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Abstract

Crohn’s disease (CD) and colorectal cancer (CRC) are major disorders of the intestine.
Inflammation in CD often precedes fibrosis and stricture formation, and is linked to
increased cancer risk. Hypoxia is a common feature of inflammation and CRC that can
severely compromise the effectiveness of current therapy regimes including chemo-
radiotherapy and maintenance of remission in CD patients. MicroRNAs (miRNAS) are
key regulatory molecules involved in cellular proliferation, apoptosis and fibrosis, which
are all modulated by hypoxia. This thesis aims to understand the role of miRNAs in these

two intestinal diseases.

Microarray profiling identified differentially expressed miRNA in the intestinal mucosa
overlying strictured and non-strictured CD tissue samples and in six CRC cell lines
cultured in hypoxic conditions compared to normoxia. Validation experiments using
gRT-PCR confirmed the differential expression of miR-29a, -29b, -29c, -34a, -493* and -
708 in CD mucosa and miR-21, -210, -30d, -320a, -320b and -320c in CRC cell lines.
Functionally, over-expression of miR-29b in CD intestinal fibroblasts modulated the
down-regulation of collagen I and Il transcripts and collagen Il protein in a TGF-p-
dependent manner. Furthermore, miR-29b induced indirectly the expression of the anti-
apoptotic protein Mcl-1 via the cytokines IL-6 and IL-8. A positive correlation between
miR-210 and the hypoxia marker CAIX was found in CRC tissue in vivo. Furthermore,
HCT116 cells cultured under hypoxia were more resistant to the chemotherapy drug 5-FU
than cells grown under normoxia. Knockdown of miR-21 or miR-30d under hypoxia may
sensitise CRC cells to 5-FU. CRC cell lines grown under hypoxic conditions present an
altered cellular metabolic profile compared to their normoxic counterparts.

This thesis has showed that critical miRNAs have a functional role in the progression of
two important diseases of the intestine. The work presented highlights the potential of
miRNAs as biomarkers and therapeutic targets to improve the clinical management of

patients with digestive diseases.
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Chapter 1: Introduction

My thesis is based on two diseases of the gastrointestinal tract: Crohn’s disease (CD)
which is one of the two inflammatory bowel diseases (IBD) and Colorectal cancer (CRC).
Inflammation is a one of the risk factors for developing IBD-associated CRC and
microRNAs (miRNAS) are able to regulate a large number of cellular processes that are
important in health and disease. Therefore, my project is split up in two individual, but
overlapping, project areas based around the functionality of miRNAs and the presence of
hypoxia as a modulator of miRNA expression in both cancer and inflammation.

1.1 Colorectal Cancer

1.1.1 Background

CRC is the third most common cancer worldwide with approximately 1.4 million new
cases and around 694,000 deaths in 2014 [1]. CRC is the collective term for all cancers
that arise in the colonic segments (caecum, ascending, transverse, descending and
sigmoid colon) and the rectum. CRC can occur anywhere along the colon but left sided
CRC is more commonly seen [2] (Fig. 1.1). Biological ageing is a major risk factor for a
large number of cancers including CRC. Incidence rates increase greatly from the age of
50, with the highest incidence in individuals over 85 year old [3]. Besides ageing,
lifestyle habits can substantially contribute to the risk of developing CRC. High meat
consumption [4], smoking [5] and heavy alcohol intake [5, 6] have all been linked to the
development of CRC. Furthermore, an active lifestyle can reduce the risk of developing
various cancers, including CRC. Physical activity is inversely correlated with risk in a
dose-dependent manner [7, 8]. By contrast, the metabolic syndrome which includes a
group of clinical measures, such as obesity, impaired glucose regulation (diabetes) and
elevated blood triglyceride levels, is now closely linked to the increased incidence of
CRC [9]. Indeed, studies have demonstrated that an active lifestyle in combination with a

healthy diet could prevent a large proportion of CRC [10].
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Members of families with a history of CRC are at increased risk of developing CRC. For
instance, individuals with a first-degree relative (FDR) with CRC have a relative risk of
2.25 and this increases to 4.25 if there are multiple FDRs with CRC [11]. Also, a personal
history of IBD, such as CD or Ulcerative Colitis (UC), increases the risk of developing
CRC. In 1925, Crohn and Rosenberg first documented IBD-associated CRC [12] and to
date approximately 10-15% of all deaths in IBD patients are due to CRC [13]. Therefore,
close endoscopic surveillance to detect early neoplastic changes within the bowel is the

recommended treatment management regime for IBD patients.

Right side Left side

Hepatic Flexure Splenic Flexure

3% 2%
Ascending Colon
8% - Transvse;se Colon Descending
’ Colon 3%
Caecum Rectosigmoid
14%, Junction 7%
_r— Sigmoid Colon
20%
Appendix
1% ———— Rectum
Anus = 27%,

2%

Other and Unspecified Sites
8%

Figure 1.1. Distribution of CRC along the various colon segments. Approximately 60% of CRCs were
diagnosed on the left hand side of the large bowel between 2007 and 2009 [2]. Figure adapted from [2].
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1.1.2 Molecular genetics of CRC

Around 75% of all CRCs occur sporadically with no notable family history or identifiable
inherited gene mutation. The remaining cases are either familial CRC (around 20%),
where at least one blood relative has CRC but without a specific germline mutation, or
hereditary CRC syndromes (5%) [14]. The next sections will introduce the various sub-
types of hereditary CRC syndromes and elaborate on the key genetic events during

tumourigenesis.

1.1.2.1 Tumourigenesis

The epithelium of the colon consists of tens of millions of crypts. Intestinal stem cells
located at the bottom of each crypt multiply and daughter cells migrate upwards along the
crypt. This process takes around three to six days during which the cells at the top die and
are replaced by the continuous supply of new cells from below. CRC results from the
progressive accumulation of genetic and epigenetic alterations that eventually lead to the
transformation of normal colonic epithelium to adenocarcinoma as initially proposed in
1990 by Fearon and Vogelstein (Fig. 1.2) [15]. Despite recent advances in the field, this
model remains one of the best paradigms of the molecular genetics of CRC. Genetic
alterations often drive the neoplastic process by increasing cell population via activation
of pathways involved in proliferation and growth, whilst inhibiting cell-cycle arrest and
cell death. These genes can broadly be classed into oncogenes and tumour suppressor
genes (TSGs). Generally, TSGs follow the “two-hit-hypothesis” proposed by Knudson
[16], in which both alleles of the gene must be mutated for the gene to contribute to
tumourigenesis. One frequently mutated TSG is tumour protein p53 (TP53) and
homozygous loss of this gene is seen in around 50% of all cancers including 29% of all
CRCs [17]. By contrast, a single mutation in one of the two alleles of certain oncogenes,
such as Kirsten rat sarcoma viral oncogene homolog (KRAS), is sufficient to promote
cancer development. Recent efforts have focused on large scale sequencing of CRC
tissue, which has demonstrated the presence of tens of thousands of somatic mutations,

although only a handful of these are considered crucial to “drive” tumourigenesis [18-21].
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These driver genes are thought to give a selective growth advantage to the cell and to be
fundamental in the development of CRC, unlike “passenger” mutations that seem to be
insignificant with regard to tumour growth. CRC driver genes include adenomatous
polyposis coli (APC), TP53 and KRAS and will be discussed in more detail below.

Genetically, the majority of CRCs (~80%) can be divided into two groups: chromosomal
instable (CIN, ~60%) and microsatellite instable (MSI, ~20%) tumours, each displaying a
distinct pattern of genetic alterations. More recently, an additional subgroup of cancers
with microsatellite and chromosomal stable (MACS) tumours has been identified. Each

group will be discussed in more detail below.
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Figure 1.2. The adenoma-carcinoma sequence. (A) This overview of the adenoma-carcinoma model
separates the genomic instability pathways between CIN and MSI. CIN is characterised by gross
chromosomal losses and gains through genetic alterations. Mutations, in particular in APC and KRAS, are
observed in the early stages of CRC, whilst mutations in SMADA4, loss of 18q chromosome and mutations in
TP53 are considered to be events contributing to transformation of late adenoma and carcinoma. The MSI
pathway occurs through defects in the DNA mismatch repair mechanism. Mutations in APC and KRAS are
often seen. (B) A schematic overview of the adenoma-carcinoma sequence in CRC. Early manifestations of
colorectal neoplasia are aberrant crypt foci which could progress into adenomatous polyps. These polyps
can acquire additional mutations and may progress into adenoma and eventually carcinoma. (Panel A and B

are adapted from [22] and [23], respectively).
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1.1.2.1.1 Chromosomal instability

CIN is characterised by an accelerated rate of allelic gains or losses and gross
chromosomal abnormalities, and is present in the large majority of CRC cases. This may
result in an imbalance in chromosome number (aneuploidy) and a high frequency of loss
of heterozygosity (LOH). Tumours that develop through CIN often acquire mutations in
APC, TP53, and the KRAS oncogene [24].

APC. In CRC, the APC gene was one of the first genes discovered in patients with
familial adenomatous polyposis (FAP) [25, 26]. These individuals harbour a germline
mutation in one copy of the APC gene and are predisposed to the development of large
number of polyps that, if left untreated, will result in CRC. In addition, APC is frequently
mutated in the majority of sporadic CRC [27]. APC is a key inhibitory molecule in the
Wnt pathway promoting the degradation of f-catenin (Fig. 1.3). In the absence of APC,
[-catenin is stabilised and is translocated to the nucleus. Here, it forms a complex with
transcription factors resulting in transcription of Wnt target genes which are involved in
proliferation and differentiation pathways [28]. Within the crypt of the colon, the
constitutive activation of Wnt signalling leads to extensive proliferation of the
stem/progenitor cells and development of cancerous tissue. Interestingly, genetic
alterations in APC never lead to a complete loss of protein function suggesting that an
optimal level of Wnt signalling is favourable in tumour progression, the so called the
“just-right” theory [29]. Furthermore, in cases where APC is not directly mutated, the
Wnt pathways is indirectly activated by mutations in other key players, such as axis
inhibition protein 2 (AXIN2) [30] and p-catenin (CTNNB1) [31].
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Figure 1.3. The canonical Wnt signalling. Activation of the canonical Wnt signalling pathway requires
the binding of Wnt ligands to both Frizzled receptor and its co-receptor Lrp5/6. Activation induces
stabilisation of B-catenin through Dishevelled (Dvl)-mediated inhibition of the destruction complex.
Stabilised B-catenin accumulates in the nucleus where it recruits TCF and activates the transcription of Wnt
target genes with the help of co-factors including BCL9. Secreted inhibitors such as DKK-1, DKK-2, and
DKK-3 prevent canonical signalling through negative actions on Lrp5/6. Lrp5/6, LDL receptor-related
proteins 5/6; DKK, Dickkopf; BCL9, B cell lymphoma 9; GSK3b, Glycogen synthetase kinase 3 beta;
WTX, Wilm’s tumour suppressor gene; CK1, casein kinase 1. Figure adapted from [32].

24



KRAS. The KRAS oncogene is mutated in 30-50% of CRC tumours [33] and is seen as a
secondary event following loss of APC (Fig. 1.2). The Ras protein is part of the epidermal
growth factor (EGF) pathway where it plays a role as an on/off switch. Mutations often
result in a permanent “on” state of the pathway, leading to proliferation and malignant
transformation. Interestingly, the status of KRAS is known to stratify patients with respect
to therapeutic response: tumours with activating mutations in this gene do not respond to
anti-EGFR targeted therapy with antibodies [34, 35].

TP53. P53 is known as the “The guardian of the genome” [36]. Induction of p53 through
DNA damage and genotoxic stress results in growth arrest or apoptosis, and acts to
reduce the risk of malignant transformation, which highlights the important function of
this TSG [37]. Unsurprisingly, TP53 is the most frequent mutated TSG in human cancers
and approximately 29% of all CRC cases harbour mutations in this gene [38, 39].
Mutations in TP53 are more often seen in more advanced stage CRC, suggesting that the

mutation in TP53 is a late event in the adenoma-carcinoma sequence (Fig. 1.2) [17, 40].

Other. Further additional alterations, such as loss of the 18q chromosome, are frequently
observed in up to 70% of CRC [41]. A number of key genes are located on this
chromosome segment, including deleted in colorectal carcinoma (DCC) [42], mothers
against DPP homolog 2 (SMAD2) [43], and SMAD4 [44]. Smad2 and 4 are both
mediators of the transforming growth factor beta (TGF-B) pathway regulating cell growth
and differentiation. Moreover, recent studies have identified three new CIN-suppressor
genes: phosphatidylinositol glycan anchor biosynthesis class N (PIGN); mex-3 homolog
C (MEX3C); and zinc finger protein 516 (ZNF516). These genes are encoded on
chromosome 18q are lost in 79% of tumours with an abnormal number of chromosomes
[24].

Over the past decades, extensive research has pin-pointed the mutations involved in the

adenoma-carcinoma sequence, which is visualised as a step-wise progression.
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Nevertheless, it is the accumulation of the majority of these mutations, rather than the

order, that appears pivotal for the development of CRC [15].

1.1.2.1.2 Microsatellite instability

MSI is characterised by hypermutation caused by functional loss of DNA mismatch repair
(MMR) genes and occurs in around 15% of all sporadic CRC cases [45, 46].
Microsatellites are repetitive DNA sequences such as (A), or (CA), repeats that occur
randomly throughout the genome. These sequences are particularly prone to changes
through damage and replication, and mutations are mainly due to base-base mismatches
that have escaped the cellular proofreading mechanism of DNA polymerases [47].
Duplication or loss of these repeats often results in frame shift mutations in the open
reading frame that alter the amino acid sequence, thereby modifying the protein that is
expressed. These frame shifts inevitably lead to mutations in important TSG or oncogenes
which eventually contribute to the accumulation of mutations seen in CRC. The MMR
system consists of six genes: MutL homolog 1 (MLH1); MutS homolog 2 (MSH2);
MSH3; MSH®6; post-meiotic segregation-1 (PMS1) and PMS2 [48, 49]. They function as a
back-up mechanism that recognises mutations and degrades the newly-synthesised strand
in order to give the DNA polymerase a second chance to repair the DNA. When this
MMR system is impaired, genome-wide mutations accumulate during DNA replication,

usually within microsatellites, giving rise to MSI and eventually cancer.

The majority of sporadic microsatellite unstable cancers are CpG island methylator
phenotype positive (CIMP+), resulting from promoter hypermethylation of the MMR
gene MLH1 [50]. This is in contrast to the mutations in the MMR genes which gives rise

to the hereditary Lynch syndrome (LS) (Section 1.1.2.2), suggesting the existence of

distinct underlying molecular pathways [51, 52]. For example, CIMP+ tumours are

associated with mutations in the BRAF gene in both sporadic microsatellite stable and

unstable tumours [53-55], which are rare in LS. Also, CIMP+ cancers are more frequently

observed in the proximal colon compared to distal colon and rectal cancers [55-58],
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indicating that CIMP+ tumours form a clear subgroup within MSI cancers. Screening for
MSI in sporadic CRC tumours is important as this may have potential prognostic and
therapeutic value. For instance, cancers with high MSI (H-MSI) are reported to have
better clinical outcome than low or non-MSI tumours [59-61]. Also, H-MSI tumours are
shown to be more resistant to first line drug treatments such as 5-fluorouracil (5-FU) [62-
64].

1.1.2.1.3 Microsatellite and chromosome stable tumours

A third subgroup of tumours that are neither CIN nor MSI was first described in 1999
[65]. Georgiades and colleagues observed tumours that were microsatellite and
chromosome stable or MACS. Although, subsequent studies have documented this
subgroup of tumours in more detail, controversy about the true classification of this group
remains. Several studies have demonstrated significant differences in clinicopathologic
features of MACS tumours compared to the other two subtypes. For example, MACS
tumours are more likely to develop in younger patients [66] and are localised more distal
within the colon [67]. They have also shown to be more poorly differentiated [68] and
more invasive at the time of diagnosis [56]. By contrast, two studies have demonstrated
no significant differences in any clinicopathologic features [69, 70], however it should be
acknowledged, that the sample size in the studies mentioned above are relatively small

which may be a possible explanation for the opposing conclusions.

Despite the giant leap forward in defining the genetic changes and altered pathways in
CRC since the first proposed mechanism by Vogelstein and Fearon, the exact underlying
mechanism by which CRC evolves has yet to be defined. Our understanding of the true
impact of the many genes identified as involved in the development of CRC remains
incomplete. It is likely that only some of these genes are crucial for the survival and
migratory phenotype of metastatic cancer cells. It is also quite possible that further
oncogenes and TSG genes, that play a key role in the progression in CRC remain to be

discovered.
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1.1.2.2 Hereditary CRC syndromes

Hereditary CRC syndromes account for around 5% of all CRC cases; these cases are
highly penetrant and passed on to the offspring in a Mendelian manner. Hereditary non-
polyposis colorectal cancer (HNPCC), or Lynch syndrome (LS) and FAP make up the
bulk of these syndromes. More rare CRC syndromes constitute the remainder of cases.
The two main forms, LS and FAP will be discussed in more detail below, and all

hereditary CRC syndromes are summarised in Table 1.1.
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Table 1.1 Hereditary CRC syndromes. LS and FAP are the two main forms of hereditary CRC

syndromes, both with high penetrance. Other rare forms of CRC syndromes make up the remaining

hereditary CRC cases.

Syndrome

Features

Genetic mutation(s)

Lynch syndrome

Familial
adenomatous

polyposis

MUTYH-associated
polyposis

Peutz-Jeghers

Juvenile polyposis

POLE/POLD1

Early onset, multiple colorectal

polyps, ~80% penetrance

100-5000 adenomatous colorectal
polyps, 100% penetrance

Multiple adenomatous colonic polyps
(10-100)

Hamartomatous Gl polyps (5-100),

~40% penetrance

Early onset, Hamartomatous Gl
polyps (50-200), 10-40% penetrance

Early onset, multiple adenomas,

dominant inheritence

29

DNA mismatch repair genes,

MSH2, MSH6, MLH1, PMS2 [71-

73]

APC [25, 26]

MUTYH [74]

LKB1 [75, 76]

SMAD4, BMPR1A [77, 78]

POL&/POLD1 [79, 80]



LS is the most common form of hereditary CRC and is an autosomal dominant condition
in which individuals development a small number of polyps in the colon. Affected
individuals have a cumulative risk of developing CRC of 60-70% in men and 30-40% in
women [46, 81]. Patients harbour mutations in DNA MMR genes, most commonly in
MSH2, MLH1, MSH6 [72, 73] and PMS2 [71], resulting in MSI. Besides CRC, patients
with LS have an increased risk of developing other cancers such as endometrium and

stomach cancers [82, 83].

FAP is the best characterised hereditary CRC syndrome where patients carry a mutation
in one of the APC alleles [25, 26]. The syndrome is characterised by the development of
many precancerous colonic polyps at a young age. Over time, the size and number of
these polyps can increase significantly, ultimately reaching up to 5,000 in number. A
large number of these polyps harbour a second mutation in the APC gene, of which the
majority (>90%) are nonsense or frameshift mutations leading to a truncated APC
protein. Due to the high number of precancerous polyps, nearly all FAP patients go on to
develop CRC by the time they reach 40 years of age [84]. Therefore, the recommended
management for germ-line mutation-positive members of families with FAP is early
surveillance with endoscopy and genetic tests to identify carriers. Total resection of the

colon is advised for patients that test positive for FAP (reviewed in [85]).

1.1.3 Diagnosis and treatment of Colorectal Cancer

1.1.3.1 Diagnosis

Over the past decade, the diagnosis of CRC has massively improved mainly due to
national bowel cancer screening programmes. Since 2003, men and women between the
ages of 60-74 that are asymptomatic are invited to participate in these programmes every
two years. They consist of a faecal occult blood test (FOBt), using a kit which can be
easily performed at home. Individuals whose samples test positive for traces of blood are
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invited for a colonoscopy procedure, which involves the visualisation of the distal part of
the colon with a camera. Biopsies are collected for histopathological examination and/or
suspicious lesions can be removed during the same procedure. Certain risks are associated
with a colonoscopy procedure; major risks such as bleeding and perforation of the bowel
wall occurs in approximately 1 in every 1000 procedures [86, 87]. Despite these risks,
colonoscopy in combination with FOBt remains the gold standard to evaluate colonic
mucosa and detect early adenomas [88]. From March 2013, a new screening test is being
piloted in six bowel cancer screening centres. Men and women from the age of 55 are
invited for a flexible sigmoidoscopy to identify pre-cancerous polyps [89]. A
sigmoidoscopy carries reduced risks compared to a full colonoscopy and this screening
pilot will indicate whether similar diagnostic rates may be achieved with this less risky
approach. Other techniques including CT and high-resolution MRI are valuable for
precise localisation of the tumour and for accurately measuring the spread of the tumour

into the surrounding tissue.

Once diagnosed, staging of the tumour is usually done according to the Tumour, Node,
Metastasis (TNM) system. This is based on the local invasion, the degree of lymph node
involvement, and whether there is any metastasis of the intestinal tumour to distant sites.
The system is used to guide treatment management and prognosis and has been under
continual refinement and its most recent revision (7") was published in 2010 [90]. The
more advanced TNM staging system has been gradually replacing the Dukes’
classification, which was the first clinical staging system [91-93]. In addition to TNM, a
much broader staging system using numbers | to IV may be used, in which a higher
number depicts a more aggressive cancer. Table 1.2 summarises the features of TNM

staging in and shows the comparison to the other staging systems.
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Table 1.2 Colorectal cancer staging systems. Overview of TNM staging definitions in CRC in relation to
other staging systems.

-

Primary Tumour (T)

T1 Limited to mucosa and submucosa
T2 Extension intro but not through the muscularis propria
T3 Invasion of perirectal fat
T4 Invasion of adjacent structures
Nodes (N)
NO No involved lymph nodes
N1 Fewer than four regional nodes involved
N2 More than four regional nodes involved
N3 Distant nodes involved

Metastasis (M)

MO No metastasis
M1 Distant metastasis
“-_“
Classification
Stage 0 T(in situ)
Stage | T1 NO MO A
T2 NO MO B1
Stage |l T3 NO MO B2
T4 NO MO c2
Stage lI T1, T2 N1 or N2 MO C1
T3, T4 N1 or N2 MO c2
Stage IV Any T Any M M1 D
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1.3.1.2 Treatment of Colorectal Cancer

Treatment of CRC is generally a combination of surgery, radiotherapy and chemotherapy;
however, the tumour stage and the degree of tumour differentiation usually determine the
treatment regime. Also, localisation matters as treatment management for colon and rectal

cancers differ dramatically.

1.3.1.2.1 Colon cancer

The treatment of colon cancer is guided by tumour staging and the individual health of
the patient. Survival rates for localised CRC (Stage 0 and I) have steadily increased
(around 90%), and for these patients surgery alone has a high curative rate [94]. However,
despite increasing efforts in the diagnosis of CRC, between 2004 and 2010 only 40% of
all CRC cases were diagnosed at stage O to | [94]. For the majority of patients with stage
Il and 111 (node-positive) disease, post-operative adjuvant chemotherapy is recommended
to decrease the risk of recurrence and increase survival rates. The chemotherapeutic agent
5-FU has been the standard first-line treatment for the past 40 years [95]. In recent years,
the availability of other compounds in combination with 5-FU have broadened treatment
options. Adjuvant treatment with 5-FU/Leucovorin has been shown to increase overall
survival in a number of studies [96-98]. This combined treatment now forms the basis of
treatment for patients with CRC stage Ill; the use in stage Il CRC tumours is more
controversial [99]. In advanced CRC (stage IV) the tumour has spread to neighbouring
tissue and distant organs and surgery alone is unlike to cure these cancers. In addition to
5-FU/Leucovorin, compounds such as oxaliplatin (FOLFOX) and irinotecan (FOLFIRI)
are often given. Despite the relatively high toxicity and unpleasant side effects, the use of
FOLFOX [100-102] and FOLFIRI [103-106] has improved the survival in advanced
CRC.

In recent vyears, research has shed light on the importance of particular
molecules/pathways that may serve as potential therapeutic targets. Targeted therapies,

such those using monoclonal antibodies, often have less severe side effects and can be
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used in combination with other chemotherapy drugs. The use of panitumumab and
cetuximab, which target the EGFR pathway, have shown promising potential in
improving survival of patients with metastatic CRC when used in combination with
conventional therapy such as FOLFOX and FOLFIRI [34, 35, 107-111]. However, some
of these studies have demonstrated the efficacy only in KRAS wild-type tumours,
indicating that KRAS mutation status can be used as a negative predictor of response to
anti-EGFR treatments [34, 35].

1.3.1.2.2 Rectal cancer

Rectal cancer arises in the most distal part of the large bowel which extends from the end
of the sigmoid colon to the anus. Due to its location, the management of rectal cancer is
different to that of cancer of the colon. For individuals diagnosed with rectal cancer,
assessment of the precise localisation is essential for optimal treatment. Accurate
measurement of the tumour spread is generally done with high-resolution MRI in order to
establish the depth of invasion in the bowel wall [112]. This pre-surgery work-up of
tumour characteristics can significantly improve surgery outcome. Surgery techniques for
rectal cancer have dramatically improved over the past century. Abdominoperineal
resection (APR), removal of the rectum and the insertion of a colostomy (stoma), was the
standard of care for nearly 80 years. Improvements were necessary to address the high
mortality rates and morbidity, such as impotence and bladder dysfunction, and to decrease
local recurrences. In 1982, the introduction of total mesorectal excision (TME)
dramatically changed the management of rectal cancer. This surgery considers the plane
of the tissues within the rectum allowing complete removal of the mesorectum, including
its surrounding vessels and lymphatic system, which in turn reduces local tumour
recurrence [113]. Due to these improvements, TME is now considered the gold standard

surgical treatment for rectal cancer.

Neoadjuvant treatment in the form of pre-operative chemoradiation therapy (CRT) is the
standard care for all patients with stage Il and Il rectal cancers. Decreased recurrence
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rates are seen with pre-operative CRT compared to post-operative CRT, although trials
demonstrated no effect of pre-operative CRT on overall-survival (OS) rates [114, 115].
Despite the controversial debate on the use of neoadjuvant therapy, there is a clear
advantage to treating with radiation before TME in order to improve local control [116-
118] and survival [119] in locally advanced rectal cancer. The main purpose is to down-
size/down-stage the tumour in order to increase the resectability and decrease the chances
of recurrence. Also, tumours close to the sphincter (muscle that controls incontinence)
require traditional surgery removing the anal opening, necessitating a stoma. Down-sizing
of the tumour can potentially allow for a sphincter-sparing TME which can improve
quality of life post-surgery [120]. Despite the major improvements in the management of
CRC, tumour resistance to current treatment regimens remains a key challenge. There is
little understanding of the mechanisms that underlie this resistance. Stratification of
patients most likely to benefit from certain treatment will improve outcome and reduce

healthcare burden and costs, yet to date, no such prognostic marker has been identified.

1.1.4 Tumour hypoxia

Over the past decades, it has become apparent that the metabolic control of tumour cells
and the tumour microenvironment are very important, and need to be considered
alongside genetic and epigenetic stress changes to the cancer genome. Low oxygen
tension (hypoxia) within solid cancers is one of the major contributions to therapy
resistance (reviewed in [121-123]). Also, solid tumours with hypoxic regions have a poor
prognosis and higher recurrence rates compared to their non-hypoxic tumours [124, 125].
In the absence of oxygen, tumour cells adapt by activating pathways that promote tumour
cell survival and metastatic behaviour, making therapies targeting hypoxia-induced

pathways a promising intervention.

35



1.1.4.1 Hypoxia-induced factors

Many of the cellular responses to hypoxia occur as a result of changes in hypoxia-
induced-genes and these genes are under the strict control of hypoxia-inducible-factors
(HIFs) [126]. HIF is a heterodimeric transcription factor that is composed of a
constitutively expressed HIF-B subunit and one of the three oxygen-regulated alpha
subunits (HIF-1a, HIF-2a0 or HIF-3a). Under normal oxygen concentrations, usually
between 3.1-8.7% [127], the HIF-o. subunits are rapidly degraded by hydroxylation of key
proline residues in the highly conserved oxygen-dependent degradation domain (ODD;
Fig. 1.4). Hydroxylation is carried out by specific proline hydroxylase enzymes (PHD1-3)
[128, 129], and is necessary for the recognition of HIF-a by the von Hippel-Lindau
(VHL) protein. VHL is the recognition component of the E3-ubiquitin-protein ligase
complex which directs HIF-o for degradation by the 26S proteasome [130, 131]. As the
oxygen tension drops, HIF-o units are increasingly stabilised, however, the oxygen
sensing mechanism of HIF hydroxylases is not completely understood. Once stabilised,
the HIF-o units will form heterodimers with the HIF-B subunit and translocate to the
nucleus. Here, it activates transcription through interaction with cofactors CREB-binding
protein (CBP) and p300. Evidence has emerged that these heterodimers bind directly to
genes that contain hypoxia-responsive-elements (HRE) through the use of prediction tools
and expression microarray analysis [132] and chromatin immunoprecipitation (ChIP) in
combination with DNA microarray [133, 134] or gene expression arrays [135].
Furthermore, ChIP in combination with sequencing techniques enabled identification of
additional HIF targets in alternative promoters and even in putative non-coding,
intergenic regions [136]. In contrast to the main subunit HIF-1a, which is ubiquitously
expressed, HIF-2a expression is restricted to particular cell types, including vascular
endothelial cells, lung type Il pneumocytes, cardiomyocytes and interstitial cells in the
kidney [137]. Finally, HIF-3a has less amino-acid sequence homology with HIF-1a and
HIF-2a and its regulatory mechanism is not fully understood [138].
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Interestingly, a DNA microarray study revealed that over 2% of all human genes are
directly or indirectly targeted by HIF-1a in endothelial cells [139]. Many of these targets
have been shown to be involved in pathways such as cell survival, angiogenesis, tumour

metastasis, and energy metabolism and will be discussed in more detail below.
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Figure 1.4. Stabilisation of hypoxia-inducible factor-1e by proline hydroxylation. In the presence of
oxygen, hypoxia-inducable-factor 1 o (HIF-1a) is hydroxylated by prolyhydroxylases (PHD1-3) and
targeted for ubiquitination, resulting in degradation by proteasomes. Under hypoxia, HIF-1a is stabilised
and translocates to the nucleus. Here, it dimerises with HIF-1p and forms a complex with transcription
factors p300/CBP, which allows transcription of target genes. HIF-1a regulates target genes involved in a
wide spectrum of cellular pathways necessary for cells to adapt in hypoxic conditions. VHL, Von Hippel-
Lindau; OH, Hydroxyl radical; Ub, ubiquitin; HRE, hypoxia response element. Figure adapted from [140].
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1.1.4.2 Angiogenesis

Tumour expansion rapidly distances the tumour cells from local blood supply, thereby
limiting access to oxygen and nutrients. In these situations, small molecules will fail to
reach tumour cells and promote the production of signals that initiate the formation of
new blood vessels from nearby pre-existing capillaries, a process called angiogenesis
[141]. Key genes involved in angiogenesis are vascular endothelial growth factor
(VEGF), angiopoietin 1 and 2 (ANGPT1 and ANGPT2), placental growth factor (PGF),
and platelet-derived growth factor B (PDGFB). In particular, VEGF stimulates the
proliferation of endothelial cells to control the formation of new blood vessels and seems
to be the key step to initiate angiogenesis [142, 143]. Early studies demonstrated that
VEGF is up-regulated in a range of tumours, including CRC, and increased expression of
VEGF in CRC is correlated with poor prognosis and survival [144]. For this reason, in the
early 1990s, researchers focussed on angiogenesis blockers as a potential treatment for
various tumours. The anti-VEGF monoclonal antibody (bevacizumab) was reported to
potentially inhibit growth of tumour cell lines in mice [145], and clinical trials of
chemotherapy combined with bevacizumab in metastatic CRC showed an increase in
survival [146-148]. Therefore, the inhibition of angiogenesis with monoclonal antibodies

may prove to be an important addition to the spectrum of treatment for CRC.

1.1.4.3 Tumour metastasis

Hypoxia is a crucial environmental factor that promotes cancer cells to dislodge from the
intestinal tumour and induce cell migration to distant tissue and organs, called metastasis.
The metastatic process is complicated and multifaceted and involves the coordination of
various steps such as angiogenesis, epithelial-mesenchymal transition (EMT),
extracellular matrix (ECM) modulation, extravasation out of the intestinal tissue,
circulation, and intravasation and growth in secondary organs. Besides angiogenesis,
HIF-1a target genes have been shown to be involved in each of the steps crucial for
tumour metastasis (reviewed in [149]). For example, important EMT regulators, such as

twist related protein 1 (TWISTL1) [150], zinc finger protein SNAI1 (SNAIL) [151],
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transcription factor 1 (TCF1), zinc finger e-box-binding homeobox 1 (ZEB1) and ZEB2
[152], have been shown to be regulated by HIF-1o and induce EMT and tumour cell
dissemination. Furthermore, HIF-1a also increases the production of metalloproteinases
(MMPs), such as MMP-1 and MMP-2, promoting intravasation [153]. Evidence of the
involvement of hypoxia in many aspects of the metastatic process has enhanced our
understanding of the key players in this process. This has provided novel potential

therapeutic targets for anti-metastatic drugs in cancer therapy.

1.1.4.4 Energy metabolism

Tumour cells adapt to low oxygen conditions by down-regulating metabolic processes,
such as mitochondrial oxidative phosphorylation, to reduce ATP utilisation. Under
hypoxic conditions, tumour cells metabolise primarily glucose into lactate to meet most
of their energy needs. This suppression of respiratory rate is predominantly orchestrated
by HIF-1 (reviewed in [154]). Under normal oxygen conditions, pyruvate derived from
the glycolytic pathway is converted into ATP through the tricarboxylic acid cycle (TCA)
cycle. Hypoxia-induced expression of HIF-1 diminishes the rate of the TCA cycle by
down-regulating the expression of pyruvate dehydrogenase kinase 1 (PDK1) [155, 156], a
key enzyme for the initial step of the TCA cycle. As a consequence, pyruvate is converted
into lactate by lactate-dehydrogenase A (LDH-A), which is induced by HIF-1 [157].
Furthermore, HIF-1 induces the expression of glucose transporters 1 and 3 (GLUTZ,
GLUT3) [158-161] further promoting the cellular glycolytic phenotype under hypoxic

conditions.

Altered metabolism in tumour cells was observed as early as 1920s by Otto Warburg,
who noticed that tumour cells were able to sustain high glycolytic rates even in the
presence of abundant oxygen, commonly called the “Warburg effect” [162]. Notably, a
wide spectrum of human cancers have since been shown to have high glycolytic rates

[163]. This feature is now exploited in clinical oncology to detect a variety of cancers
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including lung, CRC and breast cancer [164]. PET scans use the glucose analogue FDG to
detect regions of high glucose uptake. To date, it is largely unknown why cancer cells
maintain a high glycolytic rate under aerobic conditions, as this is far less efficient in
producing ATP from glucose than the TCA cycle (two ATPs by glycolysis vs 36 ATPs
via the TCA cycle). One hypothesis is that these cells have been exposed to low oxygen
conditions previously and are, therefore, selected on their ability to adapt to harsh
environments and compete for energy [165, 166]. Evidently, high aerobic glycolytic rates
confer a significant proliferative advantage during malignant transformation. More
complete understanding of the molecular and physiological consequences of this

glycolytic phenotype might reveal potential targeted therapies in cancer.

1.1.4.5 Anti-HIF therapeutic strategies

As a master regulator of downstream cellular pathways under hypoxic conditions, HIF-1
is the most promising therapeutic target because hypoxic conditions trigger the activation
of cellular pathways that are not generally induced in normal tissue [167]. Silencing of
HIF-1 expression by gene interference has previously demonstrated anti-tumour activity
in vitro and in vivo [168, 169]. However, validation of HIF-1 inhibitors in vivo is
hampered by a lack of biomarkers consistently associated with HIF-1 in tumour tissue.
Also, the HIF-1 inhibitors developed so far lack specificity and so HIF-1 inhibition
cannot be separated from the off-target effects of these small molecules. Overcoming this
challenge is essential before any potential therapeutic agents can be moved into a clinical
setting. Nevertheless, two anti-HIF-1 small molecules, PX-478 [170, 171] and EZN-2208
[172, 173], have entered phase I clinical trials in patients with metastatic cancer after
promising anti-tumour activity was observed in pre-clinical models. Results from these
trials will provide insights into the therapeutic effect of blocking HIF-1 signalling in
cancer patients. However, better molecular understanding of hypoxic pathways, such as
how metabolic pathways in cancer are altered, is needed to improve patient selection for

targeted treatment regimes and treatment-response monitoring.

41



1.2 Crohn’s disease

1.2.1 Background
CD is one of the two types of IBD which, together with UC, forms a group of

inflammatory conditions of the small and large intestine. Clinically, CD is a systemic
relapsing-remitting disease with episodes of acute inflammation that predominantly
affects the terminal ileum and colon [174]. CD causes significant morbidity with
symptoms including abdominal pain, diarrhoea, rectal bleeding and weight loss.
Incidence rates are higher in the western world compared to developing countries, with
the USA and northern Europe having the highest rates. The aetiology of CD is not fully
understood despite large cohort studies having provided strong evidence for the
contribution of various influences including genetic susceptibility, environmental triggers

and altered immune responses.

1.2.2 Genetic factors and environmental factors

Family history is a major risk factor for IBD with approximately 5-10% of all patients
having a positive family history [175, 176]. For CD specifically, reports have shown a
relative risk of 14 for relatives with patients with CD [177-179]. However, twin studies
report a modest concordance between identical twins ranging from 20 to 50% [180-182],

indicative of strong non-genetic components such as environmental triggers.

Early linkage mapping studies in 1996 described the first locus associated with CD
(inflammatory bowel disease 1, IBD1), which was shared amongst affected individuals
[183]. This region was later identified as nucleotide-binding oligomerisation domain
containing 2 (NOD2 or CARD15) [184] and is associated with susceptibility to CD [185,
186]. The protein encoded by the NOD2 gene is an intracellular pattern recognition
receptor that senses part of the bacterial peptidoglycan muramyl dipeptide (MDP).

Therefore, mutations detected in this gene may be responsible for altered
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immunorecognition of bacterial flora leading to unnecessary inflammation and
susceptibility to CD [186]. However, NOD2 mutations are not considered to be the
initiating factor for CD. Only 20% of CD cases carry mutations in NOD2 and these
mutations are not linked with CD onset in Japanese individuals [187]. Also, NOD-2
deficient mice do not develop any spontaneous inflammatory lesions [188, 189]. More
recently, genome-wide association studies (GWAS) have advanced our understanding of
the role of genetics in CD aetiology. In 2005, a report identified genomic regions such as
tumour necrosis factor (TNF) superfamily member 15 (TNFSF15) which encodes for
TNF ligand related molecule 1 (TL1A), to be associated with CD susceptibility [190].
Also, genes implicated in autophagy in CD, including variants in autophagy-related 16-
like 1 gene (ATG16L1) and immunity-related GTPase family M (IRGM), are
susceptibility factors for CD [191-194]. Nevertheless, the contributions of genetic factors
are complex and despite successful identification of susceptible loci, the precise

functional allele or causative gene(s) in CD have not yet been defined.

1.2.3 Fibrostenosing phenotype in Crohn’s Disease

The disease progression of CD can be grouped into three categories: inflammatory;
penetrating/fistulating and a fibrostenosing phenotype. Within 10 years of diagnosis,
approximately 37% of CD patients move from an inflammatory phenotype onto a
penetrating/fistulating phenotype and 30% progress to a fibrostenosing disease phenotype
[195]. Fistulas are abnormal connections of two body cavities, such as the rectum and the
vagina, and usually require surgical intervention. The fibrostenosing phenotype has
significant implications for the patient’s health. For example, the estimated lifetime risk
of surgery for patients with CD is as high as 70% [196]. Current medical therapies are
unable to reverse fibrosis once a stricture has developed, and the removal of the narrowed
tract represents the main indication for surgery in CD [197]. The surgical burden of
disease has diminished since the introduction of biological therapy, but the costs related
to surgery still accounts for a fifth of the total direct costs associated with management of

CD [198]. The key initiatory and regulatory steps in the development of intestinal fibrosis
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remain largely unknown. Downstream events in the process of intestinal fibrosis in CD
include excessive synthesis and deposition of ECM components by mesenchymal cells
such as intestinal myofibroblasts. A complex interplay between mesenchymal cells,
inflammatory cascades, intestinal microbiota, pro-fibrotic mediators and the ECM itself

suggests that fibrogenesis, once initiated, is a self-potentiating process (Fig. 1.5).
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Figure 1.5. Schematic representation of the principle events responsible for the initiation and
potentiation of fibrosis in the intestine. Epithelial injury and increased intestinal permeability result from
gut ischaemia, oxidative stress and potentiation of injury by microbes and drugs. This leads to infiltration of
immune cells into the intestinal wall which results in mesenchymal cell activation and proliferation via the
secretion of pro-fibrotic cytokines and mediators. The mesenchymal autocrine mechanism allows the self-
potentiation of fibrosis independently of inflammation. Finally, a balance exists between MMPs and TIMPs
that ensures the regulation of ECM composition. ECM, extracellular matrix; MMPs, matric

metalloproteinases; TIMPs, tissue inhibitors of matrix metalloproteinase. Figure adapted from [199].
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There are still significant gaps in our knowledge of the complex network of fibrotic
mediators in the development of fibrosis. Mounting evidence implicates the pro-
fibrogenic cytokine TGF-B, in particular TGF-B1, as the main driver in fibrosis in various
organs including the CD intestine [200-204]. TGF-B1 acts by binding to TGF-p receptor
type I1, subsequently activating and phosphorylating receptor type I [205] (Fig. 1.6). The
resulting receptor complex phosphorylates Smad2 or Smad3, recruits Smad4, resulting in
the translocation to the nucleus. Here, the complex binds to transcriptional co-activators,
such as p300/CBP [206], to initiate gene transcription of various genes. In contrast to
Smad2 and Smad3, Smad7 acts as an inhibitor of the TGF-p signalling pathway [207].
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Figure 1.6. The TGF-p signalling pathway. Soluble TGF-B1 binds to the TGF-f receptor I (TGF-f R 1)
to initiate the formation of receptor complexes with TGF-B receptor I (TGF-p R ). Following
phosphorylation of both Smad2 and Smad3, co-Smad4 aids accumulation in the nucleus. Within the
nucleus, gene transcription is initiated with the help of other co-activators and transcription factors. Smad7
act as an antagonist, inhibiting the formation of Smad2/3 and Smad4 complexes. Figure adapted from [208].
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TGF-p regulates the remodelling of the ECM by increasing the expression of a spectrum
of molecules such as collagen 1 [209, 210], collagen 11 [209, 211, 212], collagen 111 [209,
210, 213], collagen 1V [214-216], as well as the basement protein laminin [217-219] and
interstitial matrix molecule fibronectin [217, 218, 220, 221]. In addition, TGF-3 down-
regulates collagenases (enzymes that break down collagen) MMP-1 [222-224], MMP-8
[222] and MMP-13 [222, 224-226] directly or indirectly via the up-regulation of their
endogenous inhibitors TIMP-1 [223, 227-229], TIMP-2 [214, 223] and TIMP-3 [227,
230-232]. The overall net effect of these events shifts the equilibrium towards an increase

in ECM protein deposition eventually leading to fibrosis.

Despite recent advances, our knowledge of the upstream factors that initiate and regulate
stricture formation in CD remains very limited. Further functional studies are warranted
to uncover potential therapeutic strategies to prevent or reverse fibrosis and relieve the
surgical burden of CD patients. There is current unmet need for biomarkers that may
indicate the presence of on-going fibrosis or predict which CD patients are at high-risk of
developing a fibrostenosing phenotype (reviewed in [199]). miRNAs are a novel class of
RNA regulators that have been implicated in many biological signalling pathways
including cancer and fibrosis. To date, very little is known about the role of miRNAs in

the control of fibrosis, in particular intestinal fibrosis.

48



1.3 MiRNAs

1.3.1 Background

MiRNAs were first discovered by Lee and colleagues in 1993, who reported that the gene
lin-4 does not code for a protein but instead produces a pair of small RNAs [233]. These
RNAs were shown to have complementarities to multiple sites in the 3’ untranslated
region (UTR) of the lin-14 gene [233] and this 3’UTR region was previously proposed to
mediate repression of lin-14 product [234]. These initial observations demonstrated that
components of the genome traditionally considered non-functional have regulatory
capacity. High-throughput sequencing has led to the discovery of novel miRNAs [235-
240], many of which still need to be functionally validated. miRNAs have the potential to
regulate over hundreds of different mMRNASs and, in turn, a single mRNA can be targeted
by numerous miRNAs, resulting in the modulation of important biological pathways

involved in proliferation, apoptosis and differentiation [241].

1.3.1.1 MiRNA biogenesis

MiRNAs are endogenous, small non-coding RNAs consisting of 20-23 nucleotides that
are involved in post-transcriptional regulators of gene expression. Like messenger RNAs
(mRNA), miRNAs are transcribed by RNA polymerase Il (Fig. 1.7) [242, 243] and can be
derived from independent genes or from introns of protein-coding genes. More than half
of all miRNAs are clustered along the genome and are transcribed as a single
polycistronic precursor RNA molecule that can mature into many individual primary
miRNAs transcripts. Typically, there are two or three miRNA genes in a cluster,
although, larger clusters have also been identified. For example, the miR-17/92 cluster
consists of six MIRNAs [244, 245], and the two largest clusters in the human genome are
on chromosome 19 (Chromosome 19 miRNA cluster, C19MC [246, 247]) and
chromosome 14 (C14MC [248]) which contain 46 and 52 miRNAs, respectively.
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Clustered miRNAs tend to have similar sequences and are therefore thought to target
similar genes or genes within the same cellular pathway. The double stranded primary
miRNA (pri-miRNA) transcripts are cleaved by the Drosha/DiGeorge syndrome
chromosomal region 8 (DGCR8) microprocessor complex following transcription to give
rise to the precursor miRNAs (pre-miRNA). During this process, the RNase Il enzyme
Drosha cleaves at the 5* and 3’ arms of the pri-miRNA hairpin while DGCR8 functions
as a molecular ruler to determine the precise site of cleavage [249, 250]. The pre-miRNA
is then exported from the nucleus into the cytoplasm by the GTP-mediated Exportin-5,
where it is processed into a 20-23 nucleotide long miIRNA/MIRNA* duplex [251] by
Dicer/Argonaute (Ago). The guide strand (miRNA) remains associated with Ago forming
a RNA-Induced Silencing Complex (RISC) (Fig. 1.7). The passenger strand (miRNA¥*) is
conventionally degraded shortly after the unwinding process although reports have
demonstrated that these strands can also act as guide strands [252-254]. To avoid
confusion, the nomenclature of miRNA has shifted towards the use of miR-3p (from the
3” arm) and -5p (from the 5° arm) for each miRNA strand. This alternative nomenclature

(-3p and -5p) will be used for the remainder of this thesis.
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Figure 1.7. miRNA biogenesis and RNA interference. MiRNAs are non-coding RNAs that are
transcribed from independent miRNA genes or intragenic regions. Pri-miRNAs are cropped by Drosha and
DGCRS, and exported out of the nucleus by the Exportin-5/Ran-GTP transporter. In the cytoplasm, the pre-
miRNA is spliced by Dicer, and gives rise to the mature miRNA, which in turn is associated with Ago
proteins to form the RISC complex. Gene target repression is mediated through mRNA cleavage or
translational inhibition. DGCRS8, DiGeorge syndrome chromosomal region 8; TBRP, TAR RNA-binding
protein; PACT, proteinactivator of the interferon induced protein kinase; RISC, RNA induced silencing

complex. Figure adapted from [255].
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1.3.1.2 MiRNA target repression

The binding of a miRNA to its mRNA targets occurs through complementary Watson-
Crick base pairing within the 5°-UTR, 3’-UTR or the coding sequence (CDS) of the
MRNA, although pairing at the 3’-UTR is most often seen [256]. Conserved base pairing
is centered on nucleotides 2-7 at the 5° end of the miRNA, the so-called “seed region”
[257, 258]. MIRNAs repress target gene expression in two main manners, namely mRNA
degradation or translation inhibition. In plants, miRNAs display a high degree of
sequence complementary to their target genes which allows mRNA degradation through
cleavage of the mRNA transcripts [259-261]. For animal miRNAs, it remains
controversial to what extent each mode of action contributes to the regulation of the target
genes [262]. Initial high-throughput methods indicated that miRNAs predominantly
function through mRNA degradation [263]. However, re-analysis of this data revealed a
large amount of translation repression [264]. In support of this, other studies have also
demonstrated miRNA-mediated translational repression without mRNA degradation
[265-268]. The primary function of miRNASs is now thought to involve interference with
the translational initiation process [265, 269-273]. In addition, miRNAs have been shown
to mediate up-regulation of gene targets [274, 275], which are predominantly observed
under specific conditions such as cellular quiescence [275]. The miRNA-mediated
regulation of the transcriptome involves a complex network with many aspects, including

biogenesis and regulatory mechanisms, still requiring full elucidation.

1.3.2 MiRNAs in colorectal cancer

MiRNAs play significant roles in regulating protein expression and thus have a role in
regulating a variety of cellular signalling pathways. Not surprisingly, miRNAs are often
dysregulated in various diseases, including cancers and have been extensively studied and
reported (more than 15,000 hits on Pubmed for “microRNAs AND cancer”, as of
07/05/2015). Calin and colleagues first demonstrated a role for miRNASs in cancer when
they showed deletion and down-regulation of miR-15 and miR-16 in lymphocytic

leukaemia [276]. Since then, aberrantly expressed miRNAs have been documented in
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nearly every cancer (reviewed in [255]). Furthermore, deep sequencing and miRNA
microarrays have consistently demonstrated altered miRNA expression patterns in CRC
tumours compared to normal tissue (reviewed in [277]). Most human miRNAs are located
in regions vulnerable to amplification or deletions and can, therefore, function as
oncomiRNAs [278] or tumour suppressor miRNAs [279]. No less than 20 different
studies have reported altered miRNA expression profiling between CRC tissue samples
and normal tissue (reviewed in [277]). Important miRNAS that have been implicated in
the tumourigenesis of CRC in more than one study are discussed below.

1.3.2.1 OncomiRNAs
miR-135b. Oncogenic miR-135b is up-regulated in CRC [280-284]. Functional 3’-UTR

luciferase reporter assays demonstrated that miR-135 can directly repress the expression
of APC [281] thereby associating miR-135 with the Wnt signalling pathway, which is
frequently mutated or repressed in the early stages of CRC. In vivo studies show that
silencing miR-135b significantly reduces tumour number and load in an animal CRC
model [285], suggesting miR-135b may be a potential therapeutic target for CRC

treatment.

miR-21. miR-21 is one of the most intensively studied oncogenic miRNAs. Its up-
regulated expression has been demonstrated in CRC tumours [286], and correlated with
lymph node positivity and the presence of distant metastases [287]. MiR-21 is involved in
the majority of oncogenic cellular pathways including cell proliferation, invasion,
apoptosis and metastasis; however, reports have shown that miR-21 exerts its function
mainly through the inhibition of cellular apoptosis [288, 289]. Many targets involved in
apoptosis have been shown to be directly targeted by miR-21 including TSG programmed
cell death 4 (PDCD4) [290], B-cell CLL/lymphoma 2 (BCL2) [291, 292] and FAS ligand
(FASLG) [293]. In addition, in colon cancer cells, miR-21 is induced by DNA damage
and serum starvation, subsequently repressing the expression of cell division cycle 25A
(CDC25A) resulting in modulation of cell cycle progression [294].
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1.3.2.2 Tumour suppressor miRNASs
Let-7 family. One of the most abundantly dysregulated miRNAs in human cancers is the

let-7 family. In humans, this family is composed of 13 members located on eight different
chromosomes [295]. Members of the let-7 family are often down-regulated in various
cancers including lung [296], gastric [297], ovary [298], and CRC [299]. Gene targets of
this family include cell cycle regulators and promoters of growth, including KRAS and v-
myc avian myelocytomatosis viral oncogene homolog (MYC), and their expression
represses cell proliferation and growth [296, 300]. Interestingly, recent studies
demonstrate that let-7a expression is increased in metastatic CRC with activating KRAS
mutations [301] and high levels of this miRNA might rescue anti-EGFR treatment in
metastatic CRC [302].

miR-143/145. In 2003, Michael and colleagues were the first to demonstrate repressed
levels of miR-143 and miR-145 in CRC compared to normal tissue [303]; this has been
subsequently validated by others [304]. Both miRNAs are transcriptional targets of the
p53 pathway [305, 306] and can regulate cell growth and proliferation in vivo and in vitro
[304]. MiR-143 suppresses cell growth by directly repressing translation of KRAS [307],
DNA methyltransferase 3A (DNMT3A) [308] and extracellular-signal-regulated kinase 5
(ERKS5) [309], whilst miR-145 targets insulin receptor substrate 1 (IRS-1) [310] and MYC

[306] to propagate its tumour suppressor activity.

miR-34a. Another direct target of the TSG p53 is miR-34a [311-316], which has been
reported to be lost in CRC tissue compared to normal tissue [317-319]. Similar to the pro-
apoptotic function of p53, miR-34a regulates several cellular events including cell cycle,
migration and apoptosis [311, 320]. MiR-34a targets sirtuin 1 (SIRT1), a histone
deacetylase, and its down-regulation activates p53 activity creating a positive feedback
loop [321]. P53-independent activation of the IL-6R/STAT3/miR-34a feedback loop
suppresses CRC tumour progression in vivo in mice [322], demonstrating the existence of

alternative upstream regulators of miR-34a.
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1.3.2.3 MiRNAs in hypoxia

As discussed previously, hypoxia is one of the environmental conditions linked to tumour
growth as well as resistance to treatment (Section 1.1.4). Initial reports examined the
changes in expression of mMiRNAs to alterations on oxygen tensions [323]. Here, a robust
signature of 27 miRNAs was identified in a variety of cell types under 0.2% oxygen
[323]. One of the miRNAs that has been robustly shown to be induced under hypoxic
conditions is miR-210. This miRNA is up-regulated in various hypoxic cell lines [323-
328] and its up-regulation is mediated through HIF-1 binding at the HRE binding site in
the promotor of miR-210 [329-331]. The function of miR-210 has now been intensively
studied and has been implicated in a number of cellular pathways including cell cycle
regulation [326, 332, 333], angiogenesis [334-337] and cellular metabolism [338-342].
However, opposing results suggest that miR-210 could act as an oncogene as well as a
TSG (reviewed in [343]). For example, miR-210 can promote cancer cell proliferation by
inhibiting the pro-apoptotic protein E2F transcription factor 3 (E2F3) [344]. In contrast,
other reports have suggested a pro-apoptotic role for miR-210 via targeting the fibroblast
growth factor receptor like-1 (FGFRL1) [345]. These contradictory observations suggest
that the role for miR-210 under hypoxia is cell type and context dependent. However,
these findings are still in accordance with the heterogeneity of the hypoxic response
which can influence both cell death and cell survival [346]. Furthermore, miR-210 affects
cellular metabolism by directly targeting iron-sulfur cluster assembly proteins (ISCU1
and ISCU2) [339-342]. These proteins are predominantly responsible for mitochondrial
respiration and energy production. MiR-210-mediated down-regulation of ISCU1/2
results in a decreased metabolic activity and corresponds with the HIF-dependent
decrease in TCA cycle [155]. This, in turn leads to increased glycolysis, eventually

controlling cellular survival during hypoxic stress.

The expression of miR-210 is up-regulated in a variety of cancers including breast [325,
347-349], head and neck [350, 351], pancreatic [352-354], lung [355-357], renal [342,
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358, 359] and ovarian cancer [360]. Therefore, elucidating the role of miR-210 in CRC

would provide further insights into this hypoxamir in solid tumours.

1.3.3 MiRNAs in Crohn’s disease

Studies investigating altered miRNA expression in IBD including CD are very limited.
To date, two studies have identified altered miRNA expression between CD and healthy
control tissue [361, 362]. A number of miRNAs were significantly increased in CD tissue
compared to healthy controls. Worryingly, there was only limited overlap between the
two reports (reviewed in [199]). Also, no comprehensive analysis of the role of these
miRNAs in intestinal fibrosis has been performed. By contrast, miRNAs expression
profiles of fibrosis in other organs have been extensively documented (summarised in
Table 1.3). Selected miRNAs important in the development of fibrosis are outlined

below.

miR-200 family. The miR-200 family (miR-141, -200a, -200b, -200c and -429) regulate
EMT, a major contributor to fibrosis of the kidney [363-365], heart [366], and liver [367,

368]; here, loss of E-cadherin is a classic hallmark. Furthermore, animal studies have

identified a role for EMT in the development of intestinal fibrosis [369]. Down-regulation
of the miR-200 family is considered a characteristic feature of EMT [370]. This family is
thought to modulate EMT through targets such as ZEB1 and ZEB2, which are
transcription repressors of E-cadherin [370], resulting in a reduction of E-cadherin.
Recent studies have demonstrated that overexpression of miR-200 family members

increased E-cadherin expression and hindered EMT in vitro [371].

miR-29 family. Altered expression of the miR-29 family has been implicated in the

pathogenesis of fibrosis in various organs. For example, the expression all three members
is reduced in fibrosis of the kidney [372, 373] and liver [374]. Additionally, miR-29b is
down-regulated following myocardial infarction [375], in the lungs of patients with
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idiopathic pulmonary fibrosis [376, 377] and in skin fibroblasts of patients with systemic
sclerosis (SSc) [378]. MiR-29 regulates directly the levels of ECM molecules by targeting
the 3’-UTR of various collagen genes including COL1, COL3 and COL4 [375, 378, 379].
Importantly, for its role in intestinal fibrosis, miR-29 expression is inhibited by LPS
stimulation and TNF-a treatment in a NFkp-dependent manner [374], suggesting a link
between inflammation and fibrosis. In addition, the expression of miR-29 is also
modulated by histone-deacetylases (HDACS). Low levels of miR-29b are associated with
high HDAC-2 expression in models of Duchenne’s muscular dystrophy where fibrosis is
a significant feature of the disease phenotype [380, 381]. Conversely, miR-29 expression
is increased by application of class Il HDAC inhibitors in hepatic stellate cell activation
[382], suggesting that epigenetic DNA modifications may also have a role in the
regulation of miR-29 and therefore have relevance in the treatment of fibrosis.
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Table 1.3 miRNAs altered in fibrosis. Dysregulated miRNAs in fibrosis of various organs. MiRNAs that
were dysregulated in two or more organs were included.

. Anti-/pro-
MiRNA Organs ) .
fibrotic
miR-132 Heart, liver Anti Inhibits myofibroblast differentiation [383, 384]
miR-15/miR- i . . .
- Liver, lung Anti Increases apoptosis signalling [385, 386]
; ; Inhibits mesenchymal-epithelial cross talk [387,
miR-155 Liver, lung Pro
388]
miR-17/92  Liver, heart, lung Anti Down-regulates CTGF and TSP-1 [389-391]
miR-199a/b Heart, lung Pro Increases ECM production [392, 393]
) ) ) ) Decreases TGF-p signalling and TGF-[3-
miR-200a/b Kidney, liver Anti ;
mediated EMT [387, 394, 395]
; Lung, heart, Activates TGF- signalling via SMAD7
miR-21 ) Pro :
kidney repression [396-398]
. Skin, heart, lung, ) Down-regulates various ECM molecules [372-
miR-29 Anti
kidney, liver 378]
miR-30c Heart, lung Anti Down-regulates CTGF signalling [384, 390]
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1.3.4 MiRNAs in the clinic

Cancer remains a leading cause of death worldwide due to lack of early detection, the
inability to predict recurrence after treatment and a shortage of targeted or tailored
therapies directly appropriate to the patient and their cancer. Given that survival and
prognosis are dependent on the tumour stage at the time of detection, diagnostics tools for
early detection are extremely important. In particular, there is a significant need for
biomarkers that can be used for screening in a non-invasive manner for diagnosis, disease
progression, outcome and response to therapy. One of the key advantages of using
miRNAs as biomarkers is their low degradation rate compared to mRNA or protein, and
the ease with which they can be detected in frozen or fixed tissue as well as a range of
biological fluids, such as blood [399, 400], urine [401] and faeces [402].

1.3.4.1 Diagnostic miRNAs in CRC

Early profiling data demonstrated that miRNAs could classify different tumour types
including CRC [279, 403]. Interestingly, these studies indicate that miRNAs may be more
reliable than mRNA profiles in the same samples, indicating the potential of miRNAs for
profiling in cancer diagnosis. Current screening methods for CRC (FOBL) lack sensitivity
which means a large number of cancers may be missed [404] (approximately 30-50%;
[405]), and further highlighting the need for better biomarkers. Early reports
demonstrated that Cox-2 mRNA levels in faeces successfully detected 20 out of 29 CRC
cases [406] and this significantly increased when used in combination with MMP7
MRNA [407], suggesting that RNA molecules could potentially be used for early cancer
diagnosis. More recently, a number of studies have since investigated the expression
levels of miRNAs in stool samples for diagnostic purposes. miR-143 and miR-145 were
decreased in the stool of CRC patients [402, 408], which is in accord with the down-
regulation of both miRNAs observed in CRC tissue [303, 309]. Further studies have
detected altered miRNA expression in CRC stool samples with reasonably high
sensitivity and specificity: miR-144* (sensitivity 74%, specificity 87%; [409]); miR-92a
(sensitivity 71.6%, specificity 73.3%; [410]); miR-34b/c (sensitivity 75%, specificity

87.2%; [411]); miR-21 (sensitivity 55.7%, specificity 73.3%; [410]); and miR-135b
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(sensitivity 78%, specificity 68%; [412]). Strikingly, miR-92a was down-regulated after
the tumour was removed [410] and miR-135b significantly correlated with tumour
staging [412].

Many studies have aimed to investigate the use of circulating miRNAs in the blood for
diagnostic purposes in CRC. Initial studies by Ng and colleagues reported altered
circulating levels of miRNAs in the plasma of CRC patients compared to controls [413].
In this study, miR-92 was found to be up-regulated in the plasma of patients with CRC,
an observation which was later confirmed by others [414]. In accordance with stool
miRNA expression, circulating miR-92 was decreased following tumour removal
suggesting that this particular miRNA may be used as a marker for tumour recurrence
[413].

1.3.4.2 Predictive/prognostic miRNAs in CRC

Current predictive or prognostic biomarkers for tumour progression or treatment response
in CRC are limited. To address this, the use of mMiRNAs as potential biomarkers has been
explored intensively. One particular miRNA (miR-21) has great potential for both
prognostic and predictive purposes. Several studies have correlated high miR-21 levels
with clinicopathological features including lymph node positivity [287], metastasis [287],
poor therapeutic response [286, 415] and shorter disease free survival [286, 416]. In
addition, miR-21 has now been reported to be associated with a worse prognosis in at
least nine other cancers, which correlates with the oncogenic activity of miR-21 in a
range of malignancies. Therefore, miR-21 may be used as a prognostic classifier in a

variety of cancers.

Tumour resistance to conventional therapy is a major concern in the treatment and
management of CRC. Recent studies have identified altered miRNA profiles associated
with resistance that could potentially stratify patients for certain treatment options.

Interestingly, miR-21 is associated with tumour resistance to the chemotherapy drug 5-FU
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[286]. In addition, the expression levels of let-7g and miR-181b were inversely correlated
with 5-FU analogue S-1 treatment, but did not correlate to patient survival [417]. CRT
exposure in rectal cancer was associated with increased levels of miR-125b and miR-137
and correlated with poor treatment outcome [418]. Further studies showed that a subset of
13 miRNAs could form a specific signature that was strongly associated with response to
CRT [419, 420]. These reports highlight the potential use for miRNA expression profiles
as diagnostic as well as prognostic or predictive biomarkers. However, further large scale
clinical studies are needed to assess their true potential.

Finally, the lack of consistency between miRNA expression profiling studies with regards
to experimental design and/or data analysis is a major concern [421]. Key factors for
these discrepancies include the variation in miRNA extraction processes, the quality and
quantity of the extracted miRNAs and, most importantly, the normalisation processes
during analysis. With a lack of suitable housekeeping genes, normalisation for circulating
miRNAs is notoriously difficult. Small nuclear/nucleolar RNAs such as RNU6B, RNU44
and RNU48 are often used [413, 422, 423]. However, their expression can vary greatly
under different conditions [361, 423] and their use should be validated on a case-by-case
basis. In addition, exogenous spiked-in RNAs, such as cel-miR-39, cel-miR-54 or cel-
miR-238 may also be used as normalisation controls [399, 424, 425]. Experimental
variation and the lack of consensus on normalisation strategies for circulating miRNAs

make comparing various studies extremely difficult.
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1.4 Hypothesis and aims

In the management of CD, fibrosis and subsequent stricture formation is a major
complication and often requires surgical intervention. Currently, there is no gold standard
measure for disease activity and progression. Imaging of the bowel by MRI or CT scan
are readily used, however, they are costly and submit the patient to ionizing radiation.
While these tools are necessary and useful for the evaluation of the disease activity, they
offer no significant prognostic value. Therefore, there is an unmet clinical need for robust

prognostic biomarkers.

Understanding the reasons for tumour resistance and developing a way to identify and
predict individuals who would benefit the most and least from neo-adjuvant therapy,
remain crucial aims for the management of CRC. The tumour microenvironment, such as
low oxygen conditions, are crucial factors that influence the tumour response to

conventional therapies of which the underlying mechanisms remain poorly understood.

MiRNAs are non-coding RNAs involved in important biological processes including
proliferation, differentiation and apoptosis. Over the past two decades, the amount of
studies on miRNAs has been exponentially rising and they are now considered key
regulatory molecules in a variety of processes including inflammation and
tumourigenesis. It is important to understand fully their involvement in intestinal cancer
and inflammatory disease and to assess their potential as biomarkers and therapeutic
targets. My hypotheses have been developed with these factors in mind.

Firstly, 1 hypothesise that miRNA expression profiles are altered between mucosa-

overlying non-strictured (NSCD) and mucosa-overlying-strictured (SCD) areas of

intestinal tissues in CD patients.
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Aims to test this hypothesis:

Identify and validate differentially expressed miRNAs between paired NSCD vs
SCD tissue samples (Chapter 3);

Isolate and optimise transfection protocols in intestinal fibroblasts from CD
patients (Chapter 3);

Elucidate the functional role of candidate miRNAs in intestinal fibroblasts isolated
from CD patients and their localisation in intestinal tissues of CD patients
(Chapter 3);

Determine the expression of the miR-29 family in NSCD vs SCD tissues (Chapter
4); and

Elucidate the role of miR-29b in intestinal fibroblasts isolated from CD patients in

respect to its regulation of ECM molecules (Chapter 4).

Secondly, | hypothesise that miRNAs are differentially expressed under hypoxic

conditions in CRC in vitro and in vivo, and influence the response to chemotherapy drugs.

To address this hypothesis | aim to:

1.

2.

Identify and validate differentially expressed miRNAs under hypoxic conditions
in vitro using six CRC cell lines as a model (Chapter 5);

Validate candidate miRNAs in CRC in vivo and correlating its expression to
hypoxia marker (Chapter 5);

Elucidate the role for candidate miRNAs in drug resistance under hypoxic
conditions in vitro (Chapter 5); and

Identify cellular metabolic changes under hypoxic conditions in six CRC cell lines

(Chapter 5).
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Chapter 2: Material and Methods

2.1 Crohn’s disease patient recruitment

Surgical resection specimens from patients with stricturing CD were collected (Table
2.1). Diagnosis of CD was ascertained according to the usual clinical criteria [426]. To
exclude inflammation as an experimental variable, mucosal specimens were taken from
macroscopically non-inflamed SCD and NSCD ileum and colon. The site and extent of
disease were established by endoscopy, histology and radiology and strictured areas
identified during surgery. CD patients had not taken steroids for at least three months
prior to resection, and none were taking methotrexate or anti-TNF-a agents at the time of
surgery. The study received the appropriate local Ethics Committee approvals (East
London REC2) and informed consent was obtained in all cases.
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Table 2.1. Patients who underwent surgical resection for stricturing complications. Fresh surgical

resection specimens and archived Formalin-fixed paraffin embedded blocks of 22 CD patients. Samples
were used where indicated. NSCD: Non-stricture CD, SCD: stricture CD.

Sample ] Tissue Validation Functional
D Location sample Array (RNA) studies Archive blocks
(cell culture)

CD1 lleum | NSDC + SCD

CD2 lleum | NSCD +SCD V

CD3 lleum SCD N
CD216 | Illeum | NSCD+SCD | N
CD328 | Colon NSCD V
CD347 | Colon SCD N
CD353 | lleum | NSCD+SCD | \ \
CD360 | Colon SCD N N
CD362 | lleum SCD N N
CD373 | lleum | NSCD+SCD | N V
CD377 | Colon NSCD N
CD381 | lleum SCD \
CD397 | lleum | NSCD +SCD V
CD398 | Ileum | NSCD +SCD V
CD417 | lleum | NSCD +SCD V
CD419 | Illeum | NSCD +SCD V
CD425 | lleum | NSCD +SCD \ J \/
CD435 | lleum | NSCD +SCD N
CD484 | lleum | NSCD +SCD V
CD495 | lleum SCD \
CD522 | Colon NSCD \
CD637 | lleum SCD N \
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2.2 MiRNA arrays

Total RNA (2 pg) from 12 (Table 2.1) mucosa overlying strictured areas or mucosa
overlying non-strictured CD areas were analysed by Illumina v.2.0 miRNA array
platform which covers 95% of all miRNAs in miRBase v.12 [427]. A workflow of the
array is depicted in Fig. 2.1. Array data processing and analysis were performed with

[llumina GeneStudio software (www.illumina.com). Total RNA (2 pg) of six colorectal

cell lines grown under three different oxygen conditions (20.9%, 1% and 0.2%) for 48 hr
were analysed using the LNA 7™ version miRNA array which covers 3,100 miRNAs in
miRBase v.19 (Exiqon, Denmark). The hypoxic state was confirmed for each of the cell
lines by western blot of HIF-1a (data not shown). Data was normalised to the plate

intensity mean and then log transformed.
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Figure 2.1. lllumina miRNA array workflow. (A-B) 200ng of RNA is polyadenylated and reverse
transcribed into cDNA using biotinylated oligo-dT primers with a universal PCR sequence at its 5’-end. (C-
D). The biotinylated cDNA is annealed to a set of miRNA-specific oligos (MSOs) that correspond to all the
targeted miRNAs on the array. A MSO contains three parts; 1) 5’end with a universal PCR primer site 2) an
address sequence that complements a corresponding capture sequence on the array 3) 3’ end with a
miRNA-specific sequence. After the oligos are annealed they will undergo extension only if their 3’ bases
are complementary to the sequence in the cDNA template. (E-F) A fluorescently labelled complementary
strand is produced using the common PCR primers from the extended MSO. (G) The labelled strands are
hybridised to the bead on the array containing the complementary address sequence. Fluorescent intensity is

measured at each bead position corresponding to each individual miRNA.
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2.3 Isolation of intestinal fibroblasts

Human fibroblasts were obtained from mucosal layers of surgical resections in complete
Dulbecco’s Modified Eagles Medium (DMEM, PAA, UK). Full thickness resection of
strictured areas and non-inflamed areas were examined macro- and microscopically, and
mucosa was separated from the muscle layers before being washed twice with Hank’s
Balanced Salt Solution (HBSS, Invitrogen, UK) with 1 mM EDTA for 10 min at 37°C
under gentle agitation to remove epithelial cells. Specimens were cut into smaller pieces
and incubated in 20 ml DMEM with 1 mg/ml collagenase type 1o (R&D Systems, USA),
and 10 U/ml DNase | (Roche, UK) for 60-90 min under gentle agitation. Cells were
washed once with Phosphate Buffered Saline (PBS, Invitrogen, UK) and resuspended
twice with DMEM and then cultured in T25 cm?flasks.

2.4 Cell culture maintenance of CRC cells and intestinal
fibroblasts

Cell culture was performed in flow hoods using sterile handling techniques. Three colon
cancer cell lines (DLD-1, HCT116 and HT29), three rectal cancer cell lines (HT55,
SW837 and VACO4s) and cervical cancer cell line HeLa were grown in T75cm? vented
flasks (VWR, UK) at 37°C in a 5% CO, atmosphere containing 15ml DMEM
supplemented with 10% Fetal bovine serum (FBS, PAA, UK), and 100 U/ml penicillin
and 100 pg/ml streptomycin (PenStrep, PAA, UK). All cancer cell lines were kind gifts
from Professor lan Tomlinson (Wellcome Institute for human genetics, University of
Oxford). Mutation status for six CRC cell lines are summarised in Table 2.2. For the
maintenance of the intestinal fibroblast cultures DMEM (ATCC, UK) supplemented with
10% heat-inactivated FBS (Gibco, UK) and PenStrep was used. For hypoxic experiments,
cells were maintained under three different oxygen tensions (20.9 % oxygen, 1% oxygen
and 0.2 % oxygen) and 5% CO,. The oxygen concentration was controlled by Invivo2
1000 Hypoxia Workstation (Ruskinn Life Sciences Ltd, USA).
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Table 2.2 Mutation status for CRC cell lines.

Cellline  Origin MSI APC KRAS P53
DLD-1 Colon + 1417 del 1bp GGT/TGT c12 Codon 241
HCT116 Colon + WT GGC/GAC c13 WT
HT29 Colon = 853 CAG -> TAG WT Codon 273
HT55 Rectum - 1131 CAA -> TAA WT WT
SW837 Rectum + 1450 CGA -> TGA GGT/GTT c12 Codon 248
VACO4s Rectum - 1354 del 5bp GGT/GTT c12 WT

2.5 Optimisation of transfection in intestinal fibroblasts

Three doses (0.3 pL, 0.4 pL and 0.5 pL) of four different transfection agents
(DharmaFect (DF) 1 to 4, Dharmacon, UK) were used to optimise transfection conditions
of intestinal fibroblasts. Cells were transfected with 60 nM negative control siRNA
tagged with 488 fluophore (#Cat number, Qiagen, UK) for 48 hr. Cells were fixed with
3.7% paraformaldehyde (PFA, Sigma, UK) being stained with Hoechst 33342 (1:5,000,
Invitrogen, UK) and CellMask Deep Red (1:20,000, Invitrogen, UK) for 15 min and
imaged on the IN Cell Analyzer 1000 microscope (GE Healthcare, UK). Cells were
imaged with a 10X objective with a triChroic mirror. Hoechst stained nuclei were imaged
with 350e/455m filters, 488-tagged SiRNA was imaged with 490,/525, filters and
CellMask Deep Red was visualised using 645./705., Transfection efficiency was
assessed using the IN Cell Developer v1.8. DF3 reagent at showed the most consistent
transfection pattern and efficiency and was selected for further optimisation. Various
concentrations of DF3 and 60 nM siGLO Red siRNA (DY-547, #D-001630-02,
Dharmacon, UK) were used for optimisation. This siRNA targets housekeeping gene
cyclophilin B (PPIB). Media was changed 24 hr post transfection and cells were stained
72 hr post transfection with Hoechst 33342 for 15 min before being fixed with 3.7% PFA.
Cells were imaged with the IN Cell Analyzer 1000 microscope and viewed at 10X
objective with a triChroic mirror (61003bs*): Hoechst stained nuclei were imaged with
350ex/455¢n filters and siGLO staining was imaged with 555¢/605¢n, filters. Cells were
then subjected to immuno-fluorescence with monoclonal rabbit antibody against

Cyclophilin B (Section 2.8), and anti-rabbit Alexa-Fluor-488 labeled secondary antibody
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(1:500, Abcam, UK). IN Cell Developer v.1.8 (GE Healthcare, UK) was used to analyse
the transfection efficiency and reduction of Cyclophilin B protein expression by siGLO

SIRNA to determine optimal transfection conditions.

2.6 Optimisation of transfection in CRC cell lines

The HCT116 cell line was optimised for seeding density and concentration of transfection
agent Lipofectamine 2000 (LF2000, Invitrogen, UK) in 96 well plates by transfecting 30
nM of Allstars non-targeting control (NTC, #S103650318, Qiagen, UK), siGLO siRNA,
and polo-like kinase-1 siRNA (PLK-1, #S102223837, Qiagen, UK). PLK-1 kinase is
required for cell division and inhibition has shown to be pro-apoptotic [428] and serves as
a killing control. Media was changed 24 hr post transfection and siGLO SsiRNA
localisation was visualised under a fluorescent microscope. 72 hr post transfection cell
viability was measured using CellTitre Blue Reagent (Invitrogen, UK) according to
manufacturer’s protocol. Optimum transfection conditions were determined when
viability with PLK-1 siRNA was lowest and viability with NTC was similar to non-

treated cells.

2.7 Transfection of fibroblasts and TGF-p stimulation

Pre-miR and anti-miR transfection. Intestinal fibroblasts were seeded overnight (Nunc,
UK) before being transiently transfected with 30 nM NTC, 30 nM pre-miRNA or 60 nM
anti-miR (all Qiagen, UK) using DF3. Lipid containing media was replaced 24 hr post
transfection and cells were fixed for immunofluorescence 48 hr post transfection. RNA

was extracted for qRT-PCR and supernatants were collected for ELISA experiments.

TGF-S treatments. Intestinal fibroblasts were seeded overnight. The following day, cells
were treated with 10 ng/ml TGF-p for 48 hr. RNA was extracted for gRT-PCR and

supernatants were collected for ELISA experiments.
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Pre-miR and anti-miR transfection + TGF-f treatments. Intestinal fibroblasts were
transfected as above for 24 hr before being treated with 10ng/ml TGF-§3 for 48 hr. Cells
were fixed with 3.7% PFA for immunofluorescence.

2.8 Immunofluorescence (IF)

Intestinal fibroblasts cell cultures and CRC cells transfected in 96 well plates were fixed
with 3.7% PFA for 15 min at RT before being washed with PBS and permeabilised in
0.1% Triton-X100 (Sigma, UK) in PBS for 20 min. Cells were washed and blocked for 30
min with 0.25% Bovine Serum Albumin (BSA, Sigma, UK) in PBS before incubated for
2 hr with primary antibody (Table 2.4 for details). Cells were washed for 30 min with
PBS/BSA (0.25%) and incubated for 2 hr with Alexa-Fluor-488 conjugated secondary
antibody (1:500, Invitrogen, UK), Hoechst 33342 (1:10,000 Invitrogen, UK) and
CellMask Deep Red (1:20,000, Invitrogen, UK) for 2 hr. Cells were washed twice with
PBS before being imaged on the IN Cell Analyzer 1000 microscope. Pixel intensities
were compared to NTC transfected cells. IN Cell Developer v1.8 was used to analyse the

images.

2.9 Enzyme-linked immunosorbant assay (ELISA)

Supernatants were taken from intestinal fibroblast cultures transfected with pre-miR, anti-
miR and controls. Cytokines IL-6 and IL-8 were measured using R&D DuoSet ELISA
kits using manufacturer’s protocol (R&D, USA).
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2.10 MIRNA extraction & Quantitative Real-Time PCR (gRT-
PCR)

Total RNA including small RNAs was extracted from samples using the miRNeasy Kit
(Qiagen, UK) according to manufacturer’s protocol. RNA concentration was determined
using the NanoDrop Spectometre (Nano-Drop Technologies, USA). miRNA Reverse
Transcriptase (RT) kit (Applied Biosystems, UK) on 10 ng RNA was used for reverse
transcription. RT products were incubated with Tagman miRNA probe and Universal
PCR Mastermix (Applied Biosystems, UK) on a 7500 Fast System RealTime PCR cycler
(Applied Biosystems, UK) according to manufacturer’s protocol. Fold changes were

calculated using the 2/4A

method normalised to endogenous control miRNAs [429].
Housekeeping genes that were used to normalise qRT-PCR data is summarised in Table

2.3.

Table. 2.3. Normalisers used for qRT-PCR.

ample 0 alise RNA O allse RNA
CRC cell lines GAPDH RNU19b
CRC tissue - Geomean of miR-16 and let-7a
Intestinal mucosa GAPDH miR-26b
Intestinal fibroblasts GAPDH RNUGB

2.11 Total RNA extraction & qRT-PCR of gene expression

Total RNA, excluding small RNAs, was extracted using the RNeasy kit (Qiagen, UK)
according to manufacturer’s protocol. RNA concentration was determined using the
NanoDrop Spectrometer (Nano-Drop Technologies, USA). RT was performed using the
High-Capacity-RNA to cDNA kit (Applied Biosystems, UK) in a 20 pL reaction. cDNA
was incubated with Tagman assays (20x) and Universal Mastermix no UNG on a 7500
Fast System RealTime PCR cycler according to manufacturer’s protocol. Fold changes

were calculated using the 224 method.
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2.12 5-Fluorouracil (5-FU) drug treatments of HCT116

HCT116 cells were seeded at 5,000 cells per well in 96 well plates overnight. The
following day, cells were treated with various concentrations of 5-FU (1 puM, 5 pM, 10
MM, 100 uM or 1mM) together with vehicle control, and cultured under three oxygen
conditions (20.9%, 1% and 0.2%) for 48 hr. Cells grown in 96 well plates were fixed with
3.7% PFA for 15 min and nuclei were stained with Hoechst 33342 (1:10,000) for 30 min.
Cells were imaged with the IN Cell 1000 microscope using a 4X objective with a
triChroic mirror (61003bs*). Hoechst stained nuclei were imaged with 350.x/455¢n, filters.
Nuclei were counted using the IN Cell Developer v1.8 and cell number was expressed

relative to vehicle treated cells.

2.13 5-FU drug treatment and transfection of HCT116

HCT116 cells were reverse transfected with 30 nM pre-miR, NTC and 60 nM anti-miR in
96 well plates. The following day, media was replaced with 10 puM 5-FU or vehicle
control containing media. Cells were cultured under three oxygen conditions (20.9%, 1%
or 0.2%) for 48 hr. Cells were fixed with 3.7% PFA for 15 min and nuclei were stained
with Hoechst for 30 min. Cells were imaged with the IN Cell Analyzer microscope using
a 4X objective in combination with 350¢,/455¢m, filters. Nuclei were counted using the IN

Cell Developer v1.8 and expressed relative to vehicle treated cells.

2.14 Zeocin kill curves

HeLa cells were plated in 6 well plates at 400,000 cells per well. The following day, cells
were treated with a range of concentrations of Zeocin (250 pug/ml-1000 pg/ml, Invitrogen,
UK). Cell death was monitored by eye for two weeks and media containing Zeocin was
replaced every 2-3 days. Optimal Zeocin dose was determined at the lowest fatal

concentration.
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2.15 Hel a transfection optimisation

HelLa cells were plated in 6 well plates at 400,000 cells per well. The following day cells
were transfected using 2ug of pcDNA-EGFP plasmid (pcDNA-EGFP plasmid was a kind
gift from Dr. P. Kemp, Imperial College, UK) and a range of LF2000 doses. Media was
changed 24 hr post transfection and cells were fixed with 3.7% PFA for 15 min. Cells
were incubated with Hoechst 33342 (1:10,000) for 30 min before being imaged on the IN
Cell 1000 microscope. Images were analysed on the IN Cell Developer v1.8 and GFP

transfection efficiency was determined.

2.16 MISSION® Target ID Library transfection

HeLa cells were plated in 6 well plates at 400,000 cells per well. The following day, cells
were transfected with 2 pg MISSION® Target ID library plasmids using optimised
LF2000 dose (12 replicates). The media was changed 24 hr post transfection and cells
were treated with the optimised dose of Zeocin 72 hr post transfection. Target ID Library
plasmids contain a Zeocin-resistance element and thus transfected cells are able to survive
the Zeocin treatment, whilst non-transfected cells die. Cells were cultured in Zeocin-
containing media until all control cells were dead. Cells were pooled and expanded until

cells were ready for cryo-preservation.

2.17 Tissue Immunohistochemistry

The HIF-1a responsive protein, carbonic anhydrase 1X (CAIX), was used to stain rectal
cancer tissue samples for areas of hypoxia. Six NSCD and 3 SCD blocks were stained for
p53. 4 um thick sections of the Formalin-fixed paraffin embedded (FFPE) samples were
cut followed by de-waxing, hydration and blocking in goat serum. Sections were
incubated with primary antibody mouse-anti-CAIX (1:50, SantaCruz, UK) or mouse-anti-
p53 (1:250, Abcam, UK) for 2 hr. Mouse-HRP secondary (1:500, Dako, UK) was

incubated for 2 hr followed by washing and DAB incubation. Control samples were used
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to ensure complete staining (stomach tissue for CAIX, breast cancer for p53). Analysis
for CIAX staining was undertaken using a light microscope and two blinded observers
following a staining protocol adapted from [430]. p53 staining was analysed and reported
by a consultant pathologist (Professor Roger Feakins, Department of histopathology, The

Royal London Hospital).

2.18 Extraction of small RNAs from FFPE sections

FFPE slides from 13 rectal cancers were used for miRNA extractions. Haematoxylin &
Eosin staining was performed to determine the tumour tissue area by a pathologist
(Professor Roger Feakins). Ten adjacent sections (10 pum) were then used for miRNA
extraction using the RecoverAll Total Nucleic Acid Isolation kit (Ambion, Applied
Biosystems, USA) according to manufacturer’s protocol. RNA concentration was

determined using the NanoDrop Spectrometer (Nano-Drop Technologies, USA).

2.19 In situ hybridisation of miRNAs on FFPE sections

Sections (3 pum) were cut from FFPE tissue blocks in an RNAse free water to avoid RNA
degradation. Slides were deparaffinised in xylene and ethanol solutions (100% - 95% -
70%) at RT and incubated in PBS for 5 min. A schematic overview of the miRNA
detection steps is shown in Fig. 2.2. Sections were then incubated with Proteinase-K (10
pg/ml) for 15 min at 37 °C before being washed in PBS, dehydrated in ethanol solutions
(70% - 95% - 100%) and air dried for 15 min or until the tissue was dry. Double-DIG-
labelled miRNA probes (miR-210, miR-21, miR-34a and scrambled; Exiqon, Denmark)
were diluted in hybridising buffer (Exigon, Denmark). The following concentrations were
used: miR-210 (40 nM), miR-21 (40 nM), miR-34 (60 nM) and scrambled (60 nM).
Slides were incubated with 25 pL of probe mixture at 56 °C for 1 hr on a slide hybridiser
(Omnislide Thermal Cycler, Thermo Scientific, UK) and washed with saline-sodium
citrate (SSC) buffer at 56 °C (5xSSC 5 min, 1xSSC, 5 min, 1xSSC 5 min, 0.2xSSC 5 min,
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0.2xSSC 5 min) and 0.2xSSC for 5 min at RT. Slides were incubated with blocking buffer
for 15 min before subjected to anti-DIG-AP reagent (1:600, Exigon, Denmark) at RT.
Slides were washed with PBS-tween and incubated with anti-AP substrate (NCT-BCIP,
Roche, UK) for 2 hr at RT to create a blue precipitate. Slides were then washed in water
before counterstained with Nuclear Fast Red (Vector, UK) for 1 min at RT. Slides were
rinsed in running tap water for 10 min and dehydrated in ethanol solutions (70% - 95% -
100%) and mounted with Eukkitt mounting medium (Sigma, UK). Slides were scanned
using a slide scanner (Core Pathology, Pathology Department, Royal London Hospital) to

produce high quality images.

— NBT-BCIP

? ? |'/
\. Blue precipitate

LNA™ probe
Y

A
MicroRNA

Figure 2.2. Schematic overview of the Exigon in situ hybridisation protocol. MiRNAs were de-masked
with Proteinase-K treatment to allow access of the double-DIG-labelled LNA probes to hybridise with the
miRNA. The digoxigenins are recognised by a anti-DIG antibody conjugated with Alkaline Phospohatase
(AP), which converts the substrates 4-nitro-blue tetazolium (NBT) and 5-bromo-4-chloro-3’-
indolylphosphate (BCIP) into a blue precipitate.

2.20 Cell metabolite analysis

Three colon cancer (DLD-1, HCT116 and HT29) and three rectal cancer (HT55, SW837
and VACOA4s) cell lines were cultured under three oxygen conditions (20.9%, 1% and
0.2%) for 48 hr as described previously (Section 2.4). Cells were washed twice in 5%
Mannitol (Wako, Japan) and incubated with 1 ml of methanol containing 3 standards
(Methionine sulfone, MES and CSA each at 25 puM). The cells were then counted, flash
frozen on dry ice and shipped to the Institute for Advanced Biosciences in Japan for

capillary electrophoresis time of flight mass spectrometry (CE-TOF/MS) analysis.
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2.21 Statistics

General statistics. Graphpad Prism analysis software was used to perform Student’s t-
tests and one-way ANOVA tests as denoted. A p-value of less than 0.05 was considered
statistically significant. Experiments are performed in duplicates in three independent

experiments, unless otherwise stated.

Multivariate analysis. A partial least squares discriminant analysis (PLS-DA) is a
supervised multivariate classification technique, and so care must be taken to avoid over-
fitting. However, it is possible to fit with respect to one variable, and then examine the
separation in another variable. Here, a supervised model to differentiate the six cell lines
was fitted, and the miRNAs were examined for (unsupervised) separation with respect to
oxygen tension. The loadings were then interrogated in order to identify potential

miRNAs for further investigations.

Multiple linear regression. The relationship between miRNA expression (dependent
variable) was modelled against the independent variables oxygen tension (humerical
variable) + cell line (categorical variable). This enabled us to identify miRNAs were
significantly (p<0.05) associated with oxygen tensions once the effect of cell line has
been allowed for.

Table 2.4. Primary antibodies

Antigen Company details Dilution
Cyclophilin B Abcam (#ab16045) 1:200
CAIX Santa-Cruz (#N-19) 1:50
Collagen | Novus Biologicals (#NB600-405) 1:200
Collagen IlI Abcam (#ab7778) 1:500
Mcl-1 Abcam (#32087) 1:200
P53 Abcam (ab26) 1:250
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Chapter 3: Differential expression of miRNAs in

intestinal fibrosis

3.1 Introduction and aims

Progression to intestinal fibrosis and subsequent stricture formation is a frequent
complication in CD and has significant health implications of the individual patient. The
lifetime risk of surgery for patients with CD is as high as 70% [196], with the majority
indicated for stricturing disease. Current medical therapies are unable to reverse fibrosis,
and the factors that initiate and drive CD fibrosis are not well understood [197]. Aberrant
expression of miRNAs is associated with multiple disease pathologies including cancer,
immunity and inflammation [431-434]. MiIRNA dysregulation is involved in the
development of fibrosis in various organs, including the lung, kidney, liver and heart
(reviewed in [435]), some of which are summarised in Table 1.3 (Section 1.3.3). To date,

the dysregulation of miRNAs in intestinal fibrosis in CD has not yet been investigated.

Aims for this chapter:

1. ldentify differentially expressed miRNAs between non-inflamed mucosa
overlying non-stricturing CD (NSCD) and -stricturing CD (SCD) tissues of CD
patients with the use of a miRNA array;

2. Validate selected candidate miRNAs in an independent set of paired NSCD and
SCD tissue samples;

3. Isolate and maintain intestinal gut mucosal fibroblasts from patients with CD and
optimise protocols for transient transfection of miRNAsS;

4. Investigate down-stream targets of candidate miRNA(s) via transient transfection
in intestinal fibroblasts. mMRNA levels of key ECM molecules were assessed by
gRT-PCR; and

5. Determine the localisation and expression of candidate miRNA(S) in NSCD and

SCD tissue samples using in situ hybridisation techniques.
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3.2 MiRNA microarray between NSCD and SCD tissue

To identify the differentially expression of miRNA between six NSCD and six SCD
tissue samples, a miRNA microarray (lllumina v2.0) was performed. The mucosa was
used in this study as it has previously been shown that events here reflect those associated
with the fibrotic changes occurring in the deeper tissue layers during fibrogenesis [201].
Patient and sample details can be found in Table 2.1 (Section 2.1). The bead-based array
contains 1,146 miRNAs probes covering more than 97% of known miRNAs in miRBase
v.12.0 [427]. A workflow with detailed description of the array is described in the
methods section (Section 2.2). Fluorescent signal intensities of each miRNA for each of

the 12 samples was analysed using GenomeStudio Software (www.illumina.com). Data

was subjected to quantile normalisation which reduces variation by normalising the
distribution of the probe intensities between the sample groups. This type of
normalisation is recommended for high density oligonucleotide microarray technology
[436]. Normalised expression values of the miRNAs were used for statistical analysis
(corrected paired Student-Test) in GenomeStudio.

To visualise the miRNA expression patterns between the NSCD vs SCD samples,
negative logl0 values of the p-value were plotted against log2 fold change values to
create a volcano plot (Fig. 3.1A). The scatter plot quickly identifies any significant
changes in expression in miRNA expression between NSCD and SCD tissues, and this
analysis identified 18 significantly increased and 11 significantly decreased miRNAS in
SCD versus NSCD tissues (p<0.05). A heatmap containing the normalised expression
values of all of the significant differentially expressed miRNAs is shown in Fig. 3.1B.

79


http://www.illumina.com/

. ) NSCD SCD

. - 12 3 456 12 3 456

- [
=__ 2 p=0,01
o= ——— p=0.05
L
L

miR-223*
miR-181¢c*
miR-148a*
miR-369-3p
miR-220b
miR-503
miR-424*
miR-148b
miR-34a
miR-708
miR-34a*
miR-493*
miR-1324
miR-1285
miR-492
miR-1183
miR-569
miR-1179
miR-556-3p
miR-378*
miR-509-3p
miR-612

-log™ p-value

) -

log® fold change

-26000 Fluorescent intensity level 33000

(A.U.)

Figure 3.1. Differentially expressed miRNAs between six NSCD and six SCD tissues. (A) A volcano
plot containing all mMiIRNAs detected by the array. Negative log p-values are plotted against the log fold
change values between NSCD and SCD samples. Lines represent p=0.05 and p=0.01. Any miRNAs present
above these lines are considered significant. (B) Heatmap of normalised fluorescent intensity levels (A.U.)
of 29 miRNAs with a p<0.05 between NSCD and SCD samples. The top panel demonstrates up-regulated
and bottom panel down-regulated miRNAs in SCD tissue vs NSCD tissue. Increased expression is shown in

red and decreased expression shown in green.
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3.3 MiRNA validation by gRT-PCR

To validate the findings of the miRNA array using a different technique, qRT-PCR was
performed. Six up-regulated miRNAs (miR-148b, -223*, -34a, -493*, -503 and -708) and
one down-regulated miRNA (miR-1285) were selected for further validation on an
independent set of eight paired NSCD and SCD tissue samples (Table 2.1, Section 2.1).
These miRNAs were selected based on p-values and/or a link to fibrosis in the literature
(Table 3.1).

Table 3.1. Candidate miRNAs selected for validation and their link to fibrosis. miRNAs are ranked in
numerical order.
mMiRNA (p-value) Role
Targets LTBP1 which is involved in the pro-fibrotic TGF-$ pathway
[437]
miR-223* (p=0.002) No link to fibrosis
1 Cardiac fibrosis [438], 1 Liver fibrosis [387, 439, 440], 1 Kidney
fibrosis [441]

miR-148b (p=0.020)

miR-34a (p=0.029)

miR-493* (p=0.048) 1 in lung fibrosis [442]

miR-503 (p=0.017) Correlated to scleroderma (fibrosis of the skin) [443]
miR-708 (p=0.031) Targets Aquaporin-1 which is down-regulated in liver fibrosis [444]
miR-1285 (p=0.045) No link to fibrosis

A key challenge for the analysis of gRT-PCR data is the normalisation step. In contrast to
an array, gRT-PCR relies on the stable expression of one or two references genes which
will be different depending on tissue and cell type. Three reference miRNAs (let-7a, miR-
16 and miR-26Db) that showed consistent expression between the different samples were
picked from the array, and were assayed in the validation sample set. Cycle threshold (Ct)
values of all three reference miRNAs for both NSCD (n=8) and SCD (n=8) samples were
measured and mean values are shown in Fig. 3.2A. None of the three miRNAs showed a
significant change between the two groups (let-7a, p=0.0538; miR-16, p=0.0548; miR-
26b, p=0.0591). All three miRNAs were close to significance, however, miR-26b

exhibited the least variation within the two groups of samples (Ct StDev: let-7a,
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NSCD=1.04, SCD=0.605; miR-16, NSCD=1.46, SCD=0.44; miR-26b, NSCD=0.73,
SCD=0.42) and was selected as the reference gene for the validation of the target
mIiRNAs. In support of this, miR-26b was recommended by Applied Biosystems as a
suitable reference gene for human tissue samples [445]. The seven candidate miRNAs
(miR-148b, -223*, -34a, -493* -503, -708 and -1285) were measured in eight
independent matched NSCD and SCD tissue samples and the data normalised to miR-26b
(Fig. 3.2B). Statistical analysis (paired Student’s t-test) confirmed the significant up-
regulation of three miRNAs by qRT-PCR (miR-493*, p=0.0096; miR-708, p=0.0112;
miR-34a, p=0.0165). Two miRNAs were not significant changed (miR-223*, p=0.090
and miR-148b, p=0.2000).

Two miRNAs (miR-1285 and miR-503) were only detectable in five of the eight paired
samples tested. Relative expression of miR-1285 and miR-503 in the five pairs is shown
in Fig 3.2C. The relative fold changes between NSCD and SCD in the five pairs were not
significant (miR-1285, p=0.1331 and miR-503, p=0.3672), although, the mean fold
change in the SCD versus NSCD samples correlated to the expression pattern observed in
the array (miR-1285, down-regulated in SCD vs NSCD and miR-503, up-regulated in
SCD vs NSCD). In conclusion, these data demonstrate that the up-regulation of miR493*,
miR-708 and miR-34a was successfully validated between NSCD and SCD tissue
samples.

82



30 5
* %k
[=]
4=
8 § * *
T 204 £
= 23
2 @
= o 2+
=
o 104 2
5 S
(8] < 14
w
0- 0-
Q Q Q Q Q Q s & o °
&o & ‘{_Jo & e,go & ‘{,0 LI Al Ki

Let-7a miR-16  miR-26b

C SCD

2.0+
a
§ 1.5
2
©
=
B 1.0
@
o
c
L]
S
T 0.5+
]
w

0.0-

Q \2] ]
eQC) Q_,'db \Q?’Q
& <&
SCD

Figure 3.2. Validation of seven miRNAs by qRT-PCR. gRT-PCR in eight matched paired NSCD and
SCD tissue samples. (A) Ct values for three endogenous control miRNAs (let-7a, miR-16 and miR-26b;
n=8) (B) qRT-PCR of five selected miRNAs normalised to miR-26b. Fold change of normalised expression
between NSCD and SCD tissues is shown. (C) Fold change of normalised expression of miR-1285 and
miR-503 between in NSCD and SCD samples (n=5). Bars represent mean values with SEM. *p<0.05 and
**p<0.01.
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3.4 Transfection of intestinal fibroblasts from mucosa from CD
patients

The downstream impact of a miRNA is determined by its target mMRNAs and the
pathways they are involved in. Exogenous over-expression of miRNAs via transient
transfection is a commonly used method to identify molecular pathways that are
controlled by the miRNAs. To study the pathways affected by the differentially expressed
miRNAs, intestinal fibroblasts were isolated from six SCD and four NSCD tissue samples
(Table 2.1, Section 2.1). This particular cell type was chosen because in fibrosis,
fibroblasts are considered responsible for the over-production of ECM molecules.
Fibroblasts were isolated from patients undergoing surgery for stricturing CD, using
methods described previously by others [446] (Section 2.3). To test the transfection
efficiency of the fibroblast cultures, CD495si cells (Table 2.1, Section 2.1) were
transfected in duplicates with three doses (0.3 pL, 0.4 pL and 0.5 pL) of four transfection
reagents from Dharmacon (Dharmafect (DF)1-4). CD495si cells were one of the first
fibroblast cells cultures isolated and were used to optimise transfection conditions.
Fibroblasts were transfected with 60 nM NTC-siRNA tagged with Alexa Fluor-488 for 48
hr. Hoechst stained nuclei and NTC-488 tagged siRNA were imaged on the IN Cell
Analyzer microscope 1000. The percentage of transfected cells was calculated using the
IN Cell Developer v1.8 (Section 2.5).

The majority of the cells were transfected regardless of which dose or transfection reagent
used. A transfection efficiency of >98% was observed at even the lowest dose (0.3 pL)
for all four DF reagents (Data not shown, images Fig. 3.3A-E). A slight drop in total cell
number was noted using the lowest dose, 0.3 pL (% reduction in cell number relative to
untransfected cells: DF1, 14.7%; DF2, 8.5%; DF3, 11.5%; DF4, 8.3%; Fig. 3.3F).
Comparing intracellular siRNA distribution, DF3 showed a better, more homogenous
distribution of the 488-tagged siRNA (Fig. 3.3G), whereas the other three DF reagents
exhibited siRNA localisation in endosomal vesicles (DF1, Fig. 3.3H; DF2 and DF4, data

not shown). These vesicles are targeted for destruction, which consequently decreases
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siRNA concentration and functionality (reviewed in [447]). This localisation was also
observed using the DF3 reagent at concentrations higher than 0.3 uL (DF3 0.5 uL; Fig.

3.31). Therefore, DF3 was selected for further transfection optimisation experiments.

As mentioned previously, fibroblasts transfected with 0.3 pL of DF3 and NTC-488
tagged siRNA showed a reduction of 11.5% in cell number. This extent of toxicity
following transfection is commonly seen and is generally accepted, however, follow-up
experiments (Section 3.5) showed that fibroblasts transfected with other siRNAs did not
display this amount of cell death (Fig. 3.4C) suggesting that it was the NTC-488 tagged

siRNA that contributed to this toxicity in this particular experiment.
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Figure 3.3. Transfection optimisation using fluorescent tagged siRNA. Three doses (0.3 pL, 0.4 uL and

0.5 pL) of four DharmaFect reagents (DF, 1-4) were optimised for transfection efficiency of intestinal
fibroblasts (n=1). (A-E) Hoechst-positive nuclei and 488-tagged siRNA staining for all DF reagents at the
lowest dose, 0.3 pL. (F) The cell count between the different concentrations and DF reagents. (G-I)
Homogenous cellular distribution of 488-tagged siRNA using DF3 at 0.3 pL with digitally zoomed image.
(H) Endosomal vesicle siRNA localisation using DF3 at the highest dose, 0.5 pL, with digitally zoomed
image. (1) Endosomal vesicle siRNA localisation using DF1 at 0.3 pL, with digitally zoomed image. Bars
represent mean values with SEM. Size bar 100 um (A-E, G-I) and 20 pm (G-I, digitally zoomed images).
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3.5 Optimisation of transfection of intestinal fibroblasts with DF3

To achieve optimal transfection conditions, fibroblasts were transfected using various
doses (0.1 pL, 0.2 pL and 0.3 pL) of transfection reagent DF3 with or without (mock
transfected) siGLO siRNA. SiGLO is a fluorescently tagged siRNA targeting the
housekeeping gene cyclophilin B (PPIB), which may subsequently be assayed at either
the mRNA or protein level to determine siRNA functionality. Cells were fixed 72 hr post-
transfection, and stained with Hoechst 33342 and an antibody against PPIB (Section 2.8),
then imaged on the IN Cell Analyzer microscope 1000. Using the IN Cell Developer
v1.8, an overlaying mask was created using the Hoechst-positive nuclei (Fig 3.4A-B).
This mask was then used to define nuclear pixel intensity in the cyclophilin B fluorescent
channel. Hoechst stained nuclei were counted and cell number for each transfection
condition was determined. There was no difference in cell number between the
untransfected fibroblast and the various transfection conditions within this single
optimisation experiment (Fig. 3.4C). However, there was a slight decrease in total nuclei
count of untransfected cells (mean cell count=1715) compared to earlier experiments
(Section 3.4, Fig. 3.3F, mean cell count=1966). The fibroblasts (CD495si) have
undergone several passages between the two set of experiments and are therefore closer
to their intrinsic replicative senescence stage. Cell division rates decrease when
fibroblasts reach this stage, and this could account for the lower total nuclei count
between the two set of experiments. Pixel intensity of cyclophilin B expression was
determined for each dose (0.1 pL, 0.2 pL, 0.3 pL) and plotted as a frequency distribution
(Fig. 3.4D-F). For all three doses, cyclophilin B expression was decreased by siGLO
SiRNA compared to mock transfected cells (transfection reagent only), indicated by the
shift of the frequency distribution line towards the left. The strongest down-regulation in
cyclophilin B pixel intensity was observed following transfection with 0.3 pL
(representative images, Fig. 3.4G-J). Taking into account that DF3 doses higher than 0.3
ML resulted in endosomal vesicle localisation and elimination of the siRNA (Section 3.5),

0.3 pL was chosen for future siRNA transfection of the isolated fibroblasts.
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Figure 3.4. Transfection optimisation in fibroblasts using siGLO siRNA. CD495si fibroblasts were
transfected in triplicates with three different Dharmafect (DF) 3 doses (0.1 pL, 0.2 pL or 0.3 pL) with or

without 60 nM siGLO siRNA (n=1). (A-B) Hoechst-positive nuclei were imaged (A) and nuclei defined

using the IN Cell Developer, and a mask generated (B) for subsequent quantification. This mask was then

applied to the cyclophilin B staining. Nuclei were counted and cyclophilin B pixel intensity was measured.
(C) The graph represents the nuclei count of the various doses of the three DF3 doses. (D-F) The graph

represents frequency distributions of cyclophilin B pixel intensity of cells transfected with siGLO (blue

line) or lipid only (mock, red line) for the three DF3 doses. Secondary antibody control pixel intensity

represents the level of background pixel intensity (black line). (G-J) Representative images of mock and

siGLO transfected cells in combination with 0.3 pL DF3. Bars represent mean values with SEM. Size bars

100 pm.
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3.6 MiR-34a does not alter the mRNA expression of fibrosis-
associated genes

Following successful transfection of the intestinal fibroblast cell cultures, functional
studies were conducted to determine the role of the differentially expressed miRNAs
between NSCD and SCD tissue samples that were identified by the miRNA microarray
and subsequent qRT-PCR validation (Section 3.2 and Section 3.3). Out of the three
validated miRNAs (miR-34, -493* and -708; Fig 3.2B), literature reports for miR-34a
showed it had previously been involved in fibrosis of the lung, heart and kidney (Table

3.1), whereas the link between fibrosis and miR-493* or miR-708 was more ambiguous.
Additionally, miR-34a has been previously shown to modulate the expression of key
mediators in TGF- pathway such as SMAD4 [448] and MMP genes [439]. Therefore,
miR-34a was selected for further downstream analysis in fibroblasts isolated from CD
patients. In mammals, the miR-34 family consists of three processed mature miRNAS
(miR-34a, -34b and -34c) encoded by two different genes on separate chromosomes. Its
own transcript transcribes miR-34a while miR-34b and miR-34c have a common primary
transcript (Fig 3.5A).

To investigate the downstream effects of miR-34a, intestinal fibroblasts were transfected
with NTC and pre-miR-34a and incubated for 72 hr to enable overexpression of miR-34a
in the cells. RNA was extracted, assayed for gene expression by gRT-PCR and
normalised to the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase
(GAPDH). A number of mRNA targets associated with fibrogenic pathways were
investigated based on online prediction tools and/or validated by others. These were
COL1A2, COL3A1, connective tissue growth factor (CTGF), fibronectin (FN1), MMP2
and SMADA4. Survivin (BIRC5) was selected as a positive control gene as it is targeted by
miR-34a [449]. To confirm that the transfection with pre-miR-34a was successful,
expression levels of miR-34a were measured. For the normalisation of miRNAs in cells,
Applied Biosystems recommended miR-16 [445]. Also, RNU6B has been previously

used for normalisation in fibroblasts from other organs [450, 451], therefore, both miR-16
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and RNUGB expression was assayed in fibroblasts transfected with NTC or pre-miR-34a.
RNUGB expression was not significantly altered between these conditions (data not
shown), and was used to normalise miRNA expression in future experiments on isolated
fibroblasts. An increase of miR-34a expression in cells transfected with pre-miR-34a

confirmed that the transfected was successful (Fig. 3.5B).

MRNA expression of the seven genes is displayed as fold change in expression between
fibroblasts transfected with NTC and pre-miR-34a (Fig. 3.5B). Statistical analysis
revealed no significant differences between cells transfected with NTC and pre-miR-34a,
however, the slight down-regulation in expression of SMAD4 was close to significance.
(MMP2, p=0.088 n=4; SMAD4, p=0.0540, n=4; COL1A2, p=0.9074, n=8; COL3AL,
p=0.3361, n=8; FN1, p=0.2155, n=4; CTGF, p=0.0541, n=4; BIRC5, p=0.1805, n=4; Fig.
3.5D). The mean value of the positive control BIRC5 was lower than NTC treated cells
(fold change=0.746), but this was not significant. These data suggest that miR-34a does
not alter the expression of fibrosis-associated mediators at the mRNA level in intestinal
fibroblasts. This observation lead to the speculation that the role of miR-34a in intestinal
fibrosis may not be fibroblast-related but that miR-34a may be involved in regulatory
events other cell types such as epithelial cells. To test this hypothesis, in situ hybridisation

of miR-34a was performed (Section 3.8) to determine which cells express miR-34a.

90



A Chromosome location
Chr-1 *

Chr-11

Mature miRNA sequence

miR-34a UGGCAGUGUC-UUAGCUGGUUGU
miR-34b UAGGCAGUGUCAUUAGCUGAUUG
miR-34c AGGCAGUGUAGUUAGCUGAUUGC

1700+
1500+
1300+
11004

—

900L
1.5

0.54

Fold change relative to NTC

0.0-

@_9,’

£ & N o 3
& <@ A g & & 3
& & e & & & &

Figure 3.5. Overexpression of miR-34a does not alter mRNA expression of key fibrosis-associated
genes. (A) Schematic overview of the chromosomal location of the three family members of the miR-34a
family. Two genes located on chromosome 1 and 11 encode the miR-34 family. Its own transcript encodes
miR-34a whereas miR-34b and miR-34c share a common primary transcript. Each seed sequence is shown
in red and the majority of nucleotides are shared amongst the three members (shaded box in orange). (B)
Isolated fibroblasts (n>4) transfected with NTC and pre-miR-34a. gRT-PCR of six fibrosis-associated genes
and the positive control BIRC5 normalised to GAPDH. The expression of miR-34a was normalised to

RNU6B. Fold change in normalised expression is shown. Bars represent mean values with SEM.

91



3.7 Expression of p53 is not altered in intestinal fibrosis

Previous reports have indicated that members of the miR-34 family (miR-34a, miR-
34b/c) are a direct target of TSG p53 [311, 312, 315, 316], a transcription factor activated
in response to various stress signals leading to cell cycle arrest and apoptosis (reviewed in
[452]). In addition, recent literature reports have suggested a link between p53 and liver
fibrosis [389]. The next section was aimed to identify the role of p53 in intestinal fibrosis
by determining its expression at both mRNA and protein level in NSCD and SCD tissues.

In 2007, a number of groups showed that the TSG p53 is a positive upstream regulator of
miR-34a and miR-34b/c [311, 312, 315, 316]. The promoters for both miR-34a genes
contain conserved p53-binding sites as well as CpG islands, and methylation of both
promoters has been reported in various human cancers [319, 453-456]. p53 is a potent
tumour suppressor which triggers the activation of anti-proliferative cellular responses
resulting in apoptosis, cell cycle arrest or senescence (reviewed in [452]). In addition, the
TP53 gene is the most frequently mutated tumour suppressor gene in human cancer [457,
458]. It is, therefore, not surprising that the over-expression of miR-34a and miR-34b/c
can cause cell cycle arrest [311, 315, 459] and inhibit proliferation and colony formation
[313]. Thus, as a direct target of p53, miR-34a and miR-34b/c may act as key mediators

of p53’s tumour suppressor function.

The miR-34 family has been studied predominantly in the context of cancer but the
p53/miR-34 axis in fibrosis much less defined. For example, reports show up-regulation
of p53 in idiopathic pulmonary fibrosis [460, 461], and in liver fibrosis where p53 was
correlated to CTGF expression [389], a well-known marker for fibrosis. Furthermore, p53
inhibition prevented CTGF-mediated fibrosis in the kidney of rodents [462, 463] and p53
expression was shown to be induced by the pro-fibrotic cytokine TGF-p [462]. By
contrast, activation of p53-mediated senescence in hepatic stellate cells was found to limit
liver fibrosis in mice [464]. Additionally, p53 deficient cardiac fibroblasts isolated from

mice exhibited an increase of collagen | and Il production, which are key ECM
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molecules implicated in the development of fibrosis. The role for p53 in intestinal fibrosis
however, remains unclear. Given that miR-34a was identified and validated as up-
regulated in SCD compared to NSCD sample tissues, the aim here was to examine the
role of p53 in intestinal fibrosis in CD by determining its expression at both mRNA and

protein level.

Initially, TP53 mRNA was measured via gRT-PCR in six matched paired NSCD and
SCD tissues and expression was normalised to GADPH. TP53 expression levels between
the two groups was not significantly different (p=0.252; Fig. 3.6A). Protein level of p53
was also assessed in tissues of CD patients with (n=7) or without (n=6) fibrosis via
immunohistochemistry. Staining was analysed and reported by a consultant pathologist
(Professor Roger Feakins, Department of histopathology, The Royal London Hospital)
who determined the percentage of p53-positive cells at two different staining intensity
levels (1: weak and 2-3: moderate / strong). p53-positive staining in epithelial cells,
immune cells (dendritic cells), and lamina proprial stromal cells was expressed as a
percentage of total cell population analysed (Table 3.2). Immunohistochemistry showed a
variable but generally low level of staining in epithelial, immune and lamina proprial
stromal cells in both NSCD and SCD tissues. Often, a significant minority or in some
cases a majority of normal crypt epithelial cells showed weak staining for p53. However,
moderate / intense p53 staining was always focal and, even in the most strongly stained
areas, was confined to <1% to 10% of epithelial cells (Table 3.2, arrows Fig. 3.6B). By
contrast, the most strongly stained areas in the ulcerated fibrotic bowels showed moderate
/ intense staining in 25% to 50% of crypt epithelial cells (arrows, Fig. 3.6C). These areas
of intense p53 staining were typically close to the fibrotic lesions. Fibroblasts and other
connective tissue cells showed little or no p53 expression, regardless of the presence or
absence of ulceration and/or inflammation (arrows, Fig. 3.6D). This data indicates that the
increase of p53 expression in fibrotic CD tissue seems to be in the epithelium as a
response to fibrotic ulceration and/or inflammation. The lack of p53 staining in lamina
proprial stromal cells would suggest that p53 does not play a direct role in these stromal

cells, and might not a have a direct effect on the production of ECM in these cells.
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The up-regulated p53 expression in epithelial cells is in contrast to the lack of differential
expression of TP53 mRNA expression between the six matched NSCD and SCD tissues.
This might be due to the fact that the RNA from epithelial cells represents only a fraction
of the total RNA extracted from the mucosa. Therefore, the moderate / intense staining of
p53 protein that was observed in epithelial cells in overlying fibrotic areas was perhaps
not reflected at the RNA level.

Previous results indicated that miR-34a did not regulate the expression of any fibrosis
related genes (Section 3.6) and its main upstream regulator, p53, was not expressed in
fibroblasts in SCD tissue samples (Section 3.7). These observations suggest that the role
for miR-34a in intestinal fibrosis might not be fibroblast-related and that it may be
functional in other cell types such as epithelial cells. The next section aims to determine
which cells express miR-34a in NSCD and SCD tissues by performing in situ

hybridisation.
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Figure 3.6. Increased expression of p53 in epithelial cells in crypts overlying fibrotic lesions. (A) gRT-
PCR of TP53 mRNA in six matched NSCD and SCD tissue samples. Expression normalised to GADPH.
(B-D) IHC of p53 in FFPE tissue from CD patients analysed by Professor Roger Feakins. (B) Weakly p53-
positive cells (black arrows) in normal crypts. (C) Moderate / strong p53-positive cells (black arrows) in
crypts localised near fibrotic ulcers. (D) Negative lamina proprial stromal cells (black arrows) around

fibrotic lesions. Bars represent mean values with SEM. Size bar is 100 um.
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Table 3.2. Immunohistochemistry staining of p53 in NSCD and SCD tissue. Classification of
percentage of p53-positive cells in both normal (NSCD, n=6) and fibrotic (SCD, n=7) areas in CD patients.
Percentage of staining in two staining intensities (1: weak, 2-3: moderate/strong) in three different cell types
were noted. For the crypts, a minimum of 20 crypts in the most strongly staining area were measured per
sample. NA, not applicable.

Follicular dendritic Lamina proprial stromal
ID Type | Crypts
cells cells
o % staining o % staining o o

% staining . . % staining . . % staining % staining at

. . at intensity . . at intensity . . . .

intensity 1 intensity 1 intensity 1 intensity 2-3

2-3 2-3
CD362 | NSCD | 10-20 <1 40 5 <1 0
CD417 | NSCD | 20 5 NA NA 10 0
CD401 | NSCD | 50 10 NA NA 1 0
CD398 | NSCD | 40 5 30 <1 <5 0
CD425 | NSCD | 50 <1 10 <1 10 <1
CD419 | NSCD | 40 10 NA NA <1 0
CD362 | SCD 80 10-50 10 1 0 0
CD417 | SCD 90 40 5 1 10 1
CD401 | SCD 80 50 25 2 10 1
CD398 | SCD 80 35 NA NA 10 1
10 (by
CD425 | SCD 50 30 30 2 ) <1
lesion)

CD373 | SCD 80 40 80 5 15-20 1
CD419 | SCD 50 30 40 2 5 0
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3.8 Expression of miR-34a expression in gut mucosa is localised
to the epithelial cells

In situ hybridisation allows miRNA expression analysis to be performed directly in
tissues. This facilitates the identification of miRNA expression in specific cell types or
the expression pattern in tumours. Detection probes for miRNAs often contain locked
nucleic acids (LNA) which increase hybridisation affinities over standard probes [465,
466]. Exiqon is one of the leading companies that produce commercially available LNA
probes for the majority of miRNAs in miRBase (www.miRbase.com). Section 2.19 and

Fig. 2.3 show a detailed overview of the in situ hybridisation methodology performed.

The aims for this part of my thesis were:
1. To determine the localisation of miR-34a in the mucosa of patients; and

2. Compare the expression pattern of miR-34a between NSCD and SCD.

One of the most important steps in the in situ protocol is the proteinase-K treatment
which digests the tissue allowing the probe to access the cell and bind to the miRNA. Too
little digestion and the probe will not be able to hybridise, whereas too much digestion
can lead to over-digestion of the tissue and cause increased signal to noise ratios. The
incubation time with proteinase-K was therefore optimised. Three time points (15 min, 30
min or 45 min) were performed in combination with 60 nM of miR-34a LNA probe on
slides from FFPE blocks colon cancer tissue. Figure 3.7 shows images from the
optimisation of miR-34a with three different proteinase K digestion times (A. 15 min, B.
30 min and C. 45 min; Fig 3.7). Expression of miR-34a illustrated a staining intensity
which correlated positively to an increase in digestion time; ranging from minimal
staining after 15 min to strong staining after 45 min of proteinase-K digestion.
Background staining increased after proteinase-K treatment for 45 min (black arrows; Fig
3.7C) and therefore, a 30 min digestion time was selected for further in situ hybridisation

experiments with miR-34a.
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Figure 3.7. Optimisation of in situ hybridisation of miR-34a in colon cancer tissue. (A-C) Tissue was
incubated with 10 pg/ml proteinase-K for three time points (15 min, 30 min and 45 min) followed by
hybridisation with 60 nM miR-34a double-DIG-labelled LNA probe. miR-34a staining in blue and nuclear

counterstain in red. Black rectangles outline the position of the zoomed images shown below.

98



To determine the expression of miR-34a in the gut mucosa, ten FFPE blocks (five SCD,
five NSCD, matched tissues from the same patient) were subjected to in situ hybridisation
with double-DIG-labelled LNA probes for miR-34a (60 nM) and a negative control
(scrambled sequence, 60 nM). Sections were treated with 10 ug/ml proteinase-K for 30
mins as previously optimised. Images of one pair of matched tissue (SCD and NSCD) are
shown in Fig. 3.8. In general, miR-34a staining was predominantly observed in the
epithelial cells in the mucosal crypts as well as some of the immune cells (black arrows;
Fig. 3.8A, C). Minimal to no expression of miR-34a was seen in the stromal-like cells
(red arrows; Fig. 3.8A, C), although without a marker for mesenchymal cells, stromal
cells were hard to distinguish from other cell types with the use of a nuclear counterstain
alone. Serial sections were hybridised with a double-DIG-labelled LNA probe for a
scrambled sequence (negative control) which demonstrated no positive staining (Fig.

3.8B, D), indicating that the miR-34a staining observed in adjacent sections is specific.

In only two of the five paired tissue blocks, miR-34a expression was even and
homogenous across the slide. The other three showed patchy staining, which may be due
to uneven tissue digestion and/or uneven incubation of the hybridising probe. Because of
this it was difficult to draw any conclusions as to whether the expression of miR-34a was
altered in mucosa-overlying strictured areas compared to mucosa-overlying non-strictured
areas. Although, staining in the two paired tissue blocks did not show obvious differences

in expression levels in the epithelial cells or immune cells (Fig. 3.8A, C).

In conclusion, miR-34a expression in the gut mucosa is predominantly localised to
epithelial cells and not in stromal-like cell types. This observation is in accordance with
the fact that p53, a major upstream regulator of miR-34, was also mainly found to be
expressed predominantly in epithelial cells (Section 3.7). These results indicate that the
functional role for miR-34a in gut fibrosis may not be directly in fibroblasts, but
indirectly through the interaction between fibroblasts and other cell types with elevated

miR-34a expression, such as epithelial cells.
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Figure 3.8. The expression of miR-34a is localised to epithelial cells in the gut mucosa. (A-D) Images
of two blocks of gut tissue from the same patient (1 SCD, 1 NSCD) hybridised with 60 nM double-DIG-
labelled LNA probe against miR-34a or a scrambled sequence (negative control). Black rectangles outline
the position of the zoomed images shown on the right. Black arrows indicate positively stained epithelial
cells and immune cells, red arrows indicate negative staining in the stromal-like cells. Size bars shown.
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3.9 Discussion and future work

3.9.1. Differentially expressed miRNAs between NSCD and SCD mucosal tissue

Previous reports have indicated that molecular changes in the overlying mucosa layer can
mimic events in underlying tissues [201]. MiRNAs regulate many cellular processes
including proliferation, differentiation and apoptosis. I, hypothesised therefore, that the
mIiRNA expression profile between NSCD and SCD areas is different. To test this,
changes in miRNA expression were determined in mucosa samples from NSCD and SCD
tissues and subsequent analysis identified 29 differentially expressed and significant
differentiated miRNAs (Section 3.2). Although others have investigated the differential
expression between CD and healthy controls [361, 362], my study was the first to profile
altered miIRNA expression in the mucosa of intestinal fibrosis in CD. Comparison
between my data with data from the arrays mentioned above highlighted only a single
commonly altered miRNA (miR-34c-5p,[362]), however, given the differences in sample

groups, a true comparison is difficult.

The up-regulation of three miRNAs (miR-34a, -493* and -708) in SCD tissues compared
to NSCD was validated by qRT-PCR. Two miRNAs (miR-223* and -148b) were not
significantly changed and two (miR-1285, -503) could only be detected in five of the
eight paired samples that were tested (Section 3.3). One of the advantages of the Illumina
array is its high sensitivity to detect low abundance miRNAs. This could explain why
miR-1285 and miR-503 were not detected in all of the samples by gRT-PCR. However,
for the samples in which miR-1285 and miR-503 could be detected, the type of
dysregulation was in accordance with that identified by the array (miR-1285 down-
regulated in SCD vs NSCD, miR-503 up-regulated in SCD vs NSCD). In our laboratory,
we continue to collect additional paired NSCD and SCD tissue samples. Future work
could include further examination of both miR-503 and miR-1285 expression levels in

these samples.
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The expression of miR-708 was up-regulated in SCD vs NSCD and validated by qRT-
PCR (Section 3.3). This contradicts the findings of Huebert and colleagues, who
identified miR-708 as one of the down-regulated miRNAs in cirrhotic (end-stage resulted
from fibrosis of the liver) endothelial cells [444]. The expression of miIRNAs is context
dependent and may vary greatly between various tissue and cell types providing an
explanation for these contradicting observations. As the array presented here was
performed on the mucosa, which comprises of a number of cell types, it will therefore be
important to determine the localisation of miR-708 within CD tissue samples (as was
done for miR-34a in this thesis). For example, miR-708 has been found to induce
apoptosis in renal cancer cells [467] and it would be very interesting to investigate the
localisation of miR-708 in the gut mucosa in CD. As | have observed the localisation of
pro-apoptotic miR-34/p53 axis in epithelial cells, the expression of miR-708 could
therefore lend support to this pro-apoptotic signalling within the epithelial cells during
fibrogenesis. On the other hand, if miR-708 is expressed in mesenchymal-like cells,
functional studies could be performed on intestinal fibroblasts to elucidate the
downstream mechanisms of miR-708 in intestinal fibrosis in CD.

Validation by qRT-PCR showed that miR-493* displayed the largest fold increase in
SCD vs NSCD tissues. Only one other report has suggested a potential role for miR-493*
in fibrosis. Milosevic and colleagues demonstrated an increase of miR-493* expression in
idiopathic pulmonary fibrosis [442]. Interestingly, miR-493* is a member of the second
largest miRNA cluster (C14MC) in the human genome and is located at the imprinted
DLK-1/DIO3 domain on the human chromosome 14q32 [248]. This domain is maternally
imprinted and consists of numerous repeated, intron-embedded miRNAs that are
processed from a single long non-coding RNA. A large number (n=24) of miRNAs from
this cluster has been previously shown to be up-regulated in tissue samples from patients
with pulmonary fibrosis [442]. Also, the expression of 13 C14MC miRNAs was induced
by TGF-B, implicating these miRNAs in the pathogenesis of fibrosis [442]. On the array
presented in this thesis (Section 3.2), three other members of this cluster were shown to

be up-regulated in SCD vs NSCD (miR-323-3p, -369-3p, and -487b). Future work could
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attempt to validate these miRNAs on our paired NSCD and SCD tissue samples. A
synergistic up-regulation of more members of this cluster would strengthen the

hypothesis that this cluster is involved in intestinal fibrosis in CD.

TGF-B has been shown to be involved in the activation of Wnt signalling by decreasing
Whnt pathway antagonist DKK-1 resulting in increased fibrosis [468]. The online target
prediction program miRBase (www.microrna.org) predicts that DKK1 might be targeted
by a number of members of the C14MC cluster (miR-136, -376a, -376b, -433, -493*, -
496, -543, and -656). Strikingly, an additional four miRNAs that were up-regulated in the
array (miR-148b, -223*, -34a, and -493*) are also predicted to target this Wnt-antagonist.

The link between these miRNAs and DKK1/Wnt signalling has not yet been investigated.

Therefore, a novel line of investigation would aim to:

1. Validate additional members of the C14MC in paired NSCD vs SCD tissue
samples via gRT-PCR,;

2. Investigate the effect of the validated miRNAs on Wnt signalling activation. This
could be done via transient transfection of candidate miRNAs in combination
with a Wnt activity reporter construct (TCF-LEF-reporter) in intestinal
fibroblasts. These experiments should be performed in the presence of TGF-$
stimulation to elucidate the role of both TGF-B and the miRNAs on Wnt
signalling activity; and

3. mRNA and protein expression of key Wnt signalling mediators, including DKK1,
could be assayed following transfection of the validated miRNAs in intestinal
fibroblasts.

3.9.2. miR-34a does not alter the mRNA expression of fibrosis-associated genes

Intestinal fibroblasts were isolated from mucosa from six CD patients undergoing surgery
for stricture formation (Table 2.1) using methods described by others [446] (Section 2.3).

The benefit of using intestinal fibroblasts isolated cells from the gut of patients with CD
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is the ability to demonstrate the role of candidate miRNAs in a physiologically relevant
context i.e. gut fibrosis. However, transfection of isolated cells from primary tissue is
notoriously difficult and transfection of intestinal fibroblasts has only been reported by
one other group [469]. However, | have now shown that intestinal fibroblasts can be
transfected successfully with sSiRNA/mMiRNAs using a lipid based system (Section 3.4 and
Section 3.5).

Overexpression of miR-34a via transient transfection of pre-miR-34a demonstrated no
significant change in mMRNA expression of fibrosis-associated genes between NTC and
pre-miR-34a transfected fibroblasts (Section 3.6). Both MMP2 and SMAD4 were selected
based on their 3’UTR containing predicted sites for miR-34a. However, my data showed
that miR-34a does not influence these genes at the transcriptional level. mRNA
expression levels of survivin (BIRC5), which previously validated to be target by miR-
34a [449] and used a positive control, was not significantly altered following
overexpression of miR-34a. A literature search later revealed that miR-34a down-
regulates the expression of survivin solely at the protein level whilst its mRNA level
remains unchanged [470], thereby providing an explanation for why miR-34a failed to
reduce the mRNA levels of BIRC5. Although miR-34a expression levels were induced
nearly 1000-fold following transfection with pre-miR-34a (Section 3.6), additional
evidence is needed to confirm successful transfection. Future experiments to further
investigate potential targets for miR-34a will have to include other positive controls such
as SIRT1 [471] or BCL2 [472], which have been previously validated at the mRNA level.
Ideally, phenotypic controls such as cell viability and/or cell number should be used. A
decrease in these parameters could provide evidence that miR-34a is functional within the

cell as miR-34a is known to be a potent inducer of apoptosis [471, 473].

Many studies focus on the effect of miRNAs on mRNA degradation whilst reports show
that translational repression by miRNAs can account for the majority of their regulatory
function [266, 474]. In fact, genome-wide studies suggest that some targets are solely

repressed at the translational level [475, 476]. These studies highlight the need for protein
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expression analysis and future work may aim to further investigate miR-34a targets at the
protein level by techniques such as western blotting or immunohistochemistry. Given the
fact that miR-34a was predominantly expressed in epithelial cells, functional studies, such
as over-expression of miR-34a in this cell type may be a more appropriate way to

determine the role for miR-34a during fibrogenesis.

3.9.3. p53 is expressed in epithelial cells overlying fibrotic areas in the mucosa of CD

patients

The TSG p53 is an upstream activator of miR-34a and miR-34b/c [311, 312, 315, 316],
suggesting a role for p53 in intestinal fibrosis. Therefore, in Section 3.7, the expression of
p53 was investigated in intestinal fibrosis at mMRNA and protein level via qRT-PCR and
IHC, respectively. TP53 transcript levels in six matched NSCD and SCD tissues showed
no significant change between the two groups. Quantification of p53 protein expression
of normal and fibrotic lesions of CD patients indicated an increase in p53 protein within
the epithelial cells of the crypts surrounding fibrotic lesions. No p53-positive stromal
cells were observed in either normal tissue or fibrotic lesions. The presence of p53-
positive epithelial cells in fibrotic lesions confirmed the findings of others that report an
up-regulation of p53 in the epithelial cells of patients with pulmonary fibrosis [460, 461].
This observation was linked to the induction of the p53-mediated apoptosis signalling
pathway [460, 461]. Thus, p53 may not be involved directly in the fibroblasts-associated
events during intestinal fibrosis in CD. It has been proposed that idiopathic pulmonary
fibrosis results from epithelial cell injury and the subsequent activation of underlying
mesenchymal cells (reviewed in [477]). More recently, this cross talk between epithelial
and mesenchymal cells was shown in oesophageal fibrosis [478]. Together, these findings
support a role for the pro-apoptotic signalling through p53 in epithelial cells in intestinal

fibrosis.
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3.9.4. miR-34a is present in the epithelial cells in the mucosa of CD patients

To investigate the location of miR-34a in the gut of CD patients, in situ hybridisation of
miR-34a was performed on five matched pairs of NSCD and SCD tissues. Unfortunately,
the staining of miR-34a was uneven in the majority of sections investigated. The majority
of publications that include in situ hybridisation of miRNAs use a probe against small
RNA U6 as a positive control for the staining technique. U6 is expressed ubiquitously and
should, therefore, be present in all cell types. However, one of the down-sides of using
U6 as a control is the fact that this small RNA is present only in the nucleus. For the
hybridisation probe to reach the nucleus, longer digestion times are required compared to
miRNAs in the cytoplasm. For example, when gut sections were stained with U6, both
positive and negative stained patches within the same slide were observed (Appendix Fig.
1). The positively stained patches appeared more digested than the negative patches,
suggesting that more tissue digestion is required for the U6 probe to be able to access the
nucleus and hybridise with U6 small RNA. This makes the use for U6 as a positive

control questionable in this context.

As the expression of miR-34a was uneven across the slide, and the lack of an appropriate
positive control, 1 was unable to make any conclusion as to whether the expression of
miR-34a was altered between mucosa-overlying strictured areas and non-strictured areas.
However, | can report that the expression of miR-34a was predominantly found in
epithelial cells with weak staining in stromal like cells. This observation is in accordance
with previous in situ reports which demonstrate the expression of miR-34a in epithelial
cells of bladder carcinoma [479] and breast cancer [480, 481]. Furthermore, | showed that
one of its main upstream regulators, p53, is also expressed in the epithelial cells (Section
3.7), which may indicate the activation of the p53/miR-34 axis in these cells.
Functionally, any role for miR-34a in intestinal fibrosis is likely to be localised to
epithelial cells and not in fibroblasts. As mentioned in Section 3.9.3, the activation of sub-
epithelial stromal cells has been proposed to be a secondary event following epithelial

cell injury in pulmonary fibrosis, which might also potentially be the case for intestinal
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fibrosis in CD. To further investigate this line of research, the following experiments

could be performed:

1)

2)

3)

4)

A repeat of the in situ hybridisation of miR-34a in paired NSCD and SCD tissues
alongside multiple miRNAs as controls (e.g. miR-210 and miR-21). We know
from experiments performed later on in this thesis (Section 5.4) that miR-210 is
expressed in epithelial cells and that miR-21 is predominantly observed in stromal
cells in CRC tissue. The use of these miRNAs as controls would allow me to draw
conclusions about the localisation and relative expression of miR-34a in NSCD
and SCD tissues;

To investigate whether the expression of miR-34a is altered between NSCD and
SCD tissues with the use of in situ LNA probes conjugated with fluorescent dyes.
This would facilitate accurate quantification of the miRNA expression levels in
tissue. The IN Cell Developer v1.8, which has been used in this thesis to quantify
fluorescent images, could be used for this purpose;

To investigate co-localisation of miRNAs and potential gene targets, co-staining
could be performed. In our laboratory, miRNA in situ has been successfully
combined with regular immunohistochemistry. This technique would allow
identification of co-localisation of miR-34a and other proteins such as p53; and
Finally, to investigate the cross-talk between epithelial cells and fibroblasts,
organotypic cultures could be used. For example, epithelial cells (preferably
primary/non cancer cells) should be stably transfected with miR-34a expression
vectors and cultured on top of intestinal fibroblasts for various amounts of time
(3-14 days). Cultures would be fixed and then stained for ECM markers such as
collagens and o-SMA. This would test whether the up-regulation of miR-34a
within the epithelial cells can potentially induce the activation of fibroblasts and

promote production of ECM by these cells.
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Chapter 4: Reduced expression of miR-29b in CD
up-regulates collagen expression in intestinal

fibroblasts

4.1 Introduction and aims

The preceding chapter identified differentially expressed miRNAs between NSCD and
SCD tissues (Section 3.2 and Section 3.3). The microarray used to determine the

expression is capable of detecting low abundance miRNAs due to the technology’s high
sensitivity. Hence, 40 miRNAs that were highly expressed in CD tissues were not
detected as differentially expressed because of their fluorescence being outside the
detectable range (Appendix Table 1). This was the case for miR-29b, one of the three
members of the miR-29 family (miR-29a, -b and —). The miR-29 family has been
predominantly studied in cancer and is known for its tumour-suppressor function
(reviewed in [482]). In addition, the miR-29 family is down-regulated in fibrosis of
various organs [372-378], although not in the intestine where changes in miR-29
expression are yet to be investigated [372-378]. Aims for this chapter:

1. Determine the expression of the miR-29 family in intestinal fibrosis in CD;

2. Investigate down-stream targets of miR-29b in intestinal fibroblasts via transient
transfection and assess the expression of ECM molecules, such as collagen | and
I11, at the mRNA and protein level in the presence and absence of TGF-; and

3. ldentify the effect of miR-29b on a down-stream target, myeloid cell leukemia-1
(Mcl-1), and the mRNA and protein level.

Part of this chapter formed the basis of a manuscript published in Clinical Science in
2014 [483].
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4.2 MiR-29 family is down-regulated in CD fibrosis, regulates
COL1A2 and COL3A1, and collagen 111 protein expression

The human miR-29 family consists of miR-29a, miR-29b-1, miR-29b-2, and miR-29c.
The gene encoding the precursors of miR-29a and miR-29b-1 is located on chromosome
7, whilst miR-29b-2 and miR-29c are on chromosome 1 (Fig. 4.1A). Sequences of the
mature miR-29 strands largely overlap, and are highly conserved in human, mouse and
rat. In fact, the sequence of miR-29b-1 and -2 are identical and are collectively referred to
as miR-29b. Additionally, the three mature miR-29 strands share corresponding
sequences at nucleotide positions 2-7, which is known as the seed region (orange shaded
areas; Fig 4.1A). This region is involved in facilitating the binding between the miRNA
and its target mRNA and, as a result, the predicted target genes for the miR-29 family
widely overlap. The miR-29 family has been previously implicated in the pathogenesis of
fibrosis in various organs. For example, the expression of all three members is reduced in
fibrosis of the kidney [372, 373] and liver [374]. Additionally, miR-29b is down-regulated
following myocardial infarction [375] in the lungs of patients with idiopathic pulmonary
fibrosis [376, 377] and in skin fibroblasts of patients with systemic sclerosis [378]. To

date, the role for the miR-29 family in intestinal fibrosis in CD remains unexplored.

Because the signal for miR-29b was saturated on the array, the expression of the miR-29
family was validated in nine paired NSCD and SCD tissues by qRT-PCR. Expression
values were normalised to miR-16 and fold change in SCD relative to NSCD is
calculated. All three members of the miR-29 family were significantly down-regulated in
SCD samples compared to NSCD (n=9, miR-29a, p=0.0002; miR-29b, p=0.0010; miR-
29c, p=0.0114; Fig. 4.1B). The expression of miR-29b demonstrated the largest decrease
in fold change in SCD relative to NSCD and miR-29b was, therefore, selected for further
functional studies. In addition, reports have indicated that the dysregulation of key
mediators in fibrosis of various organs is predominantly controlled by miR-29b [372,

484].
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Online predication tools indicate that miR-29b targets both COL1A2 and COL3Al
(www.microRNA.orqg), both of which have been validated by other groups using 3’-UTR
luciferase assays [375, 379]. In addition, both COL1Al and COL3A1 are important in
intestinal fibrosis [485, 486] and were up-regulated in SCD relative NSCD tissue samples

(Appendix Fig. 2). To validate these findings in intestinal fibrosis, fibroblasts isolated
from CD patients were transiently transfected with NTC, pre-miR-29b or anti-miR-29b.
Expression of COL1A2 and COL3A1 mRNA were assessed by gRT-PCR and normalised
to GAPDH. Fold change in expression compared to NTC demonstrated a significant
down-regulation of both COL1A2 and COL3AL by pre-miR-29b (COL1A2 and COL3A1,
p<0.0001; Fig.4.1C). Additionally, both genes were significantly up-regulated following
transfection with anti-miR-29b relative to NTC (COL1A2, p=0.037; COL3A1, p=0.0015;
Fig. 4.1C). This data shows that miR-29b modulates the expression of both collagens at
the MRNA level.
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Figure 4.1. miR-29b is down-regulated in intestinal fibrosis and modulates COL1A2 and COL3Al
MRNA (A) Schematic overview of chromosomal location of the human family members of the miR-29
family. The miR-29 family is encoded by two genes located on chromosome 7 and 1. The mature sequence
of miR-29b-1 and -2 are identical and referred to as miR-29b. All members share the same seed sequence
highlighted in orange. (B) gRT-PCR of the three members in nine matched NSCD and SCD tissue samples.
Expression normalised to miR-16. The graph represents the fold change in expression relative to NSCD.
(C) Intestinal fibroblasts (n>3) transfected with NTC, pre-miR-29b or anti-miR-29b for 72 hr. gRT-PCR of
COL1A2 and COL3A1 mRNA expression is normalised to GAPDH. The graph represents the fold change
relative to NTC. Bars represent mean values with SEM. *p<0.05, **p<0.01 and ***p<0.001.
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To investigate the effect of miR-29b on collagen | and 1l protein levels,
immunofluorescence was performed. Intestinal fibroblasts were transfected with NTC,
pre-miR-29b or anti-miR-29b for 72 hr. Cells were fixed and stained with Hoechst 33342,
CellMask Deep Red, and antibodies against collagen | or Ill. The IN Cell Analyzer 1000
microscope was used to image the cells under identical exposure conditions. A mask
overlying the CellMask Deep Red stained cells was created using the IN Cell Developer
v1.8. Hoechst-positive nuclei were used to clump-break the overlaying mask (Fig 4.2A-
C), which was subsequently used to define cellular pixel intensity of both collagen | and
Il in individual cells. Fold change in median pixel intensities between NTC and pre-miR-
29b or anti-miR-29b transfected fibroblasts was calculated. Fibroblasts transfected with
pre-miR-29b demonstrated a significant decrease in pixel intensity for collagen Il
compared to cells transfected with NTC (p=0.0069; Fig. 4.2D), whereas collagen | protein
was not altered by pre-miR-29b (p=0.163; Fig. 4.2D). Finally, fibroblasts transfected with
anti-miR-29b did not alter endogenous collagen | or Il protein levels. This observation
was in contrast to the up-regulation of COL1A2 and COL3A1 mRNA expression
following transfection with anti-miR-29b (Fig. 4.1C). Representative images of fold

change in Fig. 4.2D are shown in Fig.4.2E.

Together, this data demonstrates that the miR-29 family is down-regulated in intestinal
fibrosis in CD. Furthermore, miR-29b is able to regulate both collagen I and Il at the
MRNA level, and collagen 111 at the protein level. Collagen I protein level was not altered
by miR-29b in this particular experimental set-up, and this will be reviewed in the

discussion chapter (Section 4.6.2).
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Figure 4.2. miR-29b down-regulates collagen 111 protein. Intestinal fibroblasts (n=3) were transfected
with NTC, pre- or anti-miR-29b for 72 hr and stained with Hoechst 33342 and antibodies against collagen |
and I11. (A-C) Hoechst 33342 and CellMask Deep Red staining created an overlaying mask in the CellMask
channel, which was then used to define pixel intensity of collagen | and Il in individual cells. (D) The
graphs represent the fold change in median pixel intensity following transfection. (E) Representative images
of collagen I and 111 following transfection with NTC, pre-miR-29b or anti-miR-29b. Bars represent mean
values with SEM. **p<0.01. Size bar is 100 pum.
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4.3 TGF-g up-regulates collagen by down-regulating miR-29b

expression

One of the key pro-fibrotic cytokines involved in the development of fibrosis in various
organs is TGF-B (reviewed in [487]). TGF-B increases pro-fibrotic mediators through
SMAD-mediated transcription (Section 1.2.4). MiRNAs have been shown to be regulated
by TGF-B signalling and have the potential to work synergistically (reviewed in [488]).
Indeed, reports have indicated that TGF- B increases the production of ECM proteins via
the down-regulation of miR-29b in cardiac [375], kidney [372] and liver fibrosis [374]. In
order to validate this role for TGF-B in intestinal fibrosis, fibroblasts were treated with
TGF-pB (10 ng/ml) for 48 hr and assayed for the expression of miR-29b and both COL1A2
and COL3A1 genes by gRT-PCR. Expression of GAPDH and miR-16 were used to
normalise for the collagen mRNA and miRNA expression, respectively. Fold change
relative to untreated fibroblasts (NT) showed a significant down-regulation of miR-29b
(p=0.0199; Fig. 4.3A) and an up-regulation of COL1A2 and COL3A1l expression
(COL1A2, p=0.002; COL3A1, p=0.006; Fig. 4.3A). In accordance with previous reports,
this data suggests a link between the down-regulation of miR-29b and the up-regulation
of COL1A2 and COL3A1 expression.

Next, the association between TGF-3, miR-29b and the downstream targets collagen | and
Il was explored further. As TGF-p down-regulates the expression of miR-29b and
subsequently up-regulating COL1A2 and COL3A1, | hypothesised that by restoring
endogenous levels of miR-29b levels via transfection with pre-miR-29b, this up-
regulation of COL1A2 and COL3A1 could be reversed. Likewise, reducing the
endogenous levels of miR-29 by transfection with anti-miR-29b would further enhance
the effect of the TGF-f treatments.

To test this, intestinal fibroblasts were transfected with NTC, pre-miR-29b and anti-miR-

29b for 24 hr before treatment with TGF-B (10 ng/ml) for 48 hr. The expression of
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COL1A2 and COL3A1 was assayed via qRT-PCR, and the fold change between cells
transfected with pre-miR-29b or anti-miR-29 relative to cells transfected with NTC was
calculated. As predicted, cells transfected with pre-miR-29b prior to TGF-p treatment
demonstrated a significant inhibition of both COL1A2 and COL3A1 mRNA transcripts
(COL1A2, p=0.0012; COL3A1, p=0.0034; Fig. 4.3B). In addition, decreasing the levels of
endogenous miR-29b by transfection with anti-miR-29b prior to TGF-f treatments
resulted in a significant increase in expression of both collagen transcripts (COL1A2,
p=0.0115; COL3A1, p=0.0282; Fig. 4.3B). Together, this data suggests that the up-
regulation of both collagen gene transcripts is potentially mediated through the down-
regulation of miR-29b by TGF-p.

In order to validate this observation at the protein level, immunofluorescence was
performed using antibodies against collagen | and Ill. Intestinal fibroblasts were
transfected with NTC, pre-miR-29b and anti-miR-29b for 24 hr before treatment with
TGF-B (10 ng/ml) for 48 hr. Cells were fixed 72 hr following transfection and stained
with Hoechst 33342, CellMask Deep Red and antibodies against collagen | and IlII.
Median pixel intensities of both collagen I and Il in individual cells was determined as
described previously (Section 4.2; Fig. 4.2 A-C). Fold change in median pixel intensities
for pre-miR-29b or anti-miR-29b relative to NTC transfected cells (all TGF-p treated)
was calculated. Once more, it was hypothesised that by modulating endogenous levels of
miR-29b via transfection with pre-miR-29b or anti-miR-29 prior to the TGF-p treatment

could modulate the expression of collagen | and Il proteins.
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Figure 4.3. TGF-p up-regulates COL1A2 and COL3A1 mRNA through the down-regulation of miR-
29b. (A) Intestinal fibroblasts (n>4) were treated with TGF-B (10 ng/ml) for 48 hr and expression levels of
miR-29b, COL1A2 and COL3AL1 were assayed by gRT-PCR. The graph represents the fold change in gene
expression relative to untreated cells (NT). (B) Intestinal fibroblasts (n=4) were transfected with NTC, pre-
miR-29b or anti-miR-29b for 24 hr prior to TGF-B (10 ng/ml) treatment. The graph represents the fold
change of COL1A2 and COL3A1 expression following transfection with pre-miR-29b or anti-miR-29b
relative to NTC (all TGF-p treated). Bars represent mean values with SEM. *p<0.05 and **p<0.01.
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The transfection of pre-miR-29b prior to TGF-B treatment significantly down-regulated
the expression of collagen Il (p=0.0069; Fig. 4.4A), which supports previous data
showing down-regulation of COL3A1 mRNA expression (Fig 4.3B). By contrast,
collagen | protein expression was not altered following transfection with pre-miR-29b
and TGF-pB treatments (collagen I, p=0.7816; Fig. 4.4A), despite the down-regulation of
COL1A2 mRNA (Fig. 4.3B). This lack of modulation of collagen | protein by pre-miR-
29b prior to TGF-B treatment was consistent with data shown in Section 4.2, which
showed that intestinal fibroblasts transfected with pre-miR-29b alone also failed to alter
collagen | expression (Fig. 4.2D). Similarly, transfection of anti-miR-29b prior to TGF-
treatment also failed to up-regulate either one of the collagen protein levels (Fig 4.4A),
indicating that that there are other, more dominant, factors that drive the expression of
collagen I and 111 when miR-29b is absent. In summary, this data suggests that TGF-f can

modulate collagen Il protein via the down-regulation of miR-29b.

In humans, it has been suggested that miRNAs may potentially target up to 30% of all
genes [489] and online prediction tools such as miRWalk propose a large number of
predicted targets for miR-29b, many of which have been subsequently validated
(http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/). Therefore, the next section aims
to explore additional targets for miR-29b that may be involved in the pathogenesis of
intestinal fibrosis independently from its regulatory effect on ECM molecules such as

collagen.
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Figure 4.4. TGF-p up-regulates collagen 111 protein expression through the down-regulation of miR-
29b. Intestinal fibroblasts (n=5) were transfected with NTC, pre-miR-29b or anti-miR-29b prior to TGF-§
(10 ng/ml) treatment. Cells were stained with Hoechst 33342, CellMask Deep Red and antibodies against
collagen I and I11. (A) The graphs represent the fold change in median pixel intensity following transfection
with pre-miR-29b or anti-miR-29b relative to NTC (all TGF-f treated). (B) Representative images of
collagen I and Il following transfection with NTC, pre-miR-29b or anti-miR-29b. Bars represent mean
values with SEM. **p<0.01. Size bar is 100 pm.
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4.4 MiR-29b up-regulates Mcl-1 mRNA and protein levels

Intestinal wound healing following the damage by inflammation is a complex sequence of
events where inflammatory cells induce the activation of sub-epithelial fibroblasts. The
production of ECM molecules by these fibroblasts and their ability to contract the wound
area, play important roles in intestinal wound healing. Chronic inflammation disturbs this
physiological response which can eventually leads to an increase in the production of
ECM molecules by fibroblasts. The over-production of ECM molecules is normally
avoided by the activation of apoptosis pathways from cues in the intercellular space,
resulting in the removal of ECM-producing cells. One hypothesis for the over-production
of ECM molecules by activated fibroblasts is decrease of apoptosis signalling in these
cells. Indeed, reports have recently indicated that fibroblasts that are resistant to apoptosis
might play a role in pulmonary fibrosis [490]. However, this phenomenon remains

unexplored in intestinal fibrosis in CD.

The aim of this section was to explore additional targets for miR-29b that may influence
the susceptibility to apoptosis in isolated intestinal fibroblasts. Online prediction tools
identified Mcl-1, a member of the Bcl-2 family, as a miR-29b target in four of the five
target prediction sites (TargetScan, MiRWalk, miRanda and DIANA Tools). The
predicted binding site of miR-29b is within the 3’UTR of MCL1 and is shown in Fig.
4.5A. More importantly, several groups have now validated this prediction demonstrating
that miR-29b binds to the 3’-UTR of MCL1 [491-496]. The human MCLL1 gene consists
of three exons which undergo alternative splicing to form three mRNA transcripts: the
long MCL-1L, the short MCL-1S and the extra short MCL-1ES (Fig. 4.5B) [497-501]. The
Mcl-1L protein is anti-apoptotic and shows 35% homology with the C-terminus of the
anti-apoptotic Bcl-2 proteins, containing Bcl-2 homology domains (BH)-1, BH2 and BH3
[497]. Due to a frameshift, Mcl-S and Mcl-1ES only contain a single BH3 domain and are
similar to BH3-only pro-apoptotic proteins [498]. Three studies, limited to the liver, have
shown that Mcl-1 attenuates liver fibrosis in mice [502-504] and that the deletion of Mcl-

1 in hepatocytes results in liver cell damage caused by spontaneous induction of apoptosis
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[502, 504]. To date, the potential role of Mcl-1 in intestinal fibrosis remains unexplored,
thus, the effect of miR-29b on Mcl-1 in isolated intestinal fibroblasts was investigated.

Intestinal fibroblasts were transfected with NTC or pre-miR-29b and expression of Mcl-1
MRNA was assessed via gRT-PCR. Fold change in expression compared to NTC-
transfected fibroblasts demonstrated a significant increase in the expression of Mcl-1
isoforms (MCL-1L/MCL-1ES, p=0.004; MCL-1S, p=0.0008; Fig. 4.5C). The TagMan
assay used for MCL-1L also detects MCL-1ES and, therefore, the two could not be
distinguished using this probe. However, this data suggests that miR-29b up-regulates the
MRNA expression of MCL-1L/ES and MCL-1S in intestinal fibroblasts. This finding was
unexpected considering that previous reports have confirmed the direct binding between
miR-29b and the 3’-UTR of MCL1 with luciferase reporter assays [491-493]. However,
these reports demonstrate that miR-29b down-regulates Mcl-1 at the protein level and
does not change the MRNA expression [492]. Therefore, the protein levels of Mcl-1 were

assessed following transfection with pre- and anti-miR-29b.
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Figure 4.5. miR-29b upregulates Mcl-1. (A) Predicted binding site between miR-29b and MCL1.
Nucleotides in red indicate complementary binding between the seed sequence of miR-29b and the 3°’UTR
of MCL1. (B) Schematic overview of Mcl-1 gene consisting of three exons. Alternative splicing potentially
produces three isoforms: MCL-1L, containing the full length of all three exons; MCL-1S, exon 2 is lost due
to alternative splicing; and MCL-1ES, in which the first exon undergoes alternative splicing. (C) Intestinal
fibroblasts (n>5) transfected with NTC and pre-miR-29b. The graph represents the fold change in
expression of MCL-1L/ES and MCL-1S mOeasured by qRT-PCR. Bars represent mean values with SEM.
**p<0.01 and ***p<0.001.
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To explore further the effects of miR-29b on Mcl-1, protein expression of Mcl-1 was
determined by immunofluorescence on intestinal fibroblasts. Fibroblasts were transfected
with NTC, pre-miR-29b or anti-miR-29b and cells were fixed 72 hr following
transfection and stained with Hoechst 33342 and an antibody against Mcl-1. Cells were
imaged using the IN Cell Analyzer 1000 microscope under identical exposure conditions.
Mcl-1 protein localised in discrete nuclear foci (Fig. 4.6A). The IN Cell Developer v1.8
was used to create a mask overlying the foci (Fig. 4.6B). This mask, in combination with
Hoechst-positive nuclei, was used to determine the median Mcl-1 foci mass within each
nuclei (foci mass/nuclei = (total foci pixel intensity x total foci area)/total nuclei count).
Fibroblasts transfected with pre-miR-29b demonstrated a significant increase in foci mass
compared to NTC, and transfection with anti-miR-29b resulted in a significant decrease
in Mcl-1-positive foci mass (pre-miR-29b, p=0.0029; anti-miR-29b, p=0.0003; Fig.
4.6C). Representative images with digital zoom are shown in Fig. 4.6D-F. In conclusion,
this data combined demonstrated that miR-29b induces an increase of Mcl-1 at both

MRNA and protein levels in intestinal fibroblasts.

In contrast to plant miRNAs, human miRNAs display only limited complementarity to
their target mMRNA and can mediate inhibition through translational repression, rather than
MRNA degradation [233, 505-507]. Although some miRNAs have been shown to up-
regulate their mRNA targets (reviewed in [508]), this appears to be an exception to the
rule. As miR-29b has been previously validated to target the 3’-UTR of Mcl-1 by others,
the up-regulation of Mcl-1 by miR-29b observed here may be indirect through the
modulation of up-stream regulators of Mcl-1. The following section aims to investigate
the potential regulation of miR-29b on two established up-stream regulators of Mcl-1,
interleukin (IL)-6 and 8.
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Figure 4.6. miR-29b up-regulates Mcl-1 mRNA and protein. Intestinal fibroblasts (n=3) were
transfected with NTC, pre-miR-29b and anti-miR-29b for 72 hr. Cells were fixed and stained with Hoechst
33342 and an antibody against Mcl-1. (A-C) Mcl-1 positive foci were used to create an overlaying mask.
This mask was then used to define foci mass in individual cells. The graph represents the fold change in
median foci mass/nuclei following transfection with pre-miR-29b or anti-miR-29b relative to NTC. (D-F)
Representative images Mcl-1 following transfection with NTC, pre-miR-29 or anti-miR-29b. Bar represents
mean values with SEM. **p<0.01 and ***p<0.001. Size bar 20 um ((A-B), digitally zoomed images of (D-
F)) and 100 um (original images D-F).
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4.5 MiR-29b up-regulates Mcl-1 potentially IL-6 and IL-8

One of the most potent inducer of Mcl-1 is through IL-6 [509, 510]. IL-6 is a classic pro-
inflammatory cytokine crucial in mounting an effective immune response. Recent studies
have shown that IL-6 can induce collagen | expression [511] and its expression was found
to be up-regulated in renal fibrosis in mice [512]. Furthermore, IL-6 has been implicated
in a variety of fibrotic conditions via alternative trans-signalling pathways (cells that do
not normally express the IL-6 receptor, but become responsive to I1L-6 due to high levels
of soluble IL-6 receptor present in extracellular matrix) [513]. A second cytokine, IL-8,
has also been shown to increase the expression of Mcl-1 [514], and elevated serum levels

of IL-8 are reported to be associated with fibrosis in chronic liver disease [515].

To investigate the regulatory effect of IL-6 and I1L-8 on Mcl-1, intestinal fibroblasts were
treated with IL-6 or IL-8 (both 10 ng/ml) for 4, 8 or 24 hr. Cells were fixed and stained
with Hoechst 33342 and an antibody against Mcl-1. Cells were imaged on the IN Cell
Analyzer 1000 microscope under identical exposure conditions and the IN Cell Developer
v1.8 was used to calculate the median foci mass of Mcl-1 in the nuclei as described
previously (Section 4.4, Fig. 4.6A-B). Fibroblasts treated with either IL-6 or IL-8 for 4 hr
up-regulated the mass of Mcl-1-positive foci, of which IL-6 approached significance. (IL-
6, p=0.064; IL-8, p=0.033; Fig. 4.7A). Stimulation for longer than 4hr (8 hr or 24 hr)
diminished this up-regulation (8 hr, IL-6, p-0.589; IL-8, p=0.378; 24 hr, IL-6, p=0.960;
IL-8, p=0.152; Fig. 4.7A). Additionally, mRNA expression of MCL-1L/MCL-1ES and
MCL-1S was measured by gqRT-PCR following stimulation of I1L-6 or IL-8 (10 ng/ml) for
4 hr. Fold change in expression relative to NT fibroblasts demonstrated no change in
MCL-1L/MCL-1ES (IL-6, p=0.2143; 1L-8, p=0.3201; Fig. 4.7B) nor MCL-1S mRNA (IL-
6, p=0.1306; IL-8, p=0.9216; Fig. 4.7C). These results confirmed that both IL-6 and IL-8
can induce the up-regulation of Mcl-1 protein following 4hr of treatment. However, they
failed to alter the expression of MCL-1 at the mRNA level. In conclusion, this data shows
that both IL-6 and IL-8 have the ability to increase the protein level of Mcl-1 (IL-6

approached significance).
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Figure 4.7. Mcl-1 protein expression is induced by IL-6 and IL-8 (A) Intestinal fibroblasts (n=5) were
treated with 10 ng/ml of 1L-6 or IL-8 for 4, 8 or 24 hr. Cells were fixed and stained with Hoechst 33342 and
an antibody against Mcl-1. The graphs represent the median Mcl-1 foci mass/nuclei following treatment
with 10 ng/ml IL-6 or IL-8 relative to NT. (B-C) Intestinal fibroblasts (n=3) were treated with 10 ng/ml of
IL-6 or IL-8 for 4 hr. qRT-PCR was performed on extracted RNA and expression of MCL-1L/ES and MCL-
1S mRNA was determined. The graphs represent the fold change relative to NT. Bars represent mean with
SEM. *p<0.05.
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To test the hypothesis that miR-29b might up-regulate Mcl-1 indirectly via IL-6 or IL-8,
intestinal fibroblasts were transfected with NTC and pre-miR-29b. Messenger RNA
expression for IL6 and IL8 was assessed via gRT-PCR and normalised to the
housekeeping gene GAPDH. Fibroblasts transfected with pre-miR-29b showed a
significant increased fold change of IL6 compared to NTC transfected cells (p=0.0077;
Fig. 4.8A). IL8 mRNA levels were also up-regulated by pre-miR-29b and approached
significance (p=0.06, Fig. 4.8A). Furthermore, ELISA measured the production of IL-6
and IL-8 by fibroblasts in the supernatant following transfection with NTC or pre-miR-
29b. The production of IL-6 and IL-8 were both significantly increased by fibroblasts
transfected with pre-miR-29b compared to NTC (IL-6, p=0.0027; IL-8, p=0.0268; Fig.
4.8B). These results suggest that miR-29b up-regulates the mRNA expression of IL6 and
IL8 and their production into the extracellular space.

| have demonstrated previously that miR-29b has the ability to down-regulate COL1A2
and COL3AL in intestinal fibroblasts (Section 4.2). This has been demonstrated by others
to be directly through the 3’-UTR of both genes [375, 379]. To identify whether the miR-
29b/1L-6/1L-8 axis may also affect collagen genes, mRNA expression of both COL1A2
and COL3A1 was measured following stimulation with 1L-6 or IL-8 (10 ng/ml). Fold
change in expression relative to NT fibroblasts demonstrated no change in the expression
of either COL1A2 or COL3Al following stimulation with 10 ng/ml IL-6 (COL1AZ2,
p=0.1988, COL3Al, p=0.1997; Fig. 4.8C) or 10 ng/ml IL-8 (COL1A2, p=0.2274;
COL3AL, p=0.1222; Fig. 4.8C).

In conclusion, this data suggests that miR-29b indirectly up-regulates Mcl-1 protein

expression via IL-6 and IL-8.
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Figure 4.8. miR-29b up-regulates IL-6 and IL-8. (A) Intestinal fibroblast (n=6) were transfected with
NTC and pre-miR-29b for 48 hr. The graph represents the fold change in expression of 1L6 and IL8 mMRNA
measured by gRT-PCR. (B) Supernatant was collected from fibroblasts transfected with NTC and pre-miR-
29b after 48 hr. The graphs represent the production of IL-6 and IL-8 measured by ELISA. (C) Intestinal
fibroblasts (n=3) were treated with 10 ng/ml of 1L-6 or IL-8 for 4 hr. qRT-PCR was performed on extracted
RNA and expression of COL1A2 and COL3A1 mRNA were measured. The graph represents the fold
change relative to NT. Bars represent mean values with SEM. *p<0.05 and ** p<0.01.
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4.6 Discussion and future work

4.6.1 The expression of miR-29 family is reduced in SCD vs NSCD tissues

One of the major advantages of the Illumina v.2.0 array is its sensitivity and the ability to
detect low abundance miRNAs with limited amounts of starting RNA. However, this
sensitivity becomes a crucial limitation when evaluating highly expressed miRNAs are
present in the sample, as this leads to saturation of the fluorescent signal for the relevant
probes. This meant that differences in abundantly expressed miRNAs could not be
revealed using this platform leading potentially to omission from subsequent downstream
data analysis. One of the miR-29 family (miR-29b) was saturated on the array, and was
therefore investigated further, along with the other members, miR-29a and miR-29c.
Validation by gRT-PCR demonstrated that all three family members were down-regulated
in SCD vs NSCD tissues (Section 4.2). This observation is in accordance with previous
reports of fibrosis in other organs [372-378], indicating that the miR-29 family plays a
key role in the pathogenesis of fibrosis in various organs.

4.6.2 miR-29b down-regulates COL1A2 and COL3A1 mRNA and collagen 111 protein

MiR-29b was selected for further functional studies, as reports have confirmed that this
family member is most frequently implicated in the down-stream events leading to
fibrosis. mMRNA levels of COL1A2 and COL3A1 were down-regulated and up-regulated
following transfection with pre-miR-29b or anti-miR-29b in isolated fibroblasts,
respectively. This echoes previous reports in cardiac fibroblasts [375], skin fibroblasts
[378], and human trabecular meshwork cells [379]. This also demonstrates that the effect
of miR-29b on ECM molecules, such as collagens, is consistent in fibroblasts originating
from wvarious organs. Protein expression analysis of collagen | and Il by
immunofluorescence demonstrated a reduction of collagen Il following transfection with
pre-miR-29b. However, collagen | protein levels remained unchanged despite the down-
regulation of COL1A2 mRNA by pre-miR-29b. Protein expression is dependent on many

factors, including protein turn over, and a literature report demonstrated that the turn-over
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rate of collagen | protein is much slower than that of collagen 11l [516]. The effects of
transient transfection are temporary and last around 72-96 hr, depending on cell doubling
time and cell type. This may explain why transfection with pre-miR-29b resulted in
down-regulated expression of COL1A2 but did not modulate collagen | protein level
within this time-frame. Future experiments to tackle this problem could include the use of
expression vectors to create a cell line that stably expresses miR-29b over a period of
time. Analysis of collagen | protein in these cells could determine if sustained expression
of miR-29b suppresses the expression of collagen | protein over a longer time course.

4.6.3 TGF-p up-regulates collagen via the down-regulation of miR-29b

TGF-B is a potent mediator in major fibrotic events, including CD fibrosis [201].
Intestinal fibroblasts stimulated with TGF-B displayed elevated expression of COL1A2
and COL3A1 and suppressed miR-29b expression (Section 4.3). This is in accordance
with previous studies in fibroblasts from the heart [375], lung [377] and liver [374],
which demonstrated repression of miR-29b by TGF-f. Additionally, in intestinal
fibroblasts, TGF-P stimulation following the over-expression of miR-29b demonstrated a
repression of the TGF-B-mediated-up-regulation of COL1A2 and COL3AL (Section 4.3).
This suggests that TGF-B potentially exerts its pro-fibrotic effects by suppressing miR-

29b expression in CD, and that this might be universal in fibrogenesis of various tissues.

Further experiments should aim to investigate the role of miR-29 in the pathogenesis of
fibrosis in vivo mouse models of intestinal fibrosis. Unfortunately, models for IBD are
generally focused on the inflammation side and these animals do not live long enough to
develop fibrosis in the way that humans do. Hence, most of the current research is
directed towards mechanistic in vitro functional experiments. However, a recent 1L-10
KO mouse has demonstrated features of intestinal fibrosis [517]. The authors showed an
increase in ECM molecules in the mucosa, submucosa and muscularis of these mice at
week 16, together with an increase in gene expression of TGF-p, collagen I and a-SMA
[517].
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To further this line of research | would aim to:

1. Establish a working collaboration with Yuan and colleagues in order to investigate
the mMRNA/mMIRNA expression in IL-10 KO mice. For instance, intestinal tissue
could be sampled at various time points of IL-10 KO mice. These could then be
profiled for miRNA and/or mRNA analysis, preferably using a high-throughput
platform such as microarray or RNA sequencing. This would provide useful
insights into the altered MRNA/mMIRNA expression during the course of fibrosis in
these mice, and could potentially highlight targets that may be involved in the
early steps of intestinal fibrosis;

2. Identify genome-wide targets for miR-29b using the Target ID Library system.
Given the fact that the expression of miR-29 family is dysregulated during fibrosis
in various organs, large scale identification of their targets would provide
important insight into the functional role of this family. Genome-wide
transcriptome analysis following over-expression of miR-29b in mouse models
has been previously conducted [518, 519]. However, both analyses were
performed in the context of a diseased mouse model (liver fibrosis [518]; muscle
dystrophy [519]). | would therefore, propose to use the Target ID Library system
to identify genome-wide targets that are directly targeted by miR-29b; and

3. To date, only one miR-29 KO mouse has been generated. Kogure and colleagues
produced a tissue-specific knockout of the miR-29ab locus, ablating miR-29a and
miR-29b expression in the hepatic stellate cells in the liver [518]. This resulted in
an increased susceptibility to fibrosis and impaired cell survival following
fibrogenic stimuli in the liver of these mice, compared to WT mice. Future
experiments to investigating the role of miR-29b in intestinal fibrosis could
include the production of a conditional miR-29 KO mouse specific to gut
fibroblasts. Intestinal tissue would be sampled at various time points and
investigated for fibrosis markers to elucidate whether the loss of miR-29b in

intestinal fibroblasts is sufficient to initiate intestinal fibrosis.
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4.6.4 Mcl-1 expression is induced by miR-29b

Transfection with pre-miR-29b in intestinal fibroblasts showed an increase of Mcl-1 at
both the mRNA and protein level. Furthermore, Mcl-1 protein was up-regulated
following transfection with pre-miR-29b (Section 4.4). This result was unexpected as
many groups have previously identified a direct down-regulation of Mcl-1 by miR-29b
using 3’UTR-luciferase reporter assays, as well the down-regulation at RNA and protein
level [491-494].

The Mcl-1 gene undergoes alternative splicing to produce three potential isoforms: MCL-
1L, MCL-1S and MCL-1ES. The Tagman assays used to determine the mRNA levels of
the Mcl-1 isoforms were not able to distinguish between MCL-1L and MCL-1ES.
Nevertheless, gRT-PCR demonstrated that up-regulation of both MCL-1L/MCL-1ES and
MCL-1S (Section 4.4), suggesting that Mcl-1 is induced by miR-29b. Future experiments
could aim to pinpoint exactly which isoform is modulated by pre-miR-29b. For instance,
Kim and colleagues, identified the three isoforms using distinct primer sequences [500].
Experiments with these primers on RNA from cells transfected with miR-29b would
allow discrimination between the three different isoforms and demonstrate whether all of
them are regulated by miR-29b.

Due to the lack of protein isolated from intestinal fibroblasts, Mcl-1 antibody validation
was performed on six CRC cell lines (HCT116, DLD-1, HT55, HT29, VACOA4S and
SW837). Western blot for Mcl-1 shows the dominant band at approximately 40kDa
(Appendix Fig. 3), which correlates to the molecular weight of anti-apoptotic Mcl-1L. A
fainter band at around 31kDa for Mcl-1S could also be seen. Mcl-1ES has a molecular
weight of 24kDa [500] and was not detected. These results suggest that the increased
protein expression quantified using this antibody following transfection with miR-29b
presents both the Mcl-1L and Mcl-1S isoforms. However, the fact that this antibody does
not detect the shortest Mcl-1ES isoform in CRC cell lines does not necessarily mean that

this would be the case in intestinal fibroblasts. Therefore, additional western blots should
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be performed on protein extracted from intestinal fibroblasts transfected with NTC and
pre-miR-29b to identify which isoform is modulated by miR-29b.

Nonetheless, studies that show Mcl-1 attenuates liver fibrosis in mice are a consequence
of the knockdown of entire Mcl-1 gene which potentially involves all three isoforms.

Therefore, future work to elucidate the role of Mcl-1 in intestinal fibrosis could include:

1. The investigation of the expression of Mcl-1 at both protein and mRNA following
TGF-pB treatments in intestinal fibroblasts. If the hypothesis were that Mcl-1 is
anti-fibrotic, 1 would predict TGF-f to down-regulate its expression; and

2. If Mcl-1 is modulated by TGF-p, ectopic over-expression of Mcl-1 with the use of
an expression vector in combination with TGF-f treatments may determine if the

pro-fibrotic abilities of TGF-B could be abrogated by the presence of Mcl-1.

4.6.5 miR-29b up-regulates Mcl-1 potentially through IL-6 and IL-8

MiRNAs down-regulate their targets through binding predominantly within the 3°-UTR
region of the mRNA resulting in mRNA degradation or inhibited protein translation.
Although the direct up-regulation of genes by miRNAs has been reported, mechanistic
evidence is currently lacking (reviewed in [508]). I, therefore, hypothesised that the up-
regulation of Mcl-1 by miR-29b is indirect in nature in this context. Literature reports
suggests that Mcl-1 expression is induced by IL-6 [509] and IL-8 [514]. In Section 4.5, |
demonstrated that intestinal fibroblasts treated with 10 ng/ml of IL-8 for 4 hr significantly
up-regulated the protein expression of Mcl-1 (4 hr treatment with 10 ng/ml IL-6
approached significance, p=0.06). Interestingly, transfection with pre-miR-29b increased
the levels of both cytokines at the mRNA and protein level, indicating a potential link
between miR-29b, IL-6/IL-8 and Mcl-1. Evidence from the literature on the effect of
miR-29b on the expression of IL-6 or IL-8 in other cell types seems conflicting and
contradictory to my findings. For example, Amodio and colleagues demonstrate a
reduction of IL8 mRNA but no change in IL6 mMRNA in endothelial cells following pre-
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miR-29b transfection [520], and Xing and colleagues showed that transfection with anti-
miR-29b resulted in an increase in IL8 MRNA in HEK293T cells [521]. On the contrary,
Salama and colleagues demonstrated an induction of IL-6 cytokine production by
macrophages following pre-miR-29b transfection [522], which supports my
observations. The different contexts and cell types used in these studies may account for
these apparently conflicting results. Nonetheless, the up-regulation of IL-6 and IL-8 by
miR-29b and the subsequent up-regulation of Mcl-1 by both cytokines still support the
anti-fibrotic miR-29b/IL-6/1L-8/Mcl-1 axis in intestinal fibrosis. A hypothetical model of
how TGF-B may exert its pro-fibrotic action through miR-29b is shown in Fig. 4.9.

Further experiments are warranted to confirm this anti-fibrotic pathway. For example, to
test whether the increase in Mcl-1 by miR-29b is a result of the increased expression of
IL-6 and/or IL-8, knockdown of IL-6 and IL-8 via siRNA in combination with miR-29b

transfection could be performed.
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Figure 4.9 Hypothetical model of the role of miR-29b in CD fibrosis. TGF-$ is a potent pro-
inflammatory cytokine. TGF-B modulates fibrosis through down-regulation of miR-29b, resulting in
increased deposition of collagen and therefore fibrosis. In CD fibrosis, additional down-stream pathways of
miR-29b are unknown. Up-regulation of anti-fibrotic mediator Mcl-1 by miR-29b may potentially be

mediated through IL-6 and IL-8. Up-regulated genes in green, down-regulated genes in red.
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Chapter 5: Hypoxia-responsive miRNAs in

colorectal cancer

5.1 Introduction and aims

One of the biggest challenges in the management of CRC patients remains the wide
spectrum of response to preoperative or neo-adjuvant treatments. This can range from
tumours that do not respond to those that shrink completely following treatment
(pathological complete response, pCR). Knowledge as to why there is such a great range
of response to therapy is limited. However, it has been generally accepted that the
effectiveness of therapy is dependent on a number of factors, including the tumour
microenvironment. For example, the lack of oxygen (hypoxia) within the tumour is
known to be detrimental for tumour response to CRT. Hypoxia within the tumour is a
consequence of the rapid acceleration in growth of the tumour cells combined with a lack
of adequately formed blood vessels. Radiotherapy relies on the transformation of oxygen
molecules into radical oxygen which in turn aids killing of cancer cells; efficacy is,
therefore, hindered under low oxygen tensions. In addition, some chemotherapy drugs
require oxygen molecules to generate free radicals that contribute to cytotoxicity.

Moreover, hypoxia induces cellular adaptation that may result in chemoresistance.

Over recent decades, miRNAs have been identified as key post-transcriptional regulators
and are dysregulated in many cancers, including CRC (Section 1.3.2). Literature reports
have previously demonstrated altered miRNA profiles under hypoxic conditions in vitro.
However, these are often dependent on cellular context and oxygen concentration and
generally limited to just one or two cell lines. Therefore, | aimed to analyse the change in
MIRNA expression in six colorectal cancer cell lines (DLD-1, HCT116, HT29, HT55,
SW837 and VACO4s) under three oxygen conditions (20.9%, 1% or 0.2%), thereby
allowing a more comprehensive insight in miRNA changes under hypoxia in CRC in

vitro.
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Aims for this chapter:

1.

Identify differentially expressed miRNAs in six CRC cell lines under hypoxic
conditions;
Validate selected candidate miRNAs identified by the array using gRT-PCR;

Further validate candidate miRNAs in CRC tissue and search for correlation to
hypoxia marker CAIX;

Determine the role of candidate miRNAs in the resistance to the chemotherapy
drug 5-FU in CRC cell line under hypoxic conditions;

Identify altered cellular metabolism under hypoxia in six CRC cell lines using CE-
TOFMS; and

Establish a cell line stably expressing the Target ID Library system to identify

genome-wide mMRNA targets for selected candidate miRNAS.
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5.2 Differential expression of miRNAs under hypoxia

To identify differentially expressed miRNAs under hypoxic conditions in vitro, three
colon cancer cell lines (DLD-1, HCT116 and HT29) and three rectal cancer cell lines
(HT55, SW837 and VACO4s) were cultured under three different oxygen tensions
(20.9%, 1% or 0.2%) for 48 hr. Global miRNA expression profiling was performed using
the Exigon 7™ generation miRCURY LNA miRNA Array (Capture probes for 3,100
miRNAs, miRBase v 19.0). Raw data was initially analysed by Exigon and data

normalisation was performed using the mean plate intensity.

Often, it is difficult to interpret large miRNA data sets easily, preventing the scientist
from getting the most out of the data obtained. Multivariate analysis allows the
investigation of many variables at once and helps to understand the relationship that may
exist between each variable. For the analysis of the miRNA data, a PLS-DA was used. A
PLS-DA is a supervised extension of the principle component analysis (PCA) and aims to
project data into a 2D plot with axes that explain the majority of the variance in the data.
In addition, this regression model intends to maximise the separation between groups of
observations and identify the variables (in this case, miRNASs) that contribute to this

separation.

Log-transformed miRNA expression data of all six cancer cell lines under the three
oxygen conditions was subject to PLS-DA modelling. Generally, axis 1 and 2 explain the
majority of the variance in the data (Fig. 5.1A), which show that the biggest variance in
the miRNA expression data is between the six different cell lines and not between the
three oxygen conditions within each cell line. This is illustrated by the clustering of the
three data points for each oxygen tensions for each cell line (Fig. 5.1A). Interestingly,
PLS-DA axis 1 can slightly differentiate between the origin of the cell line, as rectal
cancer cell lines are predominantly clustered on the left half of the graph, and colon
cancer cell lines on the right half (Fig. 5.1A). Smaller changes in the miRNA expression

data can be observed in subsequent axes of the PLS-DA model. Indeed, an unsupervised
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separation of oxygen tensions within each cell line (apart from SW837) could be
identified along PLS axis 6 (Fig. 5.1B), demonstrating the existence of altered miRNAs
between the three different oxygen tensions within each cell line. Finally, the magnitude
of change for each miRNA contributing to this separation under hypoxic conditions was
extracted from the PLS-DA analysis (Appendix Fig. 4).

Because the PLS-DA is merely an exploratory tool and cannot uncover significant
changes in the variables between different samples, an alternative multivariate analysis
(linear regression) was used to model the relationship between miRNA expression
profiles between the three different oxygen tensions for each cell line. In this model,
oxygen tensions were assigned a numerical variable meaning that the oxygen tensions are
linked (i.e. 20.9% is higher than 1% and 1% is higher than 0.2%). This enabled the
identification of miRNAs whose expression was significantly different between the three
oxygen conditions. A single p-value was then determined for each miRNA across all six

cell lines, and revealed 41 miRNAs with a p-value less than 0.05 (Table 5.1).

Fold change in expression in both hypoxic tensions (1% and 0.2%) were normalised to
the normoxic (20.9%) counterpart. Log transformed fold changes for the 41 altered
miRNAs are illustrated in a heatmap and ranked according to their PLS-DA axis 6
loadings (Fig. 5.1C). Not surprisingly, one of the most significantly altered miRNA
across the six cell lines was miR-210. Previous literature reports indicate that miR-210 is
the most consistently up-regulated miRNA following hypoxia (reviewed in [523]). In
fact, sequencing data analysis from literature reports show that the promoter region of
miR-210 contains hypoxia-responsive-elements (HREs) [329, 523], which are strongly
conserved among species. In conclusion, the up-regulation of miR-210 in all six cell lines
confirms the importance of this miRNA in the cellular response to lack of oxygen in CRC

in vitro.

mMiRNAs are often found to be clustered within the genome and can be produced from the

same primary transcript (Section 1.3.1.1) which generally contain members of the same
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miRNA family (reviewed in [431]). In addition, miRNA families are often co-expressed
(especially those that are clustered together) and have close similarity in their seed
sequences thereby increasing the synergistic effect they have on a common target.
Interestingly, more than one member of five different miRNA families were shown to be
dysregulated under hypoxia (colour coded miRNAs; Table 5.1). For instance, two
members of the miR-320 family, miR-320b and miR-320c, were shown to be up-
regulated under hypoxic conditions. Also, the PLS-DA loadings of PLS axis 6 (Appendix
Fig. 4) of miR-320b and miR-320c demonstrated high loading scores, highlighting the
fact that these miRNAs have a large impact on the separation of the miRNA data between

the three oxygen conditions.

In conclusion, the microarray and subsequent analysis discovered a number of
significantly altered miRNAs under hypoxic conditions in CRC in vivo. To confirm these
changes, validation of the candidate miRNAs using a second experimental method is
critical. In total, 12 miRNAs (miR-19b, -106b, -141, -147, -1180, -21, -29a*, -210, -30d, -
320a, -320b and -320c) were selected for further validation by gRT-PCR. The selection of
these miRNAs was non-random and based on previous reports linking these miRNAs to

hypoxia or therapy resistance and/or based on their significance value (p-value).
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Figure 5.1. Altered miRNA expression profile under hypoxic conditions. Fold change (log2) in
expression of significant altered miRNAs between normoxia (20.9%) and both low oxygen conditions (1%
and 0.2%) in six CRC cell lines. (A) Data was subjected to PLS-DA, which was supervised according to
cell line and unsupervised to oxygen tension. PLS Axis 1 vs Axis 2 is shown. (B) Subsequent PLS-DA Axis
5 vs Axis 6 are illustrated. (C) Significantly altered miRNASs under hypoxia were subsequently identified by
linear regression multivariate analysis. A heatmap of log transformed fold changes between the different
oxygen tensions normalised to 20.9% is shown. The miRNAs are ranked according to PLS-DA loadings on

the right-hand side of the heatmap.
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Table 5.1. Differentially expressed miRNAs under hypoxic conditions. Significant differentially
expressed miRNAs under hypoxia determined by multivariate analysis, ranked by p-value. A p<0.05 was
considered significant. miRNA family and cluster information is noted for each miRNA. Families with
more than one miRNA altered under hypoxia are indicated with a different colour. Candidate miRNAs

selected for further validated are in bold and underlined.

m Chr Location/cluster/family m Chr Location/cluster/family -

hsa-miR-210 Chr 11 0.0002 hsa-miR-1247-5p Chr 14 0.0199

Chr 12/miR-200 family (miR-
hsa-miR-141-3p 0.0003 hsa-miR-1290 Chr 1 0.0223
200a/blc,-141, -429)

Chr 16/clustered with miR-
hsa-miR-193b-3p 0.0019 hsa-miR-3940-5p Chr 19 0.0225
365a/miR-193 family (a/b)

hsa-miR-30d-5p Chr 8/miR-30 family (a/b/c/d/e) 0.0024 hsa-miR-32-5p Chr9 0.0245
Chr 7/miR-17 family (miR-20a/b, -93, -

hsa-miR-4723-3p Chr 17 0.0041 hsa-miR-106b-5p 0.0264

106a/b)

Chr 1/miR-200 family (miR-200a/b/c, -

hsa-miR-10a-3p Chr 17 0.0065 hsa-miR-200b-5p 0.0275

141,-429)
Chr 7/miR-29 family (a/b/c) 0.0076 hsa-miR-571 Chr 4 0.0286
hsa-miR-3614-3p Chr 17 0.0079 hsa-miR-30e-5p Chr 1/miR-30 family (a/b/c/d) 0.0319

Chr 21/clustered with miR-89 and
hsa-miR-181d Chr 19/miR-181 family (a/b/c/d/) 0.0085 hsa-let-7¢ 0.0321
miR-125b/Let 7 family (a/b/c/d/e/f/i)

hsa-miR-4429 Chr 2 0.0091 hsa-miR-181a-5p Chr 1/miR-181 family (a/b/c/d/) 0.0325
Chr 11/miR-192 family (miR-192
hsa-miR-192-3p 0.0093 hsa-miR-634 Chr 17 0.034
and -215)
Chr 7/miR-182 family (miR-182, -
hsa-miR-183-5p 0.0119 hsa-miR-4728-3p Chr 17 0.0354
183,-96)
hsa-miR-33a-5p Chr 22/miR-33 family (a/b) 0.012 Chr 1/miR-320 family (a/b/cd) 0.0356
Chr 18/miR-320 family (a/b/c/d) 0.0134 hsa-miR-4284 Chr7 0.0357
hsa-miR-3653 Chr 22 0.0163 hsa-miR-3679-3p Chr 2 0.0362
hsa-miR-21-5p Chr 17 0.0164 hsa-miR-23¢c Chr X/miR-23 family (a/b/c) 0.038
hsa-miR-205-5p Chr 1 0.0173 hsa-miR-1180 Chr 17 0.0415
Chr 17/Clustered with miR-144, -
hsa-miR-4732-5p 54 0.0176 hsa-miR-4258 Chr 1 0.0421

Chr 7/miR-182 family (miR-182, -183,

hsa-miR-1237-3p Chr 11 0.0181 hsa-miR-96-5p -96) 0.0428
Chr 7/miR-29 family (a/b/c) 0.0192 hsa-miR-431-5p Chr 14/C14MC 0.0482
hsa-miR-147 Chr 9 0.0195
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5.3 MiRNA array validation

In the hunt for a potential mMiIRNA biomarker for hypoxia in CRC tissue, the validation of
the miRNA array was focused on up-regulated miRNAs as these would be more easily
detected than miRNAs that were to be down-regulated. Validation of 12 up-regulated
candidate miRNAs in hypoxia (miR-19b, -106b, -141, -147, -1180, -21, -29a*, -210, -
30d, -320a, -320b and -320c) was performed via qRT-PCR on an independent set of
experiments in all six cell lines (n=3). One of the main challenges faced when validating
miRNAs via a different platform (i.e. gRT-PCR) is the way in which the data is
normalised. Microarrays are often normalised to the overall plate mean intensity which
takes into account the intensity of all probes, producing robust and reliable signatures of
differentially expressed miRNAs. By contrast, QRT-PCR relies on the selection of one or
more stable miRNAs for normalisation. To identify a stable miRNA for normalisation of
the qRT-PCR, expression values from the original array were investigated. Two miRNAs
displayed stable expression across all three oxygen tensions and all six cell lines (miR-16
and let-7a). In addition, a third small non-coding RNA (RNU19) was also tested. The
expression of miR-16, let-7a and RNU19 was assayed via qRT-PCR in the six cell lines
under three oxygen conditions (n=3). One way ANOVA analysis indicated that the
expression of let-7a was significantly altered between the three different oxygen tensions
in two of the six cell lines (HCT116, p=0.0053; HT29, p=0.0326; Fig. 5.2A). The
expression of miR-16 and RNU19 was not significantly altered between the three
different oxygen tensions in any of the six cell lines. RNU19 expression was slightly up-
regulated in VACO4s but this was not significant (p=0.08; Fig. 5.2A). Closer inspection
of the variation (standard deviation) between the expression in 20.9% oxygen vs hypoxia
(both 1% and 0.2%) of miR-16 and RNU19 showed that this was much smaller for
RNU19 than for miR-16. In particular, when 20.9% was compared to 0.2%, the standard
deviation was significantly lower (20.9% vs 0.2%, p=0.0135; Fig. 5.2B). In addition,
RNU19 has been used for normalisation purposes in previously published in vitro
hypoxic experiments [524, 525]. For these reasons, RNU19 was selected to normalise the

MIRNA expression data.
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Figure 5.2. RNU19 is an appropriate normaliser for miRNA expression. Three miRNAs (RNU19, miR-
16 and let-7a) were tested for miRNA normalisation. (A) The expression (2°T) for each miRNA was
determined by qRT-PCR (n=3). (B) The graphs represent the standard deviation (StDev) for each of the
miRNAs in six cell lines between 20.9% oxygen and 1% or 0.2% oxygen tensions, respectively. Bars

represent mean values with SEM.
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Next, normalised gRT-PCR data of the 12 candidate miRNAs was subjected to
multivariate analysis to uncover the relationship between the expression of each miRNA
and the three oxygen conditions within each cell line. In collaboration with Dr. Jake
Bundy (Imperial College, UK), a linear regression model was used to determine a p-value
for each miRNA. Expression values for the 12 miRNAs are displayed in a heatmap and

ranked according to their p-value (Fig. 5.3A).

In summary, validation by gRT-PCR confirmed the up-regulation of six (miR-21, -210, -
30d, -320a, -320b and -320c) of the 12 candidate hypoxia-responsive miRNAs. To
explore the relevance of two of these miRNAs in CRC tissue samples, miR-21 and miR-

210 were selected for further investigation in ex vivo human CRC tumour samples.
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Figure 5.3. Candidate miRNA validation by gRT-PCR. Twelve candidate miRNAs were selected for
validation by qRT-PCR in an independent set of experiments (n=3) in three colon (DLD-1, HCT116 and
HT29) and three rectal (HT55, SW837 and VACO4s) cell lines. A heatmap of fold change (log2) in
miRNA expression between the three oxygen conditions normalised to 20.9% oxygen (n=3). The heatmap
is ranked according to the p-values obtained from the multivariate analysis. Asterisks indicate significantly
altered (p<0.05) miRNAs.
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5.4 MiR-210 is up-regulated in rectal cancer tissue and positively

correlates with the expression of hypoxia marker CAIX

In vitro validation by gRT-PCR confirmed the up-regulation of six candidate miRNAs in
hypoxic conditions (Section 5.3). However, assessing their expression in CRC tissue is
essential to evaluate their potential as biomarkers for hypoxia ex vivo. Therefore, small
RNAs (including miRNAs) were extracted from 13 FFPE blocks with CRC tumour tissue
by a previous PhD student without our lab (Dr. Alexandra Parker). Hematoxylin & eosin
staining on a serial section was used to outline tumour tissue. A second serial section was
stained for the hypoxia marker CAIX (Section 2.17) via IHC and percentage CAIX
expression within the CRC tumour was determined according to protocols used by others
[430]. I, then determined the expression of miR-210 and miR-21 by gqRT-PCR and
normalised to let-7a and miR-16. The correlation between the expression of both
miRNAs and CAIX staining within the tumour was determined (Spearman’s Rank
correlation). Correlation analysis demonstrated that the expression of miR-210 positively
corresponded to the expression of the hypoxia marker CAIX in the 13 CRC tumours
analysed (Rho=0.679, p=0.012, Fig. 5.4A). By contrast, miR-21 expression did not show
a correlation to CAIX expression (Rho=-0.019, p=0.938, Fig. 5.4A). Furthermore, three
other miRNAs (miR-30d, -141 and -147) were also tested for correlation between CIAX
and miRNA expression. Neither of these miRNAs demonstrated a correlation to CAIX

expression in CRC tumour tissue (Appendix Fig. 5).

To further explore the localisation of the miRNAs in CRC tumour tissue, | performed in
situ hybridisation for miR-210 and miR-21 on eight FFPE blocks containing CRC tumour
tissue. A serial section was stained for CAIX for comparative analysis. MiR-21 was
selected despite the lack of correlation with CAIX shown by gRT-PCR. miR-21 is
increased under hypoxic conditions in vitro and in situ hybridisation will reveal which
cell types express this miRNA in comparison with CAIX. Images of CAIX, miR-210 and

miR-21 are shown in Fig 5.4C-E, respectively. In all tumours, both CAIX and miR-210
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expression was found in the epithelial cells of the gut crypts and their expression
coincided in the majority of the tumours (Fig. 5.4C-D). Conversely, miR-21 expression
was predominantly present in stromal cells underneath the epithelial cells, regardless of
the presence of CAIX in the overlying epithelial cells (Fig. 5.4C, E). These observations
explain the positive correlation between miR-210 and CAIX as well as the lack of
correlation between miR-21 and CAIX. The positive expression of miR-21 in the stroma
surrounding the cancer cells may suggest that miR-21 plays a role in tumour progression

and invasion via modulation of the tumour microenvironment.

In conclusion, expression analysis of miR-210 demonstrated a positive correlation to the
tumour hypoxia marker CAIX in CRC tissue, emphasising the importance of miR-210 in
CRC tumour hypoxia. To further elucidate the potential of miR-210 as a biomarker of
treatment response, evaluation of miR-210 expression in additional CRC tumour samples

with treatment response data is required.
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Figure 5.4. In situ expression of miR-210 positively correlates with the hypoxia marker CAIX in CRC
tissue. (A-B) Scatter plots of miR-210 and miR-21 expression (1/2°T) assessed by qRT-PCR and
percentage of CAIX-positive staining within the tumour (n=13). Correlation efficiency calculated with
Spearman’s Rank. Rho values and p-value are shown above. (C-E) IHC of CAIX and in situ hybridisation
of miR-210 and miR-21 performed on serial sections of FFPE blocks of CRC tumours (n=8). Black
rectangles outline the position of the zoomed images shown below.
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5.5 HCT116 cells are resistant to 5-FU under hypoxia

The chemotherapeutic agent 5-FU has been the standard first-line treatment for many
cancers, including CRC, for the past 40 years [95]. In recent years, the availability of
other compounds used in combination with 5-FU has broadened treatment options. For
example, adjuvant treatment with 5-FU/Leucovorin in CRC has been shown to increase
overall survival in a number of studies [96-98]. This combined treatment now forms the
basis of treatment for patients with CRC stage 111, although, the benefit of the use in stage
Il CRC tumours is less obvious [99]. Despite increased response rates with combined
therapy, tumour resistance is still a major concern in the treatment management of
advanced CRC [526]. Solid tumours are a very complex and heterogeneous tissue,
comprising of cancer, stromal and immune cells. Nearly all solid tumours contain regions
of hypoxia and early evidence indicated that a decrease in oxygen tension could
contribute to this drug resistance in solid tumours (reviewed in [121-123]). Indeed,
tumour expression of HIF-1a has been correlated to 5-FU resistance in gastric cancer
[527], and the colon cancer cell line HCT116 is more resistant to 5-FU under hypoxic

conditions, which may be reversed by knockdown of HIF-1a, [528].

To verify hypoxia-induced resistance to 5-FU under hypoxia in my CRC cell line model,
HCT116 cells were treated with various concentrations of 5-FU (1 puM, 5 pM, 10 pM,
100 uM and 1 mM) or the same concentration of vehicle (Dimethyl sulfoxide, DMSO)
under three oxygen conditions (20.9%, 1% or 0.2%) for 48 hr. Cells were fixed with 3.7%
PFA and nuclei were stained with Hoechst 33342. Nuclei were imaged using the IN Cell
Analyzer microscope 1000 and were then counted. Cell counts for each drug
concentration was normalised to the vehicle control treated cells. One-way ANOVA
statistical analysis was performed and demonstrated that HCT116 grown under hypoxic
conditions are more resistant to 5-FU compared to their normoxic counterpart. This was
the case for all 5-FU concentrations measured (all 5-FU concentrations p<0.05, Fig.

5.5A). Post-hoc tests (Tukey’s) were performed to determine which groups differed and
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demonstrated that HCT116 cells maintained under 0.2% oxygen were significantly
different compared to 20.9% (Fig. 5.5A).

Having previously validated hypoxia-responsive miRNAs (Section 5.3), including miR-
21, miR-210 and miR-30d, | hypothesised that a) these hypoxic-responsive miRNAs may
play a role in the resistance to 5-FU in HCT116 cells under hypoxic conditions and b) that
the inhibition of the expression of these miRNAs under hypoxia could sensitise the cells
to 5-FU. To test the hypotheses, HCT116 cells were transfected with NTC, pre- or anti-
miR for all three miRNAs (miR-21, -210 and -30d) for 48 hr and then treated with 10 uM
5-FU or DMSO for a further 48 hr under 20.9% or 0.2% oxygen (Fig. 5.5B). This
timeline was selected to allow for sufficient functional knockdown of targets by the
miRNAs. Following treatment with 5-FU, an increase in survival was observed when
cells were cultured under 0.2% oxygen and transfected with NTC (20.9%, NTC,
mean=48.6%; 0.2%, NTC, mean=83.2%; p=0.0390, Fig. 5.5C). This resistance was
similar to that previously obtained with 10 uM 5-FU (20.9%, mean 45.5%; 0.2%,
mean=80.3%; Fig. 5.5A). Also, when cells were cultured under 20.9% oxygen, the
combination of miRNAs and 5-FU treatment did not significantly alter the cell survival
compared to NTC transfected cells, indicating that the transfection of NTC did not the
response to 5-FU. By contrast, when the expression of miR-21 and miR-30d was
inhibited with transfection of the anti-miR, cells were slightly more sensitive to the 5-FU
treatment. (NTC, mean=83.2%; anti-miR-21, mean=69.4%; anti-miR-30d, mean=71.1%;
Fig. 5.5C). Statistical analysis, however, demonstrated this decrease was not significant
when compared to NTC transfected cells (anti-miR-21, p=0.2027; anti-miR-30d,
p=0.1297; Fig. 5.5C).

In addition, further over-expression of miR-210 under 0.2% oxygen reduced cell survival
compared to NTC transfected cells (pre-miR-210, p=0.0838, Fig. 5.5C). Literature reports
have shown that miR-210 targets key modulators of cell cycle progression resulting in a
decrease of cell proliferation (reviewed in [529]). Indeed, cells transfected with pre-miR-

210 (DMSO treated only) demonstrated a decrease in cell survival under both oxygen
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tensions (Appendix Fig. 6), indicating that in HCT116 cells an overexpression of miR-
210 results in a decrease in cell survival. In summary, this data demonstrated that
HCT116 cells are more resistant to 5-FU under 0.2% oxygen conditions compared to
normoxic conditions. The inhibition of hypoxia-responsive miRNAs miR-21 and miR-
30d may be a potential method to increase sensitivity to 5-FU but requires further

investigation.
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Figure 5.5. HCT116 cells are resistant to 5-FU under low oxygen conditions. (A) HCT116 cells were
treated with various concentrations of 5-FU (1 pM, 10 puM, 100 puM or 1 mM) or the appropriate vehicle
control (DMSO) for 48 hr under three oxygen conditions (20.9%, 1% or 0.2%). The graph represents the
percentage of cell survival normalised to each vehicle control. Significance was calculated with one-way
ANOVA tests. Asterisks indicate significant changes between 20.9% and 0.2% identified by post-hoc tests
(Tukey’s). (B) The experimental time-line of transient transfections of miRNAs in combination with 5-FU
treatment under two oxygen conditions (20.9% or 0.2%). (C) The graph represents the percentage of cell
survival normalised to vehicle controls following transfection with NTC and pre- or anti-miR of miR-210, -

21 or 30d. Bars represent mean values with SEM. *p<0.05, **p<0.01 and ***p<0.001.
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5.6 In vitro cell metabolism is altered under hypoxic conditions

Cells have evolved mechanisms to adapt to low oxygen conditions which include
decreasing their mitochondrial respiratory rate by decreasing the cellular ATP levels
[530-532]. Additionally, HIF-1a may be activated by low cellular ATP levels indirectly;
ATP deficit increases glycolysis and HIF-1a activity [533]. Also, AMP-activated protein,
induced following ATP-deprived cellular conditions, activates HIF-1 [534]. These
observations link the hypoxia induced-HIF-1 signalling pathway to altered metabolic
activity. Recent research is focussed on exploiting these cellular metabolomic changes
under hypoxia to identify new strategies for anticancer drug development and/or

identifying prognostic biomarkers for treatment response.

To identify changes in cellular metabolites under hypoxia, the six CRC cell lines used
previously (DLD-1, HCT116, HT29, HT55, SW837 and VACO4s) were maintained
under three differential oxygen conditions (20.9%, 1% or 0.2%) for 48 hr. In
collaboration with Dr. Adam (Oxford University), the six cell lines were prepared for CE-
TOF/MS (Section 2.20) and shipped to the Institute for Advanced Biosciences at Keio
University, Japan, where cellular metabolites were assessed. The resulting metabolite
profile was subsequently modelled using multivariate analysis, in collaboration with Dr.
J. Bundy (Imperial College, UK) (Section 2.21). Similar to the multivariate analysis
performed on the miRNA data, metabolite profile in the six cell lines was modelled
against the three oxygen conditions. This analysis demonstrated a significant (p<0.05)

relationship between 92 metabolites under hypoxia.

Various computational tools are available to group the metabolites into metabolic

networks or pathways. Two examples are MetaboAnalyst (www.metaboanalyst.ca) and

ImPaLa (http://impala.molgen.mpg.de), which offer a range of functions including
metabolic pathway analysis. Both tools use the KEGG database [535]. An overview of
the online computational tools is reviewed in [536]. The 92 significantly (p<0.05) altered

metabolites were subject to an over-representation analysis to identify altered pathways
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under hypoxia using these two different platforms. An over-representation analysis
evaluates whether a particular group of metabolites is represented more than expected by
chance within a metabolite list. In the context of pathway analysis, this illustrates if
metabolites involved in a particular pathway are enriched. To further enhance the over-
representation analysis, the user may upload a list of all metabolites that were detected by
the platform to acts as a “background” for the analysis. The analysis in MetaboAnalyst
was performed both with (Fig. 5.6A) and without (Fig. 5.6B) the background. Ten
pathways were significantly (p<0.05) enriched in hypoxia of which the top five are shown
(Fig. 5.6A). However, once background metabolites were taken into account, this was
reduced to only a single enriched pathway in hypoxia, which was the aminoacyl-tRNA
biosynthesis (Fig. 5.6B). Next, a second analysis with ImPaLa was performed on the
same metabolite profile (with background) which identified six metabolite pathways that
were enriched in hypoxic conditions (Fig. 5.6C). Interestingly, the aminoacyl-tRNA
biosynthesis pathway was also enriched using this different analysis software (highlighted
in red; Fig. 5.6A-C).

Among the 92 significantly altered metabolites in hypoxia, 13 are involved in the amino-
acyl-tRNA biosynthesis pathway. To illustrate their expression profile, fold change (log2)
in concentration (fmol/cell) was calculated for each of the six cell lines and is shown in
Fig. 5.7. Strikingly, the metabolite profile in hypoxia is very different amongst the six cell
lines. For instance, in two cell lines (SW837 and HT55) all 13 metabolites were altered
consistently in both 1% and 0.2% oxygen compared to 20.9%. By contrast, the change in
metabolite concentration in hypoxia in the other cell lines is mixed, with some of these
metabolites increased whilst others were decreased (Fig. 5.7).

In conclusion, in silico analysis of altered metabolites under hypoxia in six CRC cell lines
demonstrated an enrichment of the aminoacyl-tRNA biosynthesis pathway. This
preliminary data will need to be validated and could form a platform for future

experiments which will be discussed in the discussion in Section 5.8.4.
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Beta-Alanine metabolism . 0.00000195
Amincacyl-tRNA biosynthesis 75 2.80 13 0.000175
Glutathione metabolism 38 1.42 9 0.000498
Nitrogen metabolism 39 1.46 9 0.000620
Alanine, aspartate '?and glutamate 24 0.90 7 0.00127
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B
Aminoacyl-tRNA biosynthesis 21/75 5. 0.0477
; m
Central carbon metabolismin cancer 32/37 0.000204
ABC transporters 34123 18 0.00343
Aminoacyl-tRNA biosynthesis 21/75 13 0.00463
Mineral absorption 13/29 9 0.0173
Protein digestion and absorption 29/47 15 0.0179
Cyanomino acid metabolism 11/45 8 0.0218

Figure 5.6. Altered metabolite pathways under hypoxia. (A) The top five metabolite pathways altered in
hypoxia determined by an over-representation analysis performed with MetaboAnalyst software.
Metabolites with a p<0.05 were used for the analysis. Total = the total number of metabolites in a given
pathway, Expected = the number of hits expected by chance, Hits = number of metabolites significantly
altered in hypoxia, and p-value = Bonferoni correct p-value. (B) The same analysis as in A, but with
background metabolite profile taken into account. Detected/total = the number of metabolites detected using
CE-TOF/MS / the total number of metabolites in a given pathway. (C) The six metabolite pathways
significantly (p<0.05) altered in hypoxia determined by an over-representation analysis performed with
ImPaLa software. Metabolites with a p<0.05 were used and background metabolite profile has been taken

into account. The common pathway, aminoacyl-tRNA biosynthesis, is highlighted in red.
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Figure 5.7. Altered metabolites under hypoxia involved in the aminoacyl-tRNA biosynthesis pathway.

Fold changes (log2) in metabolite concentration compared to 20.9% oxygen are shown for each of the six

CRC cell lines.
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5.8 Discussion and future work

5.8.1 Altered miRNA profiles under hypoxia in six CRC cell lines
Using three colon (DLD-1, HCT116 and HT29) and three rectal (HT55, SW837 and

VACO4s) cancer cell lines as a model, differential expression of miRNAs were
determined using a miRNA microarray (Section 5.2). MiRNA profiling under hypoxia in
CRC has been previously studied, however, often the cell lines used, oxygen tension, and
the time under hypoxia are variable. For example, many publications reports altered
miRNA profiles in a single cell line such as Caco-2 [537] or HeLa cells [538]. Oxygen
concentration and the time under hypoxic conditions also vary; Caco-2 cells were
cultured under 1% oxygen for 48 hr, whilst HeLa cells were maintained at 0.01% oxygen
for a 24 hr period. The closest comparison to the microarray performed in this thesis is a
miRNA analysis by Kulshreshtha and colleagues in 2009 [323]. In this study, two colon
(HT29 and HCT116) and two breast cancer (MCF7 and MDA-MB231) cell lines were
maintained at 0.02% oxygen for 24 and 48 hr [323]. Statistical analysis of all four cell
lines combined across both time lines identified a number of miRNAs significantly
altered, and four were common between their results and mine (miR-181a, -192, -21 and -
210). This suggests that some miRNAs are commonly up-regulated under hypoxia in both

colon and breast cancer cell lines.

The miRNA analysis performed in this thesis represents the change in expression under
three different oxygen conditions in six cell lines combined. This was done to uncover
miRNAs that were hypoxia-responsive despite differences between the cell lines.
Undeniably, the PLS-DA analysis demonstrated the presence of inherent differences in
MIRNA expression between the six different cell lines (Section 5.2). Further analysis of
each of the six cell lines independently, or grouped into rectal and colon cancer cell lines,
might uncover additional hypoxia-responsive miRNAs regulated in an origin-specific

manner.
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Data validation by a second method is crucial to confirm the changes observed by
microarrays are genuine. The expression of 12 candidate miRNAs was determined by
gRT-PCR in an independent set of experiments for all six cell lines (Section 5.3). In
contrast to the array, data normalisation of qRT-PCR data relies on one or two genes that
are stable under the various conditions. The small non-coding RNA RNU19 was shown to
be most stable under hypoxia of the miRNAs that were tested (miR-16, let-7a and
RNU19), and has been previously shown in the literature to be a stable housekeeping
control under hypoxia [524, 525], and was therefore used for normalisation. Of the twelve
candidate miRNAs tested, six were successfully validated by gRT-PCR (miR-21, -210, -
30d, -320a, -320b and -320c). One of the most significantly up-regulated miRNA in the
array was miR-210 (p=0.002). In addition, the loadings from the PLS-DA analysis
showed that miR-210 had the largest loading score (Appendix Fig. 4), indicating that
miR-210 contributed highly to the separation of the groups along PLS-DA axis 6. These
results echo literature reports demonstrating that miR-210 is up-regulated under various

oxygen conditions in a range of cell lines from different tumours (reviewed in [523]).

miRNAs tend to be up-regulated in clusters, many of which contain members of the same

miRNA family (introduced in Section 1.3.1.1). Interestingly, five miRNA families of

which more than one family member was altered under hypoxia, were identified. Apart
from the miR-320 family which was subsequently validated, two members of the miR-
182 family (miR-182, -183 and -96) were significantly up-regulated (miR-182 and miR-
96). Also, miR-183 was up-regulated but just missed the significance cut off of p<0.05
(p=0.067). The expression of miR-182 has been previously shown to be up-regulated in
CRC [539-541], and correlated to poor prognosis and overall survival [540, 541].
Furthermore, overexpression of miR-182 promoted cell survival and proliferation of
colon cancer cell lines [542]. The second member of the family altered under hypoxia,

miR-96, was shown to be induced in CRC tissue and correlated to liver metastasis [283].

Further experiments could include:
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1. The validation of the three members of the miR-182 family (miR-96, -182, and -
183) by qRT-PCR;

2. If these validate, in situ hybridisation of these miRNAs in CRC tissue could be
performed to test a) the localisation in CRC tissue and b) whether the expression
correlates with the hypoxia inducible factor CAIX;

3. The knockdown of this family via transfection of anti-miRs in CRC cell lines
could be performed to assess whether they are able to modulate the response to 5-
FU under hypoxia; and

4. The Target ID Library system could be used to elucidate of genome-wide targets
of this miRNA family.

5.8.2 miR-210 is up-regulated in rectal cancer tissue and positively correlates to

hypoxia marker CAIX

To benchmark the in vitro findings, miRNA expression of miR-21, -210 and -30d was
determined in rectal cancer ex vivo and correlated to the expression of hypoxia-inducible
protein CAIX. Correlation efficiency analysis demonstrated a positive correlation
between miR-210 and CAIX expression in rectal cancer tissue (Section 5.4). A recent
report by Qu and colleagues indicates that miR-210 expression is up-regulated in human
CRC tissue compared to normal tissue [543]. This work demonstrated a positive
correlation between miR-210 and HIF-1a mRNA expression, which supports a common
conclusion between their data and mine. In this report, miR-21 was shown to be up-
regulated in CRC tissue compared to normal tissue, however, it was not apparent whether
this correlated with HIF-1o. mMRNA expression [543]. This might be because Qu and
colleagues did not observe any correlation but did not report this. This might provide an

explanation as to why | did not observe a correlation between miR-21 and CAIX.

In situ hybridisation experiments demonstrated co-localisation between miR-210 and

CAIX expression in the epithelial cells in rectal cancer tissue (Fig 5.4C, D). A study in

2012 also showed a correlation between miR-210 and CAIX in cancer tissue samples of
159



non-small cell lung carcinoma [544], which lends support to the hypothesis that miR-210
is up-regulated in hypoxic regions of solid tumours. Furthermore, in situ expression of
miR-210 expression was co-localised to VEGF expression in idiopathic osteonecrosis, an
area prone to being hypoxic [545]. VEGF is involved in angiogenesis and its expression
is driven by HIF-1a, further indicating a link between miR-210 and hypoxic tissues.

In addition to miR-210, miR-21 was also investigated by in situ in rectal cancer tissue
sections. miR-21 was found to be expressed in the stromal-like cells in rectal cancer
tissue, but this did not correlate with the expression of CAIX (Fig. 5.3C-E). However, the
lack of direct correlation between miR-21 and CAIX expression does not mean that miR-
21 is not expressed in hypoxic regions. In other tissue types there might be a link with
expression of this miRNA and hypoxia. For example, in situ analysis of miR-21
expression found up-regulation in hypoxic cells in the lungs of mice [546] and human
hypoxic arteries [547]. Furthermore, the observation that miR-21 is predominantly
expressed in fibroblast-like cells within tumour has been confirmed by others who have
used the same probe: miR-21 is up-regulated in stromal-like cells in colon cancer [548,
549] and breast cancer [550]. By contrast, groups that performed in situ hybridisation
with other commercial probes for miR-21 observed expression mainly in the tumour cells
[286, 551]. The differences in probe might explain some of the differences in localisation
of miR-21 expression.

Assessing miRNA as potential biomarker is a rapidly developing area of research. To
predict whether a patient’s tumour will respond to CRT by using miRNA expression
profiles as a guide is the ultimate goal. For instance, the prognostic value of miR-210
expression in tissue samples has been studied in many cancers (reviewed in [343]). A
single paper has recently identified that high miR-210 expression in CRC tissue is a
prognostic factor for overall survival [543]. However, further investigation of the
prognostic value of miRNAs, including miR-210, is required. For example, to determine
if miRNAs could be used for predicting response to neo-adjuvant treatment of CRCs, a

retrospective study should be performed using at least two large independent cohorts of
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patients; miRNA expression would be determined in a routinely-taken tumour biopsy
before treatment, scored, and then be used to classify patients and determine if

differentially expressed miRNA profiles can predict treatment outcome.

Circulating miRNAs could be exploited as biomarkers in clinical use as they have several
advantages: readily detectable, stable in serum, and profiling is relatively cheap and
quantitative [552]. Circulating miRNAs, including miR-21 and miR-210, have been
intensively studied in various cancers [343, 553]. Interestingly, circulating expression
levels of miR-21 were dysregulated in prostate [554, 555], ovarian [556, 557], pancreatic
[352, 558], liver [559, 560] and oesophageal cancers [561], but has not yet been
investigated in CRC. Similarly, miR-210, was dysregulated in blood samples (serum or
plasma) in pancreatic [352], lung [562], non-small lung [563] and renal cancers [564,
565], but again has not yet been looked at in CRC. Therefore, there is a real need to
investigate the potential for circulating miRNAs as a diagnostic/prognostic biomarker for

CRC and to predict treatment response. Future work to investigate this could include:

1) The collection of blood samples at time of diagnosis or pre-treatment. Circulating
miRNA profiles should be determined, preferably by array or RNA sequencing.
This data could then be used to determine if certain miRNA signatures may
predict treatment outcome;

2) Candidate miRNAs could then be further investigated ex vivo. For example, in situ
hybridisation of candidate miRNA could be performed in CRCs that did not
respond to neo-adjuvant therapy; and

3) The investigation of candidate miRNAs could be performed in vivo. The response
to chemotherapeutic drugs, such as 5-FU, following transfection with pre-miR and
anti-miR of candidate miRNAs in CRC cell lines. These experiments could

elucidate their role in the sensitivity of chemotherapy drugs in vivo.
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5.8.3. Hypoxia induces resistance to chemotherapy drug 5-FU in HCT116 cell line.

The chemotherapeutic agent 5-FU forms the basis of the standard treatment of many
cancers, although resistance to this drug is a major concern in treatment of CRC patients.
Interestingly, hypoxia in solid tumours is linked to 5-FU therapy resistance [121-123]. In

Section 5.5, | demonstrated that HCT116 colon cancer cells maintained under hypoxia

demonstrated a significant resistance to the chemotherapy drug 5-FU at various dosages,
which confirms existing literature reports in the same cell line [528]. However, Ravizza
and colleagues showed that HCT116 maintained under 1% oxygen for 24 hr demonstrated
an increased resistance to 100 uM and 250 uM 5-FU, but they did not observe increased
resistance using 10 uM 5-FU. This is in contrast to my observations where HCT116 cells
maintained under lower oxygen tensions (0.2% oxygen) were significantly more resistant
to a range of 5-FU dosages, but not significantly different under 1% oxygen (Fig. 5.5A).
These contradicting results might be due to the differences in treatment time: Ravizza and
colleagues treated HCT116 cells with 5-FU for 24 hr, whereas | cultured mine for 48 hr.
Nevertheless, resistance to 5-FU under hypoxic conditions has been demonstrated in other
cell lines, including gastric cancer cell lines [566], oral squamous cell carcinoma cell
lines [567] and oesophageal squamous cell cancer cell lines [568], indicating that
resistance to 5-FU under hypoxic conditions is a feature of cell lines originating from

multiple tumour types.

| hypothesised that the hypoxia-responsive miRNAs might play a role in the 5-FU
resistance observed in the HCT116 colon cancer cell line. The suppression of miR-21 or
miR-30d by transfection with an anti-sense miRNA induced a slight, but not significant,
sensitivity to 5-FU under 0.2% oxygen (Fig. 5.4C). Interestingly, no change in 5-FU
sensitivity was observed under normoxic conditions, suggesting that the miRNA
regulatory effect may be oxygen tension dependent and that some of their targets are only
present under these hypoxic conditions. Other groups have shown that miRNAs are able
to modulate the sensitivity to 5-FU under normoxic conditions of a number of CRC cell
lines. These including miR-31 (HCT116; [569]), miR-129 (HCT116; [570]), miR-192
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(RKO; LoVo; [571]), miR-21 (HT29; [572]), miR-23a (HCT116; HT29; [573]) and miR-
143 (HCT116; [574]). These literature reports show that the experimental time lines,
including the duration of 5-FU treatment and the transfection time-frame are crucial. For
example, Wang and colleagues demonstrated that HCT116 were more sensitive to 5-FU
following 24 hr of suppression of miR-31 but not after 48, 72 or 96 hr [569]. Further
experiments to optimise experimental conditions will need to be performed to assess if
the suppression of miR-21 and miR-30d could modulate 5-FU sensitivity in HCT116 cells
under hypoxic conditions. For future experiments | would propose to conduct the

following experiments:

1) The treatment of 10 uM 5-FU in HCT116 cells (and potentially other cell lines)
for various lengths of time. Firstly, cell survival should be assayed following 5-FU
treatment under 0.2% oxygen to determine drug resistance across a variety of time
point;

2) Next, cell lines could be created with lenti-viral vectors producing anti-sense
miRNA of the candidate miRNA in order to assure sustained suppression of these
miRNAs over a longer period of time; and

3) Cell survival would be assayed following 5-FU treatment under 0.2% oxygen in

these cells to elucidate the role of miRNAs in 5-FU resistance.

miR-210 is one of the most studied miRNAs under hypoxia and is greatly induced under
these conditions. It was, therefore, surprising that the suppression of miR-210 with an
anti-sense miRNAs under hypoxia did not modulate 5-FU sensitivity (Fig. 5.5C),
particularly as miR-210 is a direct target of HIF-1a which has been previously shown to
be involved in the resistance to 5-FU under hypoxic conditions in HCT116 cells [528]. It
may be that the up-regulation of miR-210 under hypoxia is too strong to be counteracted
with the transient transfection of the anti-sense miRNA strands. As mentioned above, in
order to assure stable knockdown of miR-210, a stably expressing cell line could be
produced with the use of lenti-viral vectors producing anti-sense miR-210. Future

experiments using this cell line could include:
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1) The maintenance under hypoxic conditions for various lengths of time. To
confirm the knockdown of miR-210, gRT-PCR should be performed at various
time points to assure sufficient knockdown to counteract the strong up-regulation
of miR-210 under hypoxia;

2) A number of tumourigenicity assays could be performed to elucidate the role of
miR-210 in tumourigenesis under hypoxia: cell survival/proliferation, cell
migration and colony formation. These experiments could highlight the
importance of miR-210 under hypoxic conditions; and

3) Sensitivity to 5-FU could be assayed in these cells under hypoxic conditions,

especially under 0.2% oxygen.

5.8.4. Altered metabolite profile in six CRC cell lines under hypoxia

Metabolomics is a powerful tool developed to systematically analyse the metabolic
fingerprint of a cell. In Section 5.6, | demonstrated an altered metabolite profile under
hypoxic conditions (1% and 0.2%) and pathway analysis revealed an enrichment in the
aminoacyl-tRNA biosynthesis pathway by two independent pathway analysis tools
(MetaboAnalyst and ImPaLa). However, the metabolic profile of the 13 metabolites
altered in this pathway for each of the six cell lines is very different. For instance, in two
cell lines, the majority (DLD-1) or all (HT55) of the 13 metabolites are increased. In three
cell lines, the majority (HCT116 and VACOA4s) or all (SW837) of the 13 metabolites are
decreased and in one cell line (HT29) approximately half of the 13 metabolites are either
increased or decreased response under hypoxia (Fig 5.8). Due to the intrinsic differences
between the cell lines, the mixed changes observed here is perhaps unsurprising. In fact,
the PLS-DA analysis already demonstrated that these cells are very different based on
their miRNA expression. (Fig. 5.1A, Section 5.2).

A similar study by Frezza and colleagues was conducted on a single cell line [575]. They
investigated the metabolite profiles of HCT116 when maintained at 1% oxygen for 36 hr,
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and detected 241 metabolites, 32 of which were significantly altered under hypoxia.
Interestingly, of the 32, 18 were amino acids and were increased in concentration (apart
from L-kynurenine which was decreased). Seven of these amino acids were commonly
dysregulated under hypoxia in HCT116 cells between the two studies: Threonine, Proline,
Phenylalanine, Histidine, Methionine, Asparagine and Serine. In contrast to their
findings, these seven amino acids were down-regulated in HCT116 cells under both 1%

and 0.2% oxygen in my analysis.

There are several important differences between the study conducted by Frezza and

colleagues vs the one conducted in this thesis. These are outlines below.

1. Timepoint: 36hr vs 48hr.
2. Oxygen concentration: 1% oxygen vs 1% and 0.2% oxygen combined.
3. Mass-spec platform: LC-MS vs CE-TOFMS.

These differences, especially the different mass-spec technique, may have contributed to
the differences in the concentration of the amino acids. For instance, LC-MS uses high-
powered liquid chromatography (LC) to separate the particles before its mass-to-charge
ratio is analysed. By contrast, CE-TOFMS is a relatively new technique in which the
mass-to-charge ratios are determined by the time that it takes for the particles to reach a
detector (time of flight (TOF)).

Future experiments to further this research could include:

1) The validation of the altered metabolites under hypoxia in vitro. A targeted
metabolomics experiment could be performed to validate the change in metabolite
expression of the 92 significantly altered metabolites and/or metabolites; and

2) To determine whether there is a link between the changes in miRNA expression
and the altered metabolite profile, the expression of both miRNAs and metabolites

should be determined for each individual cell line. Target prediction tools could
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then be used to identify potential mRNA targets that involved in regulating the

production of the altered metabolites.

One interesting additional finding by Frezza and colleagues was that autophagy increases
under hypoxia [575]. Autophagy is a catabolic pathway in which proteins and organelles
are sequestered into autophagosomes and fused with lysomes for digestion. The
autophagy pathway is part of a normal cell homeostasis process to replace damaged cell
membranes and organelles, however, autophagy is up-regulated under physiological
stress conditions, including cell starvation (reviewed in [576]). Recently, reports indicate
that hypoxia-induced autophagy is HIF-la dependent [577, 578] and inhibition of

autophagy under hypoxic conditions reduces tumour cell viability [578].

Furthermore, miRNAs have been implicated to regulate various steps in the autophagy
pathway (reviewed in [579]). For instance, miR-30d targets multiple genes involved in
the autophagy pathway including many of the ATG core proteins [580], and miR-30d
regulates cisplatin-resistance by promoting autophagic survival in thyroid carcinoma cells
[581]. Additionally, miR-210 enhances autophagy by down-regulating Bcl-2 expression
in colon cancer cells [582]. Interestingly, the inhibition of hypoxia-induced autophagy
resulted in an increased sensitivity to the chemotherapy drug 5-FU in DLD-1 cells [583].
Therefore, work to further this line of investigation would include:

1) To determine the expression of putative targets in the autophagy pathway for miR-
30d and miR-210 under both normoxia and hypoxia. CRC cell lines would be
transfected with pre- or anti- miRs and cells cultured under normoxia and
hypoxia. qRT-PCR and western blotting techniques would be used to confirm the
regulation of key autophagy players by these miRNAs at the mRNA and protein
level, respectively; and

2) To determine the involvement of autophagy in 5-FU resistance under hypoxic
conditions in HCT116 cells. Similar experiments to those conducted in Section

5.5 could be performed. In addition to 10 uM 5-FU treatment, cells could be
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transfected with siRNA against ATG5 (siRNA against this gene is most often used
to disturb the autophagy pathway) under both 20.9% and 0.2% oxygen. Nuclei
counts would be calculated using the IN Cell Developer v1.8 to determine cell

viability.

The pathway analysis that was performed with two independent tools highlighted a
common pathway dysregulated under hypoxia; the aminoacyl-tRNA biosynthesis. This
pathway plays an important role in decoding the genetic message by facilitating the
transfer of the amino acids onto the growing peptide chain to create proteins. The
enzymes that catalyse the ligation of amino acids to their tRNA are aminoacyl tRNA
synthesases (AARs). Besides their role in protein synthesis, their non-canonical function
has been linked to metabolic conditions, neural pathologies and several cancers (reviewed
in [584]). Very early reports already reported an increase in methionine-acyl tRNA
synthesase in colon cancer [585], and, more recently, trypophanyl-tRNA synthesase was

associated with disease recurrence of colon cancer [586].

During cellular stress, such as hypoxia, tRNAs can be cleaved to produce transfer RNA-
derived fragments (tRFs), which can inhibit protein synthesis [587] and modulate cell
proliferation [588]. A recent report demonstrated that tRFs contain anti-tumour and anti-
metastatic properties in breast cancer in vitro and in vivo, and that this is mediated
through Y-box binding protein-1 (YB-1) [589]. Interestingly, YB-1 promotes EMT [590]
and is linked to the response to therapy in various cancers [591], including rectal cancer

[592]. To further this line of research | would:

1. Perform a targeted mass-spectrometry of all amino acids to validate the CE-
TOF/MS findings under hypoxic conditions in vitro.

2. Evaluate the expression of the AARs enzymes under hypoxic conditions in vitro.
Their expression could be measured at the RNA and protein level by gRT-PCR

and western blotting, respectively.
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3. Assess the expression of YB-1 at the RNA and protein level under hypoxic
conditions in vitro. Further evaluation of YB-1 could be performed in FFPE

sections in CRC in vivo, and correlated with hypoxia markers miR-210 and CAIX.

5.8.5. Target ID Library preparation (Appendix)

Target identification of miRNAs is crucial to provide information on which cellular
processes a given miRNA influences. To date, 3’-UTR luciferase reporter assays are
considered the gold standard to confirm whether a miRNA targets a particular mRNA
sequence. However, this is a highly laborious exercise and requires preliminary
knowledge guided by in silico target prediction identification. In our laboratory, we have
recently obtained a novel system (Target ID Library, Sigma, UK) which will allow us to
discover genome-wide direct mRNA targets of any miRNA of choice and provide insight

into the regulatory function of miRNAs in key cellular pathways.

HeLa cells were chosen as a suitable cell type for creating a cell line stably expressing the
Target ID Library constructs as expression analysis demonstrated a low endogenous level
of our three key candidate miRNAs (miR-21, -210 and -30d) relative to the six CRC cell
lines. Transfected cells were treated with Zeocin (500 pg/ml) to positively select cells that
had stably integrated cDNA constructs containing a TKzeo fusion gene and PCR analysis
on DNA from selected cells indicate the presence of the library of constructs (Appendix
Fig. 9). Although the Target ID Library claims to contain constructs for 16,922 unique
genes, next generation sequencing (NGS) performed by Gaken and colleagues
demonstrated the presence of only 5,626 genes in their MCF7 clones [593]. Therefore, the
next step is to sequence the library cDNA inserts to confirm satisfactory genomic

coverage within the HeLa cell population.

Once we are satisfied with the genomic coverage of the cDNA inserts, transfection with

lenti-viral vectors producing our candidate miRNAs (miR-21, -210 or -30d) will be

performed. Additionally, a fourth miRNA, miR-34a, will be screened for targets, too.
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NGS analysis to uncover genes that are directly targeted by these miRNAs within their
3’-UTR region will be performed. More importantly, to benchmark the results, NGS data
will be compared directly to the publically available combined pulsed SILAC and
microarray analysis data sets for miR-34a [475, 476]. The data generated will provide a
comprehensive cross-platform analysis, which will demonstrate the similarities but also,
importantly, highlight the difference between these different technologies. Next,
identified targets from the Mission ID/NGS analysis will be analysed with Ingenuity
Pathways Analysis (IPA) software in collaboration with QMUL Bioinformatic service in
order to elucidate relevant pathways modified by the candidate miRNAs. Identified
targets in potentially dysregulated pathways will then be validated at the protein level via
transfection of the candidate miRNAs in isolated fibroblasts (miR-34a) and CRC cell
lines (miR-21, -210 and -30d). The validation of important pathways regulated by these
miRNAs may provide valuable insights into cellular mechanisms that are fundamental to
the development of fibrosis (miR-34a) and the cellular responses to hypoxia and/or 5-FU
resistance mechanisms in CRC (miR-21, -210 and -30d). Finally, once validated in vitro,
key targets will be validated in vivo in CD fibrosis and CRC tissue and their potential as

biomarker will be investigated.

169



Chapter 6: General conclusions

6.1 Summary of main findings

e ldentification of a subset of miRNAs that play a significant role in the
development and progression of two intestinal diseases, CD and CRC.

e Changes in miRNA expression in the epithelial mucosa often reflect changes in
other parts of the intestine and/or tumour. For example:

o The expression of miRNAs is different between mucosa overlying
strictured compared to non-strictured mucosa,
o The miR-29 family is down-regulated in SCD vs NSCD.

e Experimental studies using both primary cultures and cell lines can be used to
model disease processes and identify mechanisms involving miRNAs notably:

o TGF-B-mediated down-regulation of miR-29b results in the up-regulation
of ECM molecule production, such as collagen 1 and 3,

o The anti-apoptotic protein Mcl-1 is indirectly up-regulated by miR-29b via
IL-6 and IL-8.

e That hypoxia has a significant impact of miRNA expression, which in turn
influences cellular metabolism profiles and drug response in CRC cell lines. For
example:

o Hypoxia alters the miRNAs signature in CRC cells in vitro;

o miR-210 is overexpressed in hypoxic regions of CRC and correlated with
the hypoxia marker CAIX;

o CRC cell line HCT116 is more resistant to the chemotherapy drug 5-FU
under 0.2% oxygen compared to 20.9%;

o The inhibition of miR-21 or miR-30d under 0.2% slightly increases the
sensitivity of HCT116 cells to 5-FU; and

o Hypoxia alters cellular metabolism in CRC cell lines in vitro.
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6.2 The clinical relevance of these findings

6.2.1 How are miRNAs altered during disease processes and what role does the

intestinal microenvironment play in this?

The absence of appropriate animal models that mimic intestinal fibrosis in CD have
historically hindered the functional analysis and discovery of genes and pathways
involved in the progression of fibrosis. The majority of mouse models are used primarily
to study inflammation, and do not reproduce the fibrogenic changes that occur in CD
patients. Additionally, a fundamental problem with studying the pathogenesis of intestinal
fibrosis in humans is that by the time fibrosis is detected, early pathogenic events have
already occurred and the fibrogenic process is fully established. Consequently, the key
initiating events in the pathogenesis of fibrosis can no longer be investigated. If the early
events could be modelled in vivo (e.g. mouse models) then this would represent a
significant step forward and offer the opportunity to test new drugs that target fibrosis
rather than just interfere with the inflammatory process. However, recently, a number of
mouse models have been established that mimic in part the initial events of fibrosis [594].
The evaluation of miRNA-based therapeutic, such as the miR-29 family, will determine

their potential in modulating the various stages of intestinal fibrosis.

Molecular changes in the human gut mucosa reflect the changes that happen in the deeper
layers [201]. Therefore, the down-regulation of the miR-29 family in the mucosa in SCD
areas may provide information regarding the cellular processes that happen deeper in the
tissue. Functionally, this family of miRNAs is important in the pathogenesis of fibrosis in
various organs [372-378]. Therefore, assessing the expression miRNAs, such as miR-29
family, in biopsies taken routinely during CD disease monitoring could be used to detect
early changes in the mucosa that may reflect the initial stages of intestinal fibrosis in the
deeper layers. Evaluating the utility of the miR-29 family as biomarkers would require a
significant prospective clinical trial focussed on newly diagnosed CD patients and

following their progress over time by collecting samples during routine surveillance

171



endoscopy. The expression of miRNAs in these samples (biopsies/serum) should be
correlated to clinical parameters such as disease activity and progression into the various

disease subtypes (inflammatory, stricturing or penetrating CD).

Environmental factors play a key role in the development of many human diseases,
including IBD and cancer. An excessive immune-response to antigens and microbiota in
the gut is one of the contributing factors leading to IBD (both CD and UC). The
modulatory effects of the gut microbiota on miRNA expression have broadened our view
of the regulatory functions of miRNAs in disease. Interestingly, two members of the miR-
200 family (miR-200b and miR-200c) were decreased in conventional mice upon
infection with microbiota [595]. These miRNAs are known to regulate EMT, an
important process that is often dysregulated in both cancer and inflammation/fibrosis. In
fact, work in our laboratory has demonstrated that three members of the miR-200 family
(miR-141, -200a and -200c) are down-regulated in inflamed strictured areas of CD
patients where there is evidence of EMT (Mehta et al., unpublished data). The impact of
the microbiota on miRNA profiles and the cellular inflammatory responses in the mucosa
is an undeveloped area of research. Further work should evaluate whether the use of
faecal transplants could be a beneficial therapeutic strategy to modulate the
inflammatory/fibrogenic events through altering the miRNA profiles in the mucosa of
IBD patients.

6.2.2 Can miRNAs be used as diagnostic or prognostic tools in CD or CRC?

Clinical features in CD have some prognostic value, although, they are often
heterogeneous and their use remains problematic. Inflammatory biomarkers, such as C-
reactive protein and fecal calprotectin, may be used to distinguish active from inactive
IBD, but hold no true predictive value for the development of fibrosis [596]. Bodily fluids
provide an excellent source of circulating miRNAs and have non-invasive biomarker
potential as their expression is stable and can be readily detected. Work in our laboratory

has demonstrated the potential use of serum-based miRNAs as biomarkers to distinguish
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the stricturing CD phenotype (Lewis et al., 2015, in print). This has opened up
opportunities to investigate further the expression of circulating miRNAs, such as miR-

29b, as potential prognostic biomarkers for intestinal fibrosis.

Particular miRNAs are able to discriminate tumour subtype, origin and identify important
cellular mechanisms in tumourigenesis. Also, circulating miRNAs can be used to
distinguish cancer patients from healthy individuals and diagnose early stage cancer [399,
597]. Additionally, miRNAs can be used to predict response to treatment, which is of
significant clinical value and has been investigated intensively over the past decades. For
example, increased miR-21 expression is an indicator of poor outcome in various cancers
[286, 415]. However, these studies were performed in tumour tissue, retrospectively.
Giving the importance of hypoxia-responsive miR-21 in tumourigenesis, and its potential
role in 5-FU resistance under hypoxic conditions in vitro, the use of miR-21 to predict
treatment response in CRC needs to be evaluated in prospective cohort studies with

validation across independent centres.

Recently, the expression of miR-210 in CRC tissue was significantly correlated to large
tumour size, lymph node metastasis, advanced clinical stage and poor prognosis [543]. To
confirm these findings the expression of miR-210 should be further investigated
retrospectively in a large number of CRC tissues and a correlation between miR-210
expression and clinical parameters including treatment response should be determined.
Additionally, miR-210 expression should be evaluated in the serum of early diagnosed
CRC patients. These patients should be followed up and miR-210 expression correlated to
various clinical parameters to assess the utility of miR-210 as a non-invasive biomarker to

predict treatment in CRC.

While the use of miRNAs as biomarkers clearly has significant potential advantages when
compared to protein-based serum biomarkers, systematic high-throughput miRNA
measurement for clinical samples is still in its infancy. The results obtained from different

platforms (QPCR or NGS based) from different vendors are likely to contribute to
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inconsistent measurements. Also, miRNA data normalisation remains a fundamental
challenge. Currently, there is no standardised method and steps to generalise this method
are urgently needed to obtain more consistent, comprehensive and accurate miRNA
signatures that may be adopted for clinical use.

6.2.3 Do miRNAs represent suitable anti-fibrotic or anti-cancer therapeutic targets?

An ideal drug target should have disease-modifying properties, a proven function in the
pathophysiology of the disease and predictable potential side effects. miRNAs are an
attractive therapeutic target as they regulate many cellular processes. The majority of
current therapeutic agents are aimed towards a single molecular target which induces a
modest response. Hence, the ability to repress many targets at once across various
oncogenic pathways provides a strong rationale for developing miRNA-based
therapeutics, although this does have the potential to increase off-target effects and
consequent side-effects. A number of miRNAs have already shown potential in pre-
clinical models and a few have entered the initial phases of clinical trials

(http://mirnarx.com/pipeline/mirna-pipeline.html). Biopharmaceutical company miRNA

Therapeutics Inc is leading the way by having developed a broad pipeline of miRNA-
based therapeutics. Their main compound, MRX34, is a miR-34a mimic drug which
entered phase | clinical trials in 2013. MRX34 is piloted as an anti-cancer drug in patients

with un-resectable liver cancer (www.clinicaltrials.gov) and the phase | results are

encouraging. In the context of fibrosis, an antagonist for miR-21, RG-012, is a potential
anti-fibrotic agent in renal fibrosis in mice. Phase I clinical trials for the use of RG-012 in
Alport syndrome patients (a hereditary nephritis disorder disease characterised by end-
stage kidney disease) are to begin in 2015. Important for future anti-miR drugs, this trial
will determine the pharmacokinetics, cellular uptake, miRNA inhibition and off-target
effects of the therapeutic drug. The knowledge this will determine whether anti-miR-21
may present a suitable anti-fibrotic therapy and in the longer-term could be piloted in

other fibrotic diseases, including intestinal fibrosis.
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The role of miR-210 has been investigated intensively over the past decade and miR-210
is now considered a master sensor of reduced oxygen tension. Its impact on a large
number of cellular pathways has presented miR-210-based therapeutics with exciting
prospects. Many studies have demonstrated the anti-tumourigenesis properties of miR-
210 in vitro. However, more importantly, miR-210 is able to repress tumour growth of in
vivo xenografts of laryngal [598] and liver cancer [599]. Further evaluation of the anti-
tumour properties of miR-210 in additional tumour xenografts models, including CRC,
will provide additional evidence for miR-210-based therapeutic in cancer.

MiRNAs have emerged recently as key regulators of cellular metabolism, including the
metabolism of glucose, lipids and amino acids [600]. A shift in glucose metabolism from
oxidative phosphorylation to aerobic glycolysis is a classic hallmark of tumour cells,
called the “Warburg effect”. Under hypoxia, this adaptive metabolic shift has been
proposed to be advantageous to the tumour cell through the promotion of survival,
proliferation and even resistance to cancer treatment. The altered miRNA and metabolite
profiles obtained under hypoxia in vitro in this thesis provide valuable insights into the
way that miRNAs regulate the cellular metabolism under these conditions. The
development of miRNA-based therapeutic to suppress this metabolic shift could lead to
novel therapeutic strategies to inhibit tumour growth or drug-resistance in CRC. For
instance, miR-210 is known to target a variety of key players in important metabolic
pathways to reduce mitochondrial metabolism and increase glycolysis. Particularly under

hypoxia, the development of anti-miR-210 therapeutics is one that holds much promise.

While the use for miRNA-based therapeutics is encouraging, some of the limitations for
MIRNAs as therapeutic entities should be considered. For instance, the safe delivery of
the miRNA mimic or antagonist to the target cell is crucial for the treatment to be
functionally successful. The complex intestinal human defence includes the innate and
adaptive immune system and drug degradation by gastric enzymes, which may prevent
drugs reaching their target site. Also, the variability of these factors between CD patients

is high, which may further impact the successful delivery of miRNAs in these patients.
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However, several promising strategies to enhance colon-specific delivery, such as
microcapsules, might facilitate the transport of therapeutic agent to the site of disease.
Results from initial clinical trials are awaited and will address some of the challenges that
miRNA-based therapeutics is faced with.

6.2.4 Limitations of this thesis

The functional in vitro studies performed in this thesis have highlighted potential
candidate miRNAs as therapeutic entities in intestinal fibrosis in CD, as well as anti-
cancer agents in CRC. In order to unravel the downstream mechanism of miRNAs, the
most fundamental step is the identification of mRNA targets. Much of the current
knowledge on the cellular function of miRNAs and their targets is predominantly built
around online prediction tools. The incorporation of pathway analysis into these
prediction models have allowed identification of putative targets for miRNAs and the
pathways they might impact on. However, despite the significant increased knowledge on
miRNA biogenesis and function, gaps in the precise mechanism by which they modulate
protein expression remain. For instance, novel targets that are not identified by the
prediction algorithms have been elucidated, highlighting the existence of alternative ways
in which miRNAs modulate their targets. The Target ID Library is a recent development
which enables high-throughput analysis of genome-wide targets of candidate miRNAs

(Target 1D Library appendix). Follow-up studies using this system will include the

identification of novel targets of selected candidate miRNAs. Secondly, mRNA targets
will be validated subsequently at the protein level in vitro and in vivo. The modulation of
5-FU resistance by inhibition of miR-21 and miR-30d was only observed under hypoxic
conditions, suggesting that perhaps the targets involved in 5-FU resistance are only
present under these circumstances. Therefore it will be more importantly to confirm novel

miRNA targets in the correct cellular and disease contexts.

176



Chapter 7: References

N

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.
20.

21.

22.

Ferlay, J., et al., Cancer incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86.
Www.cancerresearchuk.org.

www.cancerresearchuk.org, Statistics on the risk of developing cancer, by cancer type
and age. Calculated using 2008 data for the UK using the ‘Adjusted for Multiple
Primaries (AMP)’ method).

Ferguson, L.R., Meat and cancer. Meat Sci, 2010. 84(2): p. 308-13.

Zisman, A.L., et al., Associations between the age at diagnosis and location of colorectal
cancer and the use of alcohol and tobacco: implications for screening. Arch Intern Med,
2006. 166(6): p. 629-34.

Tsong, W.H., et al.,, Cigarettes and alcohol in relation to colorectal cancer: the
Singapore Chinese Health Study. Br J Cancer, 2007. 96(5): p. 821-7.

Lee, K.J., et al., Physical activity and risk of colorectal cancer in Japanese men and
women: the Japan Public Health Center-based prospective study. Cancer Causes Control,
2007. 18(2): p. 199-209.

de Jong, A.E., et al., Prevalence of adenomas among young individuals at average risk
for colorectal cancer. Am J Gastroenterol, 2005. 100(1): p. 139-43.

Donohoe, C.L., et al., Obesity and gastrointestinal cancer. Br J Surg, 2010. 97(5): p. 628-
42,

Platz, E.A., et al., Proportion of colon cancer risk that might be preventable in a cohort of
middle-aged US men. Cancer Causes Control, 2000. 11(7): p. 579-88.

Johns, L.E. and R.S. Houlston, A systematic review and meta-analysis of familial
colorectal cancer risk. Am J Gastroenterol, 2001. 96(10): p. 2992-3003.

BB, C., The sigmoidoscopic picture of chronic ulcerative colitis (non-specific). Amer J
Med Sci, 1925(170).

Munkholm, P., Review article: the incidence and prevalence of colorectal cancer in
inflammatory bowel disease. Aliment Pharmacol Ther, 2003. 18 Suppl 2: p. 1-5.
WWW.cancer.gov.

Fearon, E.R. and B. Vogelstein, A genetic model for colorectal tumorigenesis. Cell, 1990.
61(5): p. 759-67.

Knudson, A.G., Jr., Mutation and cancer: statistical study of retinoblastoma. Proc Natl
Acad Sci U S A, 1971. 68(4): p. 820-3.

lacopetta, B., et al., Functional categories of TP53 mutation in colorectal cancer: results
of an International Collaborative Study. Ann Oncol, 2006. 17(5): p. 842-7.

Garraway, L.A. and E.S. Lander, Lessons from the cancer genome. Cell, 2013. 153(1): p.
17-37.

Vogelstein, B., et al., Cancer genome landscapes. Science, 2013. 339(6127): p. 1546-58.
Stratton, M.R., P.J. Campbell, and P.A. Futreal, The cancer genome. Nature, 2009.
458(7239): p. 719-24.

Gonzalez-Perez, A., et al., Computational approaches to identify functional genetic
variants in cancer genomes. Nat Methods, 2013. 10(8): p. 723-9.

Walther, A., R. Houlston, and I. Tomlinson, Association between chromosomal instability
and prognosis in colorectal cancer: a meta-analysis. Gut, 2008. 57(7): p. 941-50.

177


http://www.cancerresearchuk.org/
http://www.cancerresearchuk.org/
http://www.cancer.gov/

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.
44,

45.

Fodde, R., R. Smits, and H. Clevers, APC, signal transduction and genetic instability in
colorectal cancer. Nat Rev Cancer, 2001. 1(1): p. 55-67.

Burrell, R.A., et al., Replication stress links structural and numerical cancer
chromosomal instability. Nature, 2013. 494(7438): p. 492-6.

Groden, J., et al., ldentification and characterization of the familial adenomatous
polyposis coli gene. Cell, 1991. 66(3): p. 589-600.

Kinzler, K.W., et al., Identification of FAP locus genes from chromosome 5g21. Science,
1991. 253(5020): p. 661-5.

Nagase, H. and Y. Nakamura, Mutations of the APC (adenomatous polyposis coli) gene.
Hum Mutat, 1993. 2(6): p. 425-34.

Korinek, V., et al., Constitutive transcriptional activation by a beta-catenin-Tcf complex
in APC-/- colon carcinoma. Science, 1997. 275(5307): p. 1784-7.

Albuquerque, C., et al., The 'just-right' signaling model: APC somatic mutations are
selected based on a specific level of activation of the beta-catenin signaling cascade.
Hum Mol Genet, 2002. 11(13): p. 1549-60.

Liu, W., et al., Mutations in AXIN2 cause colorectal cancer with defective mismatch
repair by activating beta-catenin/TCF signalling. Nat Genet, 2000. 26(2): p. 146-7.
Morin, P.J., et al., Activation of beta-catenin-Tcf signaling in colon cancer by mutations
in beta-catenin or APC. Science, 1997. 275(5307): p. 1787-90.

Najdi, R., R.F. Holcombe, and M.L. Waterman, Wnt signaling and colon carcinogenesis:
beyond APC. J Carcinog, 2011. 10: p. 5.

Santini, D., et al., High concordance of KRAS status between primary colorectal tumors
and related metastatic sites: implications for clinical practice. Oncologist, 2008. 13(12):
p. 1270-5.

Karapetis, C.S., et al., K-ras mutations and benefit from cetuximab in advanced colorectal
cancer. N Engl J Med, 2008. 359(17): p. 1757-65.

Amado, R.G., et al., Wild-type KRAS is required for panitumumab efficacy in patients
with metastatic colorectal cancer. J Clin Oncol, 2008. 26(10): p. 1626-34.

Lane, D.P., Cancer. p53, guardian of the genome. Nature, 1992. 358(6381): p. 15-6.
Meek, D.W., The p53 response to DNA damage. DNA Repair (Amst), 2004. 3(8-9): p.
1049-56.

Tominaga, T., et al., Combination of p53 codon 72 polymorphism and inactive p53
mutation predicts chemosensitivity to 5-fluorouracil in colorectal cancer. Int J Cancer,
2010. 126(7): p. 1691-701.

Soussi, T., TP53 mutations in human cancer: database reassessment and prospects for
the next decade. Adv Cancer Res, 2011. 110: p. 107-39.

Baker, S.J., et al., p53 gene mutations occur in combination with 17p allelic deletions as
late events in colorectal tumorigenesis. Cancer Res, 1990. 50(23): p. 7717-22.

Vogelstein, B., et al., Genetic alterations during colorectal-tumor development. N Engl J
Med, 1988. 319(9): p. 525-32.

Fearon, E.R., et al., Identification of a chromosome 189 gene that is altered in colorectal
cancers. Science, 1990. 247(4938): p. 49-56.

Riggins, G.J., et al., Mad-related genes in the human. Nat Genet, 1996. 13(3): p. 347-9.
Howe, J.R., et al., Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science,
1998. 280(5366): p. 1086-8.

Aaltonen, L.A., et al., Incidence of hereditary nonpolyposis colorectal cancer and the
feasibility of molecular screening for the disease. N Engl J Med, 1998. 338(21): p. 1481-
7.

178



46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Hampel, H., et al., Screening for the Lynch syndrome (hereditary nonpolyposis colorectal
cancer). N Engl J Med, 2005. 352(18): p. 1851-60.

Kunkel, T.A., Nucleotide repeats. Slippery DNA and diseases. Nature, 1993. 365(6443):
p. 207-8.

lonov, Y., et al., Ubiquitous somatic mutations in simple repeated sequences reveal a new
mechanism for colonic carcinogenesis. Nature, 1993. 363(6429): p. 558-61.

Thibodeau, S.N., G. Bren, and D. Schaid, Microsatellite instability in cancer of the
proximal colon. Science, 1993. 260(5109): p. 816-9.

Toyota, M., et al., CpG island methylator phenotype in colorectal cancer. Proc Natl Acad
Sci U S A, 1999. 96(15): p. 8681-6.

Weisenberger, D.J., et al., CpG island methylator phenotype underlies sporadic
microsatellite instability and is tightly associated with BRAF mutation in colorectal
cancer. Nat Genet, 2006. 38(7): p. 787-93.

McGivern, A., et al.,, Promoter hypermethylation frequency and BRAF mutations
distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer.
Fam Cancer, 2004. 3(2): p. 101-7.

Nosho, K., et al., Comprehensive biostatistical analysis of CpG island methylator
phenotype in colorectal cancer using a large population-based sample. PLoS One, 2008.
3(11): p. €3698.

Samowitz, W.S., et al., Evaluation of a large, population-based sample supports a CpG
island methylator phenotype in colon cancer. Gastroenterology, 2005. 129(3): p. 837-45.
Slattery, M.L., et al., A comparison of colon and rectal somatic DNA alterations. Dis
Colon Rectum, 2009. 52(7): p. 1304-11.

Hawkins, N., et al., CpG island methylation in sporadic colorectal cancers and its
relationship to microsatellite instability. Gastroenterology, 2002. 122(5): p. 1376-87.

van Rijnsoever, M., et al., Characterisation of colorectal cancers showing
hypermethylation at multiple CpG islands. Gut, 2002. 51(6): p. 797-802.

Barault, L., et al., Hypermethylator phenotype in sporadic colon cancer: study on a
population-based series of 582 cases. Cancer Res, 2008. 68(20): p. 8541-6.

Gryfe, R., et al., Tumor microsatellite instability and clinical outcome in young patients
with colorectal cancer. N Engl J Med, 2000. 342(2): p. 69-77.

Popat, S., R. Hubner, and R.S. Houlston, Systematic review of microsatellite instability
and colorectal cancer prognosis. J Clin Oncol, 2005. 23(3): p. 609-18.

Lanza, G., et al., Immunohistochemical test for MLH1 and MSH2 expression predicts
clinical outcome in stage Il and Ill colorectal cancer patients. J Clin Oncol, 2006.
24(15): p. 2359-67.

Carethers, J.M., et al., Use of 5-fluorouracil and survival in patients with microsatellite-
unstable colorectal cancer. Gastroenterology, 2004. 126(2): p. 394-401.

Arnold, C.N., A. Goel, and C.R. Boland, Role of hMLH1 promoter hypermethylation in
drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int J Cancer, 2003.
106(1): p. 66-73.

Ribic, C.M., et al., Tumor microsatellite-instability status as a predictor of benefit from
fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med, 2003. 349(3):
p. 247-57.

Georgiades, 1.B., et al., Heterogeneity studies identify a subset of sporadic colorectal
cancers without evidence for chromosomal or microsatellite instability. Oncogene, 1999.
18(56): p. 7933-40.

179



66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

Chan, T.L., et al., Early-onset colorectal cancer with stable microsatellite DNA and near-
diploid chromosomes. Oncogene, 2001. 20(35): p. 4871-6.

Silver, A, et al., A distinct DNA methylation profile associated with microsatellite and
chromosomal stable sporadic colorectal cancers. Int J Cancer, 2012. 130(5): p. 1082-92.
Tang, R., et al., Colorectal cancer without high microsatellite instability and
chromosomal instability--an alternative genetic pathway to human colorectal cancer.
Carcinogenesis, 2004. 25(5): p. 841-6.

Jones, A.M., et al., Array-CGH analysis of microsatellite-stable, near-diploid bowel
cancers and comparison with other types of colorectal carcinoma. Oncogene, 2005.
24(1): p. 118-29.

Cai, G,, et al., Clinicopathologic and molecular features of sporadic microsatellite- and
chromosomal-stable colorectal cancers. Int J Colorectal Dis, 2008. 23(4): p. 365-73.
Gulati, S., S. Gustafson, and H.A. Daw, Lynch Syndrome Associated With PMS2
Mutation: Understanding Current Concepts. Gastrointest Cancer Res, 2011. 4(5-6): p.
188-90.

Kohlmann, W. and S.B. Gruber, Hereditary Non-Polyposis Colon Cancer. 1993.
Papadopoulos, N., et al., Mutation of a mutL homolog in hereditary colon cancer.
Science, 1994. 263(5153): p. 1625-9.

Al-Tassan, N., et al., Inherited variants of MYH associated with somatic G:C-->T:A
mutations in colorectal tumors. Nat Genet, 2002. 30(2): p. 227-32.

Hemminki, A., et al., A serine/threonine Kkinase gene defective in Peutz-Jeghers
syndrome. Nature, 1998. 391(6663): p. 184-7.

Jenne, D.E., et al., Peutz-Jeghers syndrome is caused by mutations in a novel serine
threonine kinase. Nat Genet, 1998. 18(1): p. 38-43.

Sayed, M.G., et al., Germline SMAD4 or BMPR1A mutations and phenotype of juvenile
polyposis. Ann Surg Oncol, 2002. 9(9): p. 901-6.

Burger, B., et al., Novel de novo mutation of MADH4/SMAD4 in a patient with juvenile
polyposis. Am J Med Genet, 2002. 110(3): p. 289-91.

Palles, C., et al., Germline mutations affecting the proofreading domains of POLE and
POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet, 2013. 45(2): p.
136-44.

Valle, L., et al., New insights into POLE and POLD1 germline mutations in familial
colorectal cancer and polyposis. Hum Mol Genet, 2014. 23(13): p. 3506-12.

Chen, S., et al., Prediction of germline mutations and cancer risk in the Lynch syndrome.
JAMA, 2006. 296(12): p. 1479-87.

Chung, L., et al., Unexpected endometrial cancer at prophylactic hysterectomy in a
woman with hereditary nonpolyposis colon cancer. Obstet Gynecol, 2003. 102(5 Pt 2): p.
1152-5.

Furlan, D., et al., Genetic progression in sporadic endometrial and gastrointestinal
cancers with high microsatellite instability. J Pathol, 2002. 197(5): p. 603-9.

Galiatsatos, P. and W.D. Foulkes, Familial adenomatous polyposis. Am J Gastroenterol,
2006. 101(2): p. 385-98.

Lynch, P.M., Standards of care in diagnosis and testing for hereditary colon cancer. Fam
Cancer, 2008. 7(1): p. 65-72.

Igbal, C.W., et al., Surgical management and outcomes of 165 colonoscopic perforations
from a single institution. Arch Surg, 2008. 143(7): p. 701-6; discussion 706-7.

Rabeneck, L., et al., Bleeding and perforation after outpatient colonoscopy and their risk
factors in usual clinical practice. Gastroenterology, 2008. 135(6): p. 1899-1906, 1906 el.

180



88.

89.

90.

91.

92.

93.

94.
95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

Winawer, S.J., et al., Colorectal cancer screening: clinical guidelines and rationale.
Gastroenterology, 1997. 112(2): p. 594-642.

Atkin, W.S., et al., Once-only flexible sigmoidoscopy screening in prevention of
colorectal cancer: a multicentre randomised controlled trial. Lancet, 2010. 375(9726): p.
1624-33.

Edge, S.B. and C.C. Compton, The American Joint Committee on Cancer: the 7th edition
of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol, 2010. 17(6):
p. 1471-4.

Dukes, C., Histological Grading of Rectal Cancer: (Section of Pathology). Proc R Soc
Med, 1937. 30(4): p. 371-6.

Dukes, C.E. and H.J. Bussey, The spread of rectal cancer and its effect on prognosis. Br J
Cancer, 1958. 12(3): p. 309-20.

Dukes, C., The classification of cancer of the rectum. The Journal of Pathology, 1932.
35(3): p. 323-332.

seer.cancer.goc/statfacts/html/colorect/html.

Moertel, C.G., Chemotherapy for colorectal cancer. N Engl J Med, 1994. 330(16): p.
1136-42.

Porschen, R., et al., Fluorouracil plus leucovorin as effective adjuvant chemotherapy in
curatively resected stage 11l colon cancer: results of the trial adjCCA-01. J Clin Oncaol,
2001. 19(6): p. 1787-94.

Taal, B.G., et al., Adjuvant 5FU plus levamisole in colonic or rectal cancer: improved
survival in stage Il and I11. Br J Cancer, 2001. 85(10): p. 1437-43.

Staib, L., et al., Toxicity and effects of adjuvant therapy in colon cancer: results of the
German prospective, controlled randomized multicenter trial FOGT-1. J Gastrointest
Surg, 2001. 5(3): p. 275-81.

Efficacy of adjuvant fluorouracil and folinic acid in B2 colon cancer. International
Multicentre Pooled Analysis of B2 Colon Cancer Trials (IMPACT B2) Investigators. J
Clin Oncol, 1999. 17(5): p. 1356-63.

Rothenberg, M.L., et al., Mortality associated with irinotecan plus bolus
fluorouracil/leucovorin: summary findings of an independent panel. J Clin Oncol, 2001.
19(18): p. 3801-7.

de Gramont, A., et al., Leucovorin and fluorouracil with or without oxaliplatin as first-
line treatment in advanced colorectal cancer. J Clin Oncol, 2000. 18(16): p. 2938-47.
Giacchetti, S., et al., Phase Il multicenter randomized trial of oxaliplatin added to
chronomodulated fluorouracil-leucovorin as first-line treatment of metastatic colorectal
cancer. J Clin Oncol, 2000. 18(1): p. 136-47.

Cunningham, D., et al., Randomised trial of irinotecan plus supportive care versus
supportive care alone after fluorouracil failure for patients with metastatic colorectal
cancer. Lancet, 1998. 352(9138): p. 1413-8.

Douillard, J.Y., et al., Irinotecan combined with fluorouracil compared with fluorouracil
alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised
trial. Lancet, 2000. 355(9209): p. 1041-7.

Rougier, P., et al., Randomised trial of irinotecan versus fluorouracil by continuous
infusion after fluorouracil failure in patients with metastatic colorectal cancer. Lancet,
1998. 352(9138): p. 1407-12.

Saltz, L.B., et al., Irinotecan plus fluorouracil and leucovorin for metastatic colorectal
cancer. Irinotecan Study Group. N Engl J Med, 2000. 343(13): p. 905-14.

181



107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

Van Cutsem, E., et al., Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-
line treatment for metastatic colorectal cancer: updated analysis of overall survival
according to tumor KRAS and BRAF mutation status. J Clin Oncol, 2011. 29(15): p.
2011-9.

Douillard, J.Y., et al.,, Randomized, phase Il trial of panitumumab with infusional
fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-
line treatment in patients with previously untreated metastatic colorectal cancer: the
PRIME study. J Clin Oncol, 2010. 28(31): p. 4697-705.

Peeters, M., et al., Randomized phase Ill study of panitumumab with fluorouracil,
leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line
treatment in patients with metastatic colorectal cancer. J Clin Oncol, 2010. 28(31): p.
4706-13.

Bokemeyer, C., et al., Fluorouracil, leucovorin, and oxaliplatin with and without
cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol, 2009.
27(5): p. 663-71.

van Cutsem, E., Cetuximab and Chemotherapy as Initial Treatment for Metastatic
Colorectal Cancer. N Engl J Med, 2009. 360.

Brown, G., et al., Preoperative assessment of prognostic factors in rectal cancer using
high-resolution magnetic resonance imaging. Br J Surg, 2003. 90(3): p. 355-64.

Heald, R.J. and R.D. Ryall, Recurrence and survival after total mesorectal excision for
rectal cancer. Lancet, 1986. 1(8496): p. 1479-82.

Sauer, R., et al., Preoperative versus postoperative chemoradiotherapy for locally
advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase Il
trial after a median follow-up of 11 years. J Clin Oncol, 2004. 30(16): p. 1926-33.

Bosset, J.F., et al., Chemotherapy with preoperative radiotherapy in rectal cancer. N
Engl J Med, 2006. 355(11): p. 1114-23.

Prolongation of the disease-free interval in surgically treated rectal carcinoma.
Gastrointestinal Tumor Study Group. N Engl J Med, 1985. 312(23): p. 1465-72.

Fisher, B., et al., Postoperative adjuvant chemotherapy or radiation therapy for rectal
cancer: results from NSABP protocol R-01. J Natl Cancer Inst, 1988. 80(1): p. 21-9.
Clinico-pathological features of prognostic significance in operable rectal cancer in 17
centres in the U.K. (Third report of the M.R.C. Trial, on behalf of the Working Party). Br
J Cancer, 1984. 50(4): p. 435-42.

Improved survival with preoperative radiotherapy in resectable rectal cancer. Swedish
Rectal Cancer Trial. N Engl J Med, 1997. 336(14): p. 980-7.

Sprangers, M.A., et al., Quality of life in colorectal cancer. Stoma vs. nonstoma patients.
Dis Colon Rectum, 1995. 38(4): p. 361-9.

Brown, J.M. and A.J. Giaccia, The unique physiology of solid tumors: opportunities (and
problems) for cancer therapy. Cancer Res, 1998. 58(7): p. 1408-16.

Sutherland, R.M., Cell and environment interactions in tumor microregions: the multicell
spheroid model. Science, 1988. 240(4849): p. 177-84.

Moulder, J.E. and S. Rockwell, Tumor hypoxia: its impact on cancer therapy. Cancer
Metastasis Rev, 1987. 5(4): p. 313-41.

Guedj, N., et al., Predictors of tumor response after preoperative chemoradiotherapy for
rectal adenocarcinomas. Hum Pathol. 42(11): p. 1702-9.

Hockel, M., et al., Tumor oxygenation: a new predictive parameter in locally advanced
cancer of the uterine cervix. Gynecol Oncol, 1993. 51(2): p. 141-9.

182



126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144,

145.

Wang, G.L. and G.L. Semenza, Purification and characterization of hypoxia-inducible
factor 1. J Biol Chem, 1995. 270(3): p. 1230-7.

Dachs, G.U. and 1.J. Stratford, The molecular response of mammalian cells to hypoxia
and the potential for exploitation in cancer therapy. Br J Cancer Suppl, 1996. 27: p.
S126-32.

Bruick, R.K. and S.L. McKnight, A conserved family of prolyl-4-hydroxylases that modify
HIF. Science, 2001. 294(5545): p. 1337-40.

Epstein, A.C., et al., C. elegans EGL-9 and mammalian homologs define a family of
dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 2001. 107(1): p. 43-54.
Huang, L.E., et al., Regulation of hypoxia-inducible factor lalpha is mediated by an O2-
dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad
Sci U S A, 1998. 95(14): p. 7987-92.

Kallio, P.J., et al., Regulation of the hypoxia-inducible transcription factor lalpha by the
ubiquitin-proteasome pathway. J Biol Chem, 1999. 274(10): p. 6519-25.

Benita, Y., et al., An integrative genomics approach identifies Hypoxia Inducible Factor-
1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res, 20009.
37(14): p. 4587-602.

Mole, D.R., et al., Genome-wide association of hypoxia-inducible factor (HIF)-1lalpha
and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts.
J Biol Chem, 2009. 284(25): p. 16767-75.

Xia, X., et al., Integrative analysis of HIF binding and transactivation reveals its role in
maintaining histone methylation homeostasis. Proc Natl Acad Sci U S A, 2009. 106(11):
p. 4260-5.

Xia, X. and A.L. Kung, Preferential binding of HIF-1 to transcriptionally active loci
determines cell-type specific response to hypoxia. Genome Biol, 2009. 10(10): p. R113.
Tanimoto, K., et al., Genome-wide identification and annotation of HIF-l1alpha binding
sites in two cell lines using massively parallel sequencing. Hugo J, 2010. 4(1-4): p. 35-48.
Wiesener, M.S., et al., Widespread hypoxia-inducible expression of HIF-2alpha in
distinct cell populations of different organs. FASEB J, 2003. 17(2): p. 271-3.

Maynard, M.A., et al., Multiple splice variants of the human HIF-3 alpha locus are
targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem, 2003.
278(13): p. 11032-40.

Manalo, D.J., et al., Transcriptional regulation of vascular endothelial cell responses to
hypoxia by HIF-1. Blood, 2005. 105(2): p. 659-69.

Carroll, A.A., M., HIF-1a regulation by proline hydroxylation. Exp reviews in molecular
science, 2005. 7(6).

Grote, J., R. Susskind, and P. Vaupel, Oxygen diffusion constants D and K of tumor tissue
(DS-carcinosarcoma) and their temperature dependence. Adv Exp Med Biol, 1977. 94:
p. 361-5.

Forsythe, J.A., et al., Activation of vascular endothelial growth factor gene transcription
by hypoxia-inducible factor 1. Mol Cell Biol, 1996. 16(9): p. 4604-13.

Levy, A.P., etal., Transcriptional regulation of the rat vascular endothelial growth factor
gene by hypoxia. J Biol Chem, 1995. 270(22): p. 13333-40.

Ishigami, S.1., et al., Predictive value of vascular endothelial growth factor (VEGF) in
metastasis and prognosis of human colorectal cancer. Br J Cancer, 1998. 78(10): p.
1379-84.

Kim, K.J., et al., Inhibition of vascular endothelial growth factor-induced angiogenesis
suppresses tumour growth in vivo. Nature, 1993. 362(6423): p. 841-4.

183



146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

Hurwitz, H., et al., Bevacizumab plus irinotecan, fluorouracil, and leucovorin for
metastatic colorectal cancer. N Engl J Med, 2004. 350(23): p. 2335-42.

Saltz, L.B., et al., Bevacizumab in combination with oxaliplatin-based chemotherapy as
first-line therapy in metastatic colorectal cancer: a randomized phase Il study. J Clin
Oncol, 2008. 26(12): p. 2013-9.

Giantonio, B.J., et al., Bevacizumab in combination with oxaliplatin, fluorouracil, and
leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from
the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol, 2007. 25(12): p.
1539-44.

Lu, X. and Y. Kang, Hypoxia and hypoxia-inducible factors: master regulators of
metastasis. Clin Cancer Res, 2010. 16(24): p. 5928-35.

Yang, M.H., et al., Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat
Cell Biol, 2008. 10(3): p. 295-305.

Evans, A.J., et al., VHL promotes E2 box-dependent E-cadherin transcription by HIF-
mediated regulation of SIP1 and snail. Mol Cell Biol, 2007. 27(1): p. 157-69.
Krishnamachary, B., et al., Hypoxia-inducible factor-1-dependent repression of E-
cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by
TCF3, ZFHX1A, and ZFHX1B. Cancer Res, 2006. 66(5): p. 2725-31.

Shyu, K.G., et al., Hypoxia-inducible factor lalpha regulates lung adenocarcinoma cell
invasion. Exp Cell Res, 2007. 313(6): p. 1181-91.

Semenza, G.L., Regulation of cancer cell metabolism by hypoxia-inducible factor 1.
Semin Cancer Biol, 2009. 19(1): p. 12-6.

Kim, JW., et al., HIF-1-mediated expression of pyruvate dehydrogenase kinase: a
metabolic switch required for cellular adaptation to hypoxia. Cell Metab, 2006. 3(3): p.
177-85.

Papandreou, I., et al., HIF-1 mediates adaptation to hypoxia by actively downregulating
mitochondrial oxygen consumption. Cell Metab, 2006. 3(3): p. 187-97.

Firth, J.D., B.L. Ebert, and P.J. Ratcliffe, Hypoxic regulation of lactate dehydrogenase A.
Interaction between hypoxia-inducible factor 1 and cAMP response elements. J Biol
Chem, 1995. 270(36): p. 21021-7.

Chen, C., et al., Regulation of glutl mRNA by hypoxia-inducible factor-1. Interaction
between H-ras and hypoxia. J Biol Chem, 2001. 276(12): p. 9519-25.

Esterman, A., et al., The effect of hypoxia on human trophoblast in culture: morphology,
glucose transport and metabolism. Placenta, 1997. 18(2-3): p. 129-36.

Hayashi, M., et al., Induction of glucose transporter 1 expression through hypoxia-
inducible factor lalpha under hypoxic conditions in trophoblast-derived cells. J
Endocrinol, 2004. 183(1): p. 145-54.

Baumann, M.U., S. Zamudio, and N.P. llIsley, Hypoxic upregulation of glucose
transporters in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1.
Am J Physiol Cell Physiol, 2007. 293(1): p. C477-85.

Warburg, O., On respiratory impairment in cancer cells. Science, 1956. 124(3215): p.
269-70.

Semenza, G.L., et al., "The metabolism of tumours': 70 years later. Novartis Found Symp,
2001. 240: p. 251-60; discussion 260-4.

Rohren, E.M., T.G. Turkington, and R.E. Coleman, Clinical applications of PET in
oncology. Radiology, 2004. 231(2): p. 305-32.

Graeber, T.G., et al., Hypoxia-mediated selection of cells with diminished apoptotic
potential in solid tumours. Nature, 1996. 379(6560): p. 88-91.

184



166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.
180.

181.

182.

183.

184.

185.

186.

187.

188.

Gatenby, R.A. and E.T. Gawlinski, A reaction-diffusion model of cancer invasion. Cancer
Res, 1996. 56(24): p. 5745-53.

Brown, J.M. and W.R. Wilson, Exploiting tumour hypoxia in cancer treatment. Nat Rev
Cancer, 2004. 4(6): p. 437-47.

Dikmen, Z.G., et al., In vivo and in vitro effects of a HIF-1alpha inhibitor, RX-0047. J
Cell Biochem, 2008. 104(3): p. 985-94.

Gillespie, D.L., et al., Silencing of hypoxia inducible factor-lalpha by RNA interference
attenuates human glioma cell growth in vivo. Clin Cancer Res, 2007. 13(8): p. 2441-8.
Welsh, S., et al., Antitumor activity and pharmacodynamic properties of PX-478, an
inhibitor of hypoxia-inducible factor-1alpha. Mol Cancer Ther, 2004. 3(3): p. 233-44.
Koh, M.Y., et al., Molecular mechanisms for the activity of PX-478, an antitumor
inhibitor of the hypoxia-inducible factor-1alpha. Mol Cancer Ther, 2008. 7(1): p. 90-100.
Sapra, P., et al., Novel delivery of SN38 markedly inhibits tumor growth in xenografts,
including a camptothecin-11-refractory model. Clin Cancer Res, 2008. 14(6): p. 1888-96.
Sapra, P., et al., Potent and sustained inhibition of HIF-1alpha and downstream genes by
a polyethyleneglycol-SN38 conjugate, EZN-2208, results in anti-angiogenic effects.
Angiogenesis, 2011. 14(3): p. 245-53.

Baumgart, D.C. and S.R. Carding, Inflammatory bowel disease: cause and
immunobiology. Lancet, 2007. 369(9573): p. 1627-40.

Farmer, R.G., W.M. Michener, and E.A. Mortimer, Studies of family history among
patients with inflammatory bowel disease. Clin Gastroenterol, 1980. 9(2): p. 271-7.
Monsen, U., et al., Prevalence of inflammatory bowel disease among relatives of patients
with Crohn's disease. Scand J Gastroenterol, 1991. 26(3): p. 302-6.

Orholm, M., et al., Familial occurrence of inflammatory bowel disease. N Engl J Med,
1991. 324(2): p. 84-8.

Peeters, M., et al., Familial aggregation in Crohn's disease: increased age-adjusted risk
and concordance in clinical characteristics. Gastroenterology, 1996. 111(3): p. 597-603.
Satsangi, J., et al., Genetics of inflammatory bowel disease. Gut, 1994. 35(5): p. 696-700.
Orholm, M., et al., Concordance of inflammatory bowel disease among Danish twins.
Results of a nationwide study. Scand J Gastroenterol, 2000. 35(10): p. 1075-81.
Halfvarson, J., et al., Inflammatory bowel disease in a Swedish twin cohort: a long-term
follow-up of concordance and clinical characteristics. Gastroenterology, 2003. 124(7): p.
1767-73.

Thompson, N.P., et al., Genetics versus environment in inflammatory bowel disease:
results of a British twin study. BMJ, 1996. 312(7023): p. 95-6.

Hugot, J.P., et al., Mapping of a susceptibility locus for Crohn's disease on chromosome
16. Nature, 1996. 379(6568): p. 821-3.

McGovern, D.P., et al., NOD2 (CARD15), the first susceptibility gene for Crohn's
disease. Gut, 2001. 49(6): p. 752-4.

Hugot, J.P., et al., Association of NOD2 leucine-rich repeat variants with susceptibility to
Crohn's disease. Nature, 2001. 411(6837): p. 599-603.

Ogura, Y., et al., A frameshift mutation in NOD2 associated with susceptibility to Crohn's
disease. Nature, 2001. 411(6837): p. 603-6.

Tanabe, T., et al., Association analysis of the NOD2 gene with susceptibility to graft-
versus-host disease in a Japanese population. Int J Hematol, 2011. 93(6): p. 771-8.
Pauleau, A.L. and P.J. Murray, Role of nod2 in the response of macrophages to toll-like
receptor agonists. Mol Cell Biol, 2003. 23(21): p. 7531-9.

185



189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

2009.

Kobayashi, K.S., et al., Nod2-dependent regulation of innate and adaptive immunity in
the intestinal tract. Science, 2005. 307(5710): p. 731-4.

Yamazaki, K., et al., Single nucleotide polymorphisms in TNFSF15 confer susceptibility
to Crohn's disease. Hum Mol Genet, 2005. 14(22): p. 3499-506.

Hampe, J., et al., A genome-wide association scan of nonsynonymous SNPs identifies a
susceptibility variant for Crohn disease in ATG16L1. Nat Genet, 2007. 39(2): p. 207-11.
Parkes, M., et al., Sequence variants in the autophagy gene IRGM and multiple other
replicating loci contribute to Crohn's disease susceptibility. Nat Genet, 2007. 39(7): p.
830-2.

Kuballa, P., et al., Impaired autophagy of an intracellular pathogen induced by a Crohn's
disease associated ATG16L1 variant. PLoS One, 2008. 3(10): p. €3391.

McCarroll, S.A., et al., Deletion polymorphism upstream of IRGM associated with altered
IRGM expression and Crohn's disease. Nat Genet, 2008. 40(9): p. 1107-12.

Louis, E., et al., Behaviour of Crohn's disease according to the Vienna classification:
changing pattern over the course of the disease. Gut, 2001. 49(6): p. 777-82.

Munkholm, P., et al., Disease activity courses in a regional cohort of Crohn's disease
patients. Scand J Gastroenterol, 1995. 30(7): p. 699-706.

Rieder, F., et al., Predictors of fibrostenotic Crohn's disease. Inflamm Bowel Dis, 2011.
17(9): p. 2000-7.

van der Valk, M.E., et al., Crohn's disease patients treated with adalimumab benefit from
co-treatment with immunomodulators. Gut, 2012. 61(2): p. 324-5.

Lewis, A., et al., Intestinal Fibrosis in Crohn's Disease: Role of microRNAs as
Fibrogenic Modulators, Serum Biomarkers, and Therapeutic Targets. Inflamm Bowel
Dis, 2015. 21(5): p. 1141-50.

Regan, M.C., et al., Stricture formation in Crohn's disease: the role of intestinal
fibroblasts. Ann Surg, 2000. 231(1): p. 46-50.

Di Sabatino, A., et al., Transforming growth factor beta signalling and matrix
metalloproteinases in the mucosa overlying Crohn's disease strictures. Gut, 2009. 58(6):
p. 777-89.

Beck, P.L. and D.K. Podolsky, Growth factors in inflammatory bowel disease. Inflamm
Bowel Dis, 1999. 5(1): p. 44-60.

Fiocchi, C., TGF-beta/Smad signaling defects in inflammatory bowel disease:
mechanisms and possible novel therapies for chronic inflammation. J Clin Invest, 2001.
108(4): p. 523-6.

Hahm, K.B., et al., Loss of transforming growth factor beta signalling in the intestine
contributes to tissue injury in inflammatory bowel disease. Gut, 2001. 49(2): p. 190-8.
Derynck, R. and Y.E. Zhang, Smad-dependent and Smad-independent pathways in TGF-
beta family signalling. Nature, 2003. 425(6958): p. 577-84.

Wotton, D. and J. Massague, Smad transcriptional corepressors in TGF beta family
signaling. Curr Top Microbiol Immunol, 2001. 254: p. 145-64.

Lutz, M. and P. Knaus, Integration of the TGF-beta pathway into the cellular signalling
network. Cell Signal, 2002. 14(12): p. 977-88.

Pinzani, M. and F. Marra, Cytokine receptors and signaling in hepatic stellate cells.
Semin Liver Dis, 2001. 21(3): p. 397-416.

Galera, P., et al., Transforming growth factor-beta 1 (TGF-beta 1) up-regulation of
collagen type Il in primary cultures of rabbit articular chondrocytes (RAC) involves
increased mRNA levels without affecting mRNA stability and procollagen processing. J
Cell Physiol, 1992. 153(3): p. 596-606.

186



210.

211.

212.

213.

214,

215.

216.

217.

218.

2109.

220.

221.

222.

223.

224,

225.

226.

2217.

Kanzler, S., et al., TGF-betal in liver fibrosis: an inducible transgenic mouse model to
study liver fibrogenesis. Am J Physiol, 1999. 276(4 Pt 1): p. G1059-68.

Qi, W.N. and S.P. Scully, Effect of type Il collagen in chondrocyte response to TGF-beta
1 regulation. Exp Cell Res, 1998. 241(1): p. 142-50.

Dounchis, J.S., et al., Chondrogenic phenotype of perichondrium-derived
chondroprogenitor cells is influenced by transforming growth factor-beta 1. J Orthop
Res, 1997. 15(6): p. 803-7.

Bertelli, R., et al., Cell-specific regulation of alphal(lll) and alpha2(V) collagen by TGF-
betal in tubulointerstitial cell models. Nephrol Dial Transplant, 1998. 13(3): p. 573-9.
Poncelet, A.C. and H.W. Schnaper, Regulation of human mesangial cell collagen
expression by transforming growth factor-betal. Am J Physiol, 1998. 275(3 Pt 2): p.
F458-66.

Silbiger, S., et al., Estradiol reverses TGF-betal-stimulated type IV collagen gene
transcription in murine mesangial cells. Am J Physiol, 1998. 274(6 Pt 2): p. F1113-8.
Park, I.S., et al., Expression of transforming growth factor-beta and type IV collagen in
early streptozotocin-induced diabetes. Diabetes, 1997. 46(3): p. 473-80.

Jakowlew, S.B., et al., Differential regulation of protease and extracellular matrix
protein expression by transforming growth factor-beta 1 in non-small cell lung cancer
cells and normal human bronchial epithelial cells. Biochim Biophys Acta, 1997. 1353(2):
p. 157-70.

Rajagopal, S., et al., Efficacy and specificity of antisense laminin chain-specific
expression vectors in blocking laminin induction by TGFbetal: effect of laminin blockade
on TGFbetal-mediated cellular responses. J Cell Physiol, 1999. 178(3): p. 296-303.
Virolle, T., et al., Three activator protein-1-binding sites bound by the Fra-2.JunD
complex cooperate for the regulation of murine laminin alpha3A (lama3A) promoter
activity by transforming growth factor-beta. J Biol Chem, 1998. 273(28): p. 17318-25.
Kagami, S., et al., Transforming growth factor-beta (TGF-beta) stimulates the expression
of betal integrins and adhesion by rat mesangial cells. Exp Cell Res, 1996. 229(1): p. 1-
6.

Kreisberg, J.1., et al., High glucose and TGF beta 1 stimulate fibronectin gene expression
through a cAMP response element. Kidney Int, 1994. 46(4): p. 1019-24.

Shlopov, B.V., et al., Differential patterns of response to doxycycline and transforming
growth factor betal in the down-regulation of collagenases in osteoarthritic and normal
human chondrocytes. Arthritis Rheum, 1999. 42(4): p. 719-27.

Eickelberg, O., et al., Extracellular matrix deposition by primary human lung fibroblasts
in response to TGF-betal and TGF-beta3. Am J Physiol, 1999. 276(5 Pt 1): p. L814-24.
Uria, J.A,, et al., Differential effects of transforming growth factor-beta on the expression
of collagenase-1 and collagenase-3 in human fibroblasts. J Biol Chem, 1998. 273(16): p.
9769-77.

Johansson, N., et al., Collagenase 3 (matrix metalloproteinase 13) gene expression by
HaCaT keratinocytes is enhanced by tumor necrosis factor alpha and transforming
growth factor beta. Cell Growth Differ, 1997. 8(2): p. 243-50.

Rydziel, S., S. Varghese, and E. Canalis, Transforming growth factor betal inhibits
collagenase 3 expression by transcriptional and post-transcriptional mechanisms in
osteoblast cultures. J Cell Physiol, 1997. 170(2): p. 145-52.

Edwards, D.R., et al., Differential effects of transforming growth factor-beta 1 on the
expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in
young and old human fibroblasts. Exp Gerontol, 1996. 31(1-2): p. 207-23.

187



228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

244,

245.

246.

Basile, D.P., D.R. Martin, and M.R. Hammerman, Extracellular matrix-related genes in
kidney after ischemic injury: potential role for TGF-beta in repair. Am J Physiol, 1998.
275(6 Pt 2): p. F894-903.

Mozes, M.M., et al., Renal expression of fibrotic matrix proteins and of transforming
growth factor-beta (TGF-beta) isoforms in TGF-beta transgenic mice. J Am Soc Nephrol,
1999. 10(2): p. 271-80.

Su, S., et al., Up-regulation of tissue inhibitor of metalloproteinases-3 gene expression by
TGF-beta in articular chondrocytes is mediated by serine/threonine and tyrosine kinases.
J Cell Biochem, 1998. 70(4): p. 517-27.

Mattila, L., et al., Activation of tissue inhibitor of metalloproteinases-3 (TIMP-3) mRNA
expression in scleroderma skin fibroblasts. J Invest Dermatol, 1998. 110(4): p. 416-21.
Su, S., F. Dehnade, and M. Zafarullah, Regulation of tissue inhibitor of
metalloproteinases-3 gene expression by transforming growth factor-beta and
dexamethasone in bovine and human articular chondrocytes. DNA Cell Biol, 1996.
15(12): p. 1039-48.

Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4
encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-
54.

Wightman, B., et al., Negative regulatory sequences in the lin-14 3'-untranslated region
are necessary to generate a temporal switch during Caenorhabditis elegans development.
Genes Dev, 1991. 5(10): p. 1813-24.

Lu, C., et al., Elucidation of the small RNA component of the transcriptome. Science,
2005. 309(5740): p. 1567-9.

Mineno, J., et al., The expression profile of microRNAs in mouse embryos. Nucleic Acids
Res, 2006. 34(6): p. 1765-71.

Berezikov, E., et al., Diversity of microRNAs in human and chimpanzee brain. Nat Genet,
2006. 38(12): p. 1375-7.

Calabrese, J.M., et al., RNA sequence analysis defines Dicer's role in mouse embryonic
stem cells. Proc Natl Acad Sci U S A, 2007. 104(46): p. 18097-102.

Babiarz, J.E., et al., Mouse ES cells express endogenous shRNAs, siRNAs, and other
Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev, 2008. 22(20): p.
2773-85.

Kuchenbauer, F., et al., In-depth characterization of the microRNA transcriptome in a
leukemia progression model. Genome Res, 2008. 18(11): p. 1787-97.

Bushati, N. and S.M. Cohen, microRNA functions. Annu Rev Cell Dev Biol, 2007. 23: p.
175-205.

Lee, Y., et al., MicroRNA genes are transcribed by RNA polymerase 1. EMBO J, 2004.
23(20): p. 4051-60.

Cai, X., C.H. Hagedorn, and B.R. Cullen, Human microRNAs are processed from capped,
polyadenylated transcripts that can also function as mRNAs. RNA, 2004. 10(12): p.
1957-66.

Tanzer, A. and P.F. Stadler, Molecular evolution of a microRNA cluster. J Mol Biol,
2004. 339(2): p. 327-35.

Lagos-Quintana, M., et al., Identification of novel genes coding for small expressed
RNAs. Science, 2001. 294(5543): p. 853-8.

Bentwich, 1., et al., Identification of hundreds of conserved and nonconserved human
microRNAs. Nat Genet, 2005. 37(7): p. 766-70.

188



247.

248.

249,

250.

251.

252.

253.

254,

255.

256.

257.

258.

2509.

260.

261.

262.

263.

264.

265.

266.

267.

268.

Bortolin-Cavaille, M.L., et al., CLOIMC microRNAs are processed from introns of large
Pol-11, non-protein-coding transcripts. Nucleic Acids Res, 2009. 37(10): p. 3464-73.
Seitz, H., et al., A large imprinted microRNA gene cluster at the mouse DIk1-Gtl2
domain. Genome Res, 2004. 14(9): p. 1741-8.

Han, J., et al., Molecular basis for the recognition of primary microRNAs by the Drosha-
DGCRS8 complex. Cell, 2006. 125(5): p. 887-901.

Han, J., et al., The Drosha-DGCR8 complex in primary microRNA processing. Genes
Dev, 2004. 18(24): p. 3016-27.

Yi, R., et al., Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin
RNAs. Genes Dev, 2003. 17(24): p. 3011-6.

Stark, A., et al., Systematic discovery and characterization of fly microRNAs using 12
Drosophila genomes. Genome Res, 2007. 17(12): p. 1865-79.

Kuchenbauer, F., et al., Comprehensive analysis of mammalian miRNA* species and their
role in myeloid cells. Blood, 2011. 118(12): p. 3350-8.

Yang, J.S., et al., Widespread regulatory activity of vertebrate microRNA* species. RNA,
2011. 17(2): p. 312-26.

Di Leva, G., M. Garofalo, and C.M. Croce, MicroRNAs in cancer. Annu Rev Pathol,
2014. 9: p. 287-314.

Bartel, D.P., MicroRNAs: target recognition and regulatory functions. Cell, 2009. 136(2):
p. 215-33.

Lai, E.C., Micro RNAs are complementary to 3' UTR sequence motifs that mediate
negative post-transcriptional regulation. Nat Genet, 2002. 30(4): p. 363-4.

Lewis, B.P., et al., Prediction of mammalian microRNA targets. Cell, 2003. 115(7): p.
787-98.

Jones-Rhoades, M.W., D.P. Bartel, and B. Bartel, MicroRNAS and their regulatory roles
in plants. Annu Rev Plant Biol, 2006. 57: p. 19-53.

Baumberger, N. and D.C. Baulcombe, Arabidopsis ARGONAUTEL is an RNA Slicer that
selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A,
2005. 102(33): p. 11928-33.

Llave, C., et al., Cleavage of Scarecrow-like mRNA targets directed by a class of
Arabidopsis miRNA. Science, 2002. 297(5589): p. 2053-6.

Fabian, M.R., N. Sonenberg, and W. Filipowicz, Regulation of mRNA translation and
stability by microRNAs. Annu Rev Biochem, 2010. 79: p. 351-79.

Guo, H., et al., Mammalian microRNAs predominantly act to decrease target mRNA
levels. Nature, 2010. 466(7308): p. 835-40.

Larsson O, N.R., Re-analysis of genome wide data on mammalian microRNA-mediated
suppression of gene expression. Translation, 2013. 1(e24557).

Mathonnet, G., et al., MicroRNA inhibition of translation initiation in vitro by targeting
the cap-binding complex elF4F. Science, 2007. 317(5845): p. 1764-7.

Djuranovic, S., A. Nahvi, and R. Green, miRNA-mediated gene silencing by translational
repression followed by mRNA deadenylation and decay. Science, 2012. 336(6078): p.
237-40.

Bazzini, A.A., M.T. Lee, and AJ. Giraldez, Ribosome profiling shows that miR-430
reduces translation before causing mRNA decay in zebrafish. Science, 2012. 336(6078):
p. 233-7.

Meijer, H.A., et al., Translational repression and elF4A2 activity are critical for
microRNA-mediated gene regulation. Science, 2013. 340(6128): p. 82-5.

189



269.

270.

271.

272.

273.

274.

275.

276.

2717.

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

2809.

290.

Pillai, R.S., et al., Inhibition of translational initiation by Let-7 MicroRNA in human cells.
Science, 2005. 309(5740): p. 1573-6.

Thermann, R. and M.W. Hentze, Drosophila miR2 induces pseudo-polysomes and
inhibits translation initiation. Nature, 2007. 447(7146): p. 875-8.

Iwasaki, S., T. Kawamata, and Y. Tomari, Drosophila argonautel and argonaute2
employ distinct mechanisms for translational repression. Mol Cell, 2009. 34(1): p. 58-67.
Humphreys, D.T., et al.,, MicroRNAs control translation initiation by inhibiting
eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A,
2005. 102(47): p. 16961-6.

Wakiyama, M., et al., Let-7 microRNA-mediated mRNA deadenylation and translational
repression in a mammalian cell-free system. Genes Dev, 2007. 21(15): p. 1857-62.

Li, L.C., et al., Small dsRNAs induce transcriptional activation in human cells. Proc Natl
Acad Sci U S A, 2006. 103(46): p. 17337-42.

Vasudevan, S., Y. Tong, and J.A. Steitz, Switching from repression to activation:
microRNAs can up-regulate translation. Science, 2007. 318(5858): p. 1931-4.

Calin, G.A,, et al., Frequent deletions and down-regulation of micro- RNA genes miR15
and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A, 2002.
99(24): p. 15524-9.

Luo, X., et al., MicroRNA signatures: novel biomarker for colorectal cancer? Cancer
Epidemiol Biomarkers Prev, 2011. 20(7): p. 1272-86.

Cheng, C.J. and F.J. Slack, The duality of oncomiR addiction in the maintenance and
treatment of cancer. Cancer J, 2012. 18(3): p. 232-7.

Lu, J., et al., MicroRNA expression profiles classify human cancers. Nature, 2005.
435(7043): p. 834-8.

Necela, B.M., et al., Differential expression of microRNAs in tumors from chronically
inflamed or genetic (APC(Min/+)) models of colon cancer. PLoS One, 2011. 6(4): p.
e18501.

Nagel, R., et al., Regulation of the adenomatous polyposis coli gene by the miR-135
family in colorectal cancer. Cancer Res, 2008. 68(14): p. 5795-802.

Gaedcke, J., et al., The rectal cancer microRNAome--microRNA expression in rectal
cancer and matched normal mucosa. Clin Cancer Res, 2012. 18(18): p. 4919-30.

Xu, X.M., et al., Expression of miR-21, miR-31, miR-96 and miR-135b is correlated with
the clinical parameters of colorectal cancer. Oncol Lett, 2012. 4(2): p. 339-345.
Faltejskova, P., et al., Identification and functional screening of microRNAs highly
deregulated in colorectal cancer. J Cell Mol Med, 2012. 16(11): p. 2655-66.

Valeri, N., et al., MicroRNA-135b promotes cancer progression by acting as a
downstream effector of oncogenic pathways in colon cancer. Cancer Cell, 2014. 25(4): p.
469-83.

Schetter, AJ., et al., MicroRNA expression profiles associated with prognosis and
therapeutic outcome in colon adenocarcinoma. JAMA, 2008. 299(4): p. 425-36.

Slaby, O., et al., Altered expression of miR-21, miR-31, miR-143 and miR-145 is related
to clinicopathologic features of colorectal cancer. Oncology, 2007. 72(5-6): p. 397-402.
Medina, P.P., M. Nolde, and F.J. Slack, OncomiR addiction in an in vivo model of
microRNA-21-induced pre-B-cell lymphoma. Nature, 2010. 467(7311): p. 86-90.

Hatley, M.E., et al., Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-
21. Cancer Cell, 2010. 18(3): p. 282-93.

Lu, Z., et al., MicroRNA-21 promotes cell transformation by targeting the programmed
cell death 4 gene. Oncogene, 2008. 27(31): p. 4373-9.

190



291.

292.

293.

294.

295.

296.

297.

298.

299.

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

311.

Wickramasinghe, N.S., et al., Estradiol downregulates miR-21 expression and increases
miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res, 20009.
37(8): p. 2584-95.

Shi, L., et al, MiR-21 protected human glioblastoma U87MG cells from
chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio
and caspase-3 activity. Brain Res, 2010. 1352: p. 255-64.

Sayed, D., et al.,, MicroRNA-21 is a downstream effector of AKT that mediates its
antiapoptotic effects via suppression of Fas ligand. J Biol Chem, 2010. 285(26): p.
20281-90.

Wang, P., et al., microRNA-21 negatively regulates Cdc25A and cell cycle progression in
colon cancer cells. Cancer Res, 2009. 69(20): p. 8157-65.

Roush, S. and F.J. Slack, The let-7 family of microRNAs. Trends Cell Biol, 2008. 18(10):
p. 505-16.

Johnson, S.M., et al., RAS is regulated by the let-7 microRNA family. Cell, 2005. 120(5):
p. 635-47.

Motoyama, K., et al., Clinical significance of high mobility group A2 in human gastric
cancer and its relationship to let-7 microRNA family. Clin Cancer Res, 2008. 14(8): p.
2334-40.

Nam, E.J., et al., MicroRNA expression profiles in serous ovarian carcinoma. Clin
Cancer Res, 2008. 14(9): p. 2690-5.

Akao, Y., Y. Nakagawa, and T. Naoe, let-7 microRNA functions as a potential growth
suppressor in human colon cancer cells. Biol Pharm Bull, 2006. 29(5): p. 903-6.
Sampson, V.B., et al., MicroRNA let-7a down-regulates MYC and reverts MYC-induced
growth in Burkitt lymphoma cells. Cancer Res, 2007. 67(20): p. 9762-70.

Vickers, M.M.,, et al., Stage-dependent differential expression of microRNAs in colorectal
cancer: potential role as markers of metastatic disease. Clin Exp Metastasis, 2012. 29(2):
p. 123-32.

Ruzzo, A, et al., High let-7a microRNA levels in KRAS-mutated colorectal carcinomas
may rescue anti-EGFR therapy effects in patients with chemotherapy-refractory
metastatic disease. Oncologist, 2012. 17(6): p. 823-9.

Michael, M.Z., et al., Reduced accumulation of specific microRNAs in colorectal
neoplasia. Mol Cancer Res, 2003. 1(12): p. 882-91.

Akao, Y., et al., Role of anti-oncomirs miR-143 and -145 in human colorectal tumors.
Cancer Gene Ther, 2010. 17(6): p. 398-408.

Suzuki, H.l., et al., Modulation of microRNA processing by p53. Nature, 2009.
460(7254): p. 529-33.

Sachdeva, M., et al., p53 represses c-Myc through induction of the tumor suppressor miR-
145. Proc Natl Acad Sci U S A, 2009. 106(9): p. 3207-12.

Chen, X., et al., Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene,
2009. 28(10): p. 1385-92.

Ng, E.K., et al., MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer.
Br J Cancer, 2009. 101(4): p. 699-706.

Akao, Y., Y. Nakagawa, and T. Naoe, MicroRNA-143 and -145 in colon cancer. DNA
Cell Biol, 2007. 26(5): p. 311-20.

Shi, B., et al., Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the
growth of colon cancer cells. J Biol Chem, 2007. 282(45): p. 32582-90.

Raver-Shapira, N., et al., Transcriptional activation of miR-34a contributes to p53-
mediated apoptosis. Mol Cell, 2007. 26(5): p. 731-43.

191



312.

313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

328.

329.

330.

331.

332.

Okada, N., et al., A positive feedback between p53 and miR-34 miRNAs mediates tumor
suppression. Genes Dev, 2014. 28(5): p. 438-50.

Corney, D.C., et al., MicroRNA-34b and MicroRNA-34c are targets of p5S3 and cooperate
in control of cell proliferation and adhesion-independent growth. Cancer Res, 2007.
67(18): p. 8433-8.

Christoffersen, N.R., et al., p53-independent upregulation of miR-34a during oncogene-
induced senescence represses MYC. Cell Death Differ, 2010. 17(2): p. 236-45.

Chang, T.C., et al., Transactivation of miR-34a by p53 broadly influences gene
expression and promotes apoptosis. Mol Cell, 2007. 26(5): p. 745-52.

Bommer, G.T., et al., p53-mediated activation of miRNA34 candidate tumor-suppressor
genes. Curr Biol, 2007. 17(15): p. 1298-307.

Tazawa, H., et al., Tumor-suppressive miR-34a induces senescence-like growth arrest
through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci
US A, 2007. 104(39): p. 15472-7.

Roy, S., et al., Expression of miR-34 is lost in colon cancer which can be re-expressed by
a novel agent CDF. J Hematol Oncol, 2012. 5: p. 58.

Vogt, M., et al., Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG
methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell
carcinomas and soft tissue sarcomas. Virchows Arch, 2011. 458(3): p. 313-22.

Migliore, C., et al., MicroRNAs impair MET-mediated invasive growth. Cancer Res,
2008. 68(24): p. 10128-36.

Yamakuchi, M. and C.J. Lowenstein, MiR-34, SIRT1 and p53: the feedback loop. Cell
Cycle, 2009. 8(5): p. 712-5.

Rokavec, M., et al., IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated
colorectal cancer invasion and metastasis. J Clin Invest, 2014. 124(4): p. 1853-67.
Kulshreshtha, R., et al., A microRNA signature of hypoxia. Mol Cell Biol, 2007. 27(5): p.
1859-67.

Hua, Z., et al., MiRNA-directed regulation of VEGF and other angiogenic factors under
hypoxia. PL0oS One, 2006. 1: p. e116.

Camps, C., et al., hsa-miR-210 Is induced by hypoxia and is an independent prognostic
factor in breast cancer. Clin Cancer Res, 2008. 14(5): p. 1340-8.

Giannakakis, A., et al., miR-210 links hypoxia with cell cycle regulation and is deleted in
human epithelial ovarian cancer. Cancer Biol Ther, 2008. 7(2): p. 255-64.

Fasanaro, P., et al., MicroRNA-210 modulates endothelial cell response to hypoxia and
inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem, 2008. 283(23): p.
15878-83.

Pulkkinen, K., et al., Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3
and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Lett, 2008.
582(16): p. 2397-401.

Huang, X., et al., Hypoxia-inducible mir-210 regulates normoxic gene expression
involved in tumor initiation. Mol Cell, 2009. 35(6): p. 856-67.

Kelly, T.J., et al., A hypoxia-induced positive feedback loop promotes hypoxia-inducible
factor lalpha stability through miR-210 suppression of glycerol-3-phosphate
dehydrogenase 1-like. Mol Cell Biol, 2011. 31(13): p. 2696-706.

Nakada, C., et al., Overexpression of miR-210, a downstream target of HIFlalpha, causes
centrosome amplification in renal carcinoma cells. J Pathol, 2011. 224(2): p. 280-8.
Zhang, Z., et al., MicroRNA miR-210 modulates cellular response to hypoxia through the
MYC antagonist MNT. Cell Cycle, 2009. 8(17): p. 2756-68.

192



333.

334.

335.

336.

337.

338.

339.

340.

341.

342.

343.

344,

345.

346.

347.

348.

349.

350.

351.

352.

Kim, J.H., et al., Reactive oxygen species-responsive miR-210 regulates proliferation and
migration of adipose-derived stem cells via PTPN2. Cell Death Dis, 2013. 4: p. e588.
Alaiti, M.A., et al., Up-regulation of miR-210 by vascular endothelial growth factor in ex
vivo expanded CD34+ cells enhances cell-mediated angiogenesis. J Cell Mol Med, 2012.
16(10): p. 2413-21.

Liu, F., et al., Upregulation of microRNA-210 regulates renal angiogenesis mediated by
activation of VEGF signaling pathway under ischemia/perfusion injury in vivo and in
vitro. Kidney Blood Press Res, 2012. 35(3): p. 182-91.

Lou, Y.L, et al., miR-210 activates notch signaling pathway in angiogenesis induced by
cerebral ischemia. Mol Cell Biochem, 2012. 370(1-2): p. 45-51.

Zeng, L., et al., MicroRNA-210 overexpression induces angiogenesis and neurogenesis in
the normal adult mouse brain. Gene Ther, 2014. 21(1): p. 37-43.

Colleoni, F., et al., Suppression of mitochondrial electron transport chain function in the
hypoxic human placenta: a role for miRNA-210 and protein synthesis inhibition. PL0oS
One, 2013. 8(1): p. 55194,

Chan, S.Y., et al., MicroRNA-210 controls mitochondrial metabolism during hypoxia by
repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab, 2009. 10(4): p.
273-84.

Chen, Z., et al., Hypoxia-regulated microRNA-210 modulates mitochondrial function and
decreases ISCU and COX10 expression. Oncogene, 2010. 29(30): p. 4362-8.

Favaro, E., et al., MicroRNA-210 regulates mitochondrial free radical response to
hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU.
PL0S One, 2010. 5(4): p. €10345.

McCormick, R.I., et al., miR-210 is a target of hypoxia-inducible factors 1 and 2 in renal
cancer, regulates ISCU and correlates with good prognosis. Br J Cancer, 2013. 108(5): p.
1133-42.

Qin, Q., W. Furong, and L. Baosheng, Multiple functions of hypoxia-regulated miR-210
in cancer. J Exp Clin Cancer Res, 2014. 33: p. 50.

Gou, D., et al., miR-210 has an antiapoptotic effect in pulmonary artery smooth muscle
cells during hypoxia. Am J Physiol Lung Cell Mol Physiol, 2012. 303(8): p. L682-91.
Tsuchiya, S., et al., MicroRNA-210 regulates cancer cell proliferation through targeting
fibroblast growth factor receptor-like 1 (FGFRL1). J Biol Chem, 2011. 286(1): p. 420-8.
Schmaltz, C., et al., Regulation of proliferation-survival decisions during tumor cell
hypoxia. Mol Cell Biol, 1998. 18(5): p. 2845-54.

Radojicic, J., et al.,, MicroRNA expression analysis in triple-negative (ER, PR and
Her2/neu) breast cancer. Cell Cycle, 2011. 10(3): p. 507-17.

Toyama, T., et al., High expression of microRNA-210 is an independent factor indicating
a poor prognosis in Japanese triple-negative breast cancer patients. Jpn J Clin Oncol,
2012. 42(4): p. 256-63.

Rothe, F., et al., Global microRNA expression profiling identifies MiR-210 associated
with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS One,
2011. 6(6): p. €20980.

Gee, H.E., et al., hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in
head and neck cancer. Cancer, 2010. 116(9): p. 2148-58.

Scapoli, L., et al., MicroRNA expression profiling of oral carcinoma identifies new
markers of tumor progression. Int J Immunopathol Pharmacol, 2010. 23(4): p. 1229-34.
Wang, J., et al., MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as
novel blood-based biomarkers of disease. Cancer Prev Res (Phila), 2009. 2(9): p. 807-13.

193



353.

354.

355.

356.

357.

358.

359.

360.

361.

362.

363.

364.

365.

366.

367.

368.

369.

370.

371.

372.

373.

Greither, T., et al., Elevated expression of microRNAs 155, 203, 210 and 222 in
pancreatic tumors is associated with poorer survival. Int J Cancer, 2010. 126(1): p. 73-
80.

Papaconstantinou, I.G., et al., Expression of microRNAs in patients with pancreatic
cancer and its prognostic significance. Pancreas, 2013. 42(1): p. 67-71.

Miko, E., et al., Differentially expressed microRNAs in small cell lung cancer. Exp Lung
Res, 2009. 35(8): p. 646-64.

Puissegur, M.P., et al., miR-210 is overexpressed in late stages of lung cancer and
mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell
Death Differ, 2011. 18(3): p. 465-78.

Eilertsen, M., et al., Positive prognostic impact of miR-210 in non-small cell lung cancer.
Lung Cancer, 2014. 83(2): p. 272-8.

Neal, C.S., et al., The VHL-dependent regulation of microRNAs in renal cancer. BMC
Med, 2010. 8: p. 64.

Redova, M., et al., MiR-210 expression in tumor tissue and in vitro effects of its silencing
in renal cell carcinoma. Tumour Biol, 2013. 34(1): p. 481-91.

Vaksman, O., et al., miRNA profiling along tumour progression in ovarian carcinoma. J
Cell Mol Med, 2011. 15(7): p. 1593-602.

Wu, F., et al., Identification of microRNAs associated with ileal and colonic Crohn's
disease. Inflamm Bowel Dis, 2010. 16(10): p. 1729-38.

Fasseu, M., et al., Identification of restricted subsets of mature microRNA abnormally
expressed in inactive colonic mucosa of patients with inflammatory bowel disease. PL0S
One, 2010. 5(10).

Rastaldi, M.P., Epithelial-mesenchymal transition and its implications for the
development of renal tubulointerstitial fibrosis. J Nephrol, 2006. 19(4): p. 407-12.
Zeisberg, M. and J.S. Duffield, Resolved: EMT produces fibroblasts in the kidney. J Am
Soc Nephrol, 2010. 21(8): p. 1247-53.

Carew, R.M., B. Wang, and P. Kantharidis, The role of EMT in renal fibrosis. Cell Tissue
Res, 2012. 347(1): p. 103-16.

Zeisberg, E.M., et al., Endothelial-to-mesenchymal transition contributes to cardiac
fibrosis. Nat Med, 2007. 13(8): p. 952-61.

Kim, T., et al., p53 regulates epithelial-mesenchymal transition through microRNAs
targeting ZEB1 and ZEB2. J Exp Med, 2011. 208(5): p. 875-83.

Zeisberg, M., et al., Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to
mesenchymal transition. J Biol Chem, 2007. 282(32): p. 23337-47.

Flier, S.N., et al., Identification of epithelial to mesenchymal transition as a novel source
of fibroblasts in intestinal fibrosis. J Biol Chem, 2010. 285(26): p. 20202-12.

Park, S.M., et al., The miR-200 family determines the epithelial phenotype of cancer cells
by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev, 2008. 22(7): p. 894-
907.

Gregory, P.A., et al., The miR-200 family and miR-205 regulate epithelial to
mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol, 2008. 10(5): p. 593-
601.

Qin, W., et al., TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J
Am Soc Nephrol, 2011. 22(8): p. 1462-74.

Chung, A.C., et al., Smad7 suppresses renal fibrosis via altering expression of TGF-
beta/Smad3-regulated microRNAs. Mol Ther, 2013. 21(2): p. 388-98.

194



374.

375.

376.

377.

378.

379.

380.

381.

382.

383.

384.

385.

386.

387.

388.

389.

390.

391.

392.

393.

Roderburg, C., et al., Micro-RNA profiling reveals a role for miR-29 in human and
murine liver fibrosis. Hepatology, 2011. 53(1): p. 209-18.

van Rooij, E., et al., Dysregulation of microRNAs after myocardial infarction reveals a
role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A, 2008. 105(35): p. 13027-
32.

Pandit, K.V., J. Milosevic, and N. Kaminski, MicroRNAs in idiopathic pulmonary
fibrosis. Transl Res, 2011. 157(4): p. 191-9.

Cushing, L., et al., miR-29 is a major regulator of genes associated with pulmonary
fibrosis. Am J Respir Cell Mol Biol, 2011. 45(2): p. 287-94.

Maurer, B., et al., MicroRNA-29, a key regulator of collagen expression in systemic
sclerosis. Arthritis Rheum, 2010. 62(6): p. 1733-43.

Luna, C., et al., Role of miR-29b on the regulation of the extracellular matrix in human
trabecular meshwork cells under chronic oxidative stress. Mol Vis, 2009. 15: p. 2488-97.
Cacchiarelli, D., et al., MicroRNAs involved in molecular circuitries relevant for the
Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS
pathway. Cell Metab, 2010. 12(4): p. 341-51.

Nguyen-Tran, D.H., et al., Molecular mechanism of sphingosine-1-phosphate action in
Duchenne muscular dystrophy. Dis Model Mech, 2014. 7(1): p. 41-54.

Mannaerts, I., et al., Class Il HDAC inhibition hampers hepatic stellate cell activation by
induction of microRNA-29. PLoS One, 2013. 8(1): p. e55786.

Katare, R., et al., Transplantation of human pericyte progenitor cells improves the repair
of infarcted heart through activation of an angiogenic program involving micro-RNA-
132. Circ Res, 2011. 109(8): p. 894-906.

Mann, J., et al., MeCP2 controls an epigenetic pathway that promotes myofibroblast
transdifferentiation and fibrosis. Gastroenterology, 2010. 138(2): p. 705-14, 714 e1-4.
Guo, C.J., et al., miR-15b and miR-16 are implicated in activation of the rat hepatic
stellate cell: An essential role for apoptosis. J Hepatol, 2009. 50(4): p. 766-78.

Ezzie, M.E., et al., Gene expression networks in COPD: microRNA and mRNA
regulation. Thorax, 2012. 67(2): p. 122-31.

Pogribny, 1.P., et al., Difference in expression of hepatic microRNAs miR-29¢, miR-34a,
miR-155, and miR-200b is associated with strain-specific susceptibility to dietary
nonalcoholic steatohepatitis in mice. Lab Invest, 2010. 90(10): p. 1437-46.

Pottier, N., et al., Identification of keratinocyte growth factor as a target of microRNA-
155 in lung fibroblasts: implication in epithelial-mesenchymal interactions. PLoS One,
2009. 4(8): p. e6718.

Kodama, T., et al., Increases in p53 expression induce CTGF synthesis by mouse and
human hepatocytes and result in liver fibrosis in mice. J Clin Invest, 2011. 121(8): p.
3343-56.

Pandit, K.V., et al., Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J
Respir Crit Care Med, 2010. 182(2): p. 220-9.

van Almen, G.C,, et al., MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1
expression in age-related heart failure. Aging Cell, 2011. 10(5): p. 769-79.

da Costa Martins, P.A., et al., MicroRNA-199b targets the nuclear kinase Dyrkla in an
auto-amplification loop promoting calcineurin/NFAT signalling. Nat Cell Biol, 2010.
12(12): p. 1220-7.

Murakami, Y., et al., The progression of liver fibrosis is related with overexpression of
the miR-199 and 200 families. PLoS One, 2011. 6(1): p. e16081.

195



394.

395.

396.

397.

398.

399.

400.

401.

402.

403.

404.

405.

406.

407.

408.

400.

410.

411.

412.

413.

414.

Oba, S., et al., miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PL0S
One, 2010. 5(10): p. e13614.

Wang, B., et al., miR-200a Prevents renal fibrogenesis through repression of TGF-beta2
expression. Diabetes, 2011. 60(1): p. 280-7.

Liu, G., et al., miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung
fibrosis. J Exp Med, 2010. 207(8): p. 1589-97.

Thum, T., et al., MicroRNA-21 contributes to myocardial disease by stimulating MAP
kinase signalling in fibroblasts. Nature, 2008. 456(7224): p. 980-4.

Zhong, X., et al., Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am
Soc Nephrol, 2011. 22(9): p. 1668-81.

Mitchell, P.S., et al., Circulating microRNAs as stable blood-based markers for cancer
detection. Proc Natl Acad Sci U S A, 2008. 105(30): p. 10513-8.

Schwarzenbach, H., D.S. Hoon, and K. Pantel, Cell-free nucleic acids as biomarkers in
cancer patients. Nat Rev Cancer, 2011. 11(6): p. 426-37.

Hanke, M., et al., A robust methodology to study urine microRNA as tumor marker:
microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol,
2010. 28(6): p. 655-61.

Ahmed, F.E., et al., Diagnostic microRNA markers for screening sporadic human colon
cancer and active ulcerative colitis in stool and tissue. Cancer Genomics Proteomics,
2009. 6(5): p. 281-95.

Volinia, S., et al., A microRNA expression signature of human solid tumors defines
cancer gene targets. Proc Natl Acad Sci U S A, 2006. 103(7): p. 2257-61.

Imperiale, T.F., et al., Fecal DNA versus fecal occult blood for colorectal-cancer
screening in an average-risk population. N Engl J Med, 2004. 351(26): p. 2704-14.
Lieberman, D.A., D.G. Weiss, and G. Veterans Affairs Cooperative Study, One-time
screening for colorectal cancer with combined fecal occult-blood testing and examination
of the distal colon. N Engl J Med, 2001. 345(8): p. 555-60.

Kanaoka, S., et al., Potential usefulness of detecting cyclooxygenase 2 messenger RNA in
feces for colorectal cancer screening. Gastroenterology, 2004. 127(2): p. 422-7.

Takai, T., et al., Fecal cyclooxygenase 2 plus matrix metalloproteinase 7 mRNA assays as
a marker for colorectal cancer screening. Cancer Epidemiol Biomarkers Prev, 2009.
18(6): p. 1888-93.

Li, J.M., et al., Down-regulation of fecal miR-143 and miR-145 as potential markers for
colorectal cancer. Saudi Med J, 2012. 33(1): p. 24-9.

Aslam, M.1., et al., MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg,
2009. 96(7): p. 702-10.

Wu, C.W., et al., Detection of miR-92a and miR-21 in stool samples as potential
screening biomarkers for colorectal cancer and polyps. Gut, 2012. 61(5): p. 739-45.

Link, A., et al., Fecal MicroRNAs as novel biomarkers for colon cancer screening.
Cancer Epidemiol Biomarkers Prev, 2010. 19(7): p. 1766-74.

Wu, C.W., et al., Identification of microRNA-135b in stool as a potential noninvasive
biomarker for colorectal cancer and adenoma. Clin Cancer Res, 2014. 20(11): p. 2994-
3002.

Ng, E.K., et al., Differential expression of microRNAs in plasma of patients with
colorectal cancer: a potential marker for colorectal cancer screening. Gut, 2009. 58(10):
p. 1375-81.

Huang, Z., et al., Plasma microRNAs are promising novel biomarkers for early detection
of colorectal cancer. Int J Cancer, 2010. 127(1): p. 118-26.

196



415.

416.

417.

418.

419.

420.

421.

422.

423.

424,

425.

426.

427.

428.

429.

430.

431.

432.

Dillhoff, M., et al., MicroRNA-21 is overexpressed in pancreatic cancer and a potential
predictor of survival. J Gastrointest Surg, 2008. 12(12): p. 2171-6.

Kulda, V., et al., Relevance of miR-21 and miR-143 expression in tissue samples of
colorectal carcinoma and its liver metastases. Cancer Genet Cytogenet, 2010. 200(2): p.
154-60.

Nakajima, G., et al., Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are
Associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics,
2006. 3(5): p. 317-324.

Svoboda, M., et al., Micro-RNAs miR125b and miR137 are frequently upregulated in
response to capecitabine chemoradiotherapy of rectal cancer. Int J Oncol, 2008. 33(3): p.
541-7.

Della Vittoria Scarpati, G., et al., A specific miRNA signature correlates with complete
pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal
cancer. Int J Radiat Oncol Biol Phys, 2012. 83(4): p. 1113-9.

Kheirelseid, E.A., et al., miRNA expressions in rectal cancer as predictors of response to
neoadjuvant chemoradiation therapy. Int J Colorectal Dis, 2013. 28(2): p. 247-60.

Xu, J.Z. and C.W. Wong, Hunting for robust gene signature from cancer profiling data:
sources of variability, different interpretations, and recent methodological developments.
Cancer Lett, 2010. 296(1): p. 9-16.

Ji, F., et al., Circulating microRNAs in hepatitis B virus-infected patients. J Viral Hepat,
2011. 18(7): p. e242-51.

Vandesompele, J., et al., Accurate normalization of real-time gquantitative RT-PCR data
by geometric averaging of multiple internal control genes. Genome Biol, 2002. 3(7): p.
RESEARCHO0034.

Brase, J.C., et al., Circulating miRNAs are correlated with tumor progression in prostate
cancer. Int J Cancer, 2011. 128(3): p. 608-16.

Zahm, A.M., et al., Circulating microRNA is a biomarker of pediatric Crohn disease. J
Pediatr Gastroenterol Nutr, 2011. 53(1): p. 26-33.

Van Assche, G., et al., The second European evidence-based Consensus on the diagnosis
and management of Crohn's disease: Definitions and diagnosis. J Crohns Colitis, 2010.
4(1): p. 7-27.

Griffiths-Jones, S., miRBase: the microRNA sequence database. Methods Mol Biol, 2006.
342: p. 129-38.

Liu, D., O. Davydenko, and M.A. Lampson, Polo-like kinase-1 regulates kinetochore-
microtubule dynamics and spindle checkpoint silencing. J Cell Biol, 2012. 198(4): p. 491-
9.

Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-
time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001. 25(4): p.
402-8.

Korkeila, E.A., et al., Carbonic anhydrase IX, hypoxia-inducible factor-lalpha, ezrin and
glucose transporter-1 as predictors of disease outcome in rectal cancer: multivariate Cox
survival models following data reduction by principal component analysis of the
clinicopathological predictors. Anticancer Res, 2011. 31(12): p. 4529-35.

Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004.
116(2): p. 281-97.

Filipowicz, W., S.N. Bhattacharyya, and N. Sonenberg, Mechanisms of post-
transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet, 2008.
9(2): p. 102-14.

197



433.

434,

435.

436.

437.

438.

430.

440.

441.

442.

443.

444,

445.

446.

447.

448.

449.

450.

451.

452.

453.

Lindsay, M.A., microRNAs and the immune response. Trends Immunol, 2008. 29(7): p.
343-51.

O'Connell, R.M., et al., Physiological and pathological roles for microRNAs in the
immune system. Nat Rev Immunol, 2010. 10(2): p. 111-22.

Vettori, S., S. Gay, and O. Distler, Role of MicroRNAs in Fibrosis. Open Rheumatol J,
2012. 6: p. 130-9.

Bolstad, B.M., et al., A comparison of normalization methods for high density
oligonucleotide array data based on variance and bias. Bioinformatics, 2003. 19(2): p.
185-93.

Nymark, P., et al., Integrative analysis of microRNA, mRNA and aCGH data reveals
asbestos- and histology-related changes in lung cancer. Genes Chromosomes Cancer,
2011. 50(8): p. 585-97.

Boon, R.A., et al., MicroRNA-34a regulates cardiac ageing and function. Nature, 2013.
495(7439): p. 107-10.

Meng, F., et al., Epigenetic regulation of miR-34a expression in alcoholic liver injury.
Am J Pathol, 2012. 181(3): p. 804-17.

Li, W.Q., et al., The rno-miR-34 family is upregulated and targets ACSL1 in
dimethylnitrosamine-induced hepatic fibrosis in rats. FEBS J, 2011. 278(9): p. 1522-32.
Zhou, Y., et al., Secreted fibroblast miR-34a induces tubular cell apoptosis in fibrotic
kidney. J Cell Sci, 2014.

Milosevic, J., et al., Profibrotic role of miR-154 in pulmonary fibrosis. Am J Respir Cell
Mol Biol, 2012. 47(6): p. 879-87.

Zhu, H., et al., MicroRNA expression abnormalities in limited cutaneous scleroderma and
diffuse cutaneous scleroderma. J Clin Immunol, 2012. 32(3): p. 514-22.

Huebert, R.C., et al., Aquaporin-1 promotes angiogenesis, fibrosis, and portal
hypertension through mechanisms dependent on osmotically sensitive microRNAs. Am J
Pathol, 2011. 179(4): p. 1851-60.

Applied-Biosystems, Endogenous Controls for Real-Time Quantitation of miRNA using
Tagman MicroRNa assays. Application Note.

Di Sabatino, A., et al., Functional modulation of Crohn's disease myofibroblasts by anti-
tumor necrosis factor antibodies. Gastroenterology, 2007. 133(1): p. 137-49.

Tseng, Y.C., S. Mozumdar, and L. Huang, Lipid-based systemic delivery of siRNA. Adv
Drug Deliv Rev, 2009. 61(9): p. 721-31.

Genovese, G., et al., microRNA regulatory network inference identifies miR-34a as a
novel regulator of TGF-beta signaling in glioblastoma. Cancer Discov, 2012. 2(8): p.
736-49.

Cao, W., et al., Expression and regulatory function of miRNA-34a in targeting survivin in
gastric cancer cells. Tumour Biol, 2013. 34(2): p. 963-71.

Kadera, B.E., et al., MicroRNA-21 in pancreatic ductal adenocarcinoma tumor-
associated fibroblasts promotes metastasis. PLoS One, 2013. 8(8): p. e71978.

Verghese, E.T., et al., MiR-26b is down-regulated in carcinoma-associated fibroblasts
from ER-positive breast cancers leading to enhanced cell migration and invasion. J
Pathol, 2013. 231(3): p. 388-99.

Fridman, J.S. and S.W. Lowe, Control of apoptosis by p53. Oncogene, 2003. 22(56): p.
9030-40.

Lodygin, D., et al., Inactivation of miR-34a by aberrant CpG methylation in multiple
types of cancer. Cell Cycle, 2008. 7(16): p. 2591-600.

198



454,

455.

456.

457.

458.

459.

460.

461.

462.

463.

464.

465.

466.

467.

468.

469.

470.

471.

472.

473.

Cui, X., et al., Inactivation of miR-34a by aberrant CpG methylation in Kazakh patients
with esophageal carcinoma. J Exp Clin Cancer Res, 2014. 33: p. 20.

Wang, L.Q., et al., Epigenetic inactivation of mir-34b/c in addition to mir-34a and
DAPKZ1 in chronic lymphocytic leukemia. J Transl Med, 2014. 12: p. 52.

Chim, C.S., et al., Methylation of miR-34a, miR-34b/c, miR-124-1 and miR-203 in Ph-
negative myeloproliferative neoplasms. J Transl Med, 2011. 9: p. 197.

Hussain, S.P. and C.C. Harris, Molecular epidemiology of human cancer: contribution of
mutation spectra studies of tumor suppressor genes. Cancer Res, 1998. 58(18): p. 4023-
37.

Beroud, C. and T. Soussi, The UMD-p53 database: new mutations and analysis tools.
Hum Mutat, 2003. 21(3): p. 176-81.

Tarasov, V., et al., Differential regulation of microRNAs by p53 revealed by massively
parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell
Cycle, 2007. 6(13): p. 1586-93.

Kuwano, K., et al., P21Waf1/Cip1/Sdil and p53 expression in association with DNA
strand breaks in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 1996. 154(2
Pt 1): p. 477-83.

Nakashima, N., et al.,, The p53-Mdm2 association in epithelial cells in idiopathic
pulmonary fibrosis and non-specific interstitial pneumonia. J Clin Pathol, 2005. 58(6): p.
583-9.

Samarakoon, R., J.M. Overstreet, and P.J. Higgins, TGF-beta signaling in tissue fibrosis:
redox controls, target genes and therapeutic opportunities. Cell Signal, 2013. 25(1): p.
264-8.

Dagher, P.C., et al., The p53 inhibitor pifithrin-alpha can stimulate fibrosis in a rat model
of ischemic acute kidney injury. Am J Physiol Renal Physiol, 2012. 302(2): p. F284-91.
Lujambio, A., et al., Non-cell-autonomous tumor suppression by p53. Cell, 2013. 153(2):
p. 449-60.

Valoczi, A., et al., Sensitive and specific detection of microRNAs by northern blot
analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res, 2004. 32(22): p.
el7s.

Wienholds, E., et al., MicroRNA expression in zebrafish embryonic development. Science,
2005. 309(5732): p. 310-1.

Saini, S., et al., miRNA-708 control of CD44(+) prostate cancer-initiating cells. Cancer
Res, 2012. 72(14): p. 3618-30.

Akhmetshina, A., et al., Activation of canonical Wnt signalling is required for TGF-beta-
mediated fibrosis. Nat Commun, 2012. 3: p. 735.

Monteleone, G., et al., A failure of transforming growth factor-betal negative regulation
maintains sustained NF-kappaB activation in gut inflammation. J Biol Chem, 2004.
279(6): p. 3925-32.

Shen, Z., et al., MicroRNA-34a affects the occurrence of laryngeal squamous cell
carcinoma by targeting the antiapoptotic gene survivin. Med Oncol, 2012. 29(4): p. 2473-
80.

Yamakuchi, M., M. Ferlito, and C.J. Lowenstein, miR-34a repression of SIRT1 regulates
apoptosis. Proc Natl Acad Sci U S A, 2008. 105(36): p. 13421-6.

Yang, F., et al., MicroRNA-34a targets Bcl-2 and sensitizes human hepatocellular
carcinoma cells to sorafenib treatment. Technol Cancer Res Treat, 2014. 13(1): p. 77-86.
Hermeking, H., The miR-34 family in cancer and apoptosis. Cell Death Differ, 2010.
17(2): p. 193-9.

199



474,

475.

476.

477.

478.

479.

480.

481.

482.

483.

484,

485.

486.

487.

488.

4809.

490.

491.

492.

493.

Selbach, M., et al., Widespread changes in protein synthesis induced by microRNAs.
Nature, 2008. 455(7209): p. 58-63.

Kaller, M., et al., Genome-wide characterization of miR-34a induced changes in protein
and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell
Proteomics, 2011. 10(8): p. M111 010462.

Ebner, O.A. and M. Selbach, Quantitative proteomic analysis of gene regulation by miR-
34a and miR-34c. PLoS One, 2014. 9(3): p. €92166.

Selman, M. and A. Pardo, Role of epithelial cells in idiopathic pulmonary fibrosis: from
innocent targets to serial killers. Proc Am Thorac Soc, 2006. 3(4): p. 364-72.

Muir, A.B., et al., Esophageal epithelial and mesenchymal cross-talk leads to features of
epithelial to mesenchymal transition in vitro. Exp Cell Res, 2013. 319(6): p. 850-9.
Andrew, A.S., et al., Expression of tumor suppressive microRNA-34a is associated with a
reduced risk of bladder cancer recurrence. Int J Cancer, 2014.

Peurala, H., et al., MiR-34a expression has an effect for lower risk of metastasis and
associates with expression patterns predicting clinical outcome in breast cancer. PL0S
One, 2011. 6(11): p. e26122.

Agarwal, S., et al., Quantitative assessment of miR34a as an independent prognostic
marker in breast cancer. Br J Cancer, 2015. 112(1): p. 61-8.

Wang, Y., et al., The role of miRNA-29 family in cancer. Eur J Cell Biol, 2013. 92(3): p.
123-8.

Nijhuis, A., et al., In Crohn's disease fibrosis-reduced expression of the miR-29 family
enhances collagen expression in intestinal fibroblasts. Clin Sci (Lond), 2014. 127(5): p.
341-50.

Xiao, J., et al., miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol Ther,
2012. 20(6): p. 1251-60.

Stallmach, A., et al., Increased collagen type 11l synthesis by fibroblasts isolated from
strictures of patients with Crohn's disease. Gastroenterology, 1992. 102(6): p. 1920-9.
Lang, M., et al., Gene expression profiles of mucosal fibroblasts from strictured and
nonstrictured areas of patients with Crohn's disease. Inflamm Bowel Dis, 2009. 15(2): p.
212-23.

Pohlers, D., et al., TGF-beta and fibrosis in different organs - molecular pathway
imprints. Biochim Biophys Acta, 2009. 1792(8): p. 746-56.

Butz, H., et al., Crosstalk between TGF-beta signaling and the microRNA machinery.
Trends Pharmacol Sci, 2012. 33(7): p. 382-93.

Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005.
120(1): p. 15-20.

Huang, S.K., et al., Histone modifications are responsible for decreased Fas expression
and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis, 2013. 4: p. e621.
Mott, J.L., et al., mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene,
2007. 26(42): p. 6133-40.

Zhang, Y.K., et al., Overexpression of microRNA-29b induces apoptosis of multiple
myeloma cells through down regulating Mcl-1. Biochem Biophys Res Commun, 2011.
414(1): p. 233-9.

Xiong, Y., et al., Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of
hepatocellular carcinoma. Hepatology, 2010. 51(3): p. 836-45.

200



494,

495,

496.

497.

498.

490.

500.

501.

502.

503.

504.

505.

506.

507.

508.

509.

510.

511.

512.

513.

Steele, R., J.L. Mott, and R.B. Ray, MBP-1 upregulates miR-29b that represses Mcl-1,
collagens, and matrix-metalloproteinase-2 in prostate cancer cells. Genes Cancer, 2010.
1(4): p. 381-387.

Garzon, R., et al., MicroRNA 29b functions in acute myeloid leukemia. Blood, 2009.
114(26): p. 5331-41.

Roggli, E., et al., Changes in microRNA expression contribute to pancreatic beta-cell
dysfunction in prediabetic NOD mice. Diabetes, 2012. 61(7): p. 1742-51.

Kozopas, K.M., et al., MCL1, a gene expressed in programmed myeloid cell
differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci U S A, 1993. 90(8):
p. 3516-20.

Bae, J., et al., MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member
MCL-1, encodes a proapoptotic protein possessing only the BH3 domain. J Biol Chem,
2000. 275(33): p. 25255-61.

Bingle, C.D., et al., Exon skipping in Mcl-1 results in a bcl-2 homology domain 3 only
gene product that promotes cell death. J Biol Chem, 2000. 275(29): p. 22136-46.

Kim, J.H., et al., MCL-1ES, a novel variant of MCL-1, associates with MCL-1L and
induces mitochondrial cell death. FEBS Lett, 2009. 583(17): p. 2758-64.

Kim, J.H. and J. Bae, MCL-1ES induces MCL-1L-dependent BAX- and BAK-independent
mitochondrial apoptosis. PLoS One, 2013. 8(11): p. €79626.

Weng, S.Y., et al., Synergism between p53 and Mcl-1 in protecting from hepatic injury,
fibrosis and cancer. J Hepatol, 2011. 54(4): p. 685-94.

Kahraman, A., et al., Overexpression of mcl-1 attenuates liver injury and fibrosis in the
bile duct-ligated mouse. Dig Dis Sci, 2009. 54(9): p. 1908-17.

Vick, B., et al., Knockout of myeloid cell leukemia-1 induces liver damage and increases
apoptosis susceptibility of murine hepatocytes. Hepatology, 2009. 49(2): p. 627-36.
Wightman, B., I. Ha, and G. Ruvkun, Posttranscriptional regulation of the heterochronic
gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993. 75(5):
p. 855-62.

Reinhart, B.J., et al., The 21-nucleotide let-7 RNA regulates developmental timing in
Caenorhabditis elegans. Nature, 2000. 403(6772): p. 901-6.

Brennecke, J., et al., bantam encodes a developmentally regulated microRNA that
controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell,
2003. 113(1): p. 25-36.

Vasudevan, S., Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev
RNA, 2012. 3(3): p. 311-30.

Puthier, D., R. Bataille, and M. Amiot, IL-6 up-regulates mcl-1 in human myeloma cells
through JAK / STAT rather than ras / MAP kinase pathway. Eur J Immunol, 1999.
29(12): p. 3945-50.

Eberhard, A., et al., Heterogeneity of angiogenesis and blood vessel maturation in human
tumors: implications for antiangiogenic tumor therapies. Cancer Res, 2000. 60(5): p.
1388-93.

O'Reilly, S., M. Chiechomska, and J.M. van Laar, A3.22 IL-6 trans signalling drives
collagen via an epigenetic mechanism mediated through SMAD3. Ann Rheum Dis, 2014.
73 Suppl 1: p. A50-1.

Fielding, C.A., et al., Interleukin-6 signaling drives fibrosis in unresolved inflammation.
Immunity, 2014. 40(1): p. 40-50.

O'Reilly, S., et al., Interleukin-6, its role in fibrosing conditions. Cytokine Growth Factor
Rev, 2012. 23(3): p. 99-107.

201



514.

515.

516.

517.

518.

519.

520.

521.

522.

523.

524.

525.

526.

527.

528.

529.

530.

531.

532.

533.

Sarkar, A., et al., Infection with Anaplasma phagocytophilum activates the
phosphatidylinositol 3-Kinase/Akt and NF-kappaB survival pathways in neutrophil
granulocytes. Infect Immun, 2012. 80(4): p. 1615-23.

Nobili, V., et al., Association of serum interleukin-8 levels with the degree of fibrosis in
infants with chronic liver disease. J Pediatr Gastroenterol Nutr, 2004. 39(5): p. 540-4.
Rucklidge, G.J., et al., Turnover rates of different collagen types measured by isotope
ratio mass spectrometry. Biochim Biophys Acta, 1992. 1156(1): p. 57-61.

Yuan, C., et al., IL-10 treatment is associated with prohibitin expression in the Crohn's
disease intestinal fibrosis mouse model. Mediators Inflamm, 2013. 2013: p. 617145.
Kogure, T., et al., Hepatic miR-29ab1 expression modulates chronic hepatic injury. J Cell
Mol Med, 2012. 16(11): p. 2647-54.

Wang, L., et al, Loss of miR-29 in myoblasts contributes to dystrophic muscle
pathogenesis. Mol Ther, 2012. 20(6): p. 1222-33.

Amodio, N., et al., miR-29b induces SOCS-1 expression by promoter demethylation and
negatively regulates migration of multiple myeloma and endothelial cells. Cell Cycle,
2013. 12(23): p. 3650-62.

Xing, L.N., et al., Reduced mir-29b-3p expression up-regulate CDK6 and contributes to
IgA nephropathy. Int J Clin Exp Med, 2014. 7(12): p. 5275-81.

Salama, A., et al.,, MicroRNA-29b modulates innate and antigen-specific immune
responses in mouse models of autoimmunity. PLoS One, 2014. 9(9): p. e106153.

Huang, X., Q.T. Le, and A.J. Giaccia, MiR-210--micromanager of the hypoxia pathway.
Trends Mol Med, 2010. 16(5): p. 230-7.

Croshy, M.E., et al., MicroRNA regulation of DNA repair gene expression in hypoxic
stress. Cancer Res, 2009. 69(3): p. 1221-9.

Chang, W., et al., Survival of hypoxic human mesenchymal stem cells is enhanced by a
positive feedback loop involving miR-210 and hypoxia-inducible factor 1. J Vet Sci, 2013.
14(1): p. 69-76.

Chau, I. and D. Cunningham, Chemotherapy in colorectal cancer: new options and new
challenges. Br Med Bull, 2002. 64: p. 159-80.

Nakamura, J., et al., Hypoxia-inducible factor-lalpha expression predicts the response to
5-fluorouracil-based adjuvant chemotherapy in advanced gastric cancer. Oncol Rep,
2009. 22(4): p. 693-9.

Ravizza, R., et al., Effect of HIF-1 modulation on the response of two- and three-
dimensional cultures of human colon cancer cells to 5-fluorouracil. Eur J Cancer, 2009.
45(5): p. 890-8.

Chan, Y.C., et al., miR-210: the master hypoxamir. Microcirculation, 2012. 19(3): p. 215-
23.

Budinger, G.R., et al., Cellular energy utilization and supply during hypoxia in embryonic
cardiac myocytes. Am J Physiol, 1996. 270(1 Pt 1): p. L44-53.

Budinger, G.R., et al., Hibernation during hypoxia in cardiomyocytes. Role of
mitochondria as the O2 sensor. J Biol Chem, 1998. 273(6): p. 3320-6.

Chandel, N.S., et al., Cellular respiration during hypoxia. Role of cytochrome oxidase as
the oxygen sensor in hepatocytes. J Biol Chem, 1997. 272(30): p. 18808-16.

Lu, H., R.A. Forbes, and A. Verma, Hypoxia-inducible factor 1 activation by aerobic
glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem, 2002. 277(26):
p. 23111-5.

202



534.

535.

536.

537.

538.

539.

540.

541.

542.

543.

544,

545.

546.

o947.

548.

549.

550.

551.

552.

553.

Lee, M., et al., AMP-activated protein kinase activity is critical for hypoxia-inducible
factor-1 transcriptional activity and its target gene expression under hypoxic conditions
in DU145 cells. J Biol Chem, 2003. 278(41): p. 39653-61.

Ogata, H., et al., KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res,
1999. 27(1): p. 29-34.

Booth, S.C., A.M. Weljie, and R.J. Turner, Computational tools for the secondary
analysis of metabolomics experiments. Comput Struct Biotechnol J, 2013. 4: p.
€201301003.

Bruning, U., et al., MicroRNA-155 promotes resolution of hypoxia-inducible factor
lalpha activity during prolonged hypoxia. Mol Cell Biol, 2011. 31(19): p. 4087-96.
Crosby, M.E., et al., Emerging roles of microRNAs in the molecular responses to hypoxia.
Curr Pharm Des, 2009. 15(33): p. 3861-6.

Li, E., et al., Differential expression of miRNAs in colon cancer between African and
Caucasian Americans: implications for cancer racial health disparities. Int J Oncol,
2014. 45(2): p. 587-94.

Rapti, S.M., et al., Enhanced miR-182 transcription is a predictor of poor overall survival
in colorectal adenocarcinoma patients. Clin Chem Lab Med, 2014. 52(8): p. 1217-27.
Liu, H., et al., Up-regulation of miR-182 expression in colorectal cancer tissues and its
prognostic value. Int J Colorectal Dis, 2013. 28(5): p. 697-703.

Cekaite, L., et al., MiR-9, -31, and -182 deregulation promote proliferation and tumor
cell survival in colon cancer. Neoplasia, 2012. 14(9): p. 868-79.

Qu, A, et al., Hypoxia-inducible MiR-210 is an independent prognostic factor and
contributes to metastasis in colorectal cancer. PLoS One, 2014. 9(3): p. €90952.

Noman, M.Z., et al., Hypoxia-inducible miR-210 regulates the susceptibility of tumor
cells to lysis by cytotoxic T cells. Cancer Res, 2012. 72(18): p. 4629-41.

Yamasaki, K., et al., Angiogenic microRNA-210 is present in cells surrounding
osteonecrosis. J Orthop Res, 2012. 30(8): p. 1263-70.

Yang, S., et al.,, miR-21 regulates chronic hypoxia-induced pulmonary vascular
remodeling. Am J Physiol Lung Cell Mol Physiol, 2012. 302(6): p. L521-9.

Wang, M., et al., MicroRNA-21 regulates vascular smooth muscle cell function via
targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities. Arterioscler
Thromb Vasc Biol, 2011. 31(9): p. 2044-53.

Nielsen, B.S., et al., High levels of microRNA-21 in the stroma of colorectal cancers
predict short disease-free survival in stage Il colon cancer patients. Clin Exp Metastasis,
2011. 28(1): p. 27-38.

Kjaer-Frifeldt, S., et al., The prognostic importance of miR-21 in stage Il colon cancer: a
population-based study. Br J Cancer, 2012. 107(7): p. 1169-74.

Rask, L., et al., High expression of miR-21 in tumor stroma correlates with increased
cancer cell proliferation in human breast cancer. APMIS, 2011. 119(10): p. 663-73.
Yamamichi, N., et al., Locked nucleic acid in situ hybridization analysis of miR-21
expression during colorectal cancer development. Clin Cancer Res, 2009. 15(12): p.
4009-16.

Etheridge, A., et al., Extracellular microRNA: a new source of biomarkers. Mutat Res,
2011. 717(1-2): p. 85-90.

Wang, J., et al., Tumor-associated circulating microRNAs as biomarkers of cancer.
Molecules, 2014. 19(2): p. 1912-38.

203



554,

555.

556.

557.

558.

559.

560.

561.

562.

563.

564.

565.

566.

567.

568.

5609.

570.

o571,

572.

573.

Zhang, H.L., et al., Serum miRNA-21: elevated levels in patients with metastatic
hormone-refractory prostate cancer and potential predictive factor for the efficacy of
docetaxel-based chemotherapy. Prostate, 2011. 71(3): p. 326-31.

Shen, J., et al., Dysregulation of circulating microRNAs and prediction of aggressive
prostate cancer. Prostate, 2012. 72(13): p. 1469-77.

Resnick, K.E., et al., The detection of differentially expressed microRNAs from the serum
of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol, 2009.
112(1): p. 55-9.

Taylor, D.D. and C. Gercel-Taylor, MicroRNA signatures of tumor-derived exosomes as
diagnostic biomarkers of ovarian cancer. Gynecol Oncol, 2008. 110(1): p. 13-21.
Sadakari, Y., et al., MicroRNA expression analyses in preoperative pancreatic juice
samples of pancreatic ductal adenocarcinoma. JOP, 2010. 11(6): p. 587-92.

Zhou, J., et al.,, Plasma microRNA panel to diagnose hepatitis B virus-related
hepatocellular carcinoma. J Clin Oncol, 2011. 29(36): p. 4781-8.

Xu, J., et al., Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with
hepatocellular carcinoma or chronic hepatitis. ngMol Carcinog, 2011. 50(2): p. 136-42.
Komatsu, S., et al., Circulating microRNAs in plasma of patients with oesophageal
squamous cell carcinoma. Br J Cancer, 2011. 105(1): p. 104-11.

Shen, J., et al., Diagnosis of lung cancer in individuals with solitary pulmonary nodules
by plasma microRNA biomarkers. BMC Cancer, 2011. 11: p. 374.

Li, Z.H., et al., Prognostic significance of serum microRNA-210 levels in nonsmall-cell
lung cancer. J Int Med Res, 2013. 41(5): p. 1437-44.

Zhao, A., et al., Serum miR-210 as a novel biomarker for molecular diagnosis of clear
cell renal cell carcinoma. Exp Mol Pathol, 2013. 94(1): p. 115-20.

Iwamoto, H., et al., Serum miR-210 as a potential biomarker of early clear cell renal cell
carcinoma. Int J Oncol, 2014. 44(1): p. 53-8.

Xuan, Y., et al., Dichloroacetate attenuates hypoxia-induced resistance to 5-fluorouracil
in gastric cancer through the regulation of glucose metabolism. Exp Cell Res, 2014.
321(2): p. 219-30.

Yoshiba, S., et al., Hypoxia induces resistance to 5-fluorouracil in oral cancer cells via
G(1) phase cell cycle arrest. Oral Oncol, 2009. 45(2): p. 109-15.

Liu, J., et al., Notchl is a 5-fluorouracil resistant and poor survival marker in human
esophagus squamous cell carcinomas. PL0S One, 2013. 8(2): p. e56141.

Wang, C.J., et al., Suppression of microRNA-31 increases sensitivity to 5-FU at an early
stage, and affects cell migration and invasion in HCT-116 colon cancer cells. BMC
Cancer, 2010. 10: p. 616.

Karaayvaz, M., H. Zhai, and J. Ju, miR-129 promotes apoptosis and enhances
chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death Dis, 2013. 4: p. €659.
Boni, V., et al., miR-192/miR-215 influence 5-fluorouracil resistance through cell cycle-
mediated mechanisms complementary to its post-transcriptional thymidilate synthase
regulation. Mol Cancer Ther, 2010. 9(8): p. 2265-75.

Deng, J., et al., Targeting miR-21 enhances the sensitivity of human colon cancer HT-29
cells to chemoradiotherapy in vitro. Biochem Biophys Res Commun, 2014. 443(3): p.
789-95.

Shang, J., et al., MicroRNA-23a antisense enhances 5-fluorouracil chemosensitivity
through APAF-1/caspase-9 apoptotic pathway in colorectal cancer cells. J Cell Biochem,
2014. 115(4): p. 772-84.

204



574.

575.

576.

ST77.

578.

579.

580.

581.

582.

583.

584.

585.

586.

587.

588.

589.

590.

591.

592.

593.

594.

595.

Borralho, P.M., et al., MicroRNA-143 reduces viability and increases sensitivity to 5-
fluorouracil in HCT116 human colorectal cancer cells. FEBS J, 2009. 276(22): p. 6689-
700.

Frezza, C., et al., Metabolic profiling of hypoxic cells revealed a catabolic signature
required for cell survival. PL0oS One, 2011. 6(9): p. e24411.

Mehrpour, M., et al., Overview of macroautophagy regulation in mammalian cells. Cell
Res, 2010. 20(7): p. 748-62.

Zhang, H., et al., Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic
response to hypoxia. J Biol Chem, 2008. 283(16): p. 10892-903.

Wilkinson, S., et al., Hypoxia-selective macroautophagy and cell survival signaled by
autocrine PDGFR activity. Genes Dev, 2009. 23(11): p. 1283-8.

Frankel, L.B. and A.H. Lund, MicroRNA regulation of autophagy. Carcinogenesis, 2012.
33(11): p. 2018-25.

Yang, X., et al., mir-30d Regulates multiple genes in the autophagy pathway and impairs
autophagy process in human cancer cells. Biochem Biophys Res Commun, 2013. 431(3):
p. 617-22.

Zhang, Y., et al., Regulation of autophagy by miR-30d impacts sensitivity of anaplastic
thyroid carcinoma to cisplatin. Biochem Pharmacol, 2014. 87(4): p. 562-70.

Sun, Y., et al., Hypoxia-induced autophagy reduces radiosensitivity by the HIF-
lalpha/miR-210/Bcl-2 pathway in colon cancer cells. Int J Oncol, 2015. 46(2): p. 750-6.
Li, J., et al., Inhibition of autophagy augments 5-fluorouracil chemotherapy in human
colon cancer in vitro and in vivo model. Eur J Cancer, 2010. 46(10): p. 1900-9.

Park, S.G., P. Schimmel, and S. Kim, Aminoacyl tRNA synthetases and their connections
to disease. Proc Natl Acad Sci U S A, 2008. 105(32): p. 11043-9.

Kushner, J.P., et al., Elevated methionine-tRNA synthetase activity in human colon
cancer. Proc Soc Exp Biol Med, 1976. 153(2): p. 273-6.

Ghanipour, A., et al., The prognostic significance of tryptophanyl-tRNA synthetase in
colorectal cancer. Cancer Epidemiol Biomarkers Prev, 2009. 18(11): p. 2949-56.

Emara, M.M,, et al., Angiogenin-induced tRNA-derived stress-induced RNAs promote
stress-induced stress granule assembly. J Biol Chem, 2010. 285(14): p. 10959-68.
Gebetsberger, J. and N. Polacek, Slicing tRNAs to boost functional ncRNA diversity. RNA
Biol, 2013. 10(12): p. 1798-806.

Goodarzi, H., et al., Endogenous tRNA-Derived Fragments Suppress Breast Cancer
Progression via YBX1 Displacement. Cell, 2015. 161(4): p. 790-802.

Khan, M.L., et al., YB-1 expression promotes epithelial-to-mesenchymal transition in
prostate cancer that is inhibited by a small molecule fisetin. Oncotarget, 2014. 5(9): p.
2462-74.

Kosnopfel, C., T. Sinnberg, and B. Schittek, Y-box binding protein 1--a prognostic
marker and target in tumour therapy. Eur J Cell Biol, 2014. 93(1-2): p. 61-70.

Zhang, Y., et al., The expression level and prognostic value of Y-box binding protein-1 in
rectal cancer. PLoS One, 2015. 10(3): p. e0119385.

Gaken, J., et al., A functional assay for microRNA target identification and validation.
Nucleic Acids Res, 2012. 40(10): p. e75.

Rieder, F., et al., Animal models of intestinal fibrosis: new tools for the understanding of
pathogenesis and therapy of human disease. Am J Physiol Gastrointest Liver Physiol,
2012. 303(7): p. G786-801.

Archambaud, C., et al., The intestinal microbiota interferes with the microRNA response
upon oral Listeria infection. MBio, 2013. 4(6): p. e00707-13.

205



596.

597.

598.

599.

600.

601.

602.

603.

604.

605.

606.

Vermeire, S., G. Van Assche, and P. Rutgeerts, Laboratory markers in IBD: useful,
magic, or unnecessary toys? Gut, 2006. 55(3): p. 426-31.

Chen, X., et al., Characterization of microRNAs in serum: a novel class of biomarkers for
diagnosis of cancer and other diseases. Cell Res, 2008. 18(10): p. 997-1006.

Zuo, J., et al., MiR-210 Links Hypoxia With Cell Proliferation Regulation in Human
Laryngocarcinoma Cancer. J Cell Biochem, 2015. 116(6): p. 1039-49.

Yang, W., et al., Effects of knockdown of miR-210 in combination with ionizing radiation
on human hepatoma xenograft in nude mice. Radiat Oncol, 2013. 8: p. 102.

Rottiers, V. and A.M. Naar, MicroRNAs in metabolism and metabolic disorders. Nat Rev
Mol Cell Biol, 2012. 13(4): p. 239-50.

Flicek, P., et al., Ensembl 2008. Nucleic Acids Res, 2008. 36(Database issue): p. D707-
14,

Bina, M., The genome browser at UCSC for locating genes, and much more! Mol
Biotechnol, 2008. 38(3): p. 269-75.

Bentwich, 1., Prediction and validation of microRNAs and their targets. FEBS Lett, 2005.
579(26): p. 5904-10.

Sethupathy, P., M. Megraw, and A.G. Hatzigeorgiou, A guide through present
computational approaches for the identification of mammalian microRNA targets. Nat
Methods, 2006. 3(11): p. 881-6.

Easow, G., A.A. Teleman, and S.M. Cohen, Isolation of microRNA targets by miRNP
immunopurification. RNA, 2007. 13(8): p. 1198-204.

Coussens, M.J., et al., Genome-wide screen for miRNA targets using the MISSION target
ID library. J Vis Exp, 2012(62): p. €3303.

206



Chapter 8: Appendix Tables and Figures

Appendix Table 1. MiRNAs outside the microarray detection limit. miRNAs with fluorescent values
over 60000 in either group were considered outside the detection range Mean fluorescent intensity and
standard deviation values of miRNAs are shown for each group (n=6). The miRNAs are ranked in

numerical order.

RNA ) ea D ge D mea D ge
hsa-let-7a 65231 90.72854 64719.42 713.5631
hsa-let-7c 53165.05 10852.14 61298.38 4353.523
hsa-let-7f 64550.27 1048.211 64728.45 581.9631
hsa-let-7g 65259.99 42.7569 64516.42 1300.471

hsa-miR-1246 63777.89 3194.615 61946.67 3149.818
hsa-miR-125a-5p 62567.12 2103.862 62010.74 3076.071
hsa-miR-125b 62040.64 2897.026 64645.71 1565.292
hsa-miR-1274b 62649.88 3852.055 64467.1 1080.001
hsa-miR-143 64573.46 910.919 64720.56 505.6736
hsa-miR-145 61774.85 1862.461 59771.46 4054.616
hsa-miR-146a 58928.45 5332.376 63229.99 2859.887
hsa-miR-148a 61695.38 3502.753 63722.82 1234.12
hsa-miR-150 64782.89 491.8828 64545.14 1120.818
hsa-miR-191 63458 1803.962 64728.41 1009.837
hsa-miR-192 64700.54 791.1251 52806.59 22664.21
hsa-miR-194 64970.88 464.6906 54832.75 21872.47
hsa-miR-200b 64682.57 1003.68 53010.34 21983.21
hsa-miR-200c 64776.06 912.2013 58880.99 14979.28
hsa-miR-21 64975.96 582.5917 64614.2 948.4555
hsa-miR-214 57484.82 6560.773 62260.69 4286.634
hsa-miR-215 63966.94 1817.542 52483.16 24551.44
hsa-miR-223 63357.81 2285.193 63123.24 3768.269
hsa-miR-23a 64298.17 1304.531 64714.14 717.0644
hsa-miR-23b 64594.38 935.3724 64106.89 788.4298
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hsa-miR-24 59316.12 3257.537 61121.67 3381.464
hsa-miR-25 61741.95 4026.395 64263.52 1635.017
hsa-miR-26a 64929.19 551.2634 64849.67 782.2091
hsa-miR-26b 64472.19 603.2704 64441.05 1880.022
hsa-miR-27a 58097.38 5052.814 63581.89 1805.699
hsa-miR-27b 55278.55 5277.181 60173.87 4441.18
hsa-miR-29b 62140.1 3882.261 62976.71 3538.593
hsa-miR-30c 57763.14 5669.622 60297.95 4990.575
hsa-miR-30d 64204.91 1421.48 63907.17 2073.305
miR-320a,b,c,d 63925.98 1917.901 63372.55 1820.957
hsa-miR-375 65051.37 282.7126 55421.88 19594.96
hsa-miR-544 60152.79 12570.68 54914.52 15177.2
hsa-miR-720 64319.63 2034.63 64149 1039.136
hsa-miR-768-3p 63424.84 3896.227 64523.2 1125.593
hsa-miR-92a 62243.82 2337.274 62269 2723.357
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Appendix Figure 1. In situ hybridisation of U6 in intestinal mucosa. FFPE section of intestinal mucosa
probed with in situ hybridisation probe for small RNA U6. (A) Negative and (B) positive staining for U6
within the same section.
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Fold change to NSCD

scD
Appendix Figure 2. Collagen transcripts are up-regulated in SCD vs NSCD tissues. Paired NSCD and

SCD tissue samples (n=5) were assayed for the expression of COL1A2 and COL3A1 via qRT-PCR. Bars

represent mean values with SEM. *p<0.05.
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Appendix Figure 3. Mcl-1 antibody validation. Cell lysates from six CRC cell lines were subjected to

western blotting. Antibodies against Mcl-1 and Beta-actin were used at 1:250 and 1:50,000, respectively.
Molecular weight for Mcl-1L, Mcl-1S and Mcl-1ES are 40kDa, 31kDa and 24kDa, respectively
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Appendix Figure 4. PLS-DA axis 6 loadings. Log transformed miRNA data was subjected to
unsupervised PLS-DA analysis. Loadings from PLS-DA axis 6 for each of the miRNAs are shown.

Rectangle boxes outline the location of the bar graphs below.
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Appendix Figure 5. Expression of miR-30d, -141 and -147 did not correlate to the expression of
hypoxia marker CAIX. (A-C) Scatter plots of miR-30, -141 and -147 expression (1/2"*°T) assessed by
gRT-PCR and percentage of CAIX-positive staining within the tumour (n=13). (D) Correlation efficiency

are calculated with Spearman’s Rank. Rho values and p-value are shown.
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Appendix Figure 6. Cell survival following transfection of pre- and anti-miR candidate miRNAs.
HCT116 cells were transfected with pre- and anti-miRs and treated with DMSO (vehicle control) for a
further 48hr under two oxygen conditions (20.9% or 0.2%). Graph represents percentage of cell survival
normalised to untransfected cells. Bars represent mean values with SEM.
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Target ID Library

Due to their short seed sequence, miRNAs have the capability to modulate the expression
a large number of genes. Identifying these targets would provide an important insight in
the cellular pathways that a miRNA is involved in. Since miRNAs were discovered, many
prediction tools are now available to identify targets based on the complementarity
between the miRNA and mRNA sequences. However, these various tools utilise different
algorithms to predict miRNA targets. Alternative 3’-UTR sequence databases are used
between the various programmes [601, 602], resulting in major differences between
prediction results. Additionally, the false positive rate of these identification tools has
been shown to be up to 70% [603-605], emphasising the importance of experimental
validation of mRNA targets for each specific miRNA. Luciferase reporter assays
containing the 3’-UTR sequence of the mRNA, combined with mutagenesis of the
predicted miRNA binding site, still remain the gold standard practise to validate novel
targets. This, however, is a highly laborious exercise and a limited number of targets are
selected based on preliminary knowledge guided by the online prediction tools. Recently,
a novel system, the MISSION® Target ID Library (Sigma, UK), has been designed which
essentially removes this target discovery bottleneck and allows novel mRNA targets to be
identified on a genome-wide scale. The library contains ~17,000 unique human cDNAs
cloned downstream of the 3’UTR of a thymidine kinase-zeocin fusion protein (Appendix
Fig. 7). This library is then stably transfected into a cell model of choice. Subsequently,
cells stably expressing the library are transfected with a miRNA of choice and genome-

wide mRNA targets can then be identified.
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MISSION® Target ID Library Transfection

Step 1: Create cell line O O
expressing Target ID Library ( >< > ( >

l Transfection

Untransfected Cells

/eocin Selection \

Step 2: Introduce miRNAs O Zeoxin resistant cells MRNA transcripts targeted by
and Ganciclovir selection. Cells endogenous mithiAs
containing miRNA-targeting
TKzeo transcripts will live,

miRNA expressing plasmid
with antibiotic selection

Transfection

miRNA mimic

j Ganciclovir Seleclior\

mRNA transcripts mRNA transcripts
NOT targeted by miRNA targeted by miRNA

Isolate DNA

|

PCR

Step 3: Identify miRNA targets TA-clone Deep
in cells that survive, and Sequence
Sequence

Appendix Figure 7. MISSION® Target ID Library. The Target ID Library is a pool of plasmids, each
with a human ¢cDNA inserted into the 3°-UTR after a thymidine kinase-Zeocin fusion protein (TKzeo).
Cells are transfected with the Target ID Library and allowed to recover for 3-5 days. Constructs can
integrate into the genome during this recovery period and express the encoded transcript. After recovery,
cells are exposed to Zeocin. Cells expressing the TK/Zeo fusion protein from stably integrated Target ID
constructs survive Zeocin selection, whilst untransfected cells die. Following the transfection of these
Target ID cells with a miRNA expression construct of interest, cells are selected with gancliclovir. Cells
producing thymidine kinase (TK) in the presence of ganciclovir (i.e., cells expressing TK/Zeo constructs
not targeted by the miRNA) will die. On the other hand, cells containing Library constructs with miRNA
target sites will not produce TK, and therefore, will survive ganciclovir selection. Surviving cells can be
grown, gDNA isolated, and the cDNA containing miRNA target sites PCR-amplified using the Target ID
Amplification primers. PCR products will be sequenced by Next Generation Sequencing (NGS) and aligned

with the human genome to identify miRNA targets.
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Cells that express a cDNA construct (or constructs) that is targeted by the candidate
miRNA will survive and the cDNA will be picked up by sequencing as a target.
Therefore, to keep experimental background to a minimum, a cell line with low
endogenous expression of the candidate miRNA is required. Based on the work presented
previously (Section 5.2-Section 5.5), miR-21, -210 and -30d were selected for further
investigation. Three colon cancer cell lines (DLD-1, HCT116 and HT29), three rectal
cancer cell lines (HT55, SW837 and VACO4s), a cervical cancer cell line (HeLa) and a
breast cancer cell line (MCF7) were tested for endogenous expression of miR-21, -210

and -30d by qRT-PCR. Analysis demonstrated that HeLa cells presented a consistent low
expression of all three miRNAs (Appendix Fig. 8A-C) and was, therefore, selected as the
cell line model for the transfection of the Target ID Library. The Library cDNA
constructs contain a Zeocin resistance element enabling transfected cells to be positively
selected using this antibiotic. A Kill curve for Zeocin was performed on untransfected
HeLa cells to determine the minimal lethal dose. Cells were treated with a range of
concentrations of Zeocin (0, 300, 400, 500, 600 or 700 ug/ml) and cell survival measured
at day 3, 6 and 9. A concentration of 500 pg/ml Zeocin killed 95% of cells after 9 days
(Appendix Fig. 8D), and this reached 100% by day 14. This same concentration (500
ug/ml) was used previously by others when the system was optimised [606].
Subsequently, HeLa cells were transfected with 2 pg cDNA construct (Target ID Library,
Sigma, UK) for 5 days before transfected cells were selected with 500 pg/ml. HeLa cells
were expanded with Zeocin-containing media for two weeks and stocks frozen down for

future use.
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Appendix Figure 8. Target ID Library preparation (n=1). (A-C) Endogenous levels of miR-21, miR-
210 and miR-30d in three colon (DLD-1, HCT116 and HT29), three rectal (HT55, SW837 and VACO4s), a
cervical cell line (HeLa) and a breast cancer cell line (MCF7). The graphs represent the un-normalised Ct
values determined via qRT-PCR. (D) Untransfected HelLa cells were exposed to a range of concentrations
of Zeocin to determine the minimum concentration to achieve maximum cell death. Cell survival was
measured at three time points (3, 6 and 9 days). 500 pg/ml Zeocin was sufficient for maximum death after 9

days.
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Next, DNA was extracted from three individual flasks of cells stably expressing the
Target ID Library constructs and one flask of untransfected HelLa cells. PCR
amplification was performed using the amplification primers which specifically amplified
the cDNA constructs (provided by Sigma, UK). PCR products were then were run on a
2% agarose gel for visualisation (Appendix Fig. 9A). The DNA samples from cells
transfected with the Target ID Library (HeLa + ID Library) demonstrated clear bands,
while the untransfected cells (HeLa — ID Library) and the water control was negative,
suggesting that the transfection of the cDNA constructs was successful (Appendix Fig.
9A). The cDNA constructs vary in length between 0.5kb and 4kb (Target ID Library

Technical Bulletin, http://www.sigma-aldrich.com), and a smear of DNA was observed

with a few distinct bands between 700bp and 2000bp. Sigma provided a similar PCR
from cells (unknown) transfected with the Target ID Library. A similar DNA smear with

a few distinct bands can be seen (Appendix Fig. 9B).
These results demonstrate that HeLa cells were successfully transfected with the Target

ID Library constructs. In the future, these cells will be used for the screening of genome

wide targets of candidate miRNAs.

219


http://www.sigma-aldrich.com/

A e £ F g B
[ S . S
2 2 2 29 -
= 3 O O 3 o 5 o
[}) ] ©
e} a O O A ] gh
-U — 020 s mmm s .Q
o + + + 1 3 8| =
@ @© @©
$ 3333 & 3 e
(=) I I I =T u o +

~ 2000bp ——
1500bp ——
2000bp
1500bp 1000bp —
1000bp
750bp ——
500bp ——
500bp
300bp ——

Appendix Figure 9. Target ID Library cDNA contructs in HeLa cells. (A) PCR performed with primers
that amplify cDNA insert specifically. Four DNA samples were used: HeLa transfected with the Target ID
Library x3 and one of untransfected HeLa cells. PCR products were run on a 2% gel. (B) PCR image

supplied by Sigma demonstrating the presence of the target ID library (cell line unknown).
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