Xo(fiso oy fo) =INE Z v (¥ (fi(N))) > 0for 1 <i<mnandjeN}L

Theorem 5.3.2 Let fi(t),..., fu(t) € K[t]. If Xo(fi(t),..., fu(t)) is non-empty, it is

a finite union of closed disks U, ,(u;) for some r; € Q, p; € Z for 1 < i < s. FEach

. *UK(p)
ri < 5

Proof: From the definition, we can see that

Xo(fi,-- f) = () [ X@ )

1<i<n jeN

Since the intersection of two disks in Z is either empty or the disk of lesser radius, it will
suffice to prove the statement for Xy(f), where f(t) € K [t]. Using corollary 5.1.2 each
X (0" f) is a finite union of disks and hence X,(f) is a finite union of disks. Now, to prove
the theorem it will be enough to show that each of the disks is equal to U,,(1;) for some
r; € Q such that r; < _;%gm. So let p be an arbitrary point in Xy f. By translating Z
we can assume w.l.o.g. that g = 0. Write f(t) = ag + ... + a,,t™. Then the fact that
0 € X((f)) for all j € N forces ila; € R for 1 < i < m. The radius of the connected
component of X (97(f)) about 0 is x(0? f) by theorem 5.1.2. Then the radius r € Q of

the connected component of Xy(f) about 0 is

r=max{x(?'f)} = max max {_ilij<('i!al'-)}

0<j<m—1 j+1<i<m

Then ila; € R for 1 <1 < m forces

r < max
0<j<m and j<i<m

i~
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But for all i € N, 2 Zl) < KL by lemma 4.3.3(6), proving the claim. O

In light of this proof, given fi(t),..., fu(t) € K [t], we define

K<f1(t)(a)v s 7fn(t)(a)> = OZ(XB(fla e 7fn)))

Corollary 5.3.2 Let A= K{(fi(t)D,..., fo()D). Then if A is non-zero, then for some
seN,m; €N, r;, €N, and L; extending K; for 1 <1i < s, there is an isomorphism

Alz ; 8) = H M, (V/IG)
=1

where G; = Gal(L;/K) for 1 <i<s.

Proof: By theorem 5.3.2 there is an open immersion Sp(A) — A" whose image is a finite
union of closed disks U, (y;) with r; € Q, p; € A}ga", and r; < vK(p)Iﬁ. By theorem
5.3.1 each O,,(p;)(z ; £) is isomorphic to Mp(ﬂ)G for some m; € N and r; € N,
and L;/K. Now, there is an isomorphism A — [[7_; L;y(mi(t + 11;)). Let ey, ..., es be the
primitive idempotents of this presentation. Then each [; = >, e;Li(my(t + ;) is a

minimal prime over the ideal {0} in A, so by |7, Lemma 3.3.3] I; is invariant under 0;. It

follows that each L;(mji(t + p;)) is invariant under 0y, so we get a chain of isomorphisms

Az ; 0) —>HL ot + pi))(x; 0) _>HM"“ (ﬂc)

=1

5.4 Primitive Ideals in Weight One Powerful Nilpotent

Enveloping Algebras

Let g be a finite dimensional non-Abelian nilpotent K-Lie algebra, containing an Abelian
sub-Lie algebra b of codimension one. Let x € g\h. Let D = ad,. Then ker(D)Nh = Z(g)
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Let 0 # y be an element of b such that y ¢ Z(g) and y + Z(g) is central in g/Z(g). Let
z = [z,y]. Then 0 # z € Z(g) since y + Z(g) = y + (ker(D) N'h) # 0. Tt follows that

(z,y, 2z, h) forms a reducing quadruple for g.

5.4.1 The factor ring as a Skew-Tate-Extension

Let £ C g be an R-Lie lattice in g such that [£, %] C .. Let & = £ Nh. Let

—

P be a weakly rational ideal of U(g) such that PN g = 0, and set P’ = U(Z)P. Let

Py=PnNU(h) and let P = @K N P'. For ease of notation we further define
1. U="U(g)
3. H=U(#), CU.

Let I be an ideal of U such that Z(U/I) is isomorphic to K. Let I’ = INU. Let o

be the R-subalgebra of U generated by [ﬁj?) and x.
Lemma 5.4.1 1. I' is a weakly rational ideal of U.
2. P =UPR,
3. HPy =P,
4. Let A= H/(P'N H). Then A is a lattice in ]:I/Ph/

— —

5. of is dense in U. P'N.of is controlled by U(). o is isomorphic to U(H) [z ; D).

Proof:

1. K Z({U)I')C Z (U/J) - K.
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2. PP=UP and P = UP, by corollary 2.4.7. Of course UU =0, so

UP,=UUPR, = P
3. We need to show that ﬁP;, C Pé and Pé C I:IP;,. We have
P,; —HnN ﬁph,

so clearly ]:IP;) C . Now let a € Fy. Then we can write a = uf3 for some u € U

and € By. Now, by proposition 2.5.1(1), u can be written uniquely in the form
usziuiwithuiGfIandui—>Oasi—>oo.
ieN
Then since U is a domain using the uniqueness of the expression and the fact that
w;3 € H for all i € N,
uf = leuzﬁ € H if and only if u;8 = 0 for all i > 0.
ieN
This only occurs when u € Ifl, so that a = uf € fIPh. It follows that P C [:[Pb,
proving the claim.

—

. We first observe that (PNU(J)) g K = F;. Then since K is a flat R-module we

have that following commutative diagram

0—— P NU(H)—U(#) /‘1 0
0 P, a ARr K —0

with exact rows. It follows that A is a lattice in H /P

—

5. The natural U(7¢)-module homomorphism

@U/(\%”)xi—ﬂj

1€N
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is an embedding by proposition 2.5.1(1). &7 is the image of this homomorphism, so

—

it is clear that &/ is isomorphic as an R-algebra to U () [z ; D].

—

Let Q=P N, and let a =" ja;x" € Q, a; € U(H) for 0 < i < n. Then to
show that () is controlled by (@, it is enough to show that a; € @ for 0 < < n.
By induction on the degree of «, it will be enough to simply show that a, € Q.
For this we note that a € @ implies adj(a) = nlz"a, € Q. Now, @ = P'N &,
a, € (@ Z(U/P') = K and P'NZ(g) = 050 z— pu € P for some p € K*.
It follows that n!y™a, € P’. Since P’ is a K-vector space, nlu™a, € P’ implies

—

a, € P, so a, € U()NQ, proving the claim. Since o contains U(.Z), < is

—

dense in U(.Z).

O

Now, let B be the R-subalgebra of U generated by H and x. Then U(%) C B C

—

U(Z), so B is a lattice in U.
Proposition 5.4.1 Let A = I:I/Pb’ as defined in lemma 5.4.1(3).

1. Let § be the restriction of the action of D|z to A. Then there is an isomorphism of
K-algebras

U/P — Az ; 0).

2. For some collection of polynomials f;(t) € K [t] for 1 < i <'s, there is an isomor-

phism A — K{(fi(t), ..., f(t)9).
Proof:

1. Let J = P'N./. o is alattice in U, J is controlled by [ﬁj?) by lemma 5.4.1(5).

Let J' = P'N H. < is isomorphic to (ﬁ%\”) [z ; 4] by lemma 5.4.1(5), so we have
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an isomorphism

/] — Bz ; 0]

where B = U( )/J'. As o/ /J is a lattice in U/P’, we get an isomorphism

(A]/P’—H'&HB[:E 0] /m'Blx ; 0] ®r K.

ieN

Of course, since B is a d-lattice in A, by definition lim B [z ;0] /m'Bz ; §|@rK =
A(z ; §), completing the proof.

. By proposition 2.4.7 we have a ring homomorphism

O U(g) > Wi(K); 2+ 0 and o +— ZDi(oz)tm
ieN

with primitive kernel P generated by the ideal (z — 1)U(g) and the preimage of
U(h)/J as described in proposition 2.4.7. Let ®y be the restriction of ® to U(h).
Then ®,(U(h)) = K [t]. If we choose a basis hy,...,h, for J, we can see that

Oy (U(H)) is the sub-R-algebra generated by

ZDJ t[]]f0r0<z<d—1

jEN

Thus, we have an exact sequence
O—>73;—>[:I—>K<fi(t);0§z’§d—1>—>0.

By [4, 3.2.3(iii)] Pb HP,. Then by lemma 5.4.1(2) Pb F;. Now, it is enough
to note that ®5P~1 = 9, so the fact that [ﬁj?) is closed under the Lie bracket
implies that 0/ (fi(t))) is power bounded for all j € N and 0 <i < d — 1. Then we

can choose a presentation of K(f;(t): 0 <i <d — 1) as in the statement.
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Theorem 5.4.1 For somen € N, somem; € N, s; € N and some finite Galois extensions

L; of K with Galois groups G; for 1 <i < n, we have an isomorphism of K-algebras

0/P" = ] Mymi (Ve )%

i=1
Proof: Using proposition 5.4.1(1) and (2), noting that the Dixmier map sends ¢ to 0,

there is an isomorphism
U/P — K{(f()D, ..., f()P)z ; d).
Then the statement follows from corollary 5.3.2. O

Corollary 5.4.1 1. If I is a primitive ideal of U then I N U(g) is a primitive ideal of

Ulg)-
2. There is a surjective map Prim(U) — Prim(U(g)) with finite fibres.
3. For an ideal I C U the follounng are equivalent:

(a) Z(U/I) is algebraic over K.
(b) I is primitive.

(¢) I is mazimal.

Proof: We first observe that each 173? is simple: to see this we can use a similar method
to that in lemma 3.1.2 part 1 to show each ideal in ‘75? contains an element of K.

Let I be a primitive ideal of U. Let J = I N U(g). Then by theorem 2.5 L = Z(U /1)
is an algebraic field extension of K. It follows that Z(U(g)/J = L, so J is primitive by
proposition 2.4.4, proving part 1. On the other hand, let M be a simple U(g)-module
with annihilator J. Then there is a natural Uy = U ® g L-module structure on M. Let J’
be the annihilator of M in Uy. Then J’ is weakly rational, so there are only finitely many
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primitives ideals in UL/J’UL by theorem 5.4.1. UL/J’UL is isomorphic to U/JU, so JU
is semiprime as well, proving the second claim.

Now, for the the third claim, we first observe that we know (b) implies (a) by theorem
2.5. Tt is trivial that (c¢) implies (b) so it will be enough to prove that (a) implies (¢). So
suppose that Z(U /1) is algebraic over K. Then by theorem 5.4.1 we find that U /(INU)U
is a product of galois invariants of matrix rings over deformed affinoid Weyl algebras, which
are simple by lemma 5.2.3(2). Then it is clear that the condition on [ implies that [ is

maximal. O
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Chapter 6

An analogue to Beilinson-Bernstein for
the global sections of the arithmetic
differential operators over the

projective line

6.1 Definitions

6.1.1 Ox-rings

We define the category of Ox-rings over a scheme X in the following manner: Objects
are pairs (F,¢) where F is a sheaf of R-algebras over a scheme X and ¢ is a morphism of

sheaves of rings Ox — F. Morphisms (F,¢) — (G,t) between Ox-rings are defined to be
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morphisms of sheaves of R-algebras F — G such that the following diagram commutes

f

1\

Ox —=G

. We simply refer to (F,¢) as F when no confusion will arise.

6.1.2 Notation and Preliminaries

Let X and Y be two copies of PL. Let t be a coordinate for X and 7 a coordinate for
Y. Let F': (X,0x) — (Y,Oy) be the morphism of schemes defined by 7 — t?. We
explicitly construct Oy in the following manner: Let X and X’ be two copies of A},. Let
x, ' be coordinates for X and X' respectively. Then we view (Y, Oy ) as the colimit of

the following diagram

Ox — Ox(X\{0})

|

Ox:
where the horizontal arrow is the sheaf map, and the vertical arrow maps 2’ — x=1. We
identify x with 7, 2’ with 77!, and define Y; to be the image of X in Y, Y., the image of
X’"in Y, and Yje the image of X\{0} in Y.
Let 0;,0,-1 be the dual operators to dt and dt~! respectively.
Using theorem 4.3.1 we have isomorphisms of Oy-rings Mp(l/)@)|y0—> Fﬂ/)@\yo and

F*D[;”yoo—) Mp(D@)h@o, so using the language of section 4.3 we define the following

variables:

—_

1. Let Dy = DY(X0), Do = DY(X4), and Dyo = DY (Xgoo ).

2. Let Cj be the closed sub-R-algebra of Dy generated by x¢ = t0; and yy = tpﬁt[p] (so

that they satisfy the conditions of ¢y and ¢; as in 4.3.3), and let C, be the closed
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sub-R-algebra of Do, generated by oo = t710,-1 and yo = t-pat“i]l. Let ¢g be the
automorphism xg — o+ 1 of Cy and let ¢, be the automorphism x,, — xo + 1 of

Coo-

3. For0<i<p—1lete; = (fﬁ") and let f; = (tflgt:f +i). Let e; be the unique lifts

of the idempotents é;; + 71Cy to Cy, and let f;; be the unique lifts of the idempotents
fii + WCOO to Coo Set €ij = eiitj_iejj c D() and fij = fiiti_jfjj S Doo; so that
the {eij}0§i7j§p_1 form a set of matrix units for DO and {fij}OSi,jSp—l form a set of

matrix units for D..

4. Let 7y be the element given by lemma 4.3.6 such that [%aﬁ, Ti| =1. Set 6y = yoﬁt[p}.
Similarly let v, be the element given by lemma 4.3.6 such that [%Oaﬁl, 7*1] =1
and set 0y = %081‘@1.

We will see that in transferring between charts, the indices of the matrix units are

shifted. To ease notation, for 0 < i < p — 1 we set
p—2—i if0<i<p-—2
p—1 ifi=p—1.
6.1.3 The Global Diagonal Algebra

Proposition 6.1.3 The image of Cy under the restriction map Dy — Dy, and the image
of Cose under the restriction map Dy — Dyso are identical. The automorphisms ¢o and

Do GTE TNVETSE.

Proof: In this proof, we identify Cy and C,, with their images in Dy... Cj is the closed
sub- R-algebra generated by xy and yy and C is the closed sub-R-algebra generated by
ZToo and Yse, 50 to prove Cy = C4 it will be enough to check that zq, yo € C and z,
Yoo € Cp.
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Since 0,1 — —t20,, we can calculate that xy = t0 = —t'9,-1 = —2. Hence zy € Cy
and 2, € Cy. Using proposition 4.3.3(1) we can see that ply,, = t 70", = [[/_; (t 10,1 —
i) = (=1)P ]2y (zo+i). Of course, (—1)P [T'=, (wo+i) = — [1'=, (wo+p—1—1), so recalling
that by definition ¢! () = 2o + p — 1, and again using lemma 4.3.3(1) we have

p—1
Ploo = POV = —¢f <H(370 - z‘)) = =g (t"0)) = —pley " (%o)-
i=0
Since Do is 7-torsion free, it follows that ys, = —@5 (o). Hence ys € Cy. By symmetry
Yo = —Poo(Yoo )P 50 Yo € Cuo, proving that C,, = Cy. Then ¢y and ¢, are inverse, since

¢o sends xg — xg + 1 and ¢, sends g = —Too — — (T + 1) = 29 — 1. O Due to

proposition 6.1.3 we now let C' be the image of Cy (and Cy) in Dos.

Corollary 6.1.3 All of the idempotents e;; and the elements é;; are global.

Proof: Each e;; is global as they all belong to C', so they form a complete set of orthogonal

—

idempotents in DE? (X). O

6.1.4 Restriction of Matrix Units

Recall that we have defined, for 0 <7 < p — 1, that
p—2—i if0<i<p—2
p—1 ifi=p—1.

Let 0 be the restriction map Dg{] (Xoo) = D[)E(XOOO).

Proposition 6.1.4 Let = ep_1)p-1) + 7 (1 — ep_1yp—1)). Then the restriction map

0 : Dg] (Xoo) = DL? (Xooo) acts on the matriz units { fi; bo<i j<p—1 50 that 0(fi;) = pep e .
Proof:
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From proposition 4.3.3(1) we can calculate that that foo = t—<p—1>at“i;” = (F;?tl‘l).

From proposition 4.3.3(1) we know that 0(t19,-1) = —td,, so we deduce that 6(fo) =

(—tat) _ (tat +p—2

ool o ) Then for 0 < i < p— 2, using the fact that ¢y and ¢, are inverse from

proposition 6.1.3, and that ¢ (t0;) = t0; + 1,

o(F) =i i) = o (77 72)) = (00

p—1 p—1

so we can see that for 0 <7 <p— 2,

0(fi) = 0(¢%,(foo)) = éseir = €44~ mod WD[;](XUOO)-

—

Now, by lemma 4.3.3, since 6(f;;) is equivalent to e;;» mod WDE? (Xo0o) We must have

O(fii) = epis
From the definitions we know that 6(t) = ¢, and noting that i — j = j* — i* for

0<1,7 <p-—2, we can observe that for 0 <1i,7 <p— 2,
O(fi;) = 0(fut 7 fi;) = €iit! " €juje = €puje.

Since 7 commutes with the e, we find that 0(f;) = pegpp=t for 0 <i,5 <p—2.

In a similar manner to above we can calculate that (9(]?(;0*1)(17*1)) = 0(¢"2 (foo)) =

—

o PV = () = 6P (Epenyp-n)- 0p" is the identity mod 7DY(Xox), S0

gbap(é(p,l)(p,l)) = é(p,l)(p,l) mod 7T'D§] (XOOO)' Hence

—

. . o 1
0(fio-06-1) = 0 fr-1)-1)) = Ep-1)6-1) = €p-1)p-1) mod 7D (Xocc)

As before, we conclude that 0(f,—1);p-1)) = €p-1)(p-1)- Since (p — 1)* = p — 1, we have

that 0(fp—1)0-1)) = Hep-1)p-1) 1
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Finally, for 0 < i < p — 2, noting that 7 = t» commutes with the e;, we can calculate

that
Q(f(pfl)i) = Q(f(p—l)(pfl)t(pfl)fifii) = e(pfl)(pfl)tpri*ei*i*

= Tepnp-1) =t Ve = Te i = peoyep”!

and similarly

O(fip—1)) = €t ™" e oy = 77 e t P ey ooy

= T e (po1) = Ml (p1)lt

6.1.5 Restriction of the 7-differential

Proposition 6.1.5 Let u = eg_1yp-1)+7 (1 —ep_1)p-1)). The restriction DL? (Xoo) =

—

D[)E(XOOO) sends
0o F> — (e(p_l)(p_1)72(50 + (1 - e(p_l)(p_l))7'507-) = M(—TQ(;O)M_I.
Proof: Since the e; commute with 7, d, and 0, and —76y7 = 77 1(—7280)7, we have
— (e 26+ (1 —e )T00T) = pu(—7280)p
(r—1)(-1)T 90 (r—1)(p—1))T9% H o -

Let 0 be the restriction map DL?(XOO) — D[)? (X000)-

Applying proposition 4.3.8(5) to Dg] (Xo) we know that fupr10s = fu(t710-1 —

(p—1—1)), so we can write
p—1
pT_I(SOO = Z fii (t_lat—1 — (p -1 @))
i=0
From the definitions we know that 6(t~'0,-1) = —t0, and using proposition 6.1.4 we know

that for 0 < ¢ < p—1, 6(fi;) = €i+i=. From the definition of ¢y we know ¢f(td; + i) =

(t0; +p+1),so for 0 <i < p—2 we can calculate

Q(fiip7_15oo) = —Cyx4x (t@t + 1 -+ ’L*) = —e,-*,-*gbg(tat — (p —1-— Z*>> = —gbg(ei*i*pTéo).
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From proposition 4.3.8(4) we have ¢5(7d9) = 709 + 1 = o7, and we know that ¢ fixes

e;+i+ 80 we deduce that
O(fii000) = —€ixi»TPH(T0) = —€iwixT0T.
Summing over 0 < ¢ < p — 2 we have that
0((1 = fp-1)p-1))000) = —(1 = €(p-1)(p—1)) T 00T

Finally, using proposition 4.3.8(5) we can see that f,_1)p-1)PT 0o = flp—1)p-1)t 041

and ep—1)(p-1)PT0 = €p-1)(p-1)t0; S0

0(fo-1)p-1)PT " 0o0) = —€(p-1)(p—1) (t0s) = —€(p-1)(p-1)PT D0

So we get that 0(f(p—1)(p—1)000) = —€(p—1)(p—1)T00, Proving the claim. O

6.1.6 Twisted Sheaves of Algebras

Let X be a scheme, let C be some category, and let F be a C-sheaf over X.
We define an F-twist to be a C-sheaf G such that there exists an open cover {U;}ic;

of X and isomorphisms of C-sheaves w; : G

Ui_>‘F|Ui for i € I.

Lemma 6.1.6 Suppose that F is a C-sheaf on X, and that G and H are F-twists. Choose

an open cover {U,; }ier such that there exist isomorphisms g; : Gly,— Flu, and h; : H|y,—

-1

Flu, fori e 1. Write U;; for U;NU; fori,j € 1. Suppose that gi\UUngilj: hilu,;h; Uiy

Then the morphism p : G — H defined locally by ply,= h; ' g; fori € I is an isomorphism

of C-sheaves.

Proof: Since g; and h; are isomorphisms of C-sheaves for i € I, p|y, is an isomorphism of

C-sheaves for ¢ € I. Since g;

-1 __ _1
Ui 9ilu; = h; U,ijhj|Uij we have

P — . _1 . —_— . _1 . —_—
Plu; U= h% Uijgl Uij — h] Uijg.] Uij — p‘Uj Usj;
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for all 7,5 € I. Hence p is a well defined isomorphism. O

Now let £ and K be invertible Ox-modules. If F is an Ox-module then we define
LFk = Royx F oy K.

If X trivializes both £ and K, and a € L(X), b € K(X) are global generators for £ and
K, then for all open U C X, every element of “F*(U) can be written in the form a®a®b
for some a € F(U).

If U is an open subset of X which trivializes £ and a € £(U) then we write a* for the
element of £L71(U) such that the canonical isomorphism £ ®o, L71(U) = Ox(U) sends
a®a* to 1.

If Ais an Ox-rings then AL is also an Oy-ring with multiplication defined as the
composite of the canonical isomorphism £ ®o, L' — Ox and the multiplication on A.

If A and B are Ox-rings, and M is an A-B-bimodule, then £MK is an AL -
K™ B bimodule, with left action defined as the composite of the canonical isomorphism
L ®p, L1 — Ox and the left action of A on M, and the right action defined similarly.
This construction is functorial in the sense that if M — A is a homomorphism of A-B-

bimodules then LMK — £AK is a homomorphism of £AL" X7 BX bimodules.

Proposition 6.1.6 Let A and B be Ox-ring, let M be an A-B bimodule and let N be a
B-A-bimodule. Let

b M ®BN — A
be a homomorphism of A-bimodules. Then the morphism
@(ﬁ’ ,C) . LMIC ®IC—1BIC IClelfl N EAL*1

defined as the composite of the canonical isomorphism K @0, K™t — Ox and ® is a well

defined homomorphism of L AL bimodules.
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Proof: Let
b EME o, KTINET o £AET
be the homomorphism of £A% " -bimodules defined as the composite of the canonical
isomorphism K ®o, K~! — Ox and ®. Then to prove that ®(L, K) is well defined it will
be enough to show that for all open U C X, for all € LMF(U), v € X' NEH(U), and
B e K" BE(U) we have Y(uf @ v) = h(n® fr). We can assume without loss of generality
that U trivializes £ and K, so that we have global generators a € L(U) of L|y and
b e K(U) of K|y. Then it will be equivalent to show that for all u € M(U), v € N(U),
and € B(U) we have ¥ ((a®@ uf®@b) @ (b*@v®a*)) =9Y(a®@pu®b) @ (b* ® fr®a*)).

Now we can calculate that

ba@pBeb)® (" © v ®d))
— 4RO V) Da" = a®d(u fr)© d

=Y((a@u®b)® (b*® Lrea)),

proving the claim. O

6.1.7 Twisted Morita Contexts

Let A and B be Ox-rings over an S-scheme X, M a sheaf of A-B-bimodules, N a sheaf B-
A-bimodules, ® : M @ N — A a morphism of A-A-bimodules, and ¥ : N @4 M — B

a morphism of B-B-bimodules, with the condition that for all open U C X, and all

m,m' € M(U) and n,n’ € N(U) we have
O(U)(m@n)m' =m¥(U)(n®m') and n®(U)(m@n') = V(U)(n@m)n'.

Then we can construct an Ox-ring C over X from this data in the following manner: As
a sheaf of Abelian groups we define that C=AS M SN @ B. If U C X is an open set,
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we write an element (a,m,n,d) € C(U), where a € A(U), b € B(U), m € M(U), and

a m
n € N(U) in the form . Multiplication in C(U) is defined by the equation
n b
a m a m aa’ + ®(m @ n') am’ + mb/
n b n v na' + bn’ U(n®@m')+ bb
We write
A M
C —
N B

when the maps ® and ¥ are understood. We call C the Morita context over X defined by
A, M, N, B, U, and ®.

Now suppose that £ and K are invertible Ox-modules. Then we define a Morita
context

LALil LMICfl
CL,K) =

ICN[lfl ICBIC*I

with bimodule morphisms
(LK) EME @ FNET = FAET

and
(LK) : “NE @p e EMETT 5 KB
defined as in proposition 6.1.6.

Proposition 6.1.7 1. Assume that a € L(X), b € K(X) are global generators of L

and K over Ox. Then there exists an isomorphism of Ox-rings

a@a®@a* a®pu b a
px(a,b) : C(L,K) = C ; —

br®a b®L XD v B
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2. Choose open U, V. C X and suppose that U and V trivialize L and K. Let ay
and ay be global generators for Lly and L|y respectively, and let by and by be

global generators for K|y and K|y respectively. Let ,0 € Ox(U NV )* such that

e 0
aV\Um/: ga/U’UﬁV and bVlUﬂV: ebU‘Umv. Let x = € C(U N V) Let

0 6

pv = pu(av,by) and py = py(ay,by) as defined in part 1. Then pyluavpv|psy

sends ¢ to xex™t for all c € C(W) and all open W CUNV.

Proof:

1. px(a,b) is clearly an isomorphism of Ox-modules, so we only need to check multi-
plicativity. We will drop tensor symbols for ease of notation, so that e.g. a @ a® a*
is written aca®*. Let U be an open subset of X, let o,/ € A(U), 8,8 € B(U),

w, ' € M(U), and v, € N(U). Then

aca®  aub* ad’a*  ap'b*
,0)((@, b)
bva*  bPb* b a* bp'b*
acd'a* + O(L, K)(aub* & bv'a*) aop'b* + apf'b*
:,0)((@, b)
bvi'a* + bBr a* bBA'b* + W (L, K)(bva* ® ap'b*)
alad + P(p@V'))a* alap' + pp)b*
:/)X(a’ b)
DB+ BNt (R + B )b
ad' +@(p@v)  ap' +pf a p| | oy
N R T v p || v B

Hence px(a,b) is multiplicative, proving the claim.
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a

2. Let W be an open subset of U NV and let ¢ = € C(W). Then
v p
) ayaay  ayubi, apeaetay;,  ayepd o},
pv(W)~ () = =
byval, by by bybve=tal, byOBO~b}
Hence
X cae™t epft X
puW)py (W)™ (c) = = zcr
Gre=t 0p61

proving the claim.

6.1.8 The Main Theorem

—

Let C = MP(D@), let e = €(—1)p—1) € C(Y) and let f = (1 — €(_1)(p—1)), S0 that we have

fCr fCe

eCf eCe
and throughout this section we will consider C as a Morita context with respect to this
structure. Let £ = Oy (1), the Serre twisting sheaf. Given an Oy-module F, for i,j € Z
we will write (1)F(j) for £%" F£¥ and OF for (i)F(—i). We will prove the following

theorem

Theorem 6.1.8 Let

Cvfes (1)fce

eCf(1) eCe

M=C(L,0y) =

Then there exists an isomorphism of Oy -rings F*D[)? — M.

In order to do so we will need the following proposition.
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Proposition 6.1.8 F*D;”yo is an Mp(Dy)—twist, with local isomorphisms of Oy -rings
6y - F. DYy — My(D)y, ;60 = Oy and egj — & for 0 <i,j <p—1
and

O : F. DY)y — My(DM)y ;60 5 Orr and fij = Enje for 0<i,j <p—1.

Let x =e+771f. Then GO\YOOOGOO\;;M : Mp(Dy)\YOm—) Mp(Dy)\YOOO sends o — yax L.

Proof:

Applying theorem 4.3.1 to Y and Y, 6y and ., are isomorphisms of Oy -rings Hence

from the definitions in section 6.1.6, F*Dgy is an Mp(D[YO])—twist.

—_ —_

So we only need to prove that 6oy, 0oy - Mp(DEB])|YOOO—> Mp(DyﬂyOoo is defined
by a — yax L.

Let U be an open subset of Yo,.. We will abuse notation and write 6; for 6;(U) for
T € {0,00}. Then it will suffice to prove that for all a € MP(B@)(U) we have 6p0 (o) =
xax~t. Since 607! is a morphism of O(U)-rings, we have 0,01 (1) = 7 = x7x !, so it will
suffice to prove that 6y0 . (9,-1) = xOr—1x " and G0 (€;5) = xéiyx ' for 0 <i,j <p—1.

Let 1= ep-nyp-1) + 7 1 —ep-np-1) = 05 (x) € F*Dgy(U). By proposition 6.1.5

we have 0 1(0,-1) = duo|u= u(—7%80)|up™, so

000 (0r-1) = X (=720, )X+ = xOr1x "

By proposition 6.1.4 we have 0 (¢;;) = fij|lv= peijlupt, so

1

909501(%') = X€ijX

proving the claim. U
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Now we are ready to prove the main theorem. Proof:|Proof of the Main Theorem]
For 1 € {0,00} choose a generator a; € L(X}) for L|x, such that a, = 7" ag, and let
pi = px;(a;, 1) be defined as in proposition 6.1.6(1).

Then by proposition 6.1.7(1) po|xg. Poc|xe.. Sends

10 7 0
a— a
0 1 0 1
7710
for all @ € C(U) and all open U C Yps. Of course, = fr~! 4+ ¢, so by
0 1

proposition 6.1.8 ,00|X000poo|)_<(1m: 90|X000900|)_<(1]00. Hence, by lemma 6.1.6 there exists an
isomorphism of Oy-rings O : F*D[)y — M such that ®|y,= p'6; for € {0,00}. O Now

we can prove the theorem 1.6 from the introduction.

Corollary 6.1.8 There exists an isomorphism of Oy -rings

| TIM (DY) (~)DR
F.DY —

(DY (1)) Dy

Proof: This just follows from the fact that there are isomorphisms of Oy-rings fCf —

Mp_l(Dg(ﬂ) and eCe — Dg], as well as isomorphisms of fCf-eCe-bimodules fCe —

—

(5@)19—1 and eCe-fCf-bimodules eCf — (D=1 and that (n)F'(m) = ((n)F(m))

for all Oy-modules F. OJ
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6.2 Global Sections of Twists

6.2.1 Definitions

Set D = Dy. L = Oy(1) and for { € {0,00} let &; : L]y,— Oyly, be defined so that

50|YOOC€OO|;OIOO sends 1 — 7. Let C, e, and f be defined as in section 6.1.8, so that

eMy(D)e eM,(D)f
C = M,(D) =
fMy(D)e [fM,(D)f
Forn € Z set M™ = C(L¥"1, L®™). For | € {0, 00}, let at be a global generator for £&"!
such that e£"~'(ay) = 1 and let b; be a global generator for L]y, such that £ (bs) = 1.

Let p; = py,(a,b) be defined as in proposition 6.1.7.

For n € Z set
D" ={a e DY) : 7 "aly " € res%‘;oD(Yoo)}.
and
R*"={aeDY,) : 7" Valy,_ 1€ res%’;D(Yoo)}
L"={a DY) : 7 "aly, 7" " € resg(‘;‘;D(Yoo)}.

Proposition 6.2.1 The image of the R-algebra embedding po(Yp)resy, : M™(Y) — C(Yp)

18 the set

M, o(D") (R
A—

(Ln)p—l Dn
Proof: From the Cech complex we know that
res%io (M™Y)) ={a e M (YD) : a|y, € res}}ig"m./\/l”(Yoo)}.
Hence, noting that po(Yos) is an isomorphism, we have

po(Yo)resy, (M"(Y)) = {a € C(Y0) : alv, € po(Yoso)resyiz M (Yoo )}
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Noting that ,ooo(YOOO)(res)Y/g"mM"(Yoo)) = resgg‘;oC(Yoo) we conclude that

po(Yo)resy, (M™(Y)) = {a € C(Y5) 1 poc(Yoss)po(Yooe) ! (@tlya.) € Tesy C(Yoo) }-

(=00 10
Now, by proposition 6.1.7(2), ¢ = poo(Yoeo)po(Yoso) ! sends o +— a

0o 0o 7

for all @ € C(Yooo). Now, let {&;}o<i<p—1 be an orthogonal set of idempotents for C(Yp)
such that Zf;g é; = fand é,_1 = e. Let o € C(Yp)é;. We identify a with an element

of D(Y,) and we find

T*(”*l)a|y0 i 0<i,j<p—2

oo

7= Daly, 77 if0<i<p—2andj=p-—1

{o o]

¢(@lyon) =

T 0y, T ifi,j=p—1

Proving the claim. O

6.2.2 Beilinson Bernstein for sl

In this section we assume the char(k) # 2. Let g = sl(2, R), the R-Lie algebra which
is free as an R-module on the basis {E, F, H} where [E,F| = H, [H,E] = 2E, and
[H,F] = —2F. We set U = U(g), the universal enveloping algebra of g. Set Q =
AFE + H? + 2H be the Casimir element of U.  is a central element of U. For \ € R,
set Uy = U/U(Q — M —2)\). Set U, = U/nU, and Uy, = Uy/wU,. U, carries the PBW
filtration, and U, , carries the quotient of the PBW filtration P,. Their is an isomorphism

of k-algebras

gr(UN)_)Sym(g/Trg);€+PO(UN)’_>5;h_‘_PO(Un)’_)]Nl;f_FPO(UR)'_)fa
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where é = E+ng, f = F+ngand h = H+7g. Set Q = Q+7U and set Q = Q+ P, (U).
Then the above isomorphism sends Q to 4fé + k2, and the surjection gr(Uy) — gr(Uy )
has kernel Qgr(U,,).

Set U = @neN U/m"U, and for A € R, ﬁ; = @neN Uy/m"Uy. The diagonal homo-
morphism U — U, lifts to a surjection U — Uy with kernel U(Q2—A2—2)) [2, Proposition
6.10]. The graded ring of U with respect to the r-adic filtration is isomorphic to U.(g) [s],
a left and right Noetherian ring, so by proposition 2.2.7(2), U is left and right Zariskian,
so that for each A € R, 6; is complete with respect to its m-adic filtration.

Fix n € Z. Write e,, fn, h, for the images of E, F', and H in ﬁn respectively. If no
confusion will arise, we simply write e, f and h for e,, f,, and h,, respectively.

Throughout this section we will be using various graded arguments, so set D = D /7D.
If U is an open subset of Y and o € D(U), then we will write @ for a + 7#D(U) € D(U),
or just & when no confusion will arise.

D is a filtered Oy-ring, where for an open U C Yj the filtration F, on D(U) is defined
so that Fy(D(U)) is the set of elements of D(U) of d,-degree less than or equal to i.
For a general open U C Y we define the filtration on D(U) to be the subspace filtration
induced by the embedding resfy, : D(U) — D(UNYp). Let G be the sheaf of graded rings
associated to F, on Y. Then Gly, is generated over Oy /1Oy |y, by 9, = 0. + Fy(D(Yy)),
subject only to the relation d,7 = 70,. Similarly G|y, is generated over Oy /7Oy |y, by

Or-1 = 0,1 + Fo(D(Yy)). Of course 57_1];/000: —TQ&\YOOO.

Lemma 6.2.2 1. Let X be a copy of AL and choose a coordinate t for X. Let O; be

the operator dual to dt € Q% (X). Then there is an R-algebra embedding

—_

vx(t,n) : Uy — DOX) ;e 0, ; b t"(=2t0)t™" —n ; f > t"(—t20)t™"

2. Set o = Yy, (T,n) and set Yoo = Yy, (774, n). Let w : U, — U, by the R-algebra
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1somorphism that sends e — f, f+— e, and h — —h. Define

—~

¥ Un = DY) ® DYoo) 7w = (0(1); Yoo (w(u))

and

gb : D(Yb) D D(YOO) — D(YbOO) 5 (avﬁ) = a|Yoc>o_TnB|Y0<>oT_n'

—~

Then ¥(U,) C ker(¢).

Proof:

1. R-algebra homomorphism v : U, — D% (X) to be the restriction of yx(t,n) to U,.
Using the fact that ¢"(—2t9,)t™" — n = —2t0; + n and t"(—t20,)t™" = —t*(0; — n),

we can calculate that

(a)

(€)1 ()] = 10, =t(t; — n)] = =2t0, + n = (k) = ([, f])

[v(h),~v(e)] = [-2t0; + n, O] = 20; = 2e = v([h, €]).

Y(h), 7 ()] = [=2t0; + n, —1(t5; — n)]

=2 (t [ﬁt, t28t — nt} + [t, tzat - nt} 8t)

=2 (2t°0, — nt — t*0;) = —2f = y([h, f])
so that v in an R-algebra homomorpism, and we have an R-algebra homomorphism

5. U, — DO(X).

107



To see that it is an embedding, by proposition 2.2.6(2) it will be enough to show

that the associated sequence
0 — U, /U, 5 DOI(X)/xDOI(X) = D(X)

is exact. U\n/wl/]\n is isomorphic to U, /nU,, = U, ., and 7 is filtered if U, ,; is equipped
with the filtration P, and D(X) is equipped with the filtration F,. Then to show
the above sequence is exact it will be enough to show that the associated graded

sequence

0 — gr(Unx) — gr(D(X))

—

is exact. gr(DI%(X)) is generated over & by t and 0, = 8, + Fy(D(X)), subject only
to the relation [@,t] = 0. We identify gr(U,) with A = Sym(g/7g) and let é, f
and h be defined as above, so that the natural surjection A — gr(U,..) has kernel

QA = (4fé + h?)A, so we just need to show that the s-algebra homomorphism

’S/Z A—)/i|:t7ét:| ,é'—)ét,ﬁ*—)—2tét,f'—>—t25t

has kernel (4fé + EQ)A. If we localize A at € and & [t, 54 at d; then since (€)= 0
we can extend 7 to a homomorphism A; — & [t7 54 5 Now, since (f—i— 4712é_1)A =
(4fé+h?)A, we have an isomorphism x [é, ﬁ} L Az /(4fé+h?)A, so it will be enough
to show that the induced map v : & [é, iz]e — K [t,ét] 5 ; € - ; h — —270, is

an embedding. In fact, it is an isomorphism with inverse sending t — —%Béfl and

(9,5&—)6.

. It will be enough to show that ¥ (e), ¥(f) and ¥(h) € ker(¢). Noting that 0. |y, =

—7710.-1]y,.., we can see that

$(e) = d(v0(e), Yoo (f)) = ¢(0r, 7" (=T 207-1)7") = Orlvo,— (=7 *Or1ly,) = O,
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so ¥(e) € ker(¢). Similarly

$U(f) = d(10(f), Yc(€)) = S(T"(=7°0r)7 7", 0,-1)

= Tn(—7'267-|y000—67—1 ’YOOO)T_n =0,
and finally, noting that 7"(—270,)7™" — n = —270, + n, we have

op(h) = d(Y0(h), Yoo (—h)) = (=270, +n, 7" (277 10,1 )T" +n) =
—27'87-’1/000—27'7187.—1 ‘Y(Joo: 0.

—~

Hence ¢(U,,) C ker(¢).

O

—~

Theorem 6.2.2 The image of the R-algebra embedding 0,, = vy, (1,n) : U, — D(Yy) is

D",

Proof: Let ¢ and ¢ be defined as in lemma 6.2.2(2). Let p: D(Yy) @ D(Ya) — D(Yo)
be the projection map («, ) — a. Since the restriction maps D(Y;) — D(Ypw) are
embeddings for f € {0, 00}, we can see that the restriction of p to ker(¢) is an isomorphism
onto D". By lemma 6.2.2(1) we know that ¢ is an embedding, so if we can show that

—~

Y(U,) = ker(¢) then pyp = 6, is an isomorphism from U, to D". By lemma 6.2.2(2),

—

Y(U,) C ker(¢), so it will be enough to prove that ker(¢) C @D(ﬁ\n)

By lemma 2.2.6(2) it will be enough to show that the induced sequence
Ui D(¥0) © D(Yao) % DYoo)

is exact. Equivalently, we can show that the sequence
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is exact, where r is the projection U, — U, .. Set A = &k [é, f, ﬁ] Then using lemma
2.2.6(1) it will be enough to show that the associated graded sequence

gr(¢)

s F.5] 5 60%) @ 6(v) 2% G(vu)

is exact.

The restriction maps G(V:) — G(Yoeo) are embeddings for + € {0, 00}, s0if I : G(Yy) ®
G(Ys) — G(Yp) is the projection map (o, §) — a, then ker(gr(¢)) = ¥(A) if and only if
[(ker(gr(9))) = L (A).

Since G(Yooo) is a commutative ring we have that

gr(9)(a, B) = alyo =" Blyon T = alvone —Blvone

for all @ € G(Yp), B € G(Yio). Hence, if a = 37, . ay 708 € G(Yy), we have a €
I(ker(gr(¢))) if and only if aly,_€ res%ﬁfoog(Yoo). Since res%"’mg(Yoo) is generated by 77!
and 57—1\1/000: —720,, we can see that this is the case if and only if a;; = 0 whenever
21 > 7. Now, if 7,7 € N and 2¢ < j, then it is a trivial fact that we can find ki, ko, k3 € N
such that ky + ks + ks = j and ky + 2ks = i. Then 7'09 = 9% (70,)"(720,)*. Hence
I(ker(gr(¢))) is generated as a k-algebra by 9., 70,, and 729,

Now, I1)(A) is generated over by l0)(&) = 0y, lv)(h) = =779, —n and [Y(f) = —720,,

so clearly [(A) coincides with I(ker(gr(¢))), proving the theorem. O

6.2.3 Construction of a Morita context
Let P be the right ideal
P = (h—i—n)ﬁ\n—i-e(/f\n cU,

and let P be the left ideal

PV =U,(h+n+2)+Uye C U,.
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Let I be the left U,-module

—_

I = Uy + Up((h—n)e™) € Q(U,)

—~

(where Q(ﬁ\n) is the skew-field of fractions of @,) and let I\ be the right U,-module

o~
e~

I = U+ ((h = n)e™ U, € Q(U,).

In this section we will construct a Morita context

M, (U, ) (Pt
B = ;

(=t

and show that there is an isomorphism of R-algebras B — A, where

M,_(D™ 1) (R~
e | Moo

(Ln)p—l D"
A priori P is not a ﬁn:—ﬁ\n—bimodule and I is not a @—lfn_\l—bimodule, but in propo-

—_—

sition 6.2.3(1) we will show that there are isomorphisms of Abelian groups P = Pnl_l

ORNT0)

and ],(1[) — I, ’, which give Py) the structure of a ﬁn_\l—@—bimodule and ]Tg) the struc-

ture of a ﬁ\n—ﬁn_\l—bimodule. We will then show that multiplication in Q((/];) defines a

homomorphism of ﬁ;—bimodules

—

JAY RF— PTET) — (/];

and the multiplication in Q(ﬁn_\l) defines a homomorphism of in_\l—bimodules

— o~

PO o 19 T
which satisfy the necessary compatibility conditions to define a Morita context.

Proposition 6.2.3 1. Hn(Pér)) = R" = Hn,l(Pél_)l).
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2. If we extend 0,, to a homomorphism of R-algebras Q( n) — Q(D™) then

— —

O (L) = L™ = 0,1 (1)),
Proof:

1. From the definitions if o € D(Yp), then o € R"™ if and only if 77"aly, 7" €
T~ resgff D(Yy) if and only if T € D™, and o € L" if and only if 77 "aly, 7" €
resy D(Yao)7. Since 771 € resy D(Ya), R™ is a right ideal of D". Similarly,

we can say that « € R" if and only if ar € D", and o € L" if and only if

7= Daly, 777 € Tresy D(Ya).

—

First we will show that R™ contains Gn(PT(LT)), i.e. we need to show that 76, (e)
and 76,(h +n) € D™ as then 760, (ea + (h +n)B) € D™ for all «, f € U,. First

70, (e) = 70, = —=(0,(h) — n) € D™ and second 70, (h 4+ n) = 7(7"(=270,)7™") =

[

—

20, (f) € D", so 6,(P\") c R".

—

Now we will show that R" contains Hn_l(P,El_)l). For this it will be enough to show
that 0,,_1(e)7 € D" 'and 0, 1(h+n+1)T € D" ! as then 6, _(ae+B(h+n+1))7 €
D" ! for all o, 8 € D" 1. Clearly 0,,_1(e)7 =70, +1 € D"!, and
Oni(h+ (n+1)) =7""Y=270.)7~ "V 42 = 7" 1(=2(70, — 1))r~ (D,
hence
On_1(h+ (n+1))7 = 7" (=2(10, — 1))r " V7 =
7'(7'"*1(—27'87)7'*("71)) =20,,1(f).

Hence 6,,_ 1(P ,) C R™

Now we need to show 6 (P( )) contains R". Let M = D"/0,(P, (r)) Then the map
n: D" — M sends 6,(e) — 0 and 0,(h) — —n, so the restriction of n to R(0,(f)),
the closed R-subalgebra of D" generated by 0, (f), is a surjection.
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—

For a contradiction, suppose that R™ strictly contains Gn(P,(f)). Then some non-
zero element F(6,(f)) € R(0,(f)) must belong to R". Now, 77"0,(f)|v,. ™" =
Or-1lyy., so from the assumptions we get that 77" F(0,,(f))]yvo. 7" = F(0r-1]y,..) €
7 lresy™ D(Ya). But every element A € resy> D(Ys) can be written uniquely in

the form

A= Z )\ijTiiaT—l K,Ooo
ijEN
with \;; € R, \ij — 0 as i + j — oo, a contradiction. Hence R" = 0,(P). A

similar proof shows that R" = Qn_l(P,El_)l).

o~ o~

. Tt remains to show that L" = 6,,(I{). We will first show that L" contains 6, (I\").

Since L" = {a € D(Yy) : 7 "aly " € resy D(Yo)7}, and resy D(Ya,) C

Ooco

resy™ D(Ya)T we have that D™ C L". Of course T € L", since 7 € resy® D(Yoo)T.

Let p=StH(h—n)e ! € Q(U,). Then

0, (1) — _71(—2787)871 —reln

Of course IV = ﬁ; + (/]\nu, SO Gn(l}(f)) = D" + D"r. Now L" is a left D™ module

under multiplication, so we find that 6, (I\”) C L". A similar argument shows that

—

01 (1)) C L™

Now, set A = 7"resy™ D(Yao)7". From the definitions, if a € D(Yp) then afy,, € A
if and only if &« € D™ and aly, € A7 if and only if « € L™. For the rest of the proof,
we will abuse notation and identify D™ with resYOm (D™) and L™ with resgfgoo(L”).

0

Then ANL" = D", so
L"/D"=L"/(L"NnA) C AT/A.

—n

Let 0 = 7"0.-1|y,, 7" Then every A € A can be written uniquely in the form
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A= ienNijo' T with Aij € R and Ajj — 0 as i +j — 00, 50

A — ( Z)\ZO N7 e A

€N

Hence the embedding R{c)T — At/A is an isomorphism.

—

Now, 0, (u) = 7, so Qn(le)) = D"t 4+ D". In the proof of part 1 we have seen that

0,(e)T and 0,,(h +n + 2)7 € D™, so we have a surjection

R(O,(f))7 = R{o)r — 6,(1)/D"

Which gives us the following commutative diagram

A/\

( /D” L"/D" —— AT/A
where the left diagonal arrow is a surjection, the right diagonal arrow is an iso-

morphism, and the other maps are inclusions. It follows that all of the maps are

isomorphisms, so L™ C 6,(I\). Hence L™ = 6,(I"), and a similar argument shows

—

that L™ = 60,1 (I"")).

O

—

Now we can see that the isomorphisms of Abelian groups PTE r) P,(Ll 13

'_> erjilen (M)

and IT(L S I v 6.1,0,(v) satisfy the properties we described at the beginning of

n—1 >

this section. If we let 5 - i be the unique solution to the equation

0, (8- 1) = 0p—1(5)0n (1)

and
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forall u e P, v eI, and B € U, then for o € U, we can calculate that

On(B - (1)) = On1(8)0n (p1cr) = On—1(8)0n (1) 0n () = On((5 - p)v),

so that Py) has the structure of a @:—ﬁ\n—bimodule, and a similar calculation shows that

—

],(Ll) has the structure of a (/];—in_\l—bimodule. Furthermore we can calculate that

so that we have a homomorphism

o~ —

w: qul)®i\qu§r)—>ﬁ\n;l/®ul—>uu.

Similarly, the multiplication in Q(ﬁ\n) defines a homomorphism of ﬁn-,\l—bimodules

—_ —

e: P R I =T, s @ v 000, ().

—

Since 6, and 6,,_; are ring embeddings, we can calculate that for all u, ' € P and

Ve ]T(Ll)

po(v @ p) = pvp' = 0,00 10,210, (1)) i = e(p@v) - 4/,

—

and a similar calculation shows that for all v/ € le),

ve(pev') =wv e ).

Hence, we have constructed a well defined Morita context

—
—

My 1(Uny) (PP
B p—

@yt O
We are now ready to prove corollary 1.6.
Corollary 6.2.3 1. Let
M1 (D7) (R
A= C My(D(Y0)),
(Ln)p—l Dn
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and let B be defined as above. Then the map © : B — A which acts by 0,, on ﬁn,

— —_
—

(L(Ll))p_l, and (Pé’))p—l and by 0,1 on My,_1(U,—_1) is an isomorphism of R-algebras.
2. If n € R* then L"R™ = D" and if n+ 1 € R* then R"L" = D" %,
Proof:

1. That © is an isomorphism on the level of R-modules follows from theorem 6.2.2
and proposition 6.2.3(1) and (2), so we only need to check multiplicativity. Set

v = 9;_119”. Then, since 0,, and 6,,_; are multiplicative, we can calculate that

U a u a
©
b v v
wu' +y(a) (V') v uy(d)) + arf
=0
Y Hy(b)u') + vb’ b(a)" + v’

Op_1(utt) + 0,(a)T0,(b") 0,_1(u)0,(a’) + 0, (av’)
0, (0)0r_1 (W) + 0, (v)  0,(0)0,(a)T + 0, (v0)
=0 © ,
b v b
proving the statement.

2. By proposition 6.2.1 L™ R™ is a two-sided ideal of D™ and R™L" is a two-sided ideal of
D" 50 we just need to show that 1 € L"R™ and 1 € R"L". From proposition 6.2.3
we have that L™ = 6, (I) = D" + D" and R" = 6,,(P\")) = 0.D" + (70, — n)D".
Hence 70, € L"R"™ and 70, —n € L"R", son € L"R", and if n € R*, it follows

that 1 € L"R™. On the other hand 0,7 =70, +1 € R"L" and 70, —n € R"L", so

n+1e€ R'L" and if n+ 1 € R* it follows that 1 € R"L".
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6.2.4 Morita Equivalence of Global Sections

—

Theorem 6.2.4 DY(X) is Morita equivalent to D°.

—

Proof: Let W = D[;](X). Let e be the global idempotent e,_1yp—1) of W defined

in section 6.1. Let C be defined as in section 6.2.1 and let M = C(L®! Oy). Let

D F*Dg — M be the isomorphism of Oy-rings provided by theorem 6.1.8. Let

M,—(D7Y) (RO)P™
U: MY) — be the isomorphism of R-algebras defined in
(LO)pfl DO
proposition 6.2.1. By corollary 6.2.3(2) R°L° = D!, so

0 (RO 0 0
VDY) (WeW) =
0 DO (LO)pfl DO
_ M, (RLY)  (R%)~! _ M,—(D™1) (RO
(LO)p—l DO (LO)p—l DO

Hence WeW = W, and we of course know that eWWe is isomorphic as an R-algebra to D°,

so by |10, Proposition 3.5.6] D° is Morita equivalent to W. O
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