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Abstract

Self-supervised pre-training has been proved to be ef-
fective in learning transferable representations that benefit
various visual tasks. This paper asks this question: can
self-supervised pre-training learn general facial represen-
tations for various facial analysis tasks? Recent efforts to-
ward this goal are limited to treating each face image as
a whole, i.e., learning consistent facial representations at
the image-level, which overlooks the “consistency of local
facial representations” (i.e., facial regions like eyes, nose,
etc). In this work, we make a first attempt to propose a
novel self-supervised facial representation learning frame-
work to learn consistent global and local facial represen-
tations, Facial Region Awareness (FRA). Specifically, we
explicitly enforce the consistency of facial regions by match-
ing the local facial representations across views, which are
extracted with learned heatmaps highlighting the facial re-
gions. Inspired by the mask prediction in supervised seman-
tic segmentation, we obtain the heatmaps via cosine simi-
larity between the per-pixel projection of feature maps and
“facial mask embeddings” computed from learnable posi-
tional embeddings, which leverage the attention mechanism
to globally look up the facial image for facial regions. To
learn such heatmaps, we formulate the learning of facial
mask embeddings as a deep clustering problem by assigning
the pixel features from the feature maps to them. The trans-
fer learning results on facial classification and regression
tasks show that our FRA outperforms previous pre-trained
models and more importantly, using ResNet as the unified
backbone for various tasks, our FRA achieves comparable
or even better performance compared with SOTA methods
in facial analysis tasks.

1. Introduction
Human face understanding is an important and challenging

topic in computer vision [41, 72] and supervised learning

algorithms have shown promising results on a wide range

of facial analysis tasks recently [5, 31, 55, 71]. Despite

the impressive progress, these methods require large-scale

well-annotated training data, which is expensive to collect.

Recent works in self-supervised representation learn-

ing for visual images have shown that self-supervised pre-

training is effective in improving the performance on var-

ious downstream tasks such as image classification, object

detection and segmentation as it can learn general repre-

sentations from unlabeled data that could be transferred to

downstream visual tasks, especially tasks with limited la-

beled data [18, 24, 28, 30, 58, 62, 65]. Among them, in-
stance discrimination (including contrastive learning [10,

22, 36] and non-contrastive learning [11, 20] paradigms)

has been shown to be effective in learning generalizable

self-supervised features. Instance discrimination aims to

learn view-invariant representations by matching the global
representations between the augmented views generated

by aggressive image augmentations, i.e., the image-level

representations of the augmented views should be simi-

lar [10–12, 20, 22, 36]. Another self-supervised learning

paradigm, masked image modeling (MIM) [23, 54] learns

visual representations by reconstructing image content from

a masked image, achieving excellent performance in full

model fine-tuning. This leads to the question: can self-
supervised pre-training learn general facial representa-
tions which benefit downstream facial analysis tasks?

Several attempts have been made to learn general facial

representations for facial analysis tasks [3, 41, 72]. For ex-

ample, Bulat et al. [3] directly applies the contrastive ob-

jective to facial features. FaRL [72] and MCF [59] com-

bine contrastive learning and mask image modeling [23].

PCL [41] proposes to disentangle the pose-related and pose-

unrelated features, achieving strong performance on both

pose-related (regression) and pose-unrelated (classification)

tasks. However, it runs the model forward and back-

ward three times for each training step, which is time-

consuming. Despite different techniques, these methods

commonly treats each face image as a whole to learn consis-

tent global representations at the image-level and overlook

the “spatial consistency of local representations”, i.e., lo-

cal facial regions (e.g., eyes, nose and mouth) should also be



similar across the augmented views, thus limiting the gen-

eralization to downstream tasks. This brings us to the focus:

learning consistent global and local representations for
facial representation learning.

We argue that in order to learn consistent local represen-

tations, the model needs to look into facial regions. Towards

that goal, we predict a set of heatmaps highlighting differ-

ent facial regions by leveraging learnable positional embed-

dings as facial queries (the feature maps as keys and values)

to look up the facial image globally for facial regions, which

is inspired by the mask prediction in supervised segmenta-

tion [13]. For visual images, the attention mechanism of

Transformer allows the learnable positional embeddings to

serve as object queries for visual pattern look-up [7, 13].

In our case (facial images), the learnable positional embed-

dings can be used as facial queries for facial regions (see
the visualization in the supplementary material).

In this work, taking the consistency of facial regions into

account, we make a first attempt to propose a novel self-

supervised facial representation learning framework, Facial

Region Awareness (FRA) that learns general facial repre-

sentations by enforcing consistent global and local facial

representations, based on a popular instance discrimina-

tion baseline BYOL [20] for its simplicity. Specifically,

we learn consistent local facial representations by match

them across augmented views, which are extracted by ag-

gregating the feature maps using learned heatmaps high-

lighting the facial regions as weights. Inspired by the mask

prediction in MaskFormer [13], we produce the heatmaps

from a set of learnable positional embeddings, which are

used as facial queries to look up the facial image for facial

regions. A Transformer decoder takes as input the feature

maps from the encoder and the learnable positional embed-

dings to output a set of “facial mask embeddings”, each

associated with a facial region. The facial mask embed-

dings are used to compute cosine similarity with the per-

pixel projection of feature maps to produce the heatmaps.

In addition, we enforce the consistency of global represen-

tations across views simultaneously so that the image-level

information is preserved. In order to learn the heatmaps (fa-

cial mask embeddings), inspired by deep clustering [8] that

learns to assign samples to clusters, we treat the facial mask

embeddings as clusters and learn to assign pixel features

from the feature maps to them. Specifically, we align the
per-pixel cluster assignments of each pixel feature over

the facial region clusters between the online and momentum

network for the same augmented view (i.e., each pixel fea-

ture should have similar similarity distribution over the fa-

cial mask embeddings between the momentum teacher and

online student). In contrast to supervised segmentation that

directly uses ground-truth masks to supervise the learning

of the masks (heatmaps) with a per-pixel binary mask loss,

we formulate the learning of heatmaps as a deep cluster-

ing [8] problem that learns to assign pixel features to clus-

ters (facial mask embeddings) in a self-supervised manner.

Our contributions can be summarized as follows:

• Taking into the consistency of local facial regions into

account, we make a first attempt to propose a novel

self-supervised facial representation learning framework,

Facial Region Awareness (FRA) that learns consistent

global and local facial representations.

• We show that the learned heatmaps can roughly discover

facial regions in the supplementary material.

• In previous works, different backbones are adopted for

different facial analysis tasks (e.g., in face alignment the

common backbone is hourglass network [63] while in fa-

cial expression recognition ResNet [21] is the popular

backbone). In this work, our FRA achieves SOTA re-

sults using vanilla ResNet [21] as the unified backbone

for various facial analysis tasks.

• Our FRA outperforms existing self-supervised pre-

training approaches (e.g., BYOL [20] and PCL [41])

on facial classification (i.e., facial expression recogni-

tion [19, 38] and facial attribute recognition [42]) and re-

gression (i.e., face alignment [48–50, 60]) tasks. More

importantly, our FRA achieves comparable (e.g., face

alignment) or even better performance (e.g., facial ex-

pression recognition) compared with SOTA methods in

the corresponding facial analysis tasks.

2. Related work

2.1. Visual representation learning

As one of the main paradigms for self-supervised pre-

training, instance discrimination learns representations by

treating an image as a whole and enforcing the consis-

tency of global representations at the image-level across

augmented views. Generally, instance discrimination in-

cludes two paradigms: contrastive learning [10, 22, 36]

and non-contrastive learning [11, 20]. Contrastive learn-

ing considers each image and its transformations as a dis-

tinct class, i.e., “positive” samples are pulled together while

“negative” samples are pushed apart in the latent space. Un-

like contrastive learning that relies on negative samples to

avoid collapse, non-contrastive learning directly maximizes

the similarity of the global representations between the aug-

mented views without involving negative samples based on

techniques like stop-gradient [11] and predictor [20]. Fur-

ther works perform visual-language pre-training by apply-

ing contrastive objective to image-text pairs [29, 35, 47].

Another line of work, masked image modeling (MIM)

learns visual representations by reconstructing image con-

tent from a masked image [1, 23, 54], which is inspired

by the masked language modeling in NLP [15]. In con-

trast to instance discrimination, MIM achieves strong full

model fine-tuning performance with Vision Transformers



pre-trained for enough epochs. However, these works suffer

from poor linear separability and are less data-efficient than

instance discrimination in few-shot scenarios [1].

2.2. Facial representation learning

Recent works on facial analysis explore self-supervised

learning for several face-related tasks, such as facial ex-

pression recognition [9, 53], face recognition [9, 57], facial

micro-expression recognition [46], AU detection [39, 40],

face alignment (facial landmark detection) [14, 64], etc.

However, these methods are task-specific, i.e., tailored for a

specific facial task and thus lack the ability to generalize to

various facial analysis tasks [41]. Further efforts [3, 41, 72]

focus on learning general facial representations with con-

trastive learning and mask image modeling [23, 54]. Bu-

lat et al. [3] directly apply the contrastive objective to

augmented views of the same face image, showing that

general facial representation learned from pre-training can

benefit various facial analysis tasks. FaRL [72] performs

pre-training in a visual-linguistic manner by employing

image-text contrastive learning and masked image model-

ing. MCF [59] leverages image-level contrastive learning

and masked image modeling, along with the knowledge dis-

tilled from external ImageNet pre-trained model for facial

representation learning. PCL [41] argues that directly ap-

plying the contrastive objective to face images overlooks

the variances of facial poses and thus leads to pose-invariant

representations, limiting the performance on pose-related

tasks [66, 75]. Therefore, PCL [41] disentangles the pose-

related and pose-unrelated features and then performs con-

trastive learning on these features, achieving strong perfor-

mance on both pose-related and pose-unrelated facial anal-

ysis tasks. Despite the success, it performs forward and

backward three times for each input image, which brings

significant increase on computational cost. These works

are commonly limited by instance discrimination and over-

look the consistency of local facial regions. In contrast, in-

spired by supervised semantic segmentation, we learn con-

sistent global and local facial representations by learning

a set of heatmaps indicating facial regions from learnable

positional embeddings, which leverage the attention mech-

anism to look up facial image globally for facial regions.

2.3. Facial region discovery

There are some approaches leveraging facial region (land-

mark) discovery for facial analysis [27, 43, 61]. Some focus

on landmark detection by either learning a heatmap for each

landmark via image reconstruction [27, 68], or performing

pixel-level matching with an equivariance loss [56, 68]. De-

spite different techniques, these methods are task-specific,

i.e., landmark detection with discovery of local informa-

tion, while our method is task-agnostic, i.e., learn gen-

eral facial representations for various tasks by preserving

global and local information in a image, region and pixel-
level contrastive manner. MARLIN [4] applies masked

image modeling to learn general representations for facial

videos by utilizing an external face parsing algorithm to dis-

cover the facial regions (e.g., eyes, nose and mouth), which

are used to guide the masking for the masked autoencoder.

A closely related work SLPT [61] leverages the attention

mechanism to estimate facial landmarks from initial facial

landmarks estimates of the mean face through supervised

learning. These works commonly rely on external supervi-

sory signal, whether it is from ground-truths or additional

algorithms. In contrast, we learn to discover the facial re-

gions in an end-to-end self-supervised manner for facial

image representation learning.

3. Methodology
3.1. Overview

The overview of the proposed FRA is shown in Fig. 1. The

goal is to learn consistent global and local facial representa-

tions. Toward this goal, we propose two objectives: pixel-
level semantic relation and image/region-level semantic
consistency. Semantic relation aligns the per-pixel clus-

ter assignments of each pixel feature over the facial mask

embeddings between the online and momentum network to

learn heatmaps for facial regions (Sec. 3.2) while seman-

tic consistency directly matches the global and local facial

representations across augmented views (Sec. 3.3) with the

learned heatmaps.

3.2. Semantic relation

As shown in Fig. 1, our method adopts the Siamese

structure of BYOL [20], a popular self-supervised pre-

training baseline based on instance discrimination. Follow-

ing BYOL [20], we employ two branches: the online net-

work parameterized by θ and the momentum network pa-

rameterized by ξ. The online network θ consist of an en-

coder Eθ, a global projector Hg
θ and a local projector H l

θ.

The momentum network ξ has the same architecture with

the online network, except ξ is updated with an exponen-

tial moving average of θ. As in BYOL [20], we also adopt

additional predictors Gg
θ and Gl

θ on top of the projectors

in the online network. Note that this is omitted for brevity

in Fig. 1.

Given an input image x, two random augmentations are

applied to generate two augmented views x1 = T1(x) and

x2 = T2(x), following BYOL [20]. Each augmented view

xi ∈ {x1,x2} is fed into an encoder E to obtain a fea-

ture map Fi ∈ R
C×H×W (before global average pooling),

where C, H , W are the number of channels, height and

width of Fi and a latent representation hi ∈ {h1,h2} (af-

ter global average pooling), i.e., h1 = Eθ(x1) and h2 =
Eξ(x2). Then each latent representation hi is transformed
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Figure 1. Overview of the proposed FRA framework. � denotes cosine similarity. For each input image x, its augmented views x1 and

x2 are passed into two network branches to produce the global embeddings z1 and z2. In addition, we produce a set of heatmaps M1 and

M2 indicating the local facial regions, via the correlation between the pixel features and “facial mask embeddings” computed from a set of

learnable positional embeddings. Then we aggregate the feature map to obtain the local facial embeddings {zm1 } and {zm2 }. The semantic

consistency loss is applied to global embeddings and facial embeddings to maximize the similarity across augmented views. To learn such

heatmaps, i.e., facial mask embeddings, we treat the facial mask embeddings as facial region clusters and propose a semantic relation loss

to align the cluster assignments of each pixel feature over the facial region clusters between the online and momentum network.
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Figure 2. Generation of heatmaps using learnable positional em-

beddings as facial queries and the feature maps as keys and values.

by a global projector Hg to produce a global embedding

zi ∈ {z1, z2} of dimension zi ∈ R
D, i.e., z1 = Hg

θ (h1)
and z2 = Hg

ξ (h2).
Then we obtain a set of heatmaps Mi ∈ {M1,M2}

highlighting the facial regions from the feature map Fi

for each view, which is inspired by mask classification-
based supervised segmentation [7, 13] that leverages atten-

tion mechanism to look up visual patterns globally. First

the local projector (e.g., H l
θ) is applied to project the pixel

features of Fi in a pixel-wise manner, mapping it to D di-

mensions to get the dense feature map Fdense
i ∈ R

D×H×W .

Take view x1 as an example, the projected feature map can

be expressed as:

Fdense
1 [∗, u, v] = H l

θ(F1[∗, u, v]), (1)

where F1[∗, u, v] ∈ R
C is the pixel feature at the (u, v)-th

grid of F1. Then as shown in Fig. 2, inspired by super-

vised segmentation [13], we use a Transformer decoder fol-

lowed by a MLP, which takes as input the feature map Fi

and N learnable positional embeddings (i.e., facial queries

for looking up the facial image globally for facial regions)

to predict N “facial mask embeddings” Qi ∈ R
N×D of

dimension D, where each row associated with a facial re-

gion. Next, we compute the cosine similarity between facial

mask embeddings Qi and dense feature map Fdense
i along

the channel dimension, yielding per-pixel cluster assign-
ments Si ∈ R

N×H×W , where Si[∗, u, v] denotes the rela-

tion between the dense pixel feature Fdense
1 [∗, u, v] and fa-

cial mask embeddings Qi. Finally, we normalize Si along

the channel dimension with a softmax operation to encour-

age each channel to capture a different pattern, obtaining

N heatmaps Mi ∈ R
N×H×W where each vector at lo-

cation (u, v) is a probabilistic similarity distribution (i.e.,

normalized per-pixel cluster assignments) su,v1 between

Fdense
i [∗, u, v] and Qi. Note that Mi is a set of heatmaps

where each channel of Mi represents a 2D heatmap M
(m)
i .

To learn such heatmaps, i.e., facial mask embeddings,

inspired by deep clustering [8], we treat the facial mask

embeddings as facial region clusters and align the per-pixel

cluster assignments of each pixel feature over these clusters

between the online and momentum network for the same

augmented view, using the momentum network as momen-

tum teacher [16, 73] to provide reliable target.

Following BYOL [20], we pass both augmented views



x1 and x2 through the online and momentum network. Take

x1 as an example, the online network θ outputs the normal-

ized per-pixel cluster assignments su,v1 and the momentum

network outputs normalized assignments ŝu,v1 for view x1.

Then we learn su,v1 using ŝu,v1 as guidance based on the fol-

lowing cross-entropy loss:

CE(su,v1 , ŝu,v1 ) = −
N∑

m=1

ŝu,v1 [m] log su,v1 [m]. (2)

For both augmented views, we define the symmetrized

semantic relation objective as:

Lr =
1

HW

∑
u,v

(CE(su,v1 , ŝu,v1 ) + CE(su,v2 , ŝu,v2 )), (3)

where CE(su,v2 , ŝu,v2 ) is the cross-entropy loss for view x2.

We apply the Sinkhorn-Knopp normalization to the target

assignments from the momentum network following [8] to

avoid collapse and the mean entropy maximization (ME-

MAX) regularizer [1] to maximize the entropy of the pre-

diction to encourage full use of the clusters.

3.3. Semantic consistency

In this section, we enforce the consistency of global em-

beddings and local facial embeddings. With the learned

heatmaps Mi, we generate the latent representations for the

local facial regions through weighted average pooling:

hm
i = M

(m)
i ⊗ Fi

=
1∑

u,v Mi[m,u, v]

∑
u,v

Mi[m,u, v]Fi[∗, u, v], (4)

where ⊗ denotes channel-wise weighted average pooling,

M
(m)
i is the m-th channel (heatmap) of Mi and hm

i ∈ R
C

is the corresponding latent representation produced with

M
(m)
i . The facial embeddings {zm1 : zm1 ∈ R

D}Nm=1 and

{zm2 : zm2 ∈ R
D}Nm=1 are obtained accordingly with the

local projector H l
θ and H l

ξ:

zm1 = H l
θ(h

m
1 ),

zm2 = H l
ξ(h

m
2 ).

(5)

We then match the global embeddings and local facial em-

beddings across views using the negative cosine similarity

in BYOL [20]:

Lsim(z1, z2) = −(λc × fs(G
g
θ(z1), z2)+

+(1− λc)×
1

N

N∑
m=1

fs(G
l
θ(z

m
1 ), zm2 )),

(6)

where fs(u,v) = u�v
‖u‖2‖v‖2

denotes the cosine similarity

between the vectors u and v, λc is the loss weight, Gg
θ and

Gl
θ are the predictors on top of the projectors Hg

θ and H l
θ,

respectively. Following BYOL [20], we symmetrize the loss

Lsim(z1, z2) defined in Eq. (6) by passing x1 through the

momentum network ξ and x2 through the online network θ
to compute Lsim(z2, z1). The semantic consistency objec-

tive can be expressed as follows:

Lc = Lsim(z1, z2) + Lsim(z2, z1). (7)

3.4. Overall objective

We jointly optimize the semantic relation objective Eq. (3)

and the semantic consistency objective Eq. (7), leading to

the following overall objective:

L = Lc + λrLr, (8)

where λr is the loss weight for balancing Lc and Lr.

4. Experiments
4.1. Experimental setups

4.1.1 Implementation details

We use the same augmentation strategy as in [20, 25]. The

number of heatmaps N is set to 8 empirically. The loss

weight λc and λr are set to 0.5/0.1, respectively. For fair

comparisons, the other hyper-parameters are kept the same

as BYOL [20] in all experiments. The architecture and pre-

training details are provided in the supplementary material.

4.1.2 Baselines

Our baselines are self-supervised pre-training approaches

for visual images (e.g., BYOL [20] and LEWEL [25]),

and pre-training approaches for facial images (e.g., Bulat

et al. [3] and PCL [41]). Note that SwAV [8] is equivalent

to Bulat et al. [3]. As we adopt BYOL [20] as the pre-

training backbone, we compare our FRA with BYOL [20]

in all experiments. We also compare our FRA with another

pre-training method LEWEL [25], which learns consistent

local representations for visual images. Moreover, we per-

form comparisons with SOTA methods in the corresponding

downstream tasks.

4.2. Evaluation protocols

Following the common practice in previous works [41, 72],

we evaluate the transfer performance of the self-supervised

pre-trained facial representations on several popular down-

stream facial analysis tasks: facial expression recognition

(FER) [2, 38], facial attribute recognition (FAR) [42] and

face alignment (FA) [48–50, 60]. Specifically, we use



Table 1. Comparisons with weakly-supervised pre-trained vision transformer on several downstream facial analysis tasks, including

facial expression recognition (AffectNet), facial attribute recognition (CelebA) and face alignment (300W).

Method Arch. Params.
Pre-training settings Downstream performances

Dataset Scale Supervision
AffectNet

Acc. ↑
CelebA

Acc. ↑
300W

NME ↓

FaRL [72] ViT-B/16 [17] 86M LAION-FACE [72] 20M face image + text 64.85 91.88 3.08

FRA R50 [21] 24M VGGFace2 [6] 3.3M face image 66.16 92.02 2.91

Table 2. Comparisons on facial expression recognition. We re-

port the Top-1 accuracy on test set. Text denotes text supervision.
†: our reproduction using the official codes.

Method Text FERPlus RAF-DB AffectNet

Supervised
KTN [32] � 90.49 88.07 63.97

RUL [69] � 88.75 88.98 61.43

EAC [70] � 90.05 90.35 65.32

Weakly-Supervised
FaRL [72]† � 88.62 88.31 64.85

CLEF [67] � 89.74 90.09 65.66

Self-supervised
MCF [59]† � 88.17 86.86 60.98

Bulat et al. [3, 8] � - - 60.20

BYOL [20] � 89.25 89.53 65.65

LEWEL [25] � 85.61 81.85 61.20

PCL [41] � 85.87 85.92 60.77

FRA (LP) � 78.13 73.89 57.38

FRA (FT) � 89.78 89.95 66.16
FRA (EAC) � 90.62 90.76 65.85

the pre-trained weights to initialize the backbone of down-

stream tasks and then learn the backbone and task-specific

head (attached to the backbone) jointly. Following [72], we

report the performance with linear probe (denoted by “LP”)

and fine-tuning (denoted by “FT”). The details of the down-

stream tasks are described as follows:

Facial expression recognition is a multi-class classifi-

cation task where the goal is to categorize the emotional ex-

pressions (e.g., anger, fear and surprise) for a given face im-

age. Three widely-used datasets are adopted: FERPlus [2],

RAF-DB [38] and AffectNet [45]. For RAF-DB, we use the

basic emotion subset following [32, 41, 70]. For AffectNet,

we report the results with 7 emotion classes (i.e., neutral,

happy, sad, surprise, fear, anger, disgust) following [32, 70].

Facial attribute recognition is a multi-label classifica-

tion task to predict various attributes (e.g., gender, age and

race) of a given face image. We adopt the popular bench-

mark CelebA [42], which consists of more than 200K face

Table 3. Comparisons on CelebA [42] facial attribute recogni-
tion. We report the averaged accuracy over all attributes. †: our

reproduction using the official codes. ∗: results cited from [72].

Method Acc. (%)

Supervised
DMM [44] 91.70

SlimCNN [51] 91.24

AFFAIR [34] 91.45

Self-supervised
SSPL [52] 91.77

Bulat et al. [3, 8]∗ 89.65

SimCLR [10]∗ 91.08

BYOL [20] 91.56

LEWEL [25] 90.69

PCL [41] 91.48

MCF [59]† 91.33

FRA (LP) 90.86

FRA (FT) 92.02

images with 40 facial attributes per image. Following [72],

we report the averaged accuracy over all attributes.

Face alignment is a regression task to predict 2D face

landmark coordinates on a face image. We use two pop-

ular benchmarks: WFLW [60] and 300W [48–50]. Fol-

lowing the common practice [14, 26, 74], we report nor-

malized mean error (NME), failure rate (FR) and AUC. For

300W, we report the results on full test set, common (554

images) and challenge (135 images) splits of the test set fol-

lowing [26, 74].

4.3. Comparisons with weakly-supervised pre-
training

In Tab. 1, we compare our FRA with SOTA pre-trained

Transformer FaRL [72], which is a weakly-supervised

model pre-trained on 20M visual-linguistic data (face im-

age and text) with image-text contrastive learning and mask

image modeling. We fine-tune both the pre-trained feature

backbone and the task-specific head on the corresponding

downstream facial analysis task. Our self-supervised FRA

with 24M parameter ResNet-50 achieves superior perfor-



Table 4. Comparisons on face alignment. †: our reproduction using the official codes.

Method
Venue

Arch.
WFLW 300W (NME ↓)

NME ↓ FR10% ↓ AUC10% ↑ Full Comm. Chal.

Supervised
SLPT [61] [CVPR’22] ResNet [21] 4.20 3.04 0.588 3.20 2.78 4.93

DTLD [33] [CVPR’22] ResNet [21] 4.08 2.76 - 2.96 2.59 4.50

RePFormer [37] [IJCAI’22] ResNet [21] 4.11 - - 3.01 - -

ADNet [26] [ICCV’21] Hourglass [63] 4.14 2.72 0.602 2.93 2.53 4.58

STAR [74] [CVPR’23] Hourglass [63] 4.02 2.32 0.605 2.87 2.52 4.32

Self-supervised
MCF [59] (concurrent work) [ACM MM’23] ViT [17] 3.96 1.40 0.609 2.98 2.60 4.51

Bulat et al. [3, 8] [ECCV’22] ResNet [21] 4.57 - - 3.20 - -

BYOL [20] [NeurIPS’20] ResNet [21] 4.29 2.96 0.579 3.03 2.66 4.55

LEWEL [25] [CVPR’22] ResNet [21] 4.52 4.50 0.563 3.09 2.70 4.71

PCL [41]† [CVPR’23] ResNet [21] 4.84 6.18 0.535 3.35 2.77 5.12

FRA Ours ResNet [21] 4.11 2.53 0.591 2.91 2.60 4.46

mance compared with weakly-supervised FaRL [72] with

86M parameter ViT-B/16 and text supervision on all tasks.

4.4. Transfer learning

In this section, we compare our FRA with self-supervised

pre-training approaches and SOTA methods in several

downstream tasks. Please refer to the supplementary ma-

terial for setup details.

4.4.1 Facial expression recognition

The results on facial expression recognition are reported

in Tab. 2. We observe: (1) With the setting of fine-

tuning (FT), our FRA outperforms previous self-supervised

pre-training approaches for visual images (e.g., BYOL

and LEWEL) and pre-training approaches tailored for fa-

cial images (e.g., PCL, MCF). In particular, our FRA us-

ing a 24M parameter ResNet-50 surpasses the concurrent

work MCF [59] with 86M parameter ViT-B/16 [17]. (2)
By simply learning a linear classifier on top of the en-

coder backbone, our FRA outperforms SOTA facial expres-

sion recognition methods with sophisticated designs (e.g.,

EAC [70]) on AffectNet [45], the largest facial expres-

sion recognition dataset. (3) More importantly, by using

our pre-trained model to initialize the backbone of SOTA

facial expression recognition method EAC [70], our vari-

ant “FRA (EAC)” consistently improves EAC [70] on all

datasets, which suggests “FRA (EAC)” outperforms SOTA

FER methods and demonstrates the superiority of the pro-

posed self-supervised pre-training.

4.4.2 Facial attribute recognition

As shown in Tab. 3, our FRA outperforms both self-

supervised pre-training approaches for visual images and

pre-training approaches tailored for facial images. The re-

sults on facial expression recognition and facial attribute

recognition show that our FRA learns better facial repre-

sentations for facial classification task.

4.4.3 Face alignment

As shown in Tab. 4, despite SOTA face alignment methods

(e.g., ADNet [26] and STAR [74]) commonly rely on hour-

glass network [63] for feature extraction, which is tailored

for regression tasks like landmark detection, our method

based on ResNet backbone achieves comparable perfor-

mance with these SOTA methods (e.g., 2.91 vs. 2.87 on

300W). The results on classification (e.g., facial expres-

sion recognition) and regression tasks (e.g., face alignment)

show that our FRA achieves SOTA results using vanilla
ResNet [21] as the unified backbone for various facial
analysis tasks.

4.5. Ablation studies

We pre-train the model on VGGFace2 [6] and then evalu-

ate it on facial expression recognition (RAF-DB) and facial

attribute recognition (CelebA), as described in Sec. 4.2.

4.5.1 Effect of different modules

In Tab. 5, we investigate the contributions of the proposed

semantic consistency loss (i.e, global consistency of whole

face and local consistency of facial regions) and semantic



Table 5. Effect of different modules. GC denotes the global con-

sistency for aligning images, LC denotes the local consistency for

aligning facial regions with heatmaps and SR represents semantic

relation for aligning pixels and heatmaps.

GC LC SR RAF-DB ↑ CelebA ↑ 300W ↓
� - - 87.82 90.63 3.56

- - � 85.34 90.66 3.25

- � - 87.46 90.78 3.19

� � - 88.05 90.89 3.26

� � � 88.72 91.18 3.14

Table 6. Effect of the number of heatmaps N .

N 8 32 64

RAF-DB 88.72 88.36 88.18

CelebA 91.18 91.01 90.98

Table 7. Effect of the loss weights. Please refer to Tab. 5 for GC,

LC and SR.

Settings λc λr RAF-DB CelebA

GC 1.0 0 87.82 90.63

GC + LC 0.5 0 88.05 90.89

GC + LC + SR (FRA) 0.5 0.1 88.72 91.18
GC + LC + SR (FRA) 0.5 0.5 88.45 91.04

GC + LC + SR (FRA) 0.5 1.0 88.08 90.46

relation loss to our approach. Note that the global consis-

tency (first row) is BYOL [20]. We have the following ob-

servations: (1) The variant using all losses achieves the best

results. (2) GC is essential to avoid degeneration on clas-

sification task. (3) LC or SR alone benefits regression task

(landmark). Altogether, LC and SR improve BYOL [20]

(GC) on both classification and regression by capturing

spatial/local information, which validates our facial region

awareness.

4.5.2 Effect of the number of heatmaps

In Tab. 6, we study the effect of the number of heatmaps.

We observe that the best setting is N = 8, which is close

to the facial landmarks number 5. This suggests that given

enough face images for training, a suitable N can encour-

age the model to learn face-specific patterns, which helps

the transfer learning performance on various facial analy-

sis tasks. Further increasing the number of heatmaps might

force the model to look into fine-grained patterns that may

not be suitable for facial tasks.

4.5.3 Effect of loss weights

In Tab. 7, we ablate the weights for the semantic consis-

tency loss and semantic relation loss. We find that setting

λc = 0.5 and λr = 0.1 works best. When λc = 1.0
and λr = 0, only the consistency of global representa-

tions is applied, and the model performs relatively worse,

which suggests the importance of the consistency of local

representations and the semantic relation loss. By using

the semantic relation objective, the performance is signif-

icantly improved. However, when λr is too high, the perfor-

mance degrades as the pixel-level consistency between the

online and momentum network might affect the capture of

image/object-level information.

4.5.4 Effect of Transformer decoder layers

Table 8. Effect of Transformer decoder layers. 0 decoder layer

represents BYOL [20] where only the consistency of global repre-

sentation is enforced.

# decoder layer 0 1 2 3

RAF-DB 87.82 88.72 89.01 89.06

CelebA 90.63 91.18 91.30 91.35

In Tab. 8, we study the effect of the number of decoder

layers used for heatmap prediction. We observe that a single

decoder layer is able to produce decent results, showing that

a 1-layer decoder is large enough to capture the facial region

(landmarks) relations in face images. The performance gain

diminishes as the decoder depth increases. By default, we

only use 1 decoder layer for fast training.

5. Conclusion
In this work, we propose a novel self-supervised facial rep-

resentation learning framework to learn consistent global

and local facial representations, Facial Region Awareness

(FRA). We learn a set of heatmaps indicating facial regions

from learnable positional embeddings, which leverages the

attention mechanism to look up facial image globally for

facial regions. We show that our FRA outperforms previ-

ous pre-trained models on several facial classification and

regression tasks. More importantly, using ResNet as the

unified backbone, our FRA achieves comparable or even

better performance compared with SOTA methods in facial

analysis tasks.
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