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1 Introduction

In the low-temperature regime of confining gauge theory, the Polyakov line must be slowly
varying Haar random up to small corrections and gauge transformations [1–3]. We show how
linear confinement potential with Casimir scaling [4–8] follows from this fact.1 The property of
a Haar random distribution is explained below in more detail, repeating some of the arguments
in ref. [1]. It is not based on a strong coupling limit in lattice gauge theory but rather a
universal property that emerges for the Polyakov line at a certain range of energy scales.

For concreteness, we consider SU(N) gauge theory, although the same argument applies
to any gauge group and any matter content. We quantize this theory via Euclidean path
integral at temperature T = β−1. At each spatial point x⃗, we can define Polyakov line Px⃗ as

Px⃗ = Path ordering
[
ei
∫ β

0 dtAt(t,x⃗)
]

. (1.1)

We choose a reference point x⃗0 and define the Wilson line connecting these two points,

U(x⃗0, x⃗) = Path ordering
[
ei
∫

C
dx⃗A⃗

]
, (1.2)

where C is a contour connecting x⃗0 and x⃗ at fixed Euclidean time t = 0. We claim that
P ′

x⃗ defined by

P ′
x⃗ ≡ U(x⃗0, x⃗) · Px⃗ · U(x⃗0, x⃗)−1 (1.3)

1In this paper, we consider the Casimir scaling of string tension in the confined phase. The Casimir scaling
was also studied for the one-point function of the Polyakov loop in the deconfined phase [9–11].
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Figure 1. Illustration of P ′
x⃗ ≡ U(x⃗0, x⃗) · Px⃗ · (U(x⃗0, x⃗))−1 defined in (1.3) in terms of the path on

compact space.

(see figure 1) must be close to slowly varying Haar random, after appropriate smearing of
gauge field that will be explained in section 2.3. Namely, statistically, P ′

x⃗ is Haar random
at each x⃗, and it is slowly varying as a function of x⃗ in each typical field configuration that
has a large weight in the path integral.

A different way to express the slowly varying Haar randomness is to consider a change
along a straight line x⃗ = x⃗0 + Lû with some unit vector û and length L > 0. The change
of Px⃗ is a smooth analog of random walk on the group manifold.2 For each typical field
configuration in path integral, we can write the change of Polyakov line as

P ′−1
x⃗ P ′

x⃗+Lû = Path ordering
[
ei
∑

α

∫ L

0 dL′vα(L′)Tα

]
, (1.4)

where vα(L) (α = 1, 2, · · · , N2 − 1) are smooth functions and Tα are the generators of SU(N).
This ‘velocity’ vα(L) gradually and randomly changes. We can write a similar expression
for any representation r:

R(r)
(
P ′−1

x⃗ P ′
x⃗+Lû

)
= Path ordering

[
ei
∑

α

∫ L

0 dL′vα(L′)T (r)
α

]
. (1.5)

The main part of this paper explains how the Casimir scaling of string tension follows
from this random-walk nature. In the rest of this introduction section, we will define the
Casimir scaling and explain how the computation of string tension is related to the random-
walk nature of the Polyakov line. In section 2, we review the previous work and explain
why the Polyakov line has such a property. In section 2.4, we estimate the rate of change
(i.e., the meaning of ‘slow’) based on a lattice regularization. Note that slowly varying
Haar randomness does not apply to the abelianized regime where SU(N) breaks to U(1)N−1

because the correction to slowly varying Haar randomness is too large. Ref. [16] confirmed
that the Casimir scaling does not hold in such a theory.

Casimir scaling. We normalize generators of the Lie algebra Tα (α = 1, 2, · · · , N2 − 1)
in the fundamental representation as

Tr(TαTβ) = 2δαβ . (1.6)
2An earlier application of a random walk on group manifold to confinement can be found in refs. [12–15].

These references introduced a random walk based on phenomenological observation from lattice simulations.
We provide a more complete picture based on the theoretical analysis of gauge theory.
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For SU(2) and SU(3), we can use Pauli matrices and Gell-Mann matrices, respectively. For
irreducible representation r, we define the quadratic Casimir invariant Cr by

∑
α

(
T (r)

α

)2
= 4Cr · 1 , (1.7)

where 1 is the identity. For spin-j representation of SU(2), Cspin-j = j(j + 1). For SU(3),
Cfund = 4

3 , Cadj = 3, C2-sym = 10
3 , C3-sym = 6 for fundamental, adjoint, rank-2 symmetric,

and rank-3 symmetric representations, respectively. Casimir scaling means that string
tension associated with representation r is proportional to Cr. Specifically, the Polyakov
loop correlator is

⟨χr(Px⃗) · χr(Px⃗+Lû)⟩ ∼ e−βCrLσ2
0 , (1.8)

with σ0 independent of r in the regime where Casimir scaling holds. This scaling does
not hold at very long distances where strings can break due to pair creation of particles
such as quarks or gluons.

Random walk and string tension. Let us see how the computation of string tension is
related to random walk. Character χr associated with irreducible representation r is defined
by taking the trace of the representation matrix. Specifically,

χr(Px⃗) = Trr
(
R(r)(Px⃗)

)
(1.9)

is the Polyakov loop in representation r at point x⃗. Because of

χr(Px⃗) = χr(P ′
x⃗) (1.10)

and

χr′(Px⃗+Lû) = χr′(P ′
x⃗+Lû) = χr′

(
P ′

x⃗ · (P ′−1
x⃗ · P ′

x⃗+Lû)
)

, (1.11)

the two-point function of Polyakov loops can be written as

⟨(χr(Px⃗))∗ · χr′(Px⃗+Lû)⟩ =
〈(

χr(P ′
x⃗)
)∗ · χr′

(
P ′

x⃗ · (P ′−1
x⃗ · P ′

x⃗+Lû)
)〉

. (1.12)

So far, ⟨ ⟩ meant the expectation value defined by path integral. From here on, we
interpret ⟨ ⟩ as the average over slowly varying Haar random configurations {P ′

x⃗}, neglecting
corrections to slowly varying Haar randomness. (As we will see, this approximation fails
if L is too large.)

We consider random walk from P ′
x⃗ to P ′

x⃗+Lû. The starting point P ′
x⃗ is Haar random,

and it is not correlated to the displacement P ′−1
x⃗ P ′

x⃗+Lû. Therefore, we can treat P ′
x⃗ and

P ′−1
x⃗ P ′

x⃗+Lû as independent variables and integrate out P ′
x⃗ by using the orthogonality condition

of representations under the Haar-random average,

1
Vol(SU(N))

∫
dP (R(r)

ij (P ))∗ · R
(r′)
kl (P ) = d−1

r δrr′δilδkj (1.13)
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to obtain

⟨(χr(Px⃗))∗ · χr′(Px⃗+Lû)⟩ = d−1
r δrr′

〈
χr(P ′−1

x⃗ · P ′
x⃗+Lû)

〉
, (1.14)

and hence, by using (1.8), we get

d−1
r δrr′

〈
χr(P ′−1

x⃗ · P ′
x⃗+Lû)

〉
∼ e−βCrLσ2

0 . (1.15)

Combined with (1.4) and (1.5), the computation of the two-point function reduces to a sort
of random walk on group manifold. The difference from the vanilla random walk problem
is that velocity v changes slowly.

Organization of this paper. In the rest of the paper, we will show that confinement with
Casimir scaling follows naturally from such a random walk on a group manifold. Our argument
is based only on the slowly varying Haar randomness, and the choice of gauge group or matter
content is irrelevant. However, corrections to Haar randomness depend on these specifications
of the theory, and they are relevant for long-distance physics where the Casimir scaling is lost.

This paper is organized as follows. Section 2 explains how slowly varying Haar randomness
of the Polyakov loop emerges from a generic mechanism of confinement. Section 3, the main
part of this paper, derives Casimir scaling from a random walk. The simplest, ‘vanilla’
random walk is studied in section 3.1. It is solvable, and Casimir scaling can be analytically
derived. A more sophisticated variant of random walk is studied in section 3.2. We find a
neat correspondence with a lattice regularization and confirm Casimir scaling and consistency
with the microscopic mechanism of confinement based on the similarity to Bose-Einstein
condensation [1–3]. Note, however, that we only model the random walk and details that can
affect the short-distance behavior might depend on the specific model. We expect that different
confining theories can show different short-distance behaviors because of the dependence on
such details. Larger distance behavior, on the other hand, emerges quite universally from the
different models of the random walk. In section 4, it is discussed that corrections to exact
Haar randomness lead to a breaking of Casimir scaling. Section 5 is devoted to discussion.

2 Microscopic origin of slowly varying Haar randomness

In this section, we review the origin of the slowly varying Haar randomness of the Polyakov
line [1]. As a first step, we rewrite the partition function in terms of an extended Hilbert space
(Hext), including also non-gauge invariant states, and a projection to the gauge-invariant
part (Hinv) by integration over all gauge variations (gauge orbit). For a gauge theory with
gauge group G, the canonical partition function can be written as

Z(T ) = TrHinve−Ĥ/T = 1
volG

∫
G

dgTrHext

(
ĝe−Ĥ/T

)
. (2.1)

where the integral is taken over the Haar measure. A simple but crucial fact is that ĝ in
the expression above corresponds to the Polyakov line [3].
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2.1 SN invariance and Bose-Einstein condensation

To understand the origin of slowly varying Haar randomness, it is instructive to review
the connection between the Bose-Einstein Condensation (BEC) and confinement in gauge
theories [1, 3]. In this case the gauge group is the permutations SN of N particles, the group
integral becomes a sum over all possible group elements.

Consider a system of N indistinguishable bosons with a harmonic potential. The
Hamiltonian is given by

Ĥ = 1
2

N∑
i=1

(
p̂2

xi + p̂2
yi + p̂2

zi + x̂2
i + ŷ2

i + ẑ2
i

)
. (2.2)

This system has a gauged SN permutation group symmetry. Namely, states connected by SN

transformation (exchange of labels 1, 2, · · · , N) must be identified. A generic state spanning
the extended Hilbert space Hext is given in the Fock basis as

|n⃗1, n⃗2, . . . , n⃗N ⟩ =
∏

i=x,y,z

a†n1i
1i√
n1i!

a†n2i
2i√
n2i!

. . .
a†nNi

Ni√
nNi!

|0⟩ (2.3)

where n⃗i = (nix, niy, niz) denotes the occupation numbers for each boson. The Fock vacuum
is described as |0⟩ = |0, 0, . . . , 0⟩.

For the system of N bosons under consideration here with a gauged SN symmetry, the
partition function takes the form,

Z(T ) = 1
N !

∑
σ∈SN

TrHext

(
σ̂e−Ĥ/T

)
= 1

N !
∑

σ∈SN

∑
n⃗N ,n⃗N ,...,n⃗N

⟨n⃗1, n⃗2, . . . , n⃗N |σ̂e−Ĥ/T |n⃗1, n⃗2, . . . , n⃗N ⟩

= 1
N !

∑
n⃗1,n⃗2,...,n⃗N

e−(En⃗1 +...+En⃗N
)/T

∑
σ∈SN

⟨n⃗1, n⃗2, . . . , n⃗N |n⃗σ(1), n⃗σ(2), . . . , n⃗σ(N)⟩

= 1
N !

∑
n⃗1,n⃗2,...,n⃗N

e−(En⃗1 +...+En⃗N
)/T

∑
σ∈SN

δn⃗1n⃗σ(1)δn⃗2n⃗σ(2) . . . δn⃗N n⃗σ(N)

= 1
N !

∑
n⃗1,n⃗2,...,n⃗N

e−(En⃗1 +...+En⃗N
)/T V|n⃗1,n⃗2,...,n⃗N ⟩ (2.4)

Here, V|n⃗1,n⃗2,...,n⃗N ⟩ ≡
∑

σ∈SN
δn⃗1n⃗σ(1)δn⃗2n⃗σ(2) . . . δn⃗N n⃗σ(N) is the volume of the stabilizer sub-

group of the state |n⃗1, n⃗2, . . . , n⃗N ⟩ i.e., the number of the elements of SN that leave the state
invariant. If all the particles have different occupation numbers (n⃗i ̸= n⃗j for all i ̸= j), then
the stabilizer of such a state is just the identity element σ = 1. The contribution of such
a state to the partition function thus remains suppressed by a factor of 1/N !. However, if
all the particles have the same occupation number (n⃗1 = . . . = n⃗N = n⃗), then the stabilizer
of such a state is the entire permutation group SN with V|n⃗,...,n⃗⟩ = N !. The suppression
factor in the partition function thus experiences an enhancement and becomes equal to 1
and such a state is then favoured. This is exactly what happens in the ground state |0⟩
(n⃗1 = . . . = n⃗N = 0⃗). More generally, if the energy is distributed to a part of particles
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Figure 2. Partial deconfinement in SU(N) QCD with Nf fundamental quarks. [Left] Gauge field.
M × M sub-matrix is deconfined. [Right] Quarks. M components are deconfined. Any embeddings of
SU(M) into SU(N) are equivalent because of gauge symmetry. This figure is taken from ref. [20].

and the rest remains in the one-particle ground state (say, n⃗1, · · · , n⃗M becomes nonzero
while nM+1 = · · · N⃗ = 0⃗), a large enhancement factor (N − M)! is obtained. In general,
the optimal value of M between 0 and N is realized so that the combination of such an
enhancement factor and the entropy of the excited sector is maximized. This is the BEC
of N − M particles. This mechanism works with finite interactions as well, and unbroken
SN−M symmetry in the extended Hilbert space characterizes BEC. For M = 0, all ‘Polyakov
line’ σ ∈ SN contribute equally, which means the Haar-randomness.

2.2 SU(N) invariance and confinement

Coming back from BEC to our original question about gauge theories including SU(N)
pure Yang-Mills theory, a similar enhancement can be observed. In general, an SU(M)
subgroup can be deconfined, while the rest of the degrees of freedom remain confined [17–20]
as illustrated in figure 2. Roughly speaking, such partial deconfinement is characterized by
an unbroken SU(N − M) symmetry. Since this is considered in the extended Hilbert space,
there is no conflict with gauge invariance; simply, all embeddings of SU(M) into SU(N) are
equivalent. The completely confined phase we are discussing in this paper is characterized by
unbroken SU(N) symmetry in the extended Hilbert space. Let us elaborate on this point
for the case of Yang-Mills theory and see how the slowly varying Haar randomness of the
Polyakov line emerges. The differences from the example of BEC are that the gauge group
is bigger (SU(N) instead of SN ) and that we need to deal with spatial coordinates because
we deal with QFT rather than quantum mechanics.

For concreteness, we consider pure Yang-Mills theory and use a lattice regularization
with lattice spacing a and unitary link variables Un⃗,µ which is related to the Hermitian gauge
field Aµ as Un⃗,µ = eiagYMAn⃗,µ . Here, n⃗ is an integer-valued vector that specifies a spatial site
on the lattice, and µ is a spatial direction x, y, . . .. In the extended-Hilbert space picture,
wave functions are defined on

∏
µ,n⃗[SU(N)]µ,n⃗, where [SU(N)]µ,n⃗ corresponds to each link.

Specifically, on each link, we consider a linear combination of coordinate eigenstates |Un⃗,µ⟩.
The confined vacuum in or sufficiently close to the continuum limit is a wave packet localized
around Un⃗,µ = 1 up to gauge transformation. (As we will see shortly, a large enhancement
factor is associated with such a state, which justifies its dominance in the partition function.)

– 6 –
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Figure 3. For a wave packet |Φ⟩, such g that does not move |Φ⟩ too much can lead to an enhancement
factor and give a large contribution to the partition function.

Wave packets connected by a (spacial) gauge transformation Ω ∈ SU(N) are equivalent.
Therefore, we should consider wave packets localized around Un⃗,µ = Ω−1

n⃗ Ωn⃗+µ̂.
Corresponding to ⟨n⃗1, n⃗2, . . . , n⃗N |n⃗σ(1), n⃗σ(2), . . . , n⃗σ(N)⟩, we have a factor ⟨Φ|ĝ|Φ⟩ in the

partition function, where we can take |Φ⟩ to be a wave packet. By definition, this factor
measures overlap between |Φ⟩ and ĝ|Φ⟩; see figure 3. Because the Polyakov lines correspond
to ĝ, such Polyakov lines that do not move the wave packet too much can contribute to
the enhancement factor. Let us consider the action of the Polyakov loop corresponding to
‘global’ SU(N) transformation, Pn⃗ ≡ Ω−1

n⃗ V Ωn⃗. It is easy to see that the wave packet under
consideration does not move regardless of the choice of V , because

P−1
n⃗ (Ω−1

n⃗ Ωn⃗+µ̂)Pn⃗+µ̂ = Ω−1
n⃗ V −1Ωn⃗(Ω−1

n⃗ Ωn⃗+µ̂)Ω−1
n⃗+µ̂V Ωn⃗+µ̂ = Ω−1

n⃗ Ωn⃗+µ̂ . (2.5)

Thus, the vacuum is invariant under this ‘global’ SU(N) transformation, leading to an
enhancement factor as in the BEC case. The enhancement factor scales with N as eN2 . For
partially-deconfined states shown in figure 2,

V =
(

1M 0
0 Ṽ

)
(2.6)

with any Ṽ ∈ SU(N − M) could leave the states invariant. This leads to an enhancement
factor ∼ e(N−M)2 .

Let us elaborate on the argument above and show that the enhancement factor can increase
exponentially with volume. Roughly speaking, we just promote a ‘global’ transformation to
‘slowly varying’ transformation. Let us start with the case of the confined vacuum (M = 0).
We consider a ‘local’ SU(N) transformation with V now being dependent on the site n⃗ with
the Polyakov line taking the form Pn⃗ ≡ Ω−1

n⃗ Vn⃗Ωn⃗:

P−1
n⃗ Un⃗,µPn⃗+µ̂ = Ω−1

n⃗ V −1
n⃗ Ωn⃗(Ω−1

n⃗ Ωn⃗+µ̂)Ω−1
n⃗+µ̂Vn⃗+µ̂Ωn⃗+µ̂ = Ω−1

n⃗ V −1
n⃗ Vn⃗+µ̂Ωn⃗+µ̂ (2.7)

If Vn⃗ is slowly varying, i.e., V −1
n⃗ Vn⃗+µ̂ is close to 1, and we can still have a significant

enhancement factor as before. For the confined vacuum, we can choose Vn⃗ arbitrarily as long
as it is slowly varying, indeed leading to a large enhancement factor that increases with spatial
volume. Intuitively, we can split the volume into multiple pieces that are large enough so
that the correlation between Polyakov lines in different pieces is negligible, and then, we can
associate ∼ eN2 to each piece, which leads to the scaling of the enhancement factor eN2×volume.

– 7 –
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2.3 Continuum limit and smearing

In the previous subsection, we explained how the bare Polyakov line and symmetry of wave
function on each spatial link are related. When we take continuum limit (a → 0), we need
to see how renormalization affects the logic.

In the continuum limit with fixed temperature, the expectation value of the bare Polyakov
loop vanishes even in the deconfined phase for any representation. A multiplicative renormal-
ization factor is needed to keep the expectation value finite [9–11]. This means that Polyakov
line becomes Haar random even in the deconfined phase. In terms of symmetries, this means
that it is hard to see the difference between the ground state and excited states as long as we
focus on the wave function on each link. Note also that, associated with ultraviolet divergence,
the size of the wave packet can grow as a → 0 for 3d and 4d theories,3 which may destroy the
slowly varyingness of Polyakov line. Still, however, infrared properties can be significantly
different because the number of links increases and small change at each link can accumulate.

To capture the symmetries and properties relevant for thermodynamics, we should not
use bare Polyakov line with too small lattice spacing. To renormalize the Polyakov line, we
can combine the facts that the Polyakov line can be written as a sum of characters and each
character can be renormalized in a standard manner [9–11]. We could also use a smeared
gauge field and define a smeared version of the Polyakov loop.

As a concrete example, let us consider the smearing via gradient flow [21–23]. In this
smearing scheme, smeared gauge field is defined at each link on the original lattice. By
replacing the original gauge field with smeared one, the smeared Polyakov line is obtained.
Because we are interested in correlators at not-so-short distance and at finite-temperature
(specifically, in the confined phase), we should take smearing length at most order of Λ−1

QCD.
Then, the smearing does not affect the long-distance behavior and hence the string tension.
The smearing makes the spatial-coordinate dependence of P ′

x⃗ mild and introduces the slowly
varying Haar randomness starting at short distance; see also section 2.4. We cannot use such
a Polyakov line made of smeared field to study short-distance physics below the smearing
length, but that is not a problem for us as long as we discuss Casimir scaling at sufficiently
long distance.4 What we will claim is the existence of a smearing scheme consistent with
slowly varying Haar randomness is a sufficient condition for the Casimir scaling to be valid.

2.4 Slowly varying Haar randomness

So far, we have seen that a large enhancement factor is indeed associated with the confined
vacuum. We have also seen that Polyakov lines contributing to the enhancement factor
are written as Pn⃗ ≡ Ω−1

n⃗ Vn⃗Ωn⃗, where Vn⃗ can be arbitrary as long as it is slowly varying.
Typical Polyakov lines dominating the partition function (equivalently, typical Polyakov lines
obtained from dominant configurations in the Euclidean path integral) are the ones that
contribute to the enhancement factor. Therefore, typical Polyakov lines are slowly varying
SU(N) Haar random up to gauge transformation [1]. For the same logic, the Polyakov line

3For Euclidean lattice, the expectation value of plaquette scales as e−a2
and e−a for 2d and 3d, respectively.

Before taking expectation value, plaquette is Uµ,x⃗Uν,x⃗+µ̂U†
µ,x⃗+ν̂U†

ν,x⃗ ≃ eia2Fµν,x⃗ ∼ eia for 2d and ∼ ei
√

a for
3d. Because Uµ ≃ eiaAµ,x⃗ , typical value of Aµ,x⃗ is order 1 for 2d and order a−1/2 for 3d.

4More precisely, the connected part of two-point function is not affected.

– 8 –



J
H
E
P
0
3
(
2
0
2
4
)
0
1
3

restricted to the confined sector of the partially-deconfined phase should be slowly varying
SU(N − M) Haar random up to gauge transformation.

‘Slowly varying’ is admittedly a vague expression. Below, we give an order estimate for
the rate of change. We want to know how slowly a typical Polyakov line changes, assuming the
confined vacuum represented by a wave packet localized around a pure-gauge configuration.
Because a typical Polyakov line must lead to a large enhancement factor, V −1

n⃗ Vn⃗+µ̂ has to be
sufficiently close to the identity so that the ground-state wave function does not move too
much (figure 3). Specifically, if V −1

n⃗ Vn⃗+µ̂ is written as V −1
n⃗ Vn⃗+µ̂ ∼ eiℓX̃ where X̃’s entries are

of order 1, then ℓ must be smaller than the radius of the wave packet.
Let us start with the two-dimensional Yang-Mills theory, which does not require smearing.

Although it is straightforward to solve it in the path-integral formalism, let us use the
Hamiltonian formulation to derive the same result. (The same result is derived in appendix A
by using path integral.) The Hamiltonian contains only the electric term, Ĥ = a

2 Tr
∑

x⃗ Ê2
x⃗,

and there is no interaction between links. This is essentially (momentum)2 on the group
manifold. As temperature goes up, higher momentum contributes more, or equivalently,
typical wave packet shrinks. The energy is proportional to T , and hence, typical momentum
is
√

T
a = (βa)−1/2, and the radius of typical wave packet scales as

√
βa. Therefore, we expect

V −1
n Vn+1 ∼ ei

√
βaX̃ . Due to the absence of the interaction in the Hamiltonian, there is no

correlation between V −1
n Vn+1 for different n. In other words, ‘velocity’ is totally random

at each link. Therefore, V −1
m Vn ∼ ei

√
βa|m−n|X̃ .

Next, let us consider 3d and 4d Yang-Mills theory, which is more complicated because the
bare Polyakov line can become Haar random in the continuum limit even in the deconfined
phase. To take the continuum limit, we consider the loops made of smeared gauge field.
Because of the randomness of the bare loop, smeared loop should also exhibit the random-walk
nature. At a smearing radius of order Λ−1

QCD, the natural value of v is of order a0.
Let us also comment on the ‘acceleration’, i.e., the rate of change of v. In 3d and 4d

theories, v in (1.4) has to be smooth because P ′−1
x⃗ P ′

y⃗ depends only on the endpoints x⃗ and y⃗

and does not change depending on the path connecting these two points. For this reason,
the Polyakov lines exhibit random walks with slowly changing velocity, which is different
from the most common random walk in which the velocity at each step changes abruptly.
In 2d theories, v does not have to be continuous and the Polyakov line can literally random
walk. This has an important consequence as we will discuss in section 3.3.

3 Casimir scaling from random walk

In this section, we assume the exact Haar randomness and derive the linear confinement
potential with Casimir scaling. Hence, our task is to estimate

〈
χr(P ′−1

x⃗ P ′
x⃗+Lû)

〉
assuming

the random walk (1.4). To evaluate (1.4), let us introduce step size a, where Ka = L, and
take a limit of a → 0. (We use a because it is analogous to the lattice spacing in lattice
regularized theories.) We define Wj (j = 1, 2, · · · , K) by

Wj ≡ (P ′
x⃗+(j−1)aû)−1P ′

x⃗+jaû . (3.1)
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Figure 4. Contour corresponding to P ′−1
x⃗ P ′

x⃗′ to illustrate the definition of Wj in (3.1).

These can be combined to

P ′−1
x⃗ P ′

x⃗+Lu⃗ = W1W2 · · ·WK , (3.2)

as illustrated in figure 4.
Below, let us first consider the vanilla random walk as a solvable warm-up exercise, and

then consider a more realistic setup that takes into account the correlation between Wi’s.

3.1 Vanilla random walk

As a crude approximation, let us treat W1, · · · , WK totally random, even neglecting the
correlation of Wi and Wi+1. This is the vanilla random walk. Apparently, we cannot always
take the limit of a → 0 in this case. To keep this in mind, let us use s instead of a. Physically,
s is a length scale needed for v in (1.4) to change significantly and the correlation between
v(L) and v(L+s) becomes small. With this approximation, the average of a product becomes
the product of the average:〈

W
(r)
1 W

(r)
2 · · ·W (r)

K

〉
=
〈
W

(r)
1

〉〈
W

(r)
2

〉
· · ·
〈
W

(r)
K

〉
=
(〈

W (r)
〉)K

. (3.3)

This expression already tells us an exponential decay. To see the Casimir scaling, we need
a little bit more math. We assume W = ei∆X , where X is random Gaussian with variance
1 and ∆ is a small number. Then,

〈
W (r)

〉
=
〈

1 + i∆xαT (r)
α − ∆2xαxβ

2 T (r)
α T

(r)
β + · · ·

〉

= 1 − ∆2

2 (T (r)
α )2 + · · ·

= 1 − 2∆2Cr1 + · · · . (3.4)

Hence, for small ∆, 〈
W (r)

〉
≃ e−2∆2Cr1 (3.5)

and hence 〈
W

(r)
1

〉〈
W

(r)
2

〉
· · ·
〈
W

(r)
K

〉
≃ e−2∆2CrK1 . (3.6)

Therefore,

⟨(χr(Px⃗))∗χr′(Px⃗+Lû)⟩ ≃ δrr′e
−2∆2CrK (3.7)
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up to O(∆4) terms in the exponent. Therefore, by identifying ∆ with physical parameters as

2∆2 = βsσ2
0 , (3.8)

string tension for representation r is Crσ
2
0 if O(∆4) terms are negligible. The dependence on s is

natural because after K steps the distance traveled on the group manifold is ∼ ∆
√

K ∼
√

L,
which is a typical case of random walk.

That terms of order ∆4 or higher break Casimir scaling would be good news because
lattice simulations suggest Casimir scaling is not exact.

Several references [12, 24, 25] assumed the uncorrelated nature of color flux and explained
the Casimir scaling in a way similar to the vanilla random walk in the limit of ∆ → 0. Our
discussion above is based on the microscopic mechanism applicable to generic confining gauge
theories, and hence, we can give a more precise picture that takes into account a finite amount
of correlations, as we will show next. It would be interesting to see if the hypothesis regarding
the QCD vacuum proposed in the past can be justified based on our approach.

As a minor remark, we note that this vanilla random walk works for two-dimensional
pure Yang-Mills.

3.2 Random walk with gradually changing velocity

In reality, we want the ‘velocity’ Wi to change gradually (except for 2d theory, as we will
see in section 3.3). To incorporate this feature, let us consider a model of random walk
with Wi defined by

Wi = Zi · · ·Zi+p−1 , (3.9)

where Zj = eiϵXj and Xj is Gaussian random with a unit variance, and take the average
of the product of W ’s as before:

⟨W1W2 · · ·WK⟩ . (3.10)

Then, Wi changes gradually, and the correlation disappears completely after p steps. Given
the decay of the two-point function of Polyakov loops, ap ∼ 1

βσ2
0

is a natural identification.
(This means v ∼ βσ2

0 · a0, which is consistent with the rough estimate v ∼ a0 in section 2.4.)
We are interested in the behavior of the correlator as a function of physical distance L = Ka.

Unfortunately, we were not able to solve this problem analytically. We performed
numerical experiments for SU(2) and SU(3). The results are very clean, and we believe
our findings apply to other groups as well.

As shown in figure 5, by taking the horizontal axis to be K · (ϵp)2 × Cr, we can see that
exponential decays with different p, ϵ and different representations line up. Therefore, by
identifying (ϵp)2 with βaσ2

0 , we can reproduce e−CrβLσ2
0 . This ϵp is a counterpart of ∆ in the

vanilla random walk, but now the finite amount of correlation is taken into account.
Actually, we observe this clean pattern when ϵ2p3 ≲ 1. With the indentification (ϵp)2 ∼

βaσ2
0, this means that ϵ2p3 ∼ βσ2

0 × ap ≲ 1, which is consistent with the identification
provided above, i.e., ap ∼ 1

βσ2
0
.

We emphasize that we only provided a model of the random walk of Polyakov lines
satisfying essential features. Specifically, Xj may not be exactly Gaussian, or Wi may change
in a way different from (3.9).
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K · (ϵp)2 × Cr

p = 10, j = 1/2
p = 10, j = 1/2
p = 10, j = 3/2
p = 10, j = 2/2
p = 10, j = 5/2
p = 20, j = 1/2
p = 20, j = 1/2
p = 20, j = 3/2
p = 20, j = 2/2
p = 20, j = 5/2
p = 40, j = 1/2
p = 40, j = 1/2
p = 40, j = 3/2
p = 40, j = 2/2
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0.1

1
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Tr
⟨W

1.
..
W

K
⟩/

d
r

K · (ϵp)2 × Cr

p = 10, fund. -
p = 10, 2-sym.
p = 10, adj.2
p = 10, 3-sym.
p = 20, fund. -
p = 20, 2-sym.
p = 20, adj.2
p = 20, 3-sym.
p = 40, fund. -
p = 40, 2-sym.
p = 40, adj.2
p = 40, 3-sym.

Figure 5. Tr⟨W1 . . . WK⟩ vs K · (ϵp)2 × Cr for p = 10, 20, 40 and ϵ2p3 = 1
10 . [Top] SU(2), spin

j = 1
2 , 1, 3

2 , 2, 5
2 . [Bottom] SU(3), fundamental, rank-2 symmetric, adjoint, rank-3 symmetric. We

normalized Tr⟨W1 . . . WK⟩ by dividing dr = Tr1. The number of samples for the averaging is 1 million
for both SU(2) and SU(3).

3.3 Simplification for (1 + 1)-dimensional theories

In section 3.2, we have seen that the deviation from vanilla random walk is responsible for the
absence of the Casimir scaling at short distance. In fact, however, the situation is different
for (1 + 1)-dimensional theories. As commented in section 2.4, (1 + 1)-dimensional theories
are special in that v in (1.4) does not have to be continuous. On a lattice, the vanilla random
walk can be justified for any lattice spacing, as long as the corrections to Haar randomness are
neglected. Therefore, quite generally, we expect the Casimir scaling also at short distances.

It is known that the Casimir scaling is exact for (1 + 1)-dimensional pure Yang-Mills
theory [26–28]. With matter fields, infrared behaviors may change drastically. However, we
do not expect the short-distance behavior to change, as long as the system remains confined.
This provides us with a nontrivial consistency check of the relationship between the Casimir
scaling and a random walk on the group manifold.
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4 String breaking and loss of Casimir scaling

String breaking is almost trivial when the corrections to Haar-random distribution are taken
into account. If there is no particular global symmetry that forces the Polyakov loop with
representation r to become zero, we expect to have a nonzero expectation value of the
one-point function of the form

⟨χr(Px⃗)⟩ = ⟨χr(Px⃗+Lû)⟩ ∼ e−βmr , (4.1)

where mr is the mass of the lowest excitation in representation r. Therefore, we need to take
the disconnected part of the two-point function into account:

⟨(χr(Px⃗))∗χr(Px⃗+Lû)⟩ ∼ e−βCrLσ2
0 + e−2βmr , (4.2)

where the second term is the disconnected part which is dominant at long distances
(CrLσ2

0 ≫ mr).
There must be corrections to the connected part as well. For QCD, the details of the

corrections to the connected part may not be important because the disconnected part
is nonzero for any representations and dominates long-distance physics. The situation is
somewhat different for theories with center symmetry such as SU(N) pure Yang-Mills. As
long as the center symmetry is not broken, the disconnected part vanishes. Furthermore, loops
with different center-symmetry charges cannot mix with each other, because the connected
part must vanish as well. In the random-walk approach, (1.14) receives some corrections
because P ′

x⃗ is not exactly Haar random, and we need to consider a random walk on group
manifold with some other weight than the Haar measure. We do not find an immediate reason
that forbids the mixing in the same center-symmetry-charge sector, and hence, we expect
that string tension takes the same value in the same center-symmetry-charge sector regardless
of the representation. Precise dependence on charge requires a better understanding and is
out of the scope of this paper. See refs. [13–15] for past attempts to build a random-walk
model in the long-distance regime.

5 Discussion

In the low-temperature regime of confining gauge theories such as QCD, Polyakov lines are
slowly varying Haar random modulo exponentially small corrections with respect to the
inverse temperature [1–3]. In this paper, we suggested that linear confinement potential with
Casimir scaling follows naturally from such a random walk. Strictly speaking, we introduced
a model of random walk using a random matrix product. We expect the exponential decay
with approximate Casimir scaling to be universal and does not depend much on the details
of the random process, while short-distance behaviors depend on details. With exponentially
small corrections to Haar randomness, string breaking and loss of Casimir scaling at long
distance follow. So, what we have seen is an approximate Casimir scaling in the intermediate
distance scale, which is precisely what we expect in confining gauge theories. Our picture
can be tested by calculating the Polyakov loops via lattice gauge theory simulation.

The mechanism described for the Polyakov loop may generalize to the case of a rectangular
Wilson loop of the size Lt for the time direction and L for the spatial direction. Specifically,
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Figure 6. A Wilson line which can be used to build a rectangular Wilson loop of the size Lt for the
time direction and L for the spatial direction.

we could take a product of Wilson lines like in figure 6. In this case, (ϵp)2 ∼ Lta would
be expected. For this scenario to work, we need to take Lt sufficiently large so that the
temporal edge inherits the Haar randomness of the Polyakov loop. Note also that, if Lt is
too small, the conformal behavior can set in and slowly varying nature can be lost.5 It would
be interesting to use lattice simulation to confirm this mechanism.

Note that we essentially assumed the mass gap to claim that the correction to Haar
randomness is exponentially small. Therefore, we are assuming one of the important features
of confinement, and hence, we do not claim we proved confinement. Still, what we observed
is a highly nontrivial consequence of the mass gap, and we can find nontrivial connections
between good old results and deepen our understanding of confinement.

More than two decades ago, it was realized that large-N theory in the weak-coupling
limit exhibits confinement/deconfinement transition that resembles some aspects of the
counterpart at strong coupling such as the N -dependence of entropy [29, 30]. Most crucially,
deconfinement can be understood as the condensation of long strings both at weak coupling
and at strong coupling. However, it was not clear how linear confinement potential can follow
from this picture. In the meantime, a series of work on partial deconfinement [17–20] led to
the discovery of a microscopic mechanism of confinement in the large-N gauge theories [1–3]
which is essentially the same as Bose-Einstein condensation. (See section 2.) This mechanism
is based only on symmetry and is applicable to both weak and strong coupling. Let us call it
Confinement = BEC mechanism.6 The slowly varying Haar-randomness is a consequence
of the Confinement = BEC mechanism. Therefore, we understood how the Confinement =
BEC mechanism, which is based on a very basic property of gauge theory, leads to linear
confinement potential with Casimir scaling.

Confinement = BEC mechanism leads to various phenomena including partial deconfine-
ment and intriguing pattern of global symmetry breaking [31, 32], coexistence of parton-like
and string-like degrees of freedom [33],7 instanton condensation [1, 2], and so on. Hopefully,
this mechanism leads us to a unified picture of an even richer list of nontrivial phenomena.

5We thank Nadav Drukker for pointing this out for us.
6You may prefer ≃ or ∼ depending on what you mean by BEC, confinement, or =.
7In ref. [33], the partially-deconfined phase of the large-N limit of strongly-coupled lattice gauge theory

was studied, and linear confinement potential in the confined sector was observed. We expect the same pattern
in the continuum theory, by applying the same reasoning used in this paper to the confined sector. Specifically,
the Polyakov line restricted to the confined sector in the partially-deconfined phase should be slowly varying
Haar random.
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A Path integral for two-dimensional pure Yang-Mills

In this appendix, we explain how the mechanism we discussed in the main text works for the
simple yet illuminating case of pure Yang-Mills theory in two dimensions. Unlike the main
text, we consider the spacetime lattice and Euclidean path integral [34, 35]. Note that we
are merely rewriting known facts by using slightly different language so that the connection
to the discussion in the main text becomes manifest.

Wilson’s plaquette action is given by

SWilson = −
∑

n⃗

1
2g2a2 Tr

{
U□,n⃗ + U †

□,n⃗

}
, (A.1)

where the plaquette term U□,n⃗ is

U□,n⃗ = Un⃗,tUn⃗+t̂,xU †
n⃗+x̂,tU

†
n⃗,x . (A.2)

We take the spatial direction to be noncompact. (We allow the temporal direction to be
compact because we want to consider finite temperature.) Then, we can choose the gauge
such that Un⃗,x = 1 for all n⃗, or in other words Ax = 0. In this gauge, the plaquette term
reduces to U□,n⃗ = Un⃗,tU

†
n⃗+x̂,t. The partition function is

Z =
∫ (∏

n⃗

dUn⃗,tdUn⃗,x

)
e−SWilson[Ut,Ux] =

∫ (∏
n⃗

dUn⃗,t

)
e−SWilson[Ut,Ux=1] . (A.3)

The integral is taken over the Haar measure. To see that no extra factor appears, we can
write the spatial link variables as Un⃗,x = Ω†

n⃗Ωn⃗+x̂ (it is possible because the spatial dimension
is noncompact), and use the gauge invariance of the action and the property of Haar measure
as follows. First, because of the gauge invariance of the action,

SWilson[Ut, Ux] = SWilson[U ′
t , U ′

x = 1] , (A.4)

where

U ′
n⃗,t ≡ Ωn⃗Un⃗,tΩ†

n⃗+t̂
, U ′

n⃗,x ≡ Ωn⃗Un⃗,xΩ†
n⃗+x̂ . (A.5)

The Haar measure is also gauge invariant, and hence,

Z =
∫ (∏

n⃗

dU ′
n⃗,tdU ′

n⃗,x

)
e−SWilson[U ′

t,U ′
x=1] . (A.6)
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Figure 7. Wilson loop expressed in terms of a product of plaquettes with ‘tails’.

The integral over U ′
n⃗,x gives a trivial volume factor. This is the case not just for partition

function but also for evaluation of gauge-invariant observables. Therefore, we drop dU ′
n⃗,x,

and removing the prime, we arrive at (A.3).
Redefining the variables such that Wn⃗ ≡ Un⃗,tU

†
n⃗+x̂,t = U□,n⃗, the action reduces simply to

SWilson = −
∑

n⃗

1
2g2a2 Tr

{
Wn⃗ + W †

n⃗

}
. (A.7)

The partition function is

Z =
∫ (∏

n⃗

dWn⃗

)
exp

{∑
n⃗

1
2g2a2 Tr

{
Wn⃗ + W †

n⃗

}}

=
∏
n⃗

(∫
dWn⃗ exp

{ 1
2g2a2 Tr

{
Wn⃗ + W †

n⃗

}})
. (A.8)

Again, there is no extra factor due to the property of the Haar measure. From this expression,
we see that plaquettes Wn⃗ behave as independent variables.

The expectation value of a Wilson loop TrWC along a contour C can then be calculated as

⟨TrWC⟩ = 1
Z

∫
dWWCe−SWilson (A.9)

Here, we use WC to denote the loop before taking a trace, which is an N × N matrix for
SU(N) theory. Any Wilson loop WC can be broken down in terms of the plaquettes contained
in it, as shown in figure 7. More precisely, Wilson loops can be expressed as a product of
plaquettes with ‘tails’. Specifically in two dimensions, each plaquette Wn⃗ is independent of
the others, and hence, the plaquette with ‘tail’ is also independent. Therefore, the Wilson
loop in two dimensions factorizes to the product of plaquettes contained in it. Hence, for
a Wilson loop consisting of nplaq. plaquettes, we obtain

⟨WC⟩ = (w · 1)nplaq. = wnplaq. · 1 , (A.10)

where w is the expectation value of single plaquette, i.e. ⟨Wn⃗⟩ = w · 1.
When the lattice spacing a is small, Wn⃗ localizes around 1. Let us introduce a traceless

Hermitian matrix Xn⃗ by

Wn⃗ = eiaXn⃗ . (A.11)

– 16 –



J
H
E
P
0
3
(
2
0
2
4
)
0
1
3

By construction, this X is the same as field strength. Then,

SWilson = 1
2g2

∑
n⃗

TrX2
n⃗ + O(a2) . (A.12)

The Haar measure dW is equivalent to the flat measure dX. Therefore, Xn⃗ is Gaussian
random and the variance is g2. The thin loop of the form shown in figure 4, with one-lattice-
unit extension along the spatial direction, is obtained by taking a product of nt plaquettes
with tails, where nt is the number of lattice sites along the temporal direction which is related
to temperature by β = T−1 = ant. The sum of nt independent Gaussian random numbers
with variance g2 is a Gaussian random number with variance g2nt. Therefore, the thin loop
takes the form of eiga

√
ntX̃ = eig

√
βaX̃ , where X̃ is Gaussian random with variance 1. This

corresponds to V −1
n Vn+1 in section 2.4. Because all plaquettes are independent, V −1

n Vn+1’s
are also independent.
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