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1 Introduction and conjecture

For SU(N) gauge theories at large N , the N -dependence of the energy E and entropy S
provides us with a simple characterization of confined and deconfined phases. Typically,
E ∼ S ∼ N2 in the deconfined phase because N2 gluons contribute. On the other hand,
in the confined phase, individual colors are not visible and hence E ∼ S ∼ N0 is expected
up to the zero-point energy. Such a characterization has been very useful in the context of
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Figure 1. In the partially-deconfined phase (equivalently, partially-confined phase), color degrees
of freedom split into the confined and deconfined sectors. In this paper, we use M to denote the
size of the deconfined sector.

holography [1–3]. Furthermore, there is good reason to expect that this characterization
is related to other characterizations of confinement and deconfinement, such as the disap-
pearance of the linear confinement potential in the deconfined phase. The O(N2) entropy
and energy come from the condensation of long strings [4, 5] with length of order N2 and
such long strings naturally explain the disappearance of the confinement potential. See
section 2 for details.

Between confined and deconfined phases of SU(N) gauge theory there exists the
partially-deconfined phase (equivalently, partially-confined phase), in which a SU(M) sub-
group deconfines; see figure 1. The size of the deconfined sector M can change from 0
(complete confinement) to N (complete deconfinement) [6–9]. The underlying mechanism
identified in ref. [10] does not depend on the details of the theories. Let us consider large-N
QCD with Nf flavors in the fundamental representation. We take Nf

N sufficiently large and
quark masses sufficiently small such that the confinement/deconfinement transition is not
of first order, thus resembling the real-world SU(3) QCD [11]. In such a case, the partially-
deconfined phase is thermodynamically stable; see ref. [12] for an explicit analysis at finite
volume and weak coupling. This opens up the interesting possibility that the so-called
QCD crossover region is the partially-deconfined phase.

In the past, partial deconfinement was studied based on the N -dependence of the free
energy and entropy. We expect that another characterization of confinement — that we
cannot separate quarks without forming a color singlet — is valid for the confined sector
in the partially-deconfined phase as well, but there has so far been no direct confirmation.
In this paper, we make solid progress regarding this point.

As a concrete example, we consider pure Yang-Mills theory, which exhibits a first-
order confinement/deconfinement transition. There is a partially-deconfined saddle sepa-
rating two minima of the free energy (completely-confined phase and completely-deconfined
phase); see figure 2. Although this saddle is thermodynamically unstable, it is connected
to the stable saddle in QCD as Nf

N or quark mass are varied1 and we expect qualitative
similarity between stable and unstable saddles. In the string-condensation picture, only

1Pure Yang-Mills can be regarded as the heavy-quark-mass limit or Nf

N
→ 0 limit.
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Figure 2. Sketches of the temperature dependence ofM , E
N2 and P for the pure Yang-Mills theory.

Blue, orange and red lines are completely-confined phase, partially-deconfined saddle (equivalently,
partially-confined saddle) and completely-deconfined phase. The partially-deconfined saddle is the
maximum of free energy at fixed temperature. See ref. [8] for other examples including a thermo-
dynamically stable partially-deconfined phase.

the SU(M) chromo-electric strings are condensed. If we take a probe quark and antiquark
from the deconfined sector, then they can interact with condensed strings and should not
have the confinement potential. On the other hand, if we take probes from the confined
sector, we expect the linear confinement potential, because there are no condensed strings
in this sector.

We will test this statement by using a gauge fixing that separates confined and de-
confined sectors in a controlled manner. Specifically, we will consider the strong-coupling
lattice gauge theory at finite temperature and study the two-point function of the Polyakov
loop. There are several reasons we consider this theory. First of all, partial deconfinement
is a generic property of gauge theories with confinement/deconfinement transition including
this model. Secondly, we can use the Eguchi-Kawai equivalence (large-N volume reduc-
tion) which makes our numerical simulation tractable. Furthermore, for this particular
setup, we can make a few analytic predictions assuming the formation of the flux tube in
the confined sector, and we can confirm the prediction numerically. Because such analytic
predictions are not available in the continuum limit, we can perform a stronger test by
focusing on the strong-coupling lattice gauge theory. The Polyakov loop TrP(~x) is the
trace of the holonomy P(~x) along the temporal circle defined by

P(~x) =
[
P exp

(
i

∮
dtAt(t, ~x)

)]
(1.1)

where P stands for the path ordering and ~x is the spatial point. The two-point function
decays exponentially in the completely-confined phase as

〈TrP(~x) · TrP(~y)〉 ∼ e−βσ|~x−~y|, (1.2)

where β = T−1 is the inverse temperature and σ is the string tension. We will perform a
gauge fixing such that colors split into the confined and deconfined sectors, respectively,
and define the Polyakov loops in those sectors, TrPcon(~x) and TrPdec(~x). Then, we show
that TrPcon(~x) exhibits the exponential decay

〈TrPcon(~x) · TrPcon(~y)〉 ∼ e−βσ|~x−~y| (1.3)
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with the same string tension σ. We also show that

〈TrPcon(~x) · TrPdec(~y)〉 ∼ e−βσ|~x−~y|. (1.4)

We interpret the relations (1.3) and (1.4) as consequences of the formation of flux tubes
and linear confinement in the confined sector. For the strong-coupling lattice gauge theory,
we confirm these relations quantitatively, including the concrete value of the string tension
σ and the overall constant factor.

This paper is organized as follows. In section 2, we use the operator formalism to ex-
plain partial deconfinement. In section 3, we define the lattice action and set the simulation
strategy. In section 4, we determine the size of the deconfined sector M at each simulation
point by using the relation betweenM and the phase distribution of the Polyakov loop [10].
In section 5, we provide evidence of the linear confinement potential in the confined sector
of the partially-deconfined phase. Theoretical considerations are provided in section 5.1.
Then, numerical evidence is given in section 5.2. We define the Wilson loop equivalent
to the two-point function of the Polyakov loop, and study it by using the Eguchi-Kawai
equivalence in the large-N limit.

2 Theoretical background

Hamiltonian formulation. The meaning of partial deconfinement is clearer if we look
directly at quantum states by working in the operator formalism. In this section, we
describe the partially-deconfined phase by using the Hamiltonian formulation by Kogut
and Susskind [13]. We consider the (3+1)-d Yang-Mills theory with U(N) gauge group.
The adaptation of this theory to the path-integral formalism, as actually used in our
simulations, is described in section 3. The purpose of this section is to explain aspects of
partial deconfinement using the string condensation picture [4, 5].

The Kogut-Susskind Hamiltonian consists of the electric and magnetic terms,

Ĥ = ĤE + ĤB. (2.1)

The electric part of the Hamiltonian becomes

ĤE = 1
2
∑
~n

3∑
µ=1

N2∑
α=1

(
Êαµ,~n

)2
. (2.2)

The magnetic term (plaquette) is dropped in the strong coupling limit [5]. The commuta-
tion relations are [

Û , Û
]

=
[
Û , Û †

]
=
[
Û †, Û †

]
= 0. (2.3)[

Êαµ,~n, Ûν,~n′
]

= δµνδ~n~n′ταÛν,~n′ ,
[
Êαµ,~n, Û

†
ν,~n′

]
= −δµνδ~n~n′Û †ν,~n′τα, (2.4)[

Êαµ,~n, Ê
β
ν,~n′

]
= −ifαβγδµνδ~n~n′Êγν,~n′ , (2.5)
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where fαβγ is the structure constant of U(N), and

N2∑
α=1

ταpqτ
α
rs = δpsδqr

N
,

N2∑
α=1

(τατα)pq = δpq. (2.6)

The ground state of this string-coupling lattice gauge theory Hamiltonian |g.s.〉 satisfies
Êαµ,~n|g.s.〉 = 0 for any α, µ and ~n. Hence, let us use the notation |E = 0〉 to denote the
ground state.

The operator Ûµ,~n is interpreted as the coordinate of the group manifold U(N) for the
link variable on the site ~n in the µ-direction. The operators Û and Ê are defined on the
extended Hilbert space Hext that contains gauge non-singlet modes. A convenient basis of
Hext is the coordinate representation,

Hext = ⊗µ,~nHµ,~n ∼ ⊗µ,~n
(
⊕g∈U(N)|g〉µ,~n

)
, (2.7)

where

Ûµ,~n|g〉µ,~n = g|g〉µ,~n g ∈ U(N). (2.8)

More precisely, we will consider only the Hilbert space of square-integrable wave functions
on U(N): Hµ,~n = L2(U(N)), where L2(U(N)) is the set of square-integrable functions from
U(N) to C. The ground state is the constant mode,

|E = 0〉 = ⊗µ,~n|E = 0〉µ,~n, |E = 0〉µ,~n = 1√
volU(N)

∫
U(N)

dg|g〉µ,~n. (2.9)

Namely, the wave function 〈g|E = 0〉 is constant.
Let G =

∏
~n[U(N)]~n be the group of all local gauge transformations. Gauge transfor-

mation by Ω̂ = ⊗~nΩ̂~n is defined by

Ω̂
(
⊗µ,~n|g〉µ,~n

)
= ⊗µ,~n

(
Ω̂~n|g〉µ,~n

)
= ⊗µ,~n|Ω~ngΩ−1

~n 〉µ,~n. (2.10)

Note that the ground state is gauge-invariant:

Ω̂|E = 0〉 = |E = 0〉. (2.11)

We can define the projection operator to the gauge-invariant Hilbert space Hinv as

π̂ = 1
VolG

∫
G
dΩΩ̂, (2.12)

where the integral is taken by using the Haar measure. By using this projection operator,
canonical partition function at temperature T can be written in two ways as

Z(T ) = TrHinv

(
e−Ĥ/T

)
= TrHext

(
π̂e−Ĥ/T

)
. (2.13)

The latter expression is directly related to the path-integral formalism with gauge field
At, as shown in appendix C. The U(N)-element Ω corresponds to the Polyakov loop in
the path-integral formalism [10]. The insertion of π̂ means we should identify the states
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connected by gauge transformation, as we identify field configurations connected by gauge
transformation in the classical theory. In other words, all states on the gauge orbit are
physically equivalent. This makes the meaning of ‘gauge fixing’ in the extended Hilbert
space clear: it selects a point from the gauge orbit, just as in the path-integral formalism
or even in the classical theory. In the SU(M)-deconfined phase, we can take a gauge such
that the upper-left M ×M block is deconfined, as in figure 1.

Strings and interactions. A closed string is created by the Wilson loop Ŵ
(closed)
C =

Tr(Ûµ,n̂Ûν,n̂+µ̂ · · · ), where the product of Û ’s in the trace is taken along the closed path
C. An open string is created by the open Wilson line along an open path C ′, denoted by
Ŵ

(open)
C′ , which is a product of Û ’s without trace. The closed string is gauge invariant.
Suppose that there is a closed loop without self-intersection (i.e. no link appears twice).

Then, the state |W (closed)
C 〉 ≡ Ŵ (closed)

C |0〉 is an energy eigenstate, and the energy is L
2 , where

L is the length of the loop (i.e., the number of links consisting the loop). This can be seen
as follows. Firstly, note that∑

α

(
Êαµ,~n

)2
Ŵ

(closed)
C |E = 0〉 =

∑
α

[
Êαµ,~n,

[
Êαµ,~n, Ŵ

(closed)
C

]]
|E = 0〉. (2.14)

Êαµ,~n commutes with Ŵ (closed)
C unless the latter contains Ûµ,~n or Û †µ,~n. When Ûµ,~n is con-

tained,∑
α

[
Êαµ,~n,

[
Êαµ,~n, Ŵ

(closed)
C

]]
|E = 0〉 =

∑
α

Tr
([
Êαµ,~n,

[
Êαµ,~n, Ûµ,n̂

]]
Ûν,n̂+µ̂ · · ·

)
|E = 0〉

=
∑
α

Tr
(
ταταÛµ,n̂Ûν,n̂+µ̂ · · ·

)
|E = 0〉

= Tr
(
Ûµ,n̂Ûν,n̂+µ̂ · · ·

)
|E = 0〉

= Ŵ
(closed)
C |E = 0〉. (2.15)

The same holds when Û †µ,n̂ is contained. Therefore, ĤE|W
(closed)
C 〉 = L

2 |W
(closed)
C 〉. The

same holds for any multi-string states, including closed or open strings, as long as there is
no intersection.

Next, suppose a link Ûµ,~n appears twice in the loop, while other links appear only
once. Let us write such a loop as Tr(V̂1Ûµ,~nV̂2Ûµ,~n). Then,∑

α

[
Êαµ,~n,

[
Êαµ,~n,Tr(V̂1Ûµ,~nV̂2Ûµ,~n)

]]
|E = 0〉

= 2Tr(V̂1Ûµ,~nV̂2Ûµ,~n)|E = 0〉+ 2
∑
α

Tr(V̂1[Êαµ,~n, Ûµ,~n]V̂2[Êαµ,~n, Ûµ,~n])|E = 0〉

= 2Tr(V̂1Ûµ,~nV̂2Ûµ,~n)|E = 0〉+ 2
∑
α

Tr(V̂1τ
αÛµ,~nV̂2τ

αÛµ,~n)|E = 0〉

= 2Tr(V̂1Ûµ,~nV̂2Ûµ,~n)|E = 0〉+ 2
N

Tr(V̂1Ûµ,~n)Tr(V̂2Ûµ,~n)|E = 0〉. (2.16)

Therefore,

ĤE

(
Tr(V̂1Ûµ,~nV̂2Ûµ,~n)|E = 0〉

)
= L

2 Tr(V̂1Ûµ,~nV̂2Ûµ,~n)|E = 0〉+ 1
N

Tr(V̂1Ûµ,~n)Tr(V̂2Ûµ,~n)|E = 0〉. (2.17)
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The second term can be understood as the splitting of a string into two strings. In the same
manner, we can show that two strings can be joined to form one string at an intersection,

ĤE

(
Tr(V̂1Ûµ,~n)Tr(V̂2Ûµ,~n)|E = 0〉

)
= L

2 Tr(V̂1Ûµ,~n)Tr(V̂2Ûµ,~n)|E = 0〉+ 1
N

Tr(V̂1Ûµ,~nV̂2Ûµ,~n)|E = 0〉. (2.18)

In general, such splitting and joining can take place at any intersection.

Confinement. Let us consider low-energy gauge-invariant states consisting of a small
number of closed strings with total length L ∼ N0. Then, there is at most order N0 number
of intersections. The interaction (splitting or joining) at each intersection is suppressed by
1
N , and hence the interaction is negligible at large N . The energy of the system is simply
L
2 . Such states are in the confined phase.

If we introduce a probe quark-antiquark pair connected by the open Wilson line, the
energy increases linearly as Eqq̄ = L

2 . This leads to the linear confinement potential.

Deconfinement and string condensation. In the deconfined phase [4, 5], long strings
with length of order N2 condense. There are many intersections, and thus the 1/N -
suppressed interactions accompanying each intersection pile up and become non-negligible
as a whole. Intuitively, if we introduce a short open string, it interacts with a condensed
long string and forms a long open string, which allows us to separate quark and antiquark
without making the string longer.

Partial deconfinement. Let Ûdec be the SU(M)-subsector. The SU(M)-deconfined
states can be constructed by acting with long traces of Ûdec’s on |E = 0〉 [9].2 By using
the Wilson loops restricted to the SU(M)-subsector

Ŵdec,C = Tr(Ûdec;µ,~nÛdec;ν,~n+µ̂ · · · ), (2.19)

we can construct multi-string states

Ŵdec,CŴdec,C′ · · · |E = 0〉, (2.20)

and then we can take a linear combination of such states. Such states are SU(M)-invariant,
but not SU(N)-invariant. If we want to get an SU(N)-invariant state, we can act with the
projector π̂.

The reason that such a phase is favored is understood from (2.13) [10]. We write the
projection operator π̂ explicitly as

Z(T ) = 1
Vol(G)

∫
G
dΩTrHext

(
Ω̂e−Ĥ/T

)
. (2.21)

From this expression, we can see that each energy eigenstate3 |E〉 ∈ Hext has a contribution
1

Vol(G)

∫
G
dΩe−E/T 〈E|Ω̂|E〉. (2.22)

2See refs. [14–16] for more general characterization.
3Here, E is the energy and not the electric field. For the ground state, we used the notation |E = 0〉 by

meaning that the electric field E is zero. Coincidentally, the energy of the ground state is also zero.
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If |E〉 is an SU(M)-deconfined state, we have Ω̂|E〉 = |E〉 for Ω ∈ U(N − M), such
that Ω does not act on the SU(M)-subsector. Hence, there is an enhancement factor
Vol(U(N −M)) ∼ e(N−M)2 . This factor makes smaller M more favorable. At each fixed
energy, this factor and other entropy factors compete and a certain value of M between
0 and N is determined as the most favorable value that maximizes the entropy. This is
essentially the same mechanism as the Bose-Einstein condensation [10].

Let Ûcon be the other N2 −M2 elements. Operators that consist of a number L ∼
O(N0) of Ûcon’s increase the energy by L

2 . They cannot be joined to the condensed strings.
The energy eigenstate remains an energy eigenstate. Naturally, we expect that the color
flux in the confined sector forms a flux tube and exhibits the linear potential Eqq̄ = L

2 while
the deconfined sector does not. We will discuss this later, together with numerical results.

3 Methods

We will perform our simulations on a lattice-discretized model of U(N) Yang-Mills theory.
Our simulations will involve constraining specific quantities so that we can remain in the
partially-deconfined phase, and also so that we can separate the confined and deconfined
sectors. Specifically, we use the Eguchi-Kawai model, which is equivalent to U(N) Yang-
Mills theory in the large-N limit. The introduction of the constraints amounts to the
study of the microcanonical ensemble rather than canonical ensemble, plus gauge fixing.
Simulations of lattice gauge theories in the microcanonical ensemble (where the energy is
fixed, instead of the temperature) [17] play a very important role in the numerical study
of phase transitions [18].

3.1 The lattice regularization

3.1.1 Path-integral formulation

To set up our lattice model, we will begin with the path integral formulation. We consider
Yang-Mills theory on a d-dimensional spatial lattice with continuous time t. We will focus
on d = 3. Let ~n be the spatial points labeled by d integers, and Uµ,~n(t) be the U(N) link
variable on the link connecting ~n and ~n+µ̂. Here, µ̂ is the unit vector along the µ-direction.
The gauge transformation is defined by

Uµ,~n(t)→ Λ−1
~n (t)Uµ,~n(t)Λ~n+µ̂(t). (3.1)

Here Λ~n(t) and Λ~n+µ̂(t) are N × N unitary matrices that describe the local gauge trans-
formation at points ~n and ~n + µ̂, respectively. We introduce a gauge field A~n(t) that
transforms as

A~n(t)→ Λ−1
~n (t)A~n(t)Λ~n(t) + iΛ−1

~n (t)∂tΛ~n(t). (3.2)

The covariant derivative DtUµ,~n, which transform as DtUµ,~n → Λ−1
~n (DtUµ,~n)Λ~n+µ̂, is de-

fined by

DtUµ,~n = ∂tUµ,~n − iA~nUµ,~n + iUµ,~nA~n+µ̂. (3.3)

– 8 –
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We will work in the strong coupling limit, by which we mean that the action contains only
the electric term and not the magnetic term. Hence the Euclidean action at temperature
T = β−1 is4

S = 1
2g2

∑
~n

∫ β

0
dtTr

(
(DtUµ,~n(t))(DtUµ,~n(t))†

)
. (3.4)

The operator Ω̂ in (2.21) corresponds to the Polyakov loop in the path-integral for-
malism [10] (see appendix C). In the large-N limit, the distribution of the phases of the
Polyakov loop is related to the symmetry of the typical quantum states dominating the
partition function. The size of the deconfined sector M can be determined from the distri-
bution of the phases [10], as explained in section 4.

3.1.2 Eguchi-Kawai reduction

In the large-N limit, some features of the strong-coupling lattice gauge theory do not
depend on the lattice size. Therefore, we can use the single-site model, which is called the
Eguchi-Kawai model, to learn about the infinite-volume theory. We use conventions close
to those in ref. [19].

In the Eguchi-Kawai model, we have only one spatial point, so we drop ~n from the
expressions for the strong-coupling lattice gauge theory. We will employ the gauge field A
and unitary link variables Uµ, both of which are function of (Euclidean) time t. The gauge
transformation is defined by

Uµ → Λ−1UµΛ (3.5)

and

A→ Λ−1AΛ + iΛ−1∂tΛ. (3.6)

The covariant derivative DtUµ, which transform as DtUµ → Λ−1(DtUµ)Λ, is defined by

DtUµ = ∂tUµ − i[A,Uµ]. (3.7)

The Euclidean action is

S = 1
2g2

∫ β

0
dtTr(DtUµ)2. (3.8)

This action is invariant under the global (i.e. t-independent) U(1)d center symmetry
generated by

Uµ → eiθµUµ. (3.9)

As long as this symmetry is unbroken, the Eguchi-Kawai model and infinite-volume lattice
are equivalent, in the sense that various properly-normalized quantities agree. This is the
so-called Eguchi-Kawai equivalence [20].5

4We use the same symbol S for the action and entropy, assuming the risk of confusion is low.
5In the original work by Eguchi and Kawai, all dimensions including time are reduced to a point. In

most references, ‘Eguchi-Kawai model’ and ‘Eguchi-Kawai equivalence’ are used for the original setup.
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In the strong coupling limit, the center symmetry is not spontaneously broken. To
confirm this in our simulations as a sanity check, we calculated the Wilson loop wrapped
on the spatial direction,

1
Nntd

∑
µ,d

|TrUµ,t|. (3.10)

If the center symmetry is not broken, this quantity should be zero up to 1/N -suppressed
terms. Our simulations affirmed this.

3.1.3 Gauge fixing

To make the separation to confined and deconfined phases easier, we take the static diagonal
gauge (used in ref. [21] for the same purpose),

A = 1
β
· diag(α1, · · · , αN ), −π < αi ≤ π. (3.11)

Associated with this gauge fixing, we add the Faddeev-Popov term

SF.P. = −
∑
i<j

2 log
∣∣∣∣sin(αi − αj2

)∣∣∣∣ (3.12)

to the action. This fixes SU(N) down to SN . In section 3.2, we explain how the confined
and deconfined phases can be separated by fixing the residual SN symmetry appropriately.

3.1.4 Lattice regularization for the time dimension

Finally, we place this theory on the lattice in the time direction, too, with the below action:

S = N

2a

d∑
µ=1

nt∑
t=1

Tr
(
1N − Uµ,tV U †µ,t+1V

†
)

+ h.c.+ SF.P., (3.13)

where V = diag(eiα1/nt , · · · , eiαN/nt). Here a is the lattice spacing, and β = ant is the
inverse temperature, β = T−1. This is the lattice action we use in our simulations. We
will focus on d = 3. (We will make one more alteration by adding terms that constrain the
Polyakov loop; see section 3.2.)

3.2 Polyakov loop and constrained simulations

The Polyakov loop under the gauge fixing described above is P = 1
NTrP, where

P = diag(eiα1 , · · · , eiαN ). (3.14)

This is the quantity we will measure in the standard (unconstrained) simulation. In ad-
dition, we will run two kinds of constrained simulation that make use of this definition of
the Polyakov loop.
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3.2.1 The microcanonical ensemble and constrained simulation of the first
kind

Via the Euclidean path integral, we can study the thermodynamic properties of a theory in
the canonical ensemble, in which temperature T is the controlling parameter. If the con-
finement/deconfinement phase transition is of first order, however, it is more convenient to
study the microcanonical ensemble, in which the energy E is the controlling parameter [22].

In canonical thermodynamics, temperature is fixed and free energy is minimized. In
microcanonical thermodynamics, energy is fixed and entropy is maximized. Usually, the
partially-deconfined phase is unstable in the canonical ensemble, but can be stable in the
microcanonical ensemble. If the spatial volume is large and the transition is of first order,
the partially-deconfined phase will be unstable even in the microcanonical ensemble. Some
part of space is occupied by the completely-deconfined phase while the rest is filled by
the completely-confined phase, and the partially-deconfined phase is realized only at the
interface of these two phases. When the spatial volume is small, such a spatial splitting
can be avoided. This is sometime exemplified by gauge theories compactified on a sphere.
For matrix models, including the Eguchi-Kawai model, spatial splitting cannot take place
because ‘space’ is just a single point. The large-N volume independence connects the
partially-deconfined phase in the Eguchi-Kawai, which is microcanonically stable, to the
partially-deconfined phase of large-volume theory which is not stable even in microcanonical
thermodynamics. The Polyakov loop P increases monotonically with E (figure 2). Hence,
by fixing P we also fix E and can access the information of the microcanonical ensemble.

For the first constrained simulation, we add the following term to fix the Polyakov
loop:

∆S =


gP
2 (|P | − (Pfix + δ))2 (|P | > Pfix + δ)

0 (Pfix − δ ≤ |P | ≤ Pfix + δ)
gP
2 (|P | − (Pfix − δ))2 (|P | < Pfix − δ)

(3.15)

We take gP sufficiently large, so that the value of |P | is fixed to a small window
Pfix − δ ≤ |P | ≤ Pfix + δ. The purpose of this constraint is to probe the partially-confined
saddle, which is otherwise unstable in the canonical ensemble. Essentially, we use the
density-of-state method by fixing P , and hence E. The size of the deconfined sector SU(M)
will depend on our choice of |P |. The precise relation is explained in section 4. Note that
the constraint term (3.15) does not require a specific gauge choice (although we took
the static diagonal gauge) and hence we can extract information from the microcanonical
thermodynamics in a gauge-invariant manner.

3.2.2 Fixing of residual gauge symmetry and constrained simulation of the
second kind

For the second kind of constrained simulation, we want to take this SU(M)-partially-
deconfined phase and separate the confined and the deconfined degrees of freedom. As we
will explain in section 4, this can be achieved by, firstly, taking the static diagonal gauge,
and then fixing the remaining SN gauge redundancy down to SM×SN−M by reordering
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the eigenvalues such that the N − M confined eigenvalues αM+1, · · · , αN constitute a
uniform distribution. With this gauge fixing, we separate N2 color degrees of freedom into
the deconfined sector (M ×M upper-left block) and the confined sector, as depicted in
figure 1 [21].

The most obvious approach to fixing SN in this way is, after having performed the
constrained simulation of first kind, to sort the resulting α’s appropriately. In this paper,
we take another approach which is technically simpler. We define

Pdec = 1
M

M∑
j=1

eiαj (3.16)

and

Pcon = 1
N −M

N∑
j=M+1

eiαj . (3.17)

We want to fix Pdec and Pcon to be Pfix and 0, respectively. Hence we will add

∆Sdec =


gP
2 (|Pdec| − (Pfix + δ))2 (|Pdec| > Pfix + δ)

0 (Pfix − δ ≤ |Pdec| ≤ Pfix + δ)
gP
2 (|Pdec| − (Pfix − δ))2 (|Pdec| < Pfix − δ)

(3.18)

and

∆Scon =


gP
2 (|Pcon| − δ)2 (|Pcon| > δ)

0 (|Pcon| ≤ δ),
(3.19)

taking gP sufficiently large. Fixing P = M
N Pdec + N−M

N Pcon ensures we are on the partially-
confined saddle, while fixing Pcon to zero and Pdec to nonzero enforces the gauge fixing.
Note that Pcon = 0 does not necessarily guarantee the uniform phase distribution in the
confined sector unless the relationship between M and Pfix is set correctly following the
procedures explained in section 4. With the correct choice of M and Pfix, this constraint
is equivalent to the constraint of the first kind plus permutations of phases. Some explicit
checks are provided in appendix A.

4 The size of the deconfined sector in the partially-deconfined phase

In this section, we explain how we can separate confined and deconfined sectors. The
starting point is the relationship between the operator formalism and the path-integral
formalism discussed in appendix C.

The canonical partition function is written as (2.21). Let us write the expression again:

Z(T ) = 1
Vol(G)

∫
G
dΩTrHext

(
Ω̂e−Ĥ/T

)
. (4.1)
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For the microcanonical ensemble, we can obtain a similar expression for the density of states
by inserting the projection operator π̂ = 1

Vol(G)
∫
G dΩΩ̂. As explained in appendix C, this

Ω corresponds to the Polyakov loop in the path-integral formalism [10].
An energy eigenstate |E〉 ∈ Hext contributes to the partition function as

e−E/T

Vol(G)

∫
G
dΩ 〈E| Ω̂ |E〉 . (4.2)

The SU(M)-partially-deconfined states are characterized by invariance under SU(N−M) ⊂
SU(N) [10]. Namely,

Ω̂ |E〉 = |E〉 , Ω ∈ SU(N −M) ⊂ SU(N) (4.3)

for SU(M)-deconfined states. Specifically, by choosing the SU(N −M) to correspond to
the lower-right (N −M)× (N −M)-block, we can choose the SU(M)-deconfined sector to
be the upper-left M ×M -block as in figure 1. This choice of embedding of SU(N −M)
into SU(N) fixes SU(N) down to SU(M)× SU(N −M). Ω takes the following form:

Ω =
(
Pdec 0

0 Pcon

)
. (4.4)

Here, Pcon can be any element of SU(N −M), and the generic phase distribution in this
part is uniform in the limit of N −M →∞. The phases of Pdec and Pcon are α1, · · · , αM
and αM+1, · · · , αN , respectively. From these, we can determine the distribution of the
phases ρdec(α) and ρcon(α). The latter is constant,

ρcon(α) = 1
2π , (4.5)

while the former is not and its smallest value is zero. For the model under consideration,
we can fix center symmetry in such a way that

ρdec(±π) = 0 . (4.6)

The full distribution is

ρ(α) =
(

1− M

N

)
· ρcon(α) + M

N
· ρdec(α)

= 1
2π ·

(
1− M

N

)
+ M

N
· ρdec(α) . (4.7)

See figure 3. Constrained simulation of the second kind enforces this separation by con-
straining Pdec to be the appropriate value for each M and setting Pcon to be zero. In
the large-N limit, this is equivalent to the constrained simulation of the first kind plus
sorting of the phases, because the distribution becomes continuous and sample-by-sample
fluctuation is suppressed.

For our numerical analysis via the Euclidean path integral, we prefer the Polyakov
loop to have the form (4.4) at any Euclidean time t so that the SU(M)-deconfined sector
is always in the upper-left M ×M -block. The static diagonal gauge is suitable for this
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N−M

M

M

N−M

Figure 3. Sketches of the distribution of the phases of Polyakov loop in the partially-deconfined
phase. Constant offset comes from the confined Polyakov loop Pcon while the non-uniform part
comes from the deconfined Polyakov loop Pdec.

purpose: because the gauge field At is constant, the Polyakov loop does not depend on
Euclidean time t. (If At is not static, the Polyakov loop can depend on t, although the
phases do not.) By appropriately fixing the residual SN symmetry, we can have the same
embedding visualized in figure 1 at any t.

The model under consideration has a first-order confinement/deconfinement transition
around Tc = 1

2 log(2d−1) [19]. It is easy to see the two-state signal when N is not too large.
When N is large, we can see one of two phases depending on the initial configuration for
the simulation.

In order to determine the size of deconfined sector for each N , let us take P to be
real and positive (i.e., P = |P |) configuration-by-configuration, by using the U(1) center
symmetry. For each fixed value of P , we collect many samples to determine the distribution
of the phases α, denoted by ρ(α). Because of (4.6) and (4.7), the minimum value of ρ(α)
(which should be at α = ±π) is related to the size of the deconfined sector M by [10]

ρ(±π) = 1
2π

(
1− M

N

)
.

Note that this relation is precise in the large-N limit. After determining M for each P and
N , we can perform the constrained simulation of the second kind with Pdec = N

N−MP (M).
The constrained-simulation methods in this paper are essentially the same as the one

used in ref. [21]. The only difference is that the models studied in ref. [21] had the simpler
relation P = M

2N , which does not hold in the model under consideration in this paper.
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Therefore, we must determine the relationship between P andM by numerically determin-
ing ρ(±π) in the constrained simulation of the first kind.

In general, ρ(α) can be written as

ρ(α) = 1
2π +

∞∑
k=1

ρ̃k cos(kα). (4.8)

We determine the coefficients ρ̃k based on the simulation data, by using a Bayesian inference
procedure with the likelihood of the data α given by eq. (4.8).

Each of the nconfig configurations contains N phases α1, · · · , αN . Following the usual
assumption of the self-averaging nature, i.e., the phase distribution does not depend on
samples for sufficiently large N , we suppose that each αi is obtained with a probability
ρ(αi), regardless of the values of the other phases. Then, for a given model distribution
ρ(α) specified by a fixed set of coefficients {ρ̃k}, the probability that {α} = (α1, · · · , αN )
is obtained is simply the product of the individual phases probabilities:

N∏
i=1

ρ(αi). (4.9)

Taking into account all configurations (assumed to be independent), we obtain the
likelihood function for the data {α}, given the parameters {ρ̃k}:

L({α(1)}, · · · , {α(nconfig)}|{ρ̃k}) =
nconfig∏
n=1

N∏
i=1

ρ(α(n)
i ). (4.10)

We use Bayes rule to compute the posterior distribution over the parameters {ρ̃k} given
a set of observations corresponding to the data {α(1)}, · · · , {α(nconfig)}. In practice, we need
to truncate the Fourier expansion in eq. (4.8) at some order Λ, setting ρ̃k = 0 for k > Λ,
and we choose a uniform prior distribution centered around zero and with bounds ±0.1.
At fixed order Λ we compute the posterior over exactly Λ parameters by using a dynamical
Nested Sampling algorithm [23, 24] implemented in the python library ultranest [25].

Ultimately, we do not care about the values of the model parameters {ρ̃k}, but we
want to use their posterior distribution to sample all models ρ(α) that are compatible
with the data. With these samples we have direct access to the expectation value of
ρ(π) = 1

2π

(
1− M

N

)
, hence to the expectation value of M and its corresponding error bar,

given by the 16% and 84% quantiles of the posterior predictive distribution.
We tried a few different values of the Fourier expansion order Λ and found that results

are consistent within error bars for Λ ∈ {2, 3, 4, 5}. For our analysis we choose to consider
Λ = 3 out of simplicity.

The values of M for T = 0.29 obtained this way are summarized in table 1. For each
fixed N and P , there is a weak dependence on the lattice size nt.

In this paper, we are trying to study the partially-deconfined saddle. The temperature
of the saddle changes slightly with P , while we varied P at fixed T . We are implicitly
assuming that a slight difference of temperature does not have a significant effect if P is
fixed. The validity of this assumption requires that the saddle is insensitive with respect

– 15 –



J
H
E
P
0
3
(
2
0
2
3
)
1
9
5

P N nt M

0.2 16 16 7.44+0.12
−0.11

24 7.62+0.15
−0.16

32 7.56+0.11
−0.12

24 16 10.99+0.18
−0.18

24 11.13+0.19
−0.19

32 11.12+0.22
−0.22

32 16 14.51+0.21
−0.19

24 14.77+0.22
−0.22

32 14.91+0.21
−0.23

64 16 28.70+0.31
−0.31

24 29.04+0.31
−0.34

32 29.06+0.29
−0.29

96 16 42.78+0.40
−0.38

24 43.19+0.48
−0.49

0.25 16 16 10.06+0.09
−0.10

24 9.99+0.13
−0.13

32 10.18+0.14
−0.15

24 16 14.85+0.17
−0.16

24 14.92+0.17
−0.17

32 15.18+0.11
−0.12

32 16 19.52+0.18
−0.15

24 19.81+0.22
−0.23

32 19.92+0.19
−0.18

64 16 38.19+0.30
−0.28

24 38.77+0.37
−0.36

32 39.11+0.33
−0.34

96 16 56.50+0.35
−0.34

24 57.43+0.42
−0.40

Table 1. P vs M at T = 0.29. The central value of M is the median of the posterior predictive
distribution. The lower and upper bound are the 16% and 84% quantiles, respectively.

to the temperature. To test this, we looked at the value of M for different values of
temperature at fixed P . See table 2 for the relation between P and M for T = 0.29, 0.30
and T = 0.31. The dependence on temperature is rather mild (mostly compatible within
error bars). Hence, we assume other quantities such as the string tension are not sensitive
to the small change of temperature. We leave an explicit confirmation of this assumption
as a future work.
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P N M at T = 0.29 M at T = 0.30 M at T = 0.31
0.2 16 7.62+0.15

−0.16 7.75+0.15
−0.15 7.83+0.16

−0.16

24 11.13+0.19
−0.19 11.31+0.19

−0.20 11.68+0.19
−0.20

32 14.77+0.22
−0.22 15.03+0.20

−0.20 15.23+0.22
−0.22

0.25 16 9.99+0.13
−0.13 10.36+0.15

−0.14 10.59+0.14
−0.14

24 14.92+0.17
−0.17 15.61+0.17

−0.16 15.95+0.16
−0.17

32 19.81+0.22
−0.23 20.50+0.18

−0.16 21.07+0.20
−0.19

Table 2. P vs M at three different temperatures for nt = 24. The central value of M is the
median of the posterior predictive distribution. The lower and upper bound are the 16% and 84%
quantiles, respectively.

Figure 4. The temporal Wilson loop Wµ(L, t0) considered in this work. A spatial Wilson line
with length L is created, goes through Euclidean time evolution around the temporal circle, and
is then annihilated. By exchanging the role of time and space, we can interpret this also as the
propagation of an open string along the compactified space over Euclidean time L. We will focus
on the case of t0 = β.

5 Flux tube in partially-deconfined phase

5.1 Theoretical expectations

In this section, we demonstrate (1.3) and (1.4) using Eguchi-Kawai equivalence. The
Eguchi-Kawai model is easier for numerical purposes, but the lack of the spatial dimensions
forces us to rewrite the two-point functions on the left-hand side of (1.3) and (1.4) to
slightly different forms. We define the temporal Wilson loop with temporal extent 0 <

t0 ≤ β and spatial extent L in the lattice unit, as shown in See figure 4. When t0 = β

(figure 5), it is equivalent to the two-point function of the Polyakov loop, as we will see
shortly. Thanks to Eguchi-Kawai equivalence, we can calculate this Wilson loop by using
the Eguchi-Kawai model.

Let us elucidate the physical meaning of this loop. Let F † be a creation operator for
two heavy probe particles φ and χ connected by a Wilson line [26],

F̂ †µ(~x, L) = φ̂†a(~x)Ûµ,ab(~x, ~x+ Lµ̂)χ̂†b(~x+ Lµ̂). (5.1)
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Figure 5. Temporal Wilson loop Wµ(L, β). Such a Wilson loop is equivalent to the two-point
function of Polyakov loops.

Then Wµ(L, t0) is

Wµ(L, t0) = 1
Z(β)

∑
i

〈Ei| e−(β−t0)Ĥ F̂µe
−t0Ĥ F̂ †µ |Ei〉

= 1
Z(β)

∑
i

e−βEi 〈Ei| F̂µe−t0(Ĥ−Ei)F̂ †µ |Ei〉 . (5.2)

Note that the contribution from the mass of the probes is subtracted.
Let us write F †µ |Ei〉 as a linear combination of the energy eigenstates,

F̂ †µ |Ei〉 =
∑
j

cij |Ej〉 . (5.3)

Then,

Wµ(L, t0) = 1
Z(β)

∑
i,j

e−βEi |cij |2e−t0(Ej−Ei). (5.4)

Suppose the sum over all the states can be replaced by a typical energy eigenstate |Ei〉.
Then,

Wµ(L, t0) ∼
∑
j

|cij |2e−t0(Ej−Ei). (5.5)

If the minimum excitation above Ei increases linearly with L, we have Wµ(L, t0) ∼ e−cL,
with some constant c. We expect this to happen in the confined sector, i.e., we expect
Wµ,con(L, t0) ∼ e−cL. If only the low-energy states contribute, we should have c ∝ t0σ,
where σ is called the string tension. In the Eguchi-Kawai model, by using the Polyakov line

P ≡ diag(eiα1 , · · · , eiαN ), (5.6)

we can write Wµ(L, β) as

Wµ(L, β) =
〈

Tr
(
P(Uµ(t))LP†(Uµ(t)†)L

)〉
. (5.7)

We can see the exponential decay of Wµ(L, β) in figure 6 for the completely-confined case.
1
NWµ(L, β) is equivalent to the two-point function of Polyakov loops, i.e.,

1
N
Wµ(L, β) = 〈TrP(~x) · TrP(~x+ Lµ̂)〉 . (5.8)
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Here µ̂ is the unit vector along the µ-th dimension. One way to see this is to exchange the
roles of temporal and spatial directions. Namely, we interpret the µ-direction to be imagi-
nary time. Wµ(L, t0) is interpreted as the propagation along the imaginary time direction
of an open string with length t0 stretched along the spatial circle with circumference β.
When t0 = β and the color factors (Chan-Paton factors) at the endpoints of the open string
are summed over, we get a closed string, or equivalently, the Polyakov loop.

To see the properties of the confined and deconfined sectors separately, we define the
Polyakov line in the deconfined sector,

Pdec ≡ diag(eiα1 , · · · , eiαM , 0, · · · , 0), (5.9)

and that in the confined sector,

Pcon ≡ diag(0, · · · , 0, eiαM+1 , · · · , eiαN ). (5.10)

By using these, we can define the counterparts of two-point functions in the lattice gauge
theory 〈Pdec(~x)Pdec(~y)〉, 〈Pcon(~x)Pcon(~y)〉 and 〈Pcon(~x)Pdec(~y)〉 as

Wµ,dec(L, β) ≡
〈

Tr
(
Pdec(Uµ(t))LP†dec(Uµ(t)†)L

)〉
, (5.11)

Wµ,con(L, β) ≡
〈

Tr
(
Pcon(Uµ(t))LP†con(Uµ(t)†)L

)〉
. (5.12)

and

Wµ,mix(L, β) ≡
〈

Tr
(
Pcon(Uµ(t))LP†dec(Uµ(t)†)L

)〉
. (5.13)

We can also define Wµ,dec(L, t0), Wµ,con(L, t0) and Wµ,mix(L, t0) in a similar manner.
Because 1

NWµ(L, β) is equivalent to the two-point function of Polyakov loops, and
because the connected part of the two-point function is suppressed at long distance (L→
∞), we will have

lim
L→∞

1
N
Wµ(L, β) = |〈P 〉|2. (5.14)

We expect Wµ,con(L, β) and Wµ,mix(L, β) to vanish at large L, and hence we expect

lim
L→∞

1
N
Wµ,dec(L, β) = |〈P 〉|2. (5.15)

We expect that Wµ,con(L, β) and Wµ,mix(L, β) vanish in a very specific manner. We
expect the exponential decay at long distance with the same string tension as the confined
sector, i.e., we expect

1
N
Wµ,con(L, β) = Ccon(N,M) · exp (−σLβ) (5.16)

and
1
N
Wµ,mix(L, β) = Cmix(N,M) · exp (−σLβ) . (5.17)
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To obtain (5.17), we can interpret the µ-direction to be the Euclidean time. Then, closed
string in the confined sector is created by Pcon and propagate distance L. Then it is anni-
hilated by Pdec. It is natural to expect that Pdec contains a small but nonzero contribution
from the lightest mode in Pcon because there is no reason that it is forbidden, and hence, we
expect to see the propagation of the closed string in the confined sector that is associated
with the decay factor exp (−σLβ).

In the strong-coupling lattice gauge theory, with our normalization,

σ = 1
2 . (5.18)

Note that the large-N limit should be taken first. Approximately, we expect Ccon(N,M) '(
1− M

N

)2
and Cmix(N,M) ' M

N

(
1− M

N

)
. To give a stronger constraint on Ccon(N,M)

and Cmix(N,M), let us assume that these factors do not depend on the size of the loops
along the temporal direction, i.e.,

1
N
Wµ,con(L, t0) = Ccon(N,M) · exp (−σLt0) (5.19)

and
1
N
Wµ,mix(L, t0) = Cmix(N,M) · exp (−σLt0) . (5.20)

By definition, the sum of Wµ,con(L, t0 = 0) and Wµ,mix(L, t0 = 0) can be written as

Wµ,con(L, t0 = 0) +Wµ,mix(L, t0 = 0) =
〈

Tr
(
Πcon(Uµ(t))L1N (Uµ(t)†)L

)〉
= 〈Tr (Πcon)〉
= N −M, (5.21)

where Πcon = diag(0, · · · , 0︸ ︷︷ ︸
M

, 1, · · · , 1︸ ︷︷ ︸
N−M

). Therefore,

Ccon(N,M) + Cmix(N,M) = 1− M

N
, (5.22)

if Ccon(N,M) and Cmix(N,M) do not depend on t0. In section 5.2, we will confirm this
relation numerically.

5.2 Simulation results

In this subsection, we will show the simulation results. The expectation values of W (L)
used for the analyses are shown in tables 9, 10, 11, and 12.

Completely-confined phase. Let us start with the unconstrained simulation at T =
0.25, where temperature is sufficiently low such that the completely-confined phase is
obtained in the large-N limit. We took the lattice size nt = 24, and studied N =
16, 24, 32, 48, 64, 96 and 128. We took the average over all spatial dimensions µ = 1, 2, 3 and
studied W = 1

3
∑3
µ=1Wµ. As we can see in the first panel of figure 6, the N -dependence

of 1
NW (L) can be fitted well to the fitting ansatz 1

NW (L) = a(L) + b(L)
N2 . We used N ≥ 24

to perform the extrapolation to N = ∞. We could achieve reliable extrapolations at
L = 1, 2, 3 and 4. For L ≥ 5, larger N are needed for reliable extrapolations.
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Figure 6. T = 0.25 and nt = 24, without constraint. Temperature is sufficiently low such that the
completely-confined phase is realized automatically. For the extrapolation to N =∞, we used data
points at N = 24, 32, 48, 64, 96, 128 for L = 1, 2, 3, 4 and N = 48, 64, 96, 128 for L = 5. We used the
fitting ansatz 1

NW (L) = a(L) + b(L)
N2 . By fitting the large-N extrapolated results at 1 ≤ L ≤ 4 by

the ansatz a(L) = exp(−cL+ d), we obtained c = 2.0887(30) and d = 0.0011(31). This fit is shown
by the blue line. The red line is exp(−2L), which is the theoretical expectation for long distance
(large L) and continuum limit (nt =∞). A small disagreement would be finite-nt effects.

Because the Eguchi-Kawai reduction is valid at N =∞, we can compare the large-N
extrapolated values with the theoretical expectation (5.16) and σ = 1

2 , β = 1
T = 4, and

M = 0, i.e., 1
NW (L, β = 4) = exp(−2L). Note that Ccon(N,M = 0) = 1, because of (5.22)
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Figure 7. T = 0.29 with the constraint P = 0, allowing us to probe the completely-confined phase
near the transition. We have extrapolated to the large N limit using N = 7, 10, 16, 24, 32, and
to the continuum limit using nt = 16, 24, 32 for each N , using the 2D interpolation 1

NWcon(L) =
acon(L) + b1,con(L)

N2 + b2,con(L)
nt

+ b3,con(L)
ntN2 . We fitted these interpolated values acon(L) for 1 ≤ L ≤ 4

to the ansatz acon(L) = exp(−cconL+ dcon), yielding ccon = 1.738(29) and dcon = 0.022(31). The
fit is shown along with error bounds by the blue line. The theoretical prediction (ccon = 1.724, and
dcon = 0 for M = 0) is given by the red line, which is mostly obscured by the fit.

and Cmix(N,M = 0) = 0. In the second panel of figure 6, 1
NW (L) for each N and the

large-N extrapolation are shown for L = 1, 2, 3, 4, 5. By fitting the large-N extrapolated
results at 1 ≤ L ≤ 4 to the ansatz a(L) = exp(−cL+ d), we obtained c = 2.0887(30) and
d = 0.0011(31). Small deviations from exp(−2L) would be finite-nt effects.

We can also probe the confined phase at T = 0.29 by constraining P to its confined
value, P = 0, as shown in figure 7. This is more comparable to the constrained simulation,
described below, that we perform at T = 0.29 to probe the partial phase, but is here applied
to examining the familiar completely-confined phase with its well-established theory and
predictions.

For this, we took the large-N and continuum limit at each L by performing a weighted
least-squares regression with the ansatz 1

NWcon(L;nt) = acon(L) + b1,con(L)
N2 + b2,con(L)

nt
+

b3,con(L)
ntN2 . The weights were derived from the error bars of the Monte-Carlo observables,

where the integrated autocorrelation time measured by the Madras-Sokal algorithm [27]
is taken into account. Then acon(L) gives the extrapolated value in the N,nt → ∞ limit.
Fitting the ansatz acon(L) = exp(−cconL+ dcon), we obtain ccon = 1.738(29) and dcon =
0.022(31). This is consistent with the theoretical expectation eσβL = e−

1
2×0.29L ' e−1.724L.
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Figure 8. Confined subsector Wilson loop, Wcon, at T = 0.29, for P = 0.2 and P = 0.25,
respectively. We have extrapolated to the large N limit using N = 24, 32, 64, and to the continuum
limit using nt = 16, 24, 32 for each N , using the 2D interpolation 1

N(1− M
N )2Wcon(L) = γcon(L) +

β1
N2 + β2

nt
+ β2

ntN2 . We fitted these interpolated values γcon(L) for 1 ≤ L ≤ 4 to the ansatz γcon(L) =
exp(−cconL+ dcon) and obtained ccon = 1.729(17) and ccon = 1.724(23) for P = 0.2 and P = 0.25,
respectively. The fit is shown along with error bounds by the blue line.

Partially-deconfined phase. In figure 8, we show Wcon at T = 0.29, P = 0.2 and
P = 0.25, which corresponds to M

N ' 0.50 and M
N ' 0.61. We performed a two-dimensional

weighted least-squares regression to take the large N and continuum (nt → ∞) limits
simultaneously. Note that it is more difficult to take the large-N limit at larger L, and/or
when either M or N −M is small.

Motivated by (5.16) with Ccon(N,M)'
(
1−M

N

)2
, we normalized the loop as 1

NWcon(L)×(
1−M

N

)−2
. We will compare the loop normalized this way to eσβL = e−

1
2×0.29L ' e−1.724L.

The large-N and continuum extrapolations were estimated at each L by performing
a weighted least-squares regression with the ansatz 1

NWcon(L) ×
(
1− M

N

)−2
= acon(L) +
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b1,con(L)
N(N−M) + b2,con(L)

nt
+ b3,con(L)

ntN(N−M) .
6 Then acon(L) gives the extrapolated value of the Wilson

loop in the N,nt →∞ limit.
We plotted acon(L) in figure 8. We can perform one final linear regression with the

ansatz log(acon(L)) = −cconL + dcon to check the area law. Fitting to L ≤ 4, we obtain
ccon = 1.729(17) and ccon = 1.724(23) for P = 0.2 and P = 0.25, respectively, in good
agreement with the theoretical expectation, 1.724. The values of d were dcon = 0.086(20)
and dcon = 0.127(28). That they are not zero is not a problem; what we expect instead
is (5.22), which we will confirm shortly.

The mixed-correlator Wmix(L) is shown in figure 9. Motivated by (5.17) with
Cmix(N,M) ' M

N

(
1− M

N

)
, we normalized the loop as 1

NWmix(L) ×
[
M
N

(
1− M

N

)]−1
. We

used a similar process as described for Wcon above, but using this different normalisation.
We find cmix = 1.731(21) and cmix = 1.708(20) for P = 0.2 and P = 0.25, respectively, in
good agreement with the theoretical expectation, 1.724. The values of dmix were dmix =
−0.076(24) and dmix = −0.109(23). Again, that they are not zero is not a problem; we will
confirm (5.22) next.

In figure 10, Wcon+Wmix
N−M is plotted. It is consistent with e−1.724L including the overall

normalization factor. We obtained c = 1.733(19) and d = 0.021(22) for P = 0.20, and
c = 1.718(18) and d = −0.006(21) for P = 0.25. Now d is consistent with zero.

To contrast with all of these, we also plotted the deconfined-correlator, Wdec, in fig-
ure 11. Here, there is a total absence of any confining behaviour, in easy agreement with
our conjecture.

In summary, we have observed that numerical data is consistent with nontrivial the-
oretical predictions made about partial confinement, i.e., (5.16), (5.17), and (5.22). In
particular, the agreement between Wcon + Wmix and the theoretical prediction could be
confirmed without even performing a fit, as shown in figure 10. Although our data is not
good enough to determine the values of Wilson loops at L ≥ 5 at this moment, in principle
we can study arbitrary large L by taking N larger and collecting sufficiently many statistics
in Monte Carlo simulations.

Comments on temperature dependence. In the model under consideration, the
partially-deconfined saddle is the maximum of the free energy. The distribution of Polyakov
line phases at the saddle changes with temperature. Therefore, strictly speaking, we need
to study multiple values of T , choosing the value of P exactly on top of the saddle. How-
ever, we explicitly confirmed that the expected behaviors (5.16), (5.17), and (5.22) at
T = 0.29 at P = 0, 0.20 and 0.25, which suggests that this relation holds near the critical
point regardless of the value of P , and hence also on the partially-deconfined saddle. It
is straightforward to perform the more complete analyses if more computational resources
are available. We will leave it for future work. See also comments at the end of section 4.

6In the completely-confined phase, we used N2 in the denominators of the regression. For the partial
phase, we used N(N −M) instead. We found that our data was much closer to being linear in 1

N(N−M) ,
both for data points taken at the same P but which differed slightly in M/N , and also when combining
points at different P and thus very different values of M/N .
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Figure 9. Mixed subsector Wilson loop, Wmix, at T = 0.29, for P = 0.2 and P = 0.25, respectively.
We have extrapolated to the large N limit using N = 24, 32, 64, and to the continuum limit using
nt = 16, 24, 32 for each N , using the 2D interpolation 1

M(1− M
N )Wmix(L) = γ(L) + β1

N2 + β2
nt

+ β2
ntN2 .

We fitted the interpolated values γ(L) for 1 ≤ L ≤ 4 to the ansatz γ(L) = exp(−cL+ d). We find
cmix = 1.731(21) and cmix = 1.708(20) for P = 0.2 and P = 0.25, respectively. The fit is shown
along with error bounds by the blue line.

6 Conclusions and discussions

In this paper, we presented evidence for the formation of a flux tube and linear confine-
ment potential in the confined sector of the partially-deconfined saddle of pure Yang-Mills
theory by taking strongly-coupled lattice gauge theory as a concrete example. The lin-
ear confinement potential in the confined sector supports the argument given in ref. [12]
concerning the ’t Hooft anomaly matching associated with the chiral symmetry breaking
in the confined sector. Namely, quarks in the confined sector must form a bound state,
and then the pion should be formed in the confined sector so that the anomaly-matching
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Figure 10. Combined mixed and confined subsector Wilson loop, Wcon + Wmix, at T = 0.29,
for P = 0.2 and P = 0.25, respectively. We have extrapolated to the large N limit using N =
24, 32, 64, and to the continuum limit using nt = 16, 24, 32 for each N , using the 2D interpolation

1
M−N (Wcon + Wmix)(L) = γ(L) + β1

N2 + β2
nt

+ β2
ntN2 . We fitted these interpolated values γ(L) for

1 ≤ L ≤ 4 to the ansatz γ(L) = exp(−cL+ d). We obtained c = 1.733(19) and d = 0.021(22) for
P = 0.20, and c = 1.718(18) and d = −0.006(21) for P = 0.25. The fit is shown along with error
bounds by the blue line. The theoretical prediction is shown by the red and is mostly obscured by
the fit.

condition is satisfied. It can also explain the observation in ref. [28], i.e., chiral symmetry
breaks spontaneously at the complete deconfinement/partial deconfinement phase transi-
tion point, because the formation of chiral condensate in the confined sector is sufficient to
break the chiral symmetry.

By studying large-N QCD in the Veneziano limit with sufficiently light quarks, we
should be able to see the stable partially-deconfined phase. It would be interesting to see
whether chiral symmetry breaking and the complete deconfinement/partial deconfinement
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Figure 11. Deconfined subsector Wilson loop, Wdec, at T = 0.29, for P = 0.2 and P = 0.25,
respectively. We used the same scale as in figures 8, 9, and 10. The potential is clearly nonconfining,
and no fitting was attempted.

phase transition coincide. Another interesting direction would be to explore whether partial
confinement is a sharp notion for SU(3) real-world QCD (see ref. [28]).

Our result means that, in the partially-deconfined phase, the probe quark-antiquark
potential behaves differently in the confined and deconfined sectors. In the holographic
calculation of the Wilson loop [29], this would mean that different worldsheets are pre-
ferred in the confined and deconfined sectors. We have not understood how it affects the
conventional computations on the gravity side.

The original motivation [6] for considering partial deconfinement was to understand the
emergent geometry in gauge/gravity duality. Naturally, the deconfined sector is interpreted
as a black hole. The findings in this paper are consistent with the expectation that short
strings, which correspond to gravitons when there is a gravity dual, can live in the confined
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sector [14–16]. When applied to the evaporating black hole, the Page curve [30] follows
from this interpretation [16]. It would be interesting if we can deepen our understanding
of the roles matrix degrees of freedom play in the emergent geometry.
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A Constrained simulations of the first kind and second kind

A potential objection to our approach might be the apparent unnaturalness of the constraint
simulation of the second kind. Here, we justify the second constraint as being equivalent
to fixing some of the gauge redundancy that remains after having taken static diagonal
gauge. The second constraint imposes uniformity on some subset N−M of the eigenvalues
of the Polyakov loop. In a general configuration at finite N outputted by the Monte-Carlo
simulation under the constraint of the first kind, a subset of eigenvalues is not guaranteed
to be exactly uniformly distributed in this way. However, at large N , the constraint of the
second-kind and fixing of residual gauge symmetry should be equivalent, with fluctuations
away from the mean value being suppressed. If the Polyakov eigenvalue distributions
are identical between the microcanonical (first-kind constrained) and second-constrained
simulation, we can use our method as an effective gauge fixing in the large-N limit. As we
can see from figure 12, constrained simulations with the 1st and 2nd constraints indeed give
the same distribution of the Polyakov-loop phases. Furthermore, as we can see figure 13,
the distributions of α1, · · · , αM and αM+1, · · · , αN exhibit the kind splitting depicted in
figure 3.

We can also check that the confined Polyakov loop correlator exhibits an area law
in the microcanonical ensemble, without the imposition of uniformity on the confined
subsector that is done in the constrained simulations of the second kind. We reasoned
that the Wilson loop obtained in the constrained simulation of the first kind must be the
sum of the contributions from Wcon, Wdec and Wmix, and that the constrained simulation
of second kind separates these pieces neatly. One may wonder whether this method of
explicit separation does something more and spoils the partially-deconfined saddle. As
a consistency check, we can subtract the deconfined-sector Wilson loop computed from
the second-kind simulations from the first-kind Wilson loop to obtain a quantity with an
area law, as expected from the confined and mixed sectors. More advantageously, we can
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Figure 12. Polyakov loop phase distributions for N = 64, nt = 32, P = 0.2, for constraints of the
first and second kind.
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Figure 13. Polyakov loop phase distributions for N = 32 and N = 64, nt = 24, P = 0.2 (top) and
P = 0.25 (bottom), for constraints of the second kind. In addition to the distribution of all phases,
the ‘deconfined part’ (α1, · · · , αM ) and ‘confined part’ (αM+1, · · · , αN ) are shown.

calculate,

Wsubtracted = Wfull,1st −Wdec,2nd −Wmix,2nd. (A.1)

This Wsubtracted should be the sum of Wcon and Wmix, and hence, Wsubtracted = (N −
M) exp(−σLβ) is expected.

This demonstrates that the linear potential is not the result of an artifical imposition
of uniformity on the eigenvalues, but is present even in the constrained simulations of the
first kind. We also find by this analysis that the constraint of the second kind approximates
the gauge-fixed microcanonical ensemble well even at N = 16.
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Figure 14. The complete Wilson loop from first-kind simulations, the deconfined Wilson loop
from second-kind simulations, and their difference, nt = 32 and T = 0.29, extrapolated to large N .
Note that the continuum limit has not been taken.

In figure 14, we plotted Wsubtracted. As expected, by subtracting the contribution from
the deconfined sector, we find confining behaviour matching that of the mixed and confined
subgroups from second-kind simulations.

B Stability of the extrapolations

Small N effects. We collected data for N = 16, 24, 32, 64. For the large-N extrapolation
of Wcon (respectively, Wmix), we should use only the data points with sufficiently large
N −M (respectively, M and N −M). However, for P = 0.25, the N = 16 data seemed to
present a source of systematic error from finite N , M , and N −M effects. In particular,
for N = 16 and P = 0.25 we have N −M = 6. Such errors would not be captured by the
error bars. We can measure the contribution to the systematic error by removing data at
different values of N from the interpolation. The effect of this on the fitting parameter c
is shown in tables 3, 4, and 5.

It is easy to understand how the N = 16 data is distorting the results when we attempt
a linear fit. We demonstrate this in figure 15. The small value of N−M causes the N = 16
point to be far separated from the others on the x axis. Consequently, it has a large effect
on the linear fit. There is also clear non-linear behaviour. For P = 0.2, N −M is larger,
and this explains why the distortion is not so severe. We could have attempted a quadratic
fit, but we see from figure 15 that this does not significantly reduce the uncertainty, and
potentially increases it. Therefore, we performed the large-N extrapolations in the main
text without using N = 16.
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Figure 15. Performing the large N extrapolation for the confined subsector P = 0.2 (left) and
P = 0.25 (right) for L = 1. The continuum limit nt →∞ has been taken. We try a linear fit of all
points (green), a linear fit that ignores N = 16 (red), and a quadratic fit of all points (orange). The
destabilising effect of the N = 16 (rightmost) point in the P = 0.25 linear extrapolation is obvious
and can be attributed to the small value N −M = 6.

P all N rmv. N = 16 rmv. N = 24 rmv. N = 32 rmv. N = 64
0.2 1.7248(59) 1.7343(74) 1.7271(59) 1.7221(64) 1.718(11)
0.25 1.7117(64) 1.7215(82) 1.7122(64) 1.7133(72) 1.692(12)

Table 3. Values of c for Wcon +Wmix with data for different N removed. With nt = 16.

P all N rmv. N = 16 rmv. N = 24 rmv. N = 32 rmv. N = 64
0.2 1.7281(55) 1.7335(66) 1.7288(55) 1.7229(58) 1.729(11)
0.25 1.7170(78) 1.732(10) 1.7193(79) 1.7195(86) 1.682(15)

Table 4. Values of ccon for Wcon with data for different N removed. With nt = 16.

P all N rmv. N = 16 rmv. N = 24 rmv. N = 32 rmv. N = 64
0.2 1.7340(67) 1.7346(83) 1.7341(68) 1.7338(74) 1.737(13)
0.25 1.7066(72) 1.7116(91) 1.7059(72) 1.7062(80) 1.692(14)

Table 5. Values of cmix for Wmix with data for different N removed. With nt = 16.

Small nt effects. We see a similar issue with respect to nt = 16. In table 3 and table 4,
we see that c for P = 0.25 is smaller than the theoretical value 1.724, whether N = 16 is
removed or not. We attribute this to the use of nt = 16. If we plot points at nt = 16, 24
and 32 with fixed N and L by taking 1

nt
as the horizontal axis, we can see that those three

points are not always on a straight line and a linear fit is often very bad. This happens for
both P = 0.2 and P = 0.25. For the analyses in the main text, we did not include nt = 16
for either P = 0.2 or P = 0.25. The effect of removing nt = 16 can be seen by comparing
tables 3, 4, 5 with tables 6, 7, 8.
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P all N rmv. N = 16 rmv. N = 24 rmv. N = 32 rmv. N = 64
0.2 1.730(15) 1.733(19) 1.730(15) 1.729(17) 1.729(28)
0.25 1.703(14) 1.718(18) 1.703(14) 1.709(16) 1.663(27)

Table 6. Values of c for Wcon +Wmix with data for different N removed. Without nt = 16.

P all N rmv. N = 16 rmv. N = 24 rmv. N = 32 rmv. N = 64
0.2 1.742(14) 1.729(17) 1.741(14) 1.737(16) 1.779(29)
0.25 1.701(18) 1.724(23) 1.702(18) 1.707(19) 1.596(35)

Table 7. Values of ccon for Wcon with data for different N removed. Without nt = 16.

P all N rmv. N = 16 rmv. N = 24 rmv. N = 32 rmv. N = 64
0.2 1.721(17) 1.731(21) 1.719(17) 1.731(19) 1.691(31)
0.25 1.702(16) 1.708(20) 1.702(16) 1.703(17) 1.703(31)

Table 8. Values of cmix for Wmix with data for different N removed. Without nt = 16.

C Gauge fixing condition and separation of confined and deconfined sec-
tors

As a starter, let us recall how the operator formalism and path-integral formalism are
related (see e.g., [31] for the case of Hermitian variables). The thermal partition function
of the Eguchi-Kawai model is

Z(T ) = 1
[volU(N)]K

∫ ( K∏
k=1

dgk

)
TrHext

(
ĝ(K)e

−H(Ê,Û)
TK ĝ−1

(K−1)ĝ(K−1)

e−
H(Ê,Û)
TK ĝ−1

(K−2)ĝ(K−2) · · · ĝ−1
(1) ĝ(1)e

−H(Ê,Û)
TK

)
= 1

[volU(N)]K
∫ ( K∏

k=1
dg(k)

)∫ ( K∏
k=1

dU(k)

)

〈U(K)|ĝ(K)e
−H(Ê,Û)

TK ĝ−1
(K−1)|U(K−1)〉

× 〈U(K−1)|ĝ(K−1)e
−H(Ê,Û)

TK ĝ−1
(K−2)|U(K−2)〉

× · · · × 〈U(1)|ĝ(1)e
−H(Ê,Û)

TK |U(K)〉. (C.1)

For H(Ê, Û) = 1
2TrÊ2 + V (Û), we can rewrite each term in the product as follows.

〈U(k)|ĝ(k)e
−H(Ê,Û)

TK ĝ−1
(k−1)|U(k−1)〉

= 〈g−1
(k)U(k)g(k)|e−

H(Ê,Û)
TK |g−1

(k−1)U(k−1)g(k−1)〉

= e
− 1
TK

V (g−1
(k−1)U(k−1)g(k−1))〈g−1

(k)U(k)g(k)|e−
1

2TKTrÊ2 |g−1
(k−1)U(k−1)g(k−1)〉. (C.2)

By using

iε ≡ log
(
g−1

(k)U(k)g(k)g
−1
(k−1)U

−1
(k−1)g(k−1)

)
, (C.3)
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we can relate |g−1
(k−1)U(k−1)g(k−1)〉 and |g−1

(k)U(k)g(k)〉 as

|g−1
(k)U(k)g(k)〉 = eiTr(εÊ)|g−1

(k−1)U(k−1)g(k−1)〉, (C.4)

and hence,

〈g−1
(k)U(k)g(k)|e−

1
2TKTrÊ2 |g−1

(k−1)U(k−1)g(k−1)〉

= 〈g−1
(k−1)U(k−1)g(k−1)|e−

1
2TKTrÊ2−iTr(εÊ)|g−1

(k−1)U(k−1)g(k−1)〉

= 〈U |e−
1

2TKTrÊ2−iTr(εÊ)|U〉, (C.5)

where U can be any element of the unitary group.7 Up to a normalization constant, this
can be written by using trace over the Hilbert space as

Tr exp
(
− 1

2KT
∑
α

Ê2
α + i

∑
α

εαÊα

)

= e−
KT
2 Trε2 × Tr exp

(
− 1

2KT
∑
α

(Êα − iKTεα)2
)
. (C.6)

The second term (Tr · · · ) becomes constant in the limit of KT → ∞ when KTε2 is of
order one (which is justified because of the first term e−

KT
2 Trε2), because the sum over

momentum modes can be identified with usual integral in flat space. Omitting the second
term and by approximating ε2 by |g−1

(k)U(k)g(k) − g−1
(k−1)U(k−1)g(k−1)|2, we obtain

e
−KT2 Tr[|g−1

(k)U(k)g(k)−g−1
(k−1)U(k−1)g(k−1)|2]

e
−V (g−1

(k)U(k)g(k))/(TK)

' e−L[Dt(g−1
(k)U(k)g(k)),(g−1

(k)U(k)g(k))]/(TK)

= e−L[DtU(k),U(k))]/(TK). (C.7)

Here we used

g(k−1)g
−1
(k) ≡ e

−iA(k)/(KT ), (C.8)

and

U(k) − (g(k−1)g
−1
(k))
−1U(k−1)(g(k−1)g

−1
(k)) '

DtU(k)
KT

. (C.9)

By taking K →∞ limit, we obtain

Z(T ) =
∫

[dA][dU ]e−
∫
dtL[DtU,U ]. (C.10)

Note that g(K) is the Polyakov loop. In the static diagonal gauge,

g(k) = diag(eikθ1/K , · · · , eikθN/K). (C.11)

7Because TrÊ2 commutes with the shift on the group manifold, the first line could be
〈W g−1

(k)U(k)g(k)|e−
1

2T K
TrÊ2
|W g−1

(k−1)U(k−1)g(k−1)〉, where W is an arbitrary element of U(N).
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In the confined sector, the distribution of the phases of the Polyakov loop is uni-
form [10]. We fix the SN permutation symmetry such that the phase distribution does
indeed satisfy this property. This guarantees the neat separation into confined and decon-
fined sectors at t = β (equivalently, t = 0).

Let us use the trace cyclicity in the extended Hilbert space and shift the initial time.
In the static diagonal gauge, this does not change the Polyakov loop. Therefore, exactly
the same separation into confined and deconfined sectors holds at any t.

D Simulation algorithm

Several aspects of the simulation algorithm used for this study are similar to the one used in
ref. [32], which was originally developed in unpublished work by one of the authors (MH),
Takashi Kaneko, Jun Nishimura, and Asato Tsuchiya in 2013.

The lattice action we consider is, before adding the constraint term for the Polyakov
loop,

S = N

2a

d∑
µ=1

nt∑
t=1

Tr
(
1N − Uµ,tV U †µ,t+1V

†
)

+ h.c.+ SF.P., (D.1)

where V = diag(eiα1/nt , · · · , eiαN/nt). Here, a is the lattice spacing and β = ant is the
inverse temperature, β = T−1. We will focus on d = 3. The Polyakov line phases α1,2,··· ,N
are constrained to be

−π < αi ≤ π. (D.2)

The Faddeev-Popov term SF.P. is given by

SF.P. = −
∑
i<j

2 log
∣∣∣∣sin(αi − αj2

)∣∣∣∣ . (D.3)

If we just impose the constraint −π < αi ≤ π as it is, then the simulation is not very
efficient — the ‘center of mass’ (

∑
i αi)/N randomly moves and hits ±π. For this reason,

we use the following trick.
Firstly, let us recall that αi and α̃i ≡ αi − C give the same weight for any C. Here,

C must satisfy min(α̃i) + C > −π and max(α̃i) + C ≤ π, because of the condition −π <
αi ≤ π. Hence C must sit in (−π−min(α̃i), π−max(α̃i)], whose interval is 2π− µ, where
µ ≡ max(α̃i) −min(α̃i). Therefore, we can replace the integral over αi with that over α̃i,
with an additional Boltzmann weight

w(µ) =

 2π − µ (µ < 2π)

0 (µ ≥ 2π).
(D.4)

For numerical calculations, this is not very nice because of the singularity at µ = 2π.
Instead, in the molecular evolution, we use

w̃(µ) =

 2π − µ+ ε (µ < 2π)

εe−gα(µ−2π) (µ ≥ 2π),
(D.5)

– 34 –



J
H
E
P
0
3
(
2
0
2
3
)
1
9
5

N W (1) W (2) W (3) W (4) W (5)
16 0.13755(41) 0.03427(40) 0.02506(39) 0.02809(38) 0.03269(38)
24 0.12955(19) 0.02357(17) 0.01213(16) 0.01244(16) 0.01442(15)
32 0.12674(17) 0.01977(13) 0.00752(13) 0.00700(11) 0.00791(11)
48 0.12548(17) 0.01751(13) 0.00460(12) 0.00334(10) 0.003483(96)
64 0.12505(13) 0.016542(97) 0.003288(88) 0.001946(74) 0.002086(68)
96 0.124261(79) 0.015867(63) 0.002493(52) 0.000944(49) 0.000910(42)
128 0.124144(98) 0.015631(76) 0.002248(63) 0.000742(51) 0.000517(48)

Table 9. Wilson loop for L = 1, 2, 3, 4, 5, unconstrained, nt = 24, T = 0.25.

P N nt W (1) W (2) W (3) W (4) W (5)
0.2 16 16 0.19720(56) 0.04844(32) 0.03111(27) 0.03531(24) 0.04399(23)

24 0.20151(44) 0.05014(31) 0.03150(27) 0.03588(24) 0.04466(23)
32 0.20688(71) 0.05279(33) 0.03250(27) 0.03627(25) 0.04480(23)

24 16 0.18633(31) 0.03648(18) 0.01522(15) 0.01498(13) 0.01772(13)
24 0.19048(26) 0.03914(18) 0.01619(15) 0.01541(13) 0.01835(12)
32 0.19626(35) 0.04076(19) 0.01656(16) 0.01549(14) 0.01850(12)

32 16 0.18234(22) 0.03325(13) 0.01070(11) 0.00875(10) 0.010341(91)
24 0.18740(25) 0.03521(15) 0.01139(12) 0.00888(11) 0.01047(10)
32 0.19162(22) 0.03640(14) 0.01173(11) 0.009082(98) 0.010560(92)

64 16 0.17677(13) 0.029452(90) 0.006087(77) 0.002606(65) 0.002500(60)
24 0.18392(22) 0.03170(12) 0.006751(89) 0.003008(82) 0.002580(71)
32 0.18703(16) 0.032779(98) 0.006974(80) 0.002905(67) 0.002640(62)

0.25 16 16 0.2227(41) 0.05909(47) 0.04191(39) 0.04820(34) 0.05954(32)
24 0.2257(11) 0.06278(44) 0.04272(36) 0.04798(33) 0.05964(31)
32 0.22946(87) 0.06356(45) 0.04280(37) 0.04818(34) 0.05931(32)

24 16 0.20105(64) 0.04231(37) 0.02091(31) 0.02186(28) 0.02626(26)
24 0.21621(80) 0.04765(40) 0.02205(33) 0.02212(28) 0.02672(26)
32 0.21863(93) 0.04878(39) 0.02327(31) 0.02226(29) 0.02645(26)

32 16 0.19751(38) 0.03760(20) 0.01382(17) 0.01228(14) 0.01447(13)
24 0.20707(68) 0.04061(24) 0.01455(19) 0.01256(16) 0.01503(14)
32 0.21059(38) 0.04224(21) 0.01556(17) 0.01279(15) 0.01490(13)

64 16 0.18902(31) 0.03223(18) 0.00721(14) 0.00351(13) 0.00380(12)
24 0.19792(33) 0.03484(15) 0.00780(12) 0.003743(98) 0.003560(89)
32 0.20000(29) 0.03546(14) 0.00828(11) 0.004051(94) 0.003723(87)

Table 10. Wcon for L = 1, 2, 3, 4, 5, constrained, T = 0.29.

with a large enough gα (say gα=100) and ε = g−1
α . For the Metropolis test, we use w(µ)

instead of w̃(µ). The detailed balance condition is not violated and the correct path-integral
weight is reproduced; see e.g., ref. [33].
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P N nt W (1) W (2) W (3) W (4) W (5)
0.2 16 16 0.13990(48) 0.02331(27) 0.00490(21) 0.00277(19) 0.00344(17)

24 0.14753(37) 0.02590(26) 0.00598(21) 0.00303(19) 0.00356(17)
32 0.14991(55) 0.02700(26) 0.00601(21) 0.00315(19) 0.00401(17)

24 16 0.14023(36) 0.02299(17) 0.00422(14) 0.00149(13) 0.00146(11)
24 0.14921(25) 0.02529(18) 0.00494(14) 0.00155(13) 0.00181(11)
32 0.14864(33) 0.02598(17) 0.00490(15) 0.00183(13) 0.00155(12)

32 16 0.14380(21) 0.02357(13) 0.00407(11) 0.001061(97) 0.000705(88)
24 0.15052(23) 0.02533(15) 0.00464(12) 0.00098(11) 0.000932(95)
32 0.15165(21) 0.02624(13) 0.00468(11) 0.001279(93) 0.000807(84)

64 16 0.14602(14) 0.023551(93) 0.003613(78) 0.000382(71) -0.000016(65)
24 0.15021(27) 0.02512(12) 0.004036(95) 0.000452(80) 0.000090(75)
32 0.15327(17) 0.02607(10) 0.004283(83) 0.000645(72) 0.000065(64)

0.25 16 16 0.13695(84) 0.02376(27) 0.00531(22) 0.00275(19) 0.00354(18)
24 0.14873(49) 0.02639(27) 0.00559(22) 0.00311(20) 0.00402(18)
32 0.15251(45) 0.02780(28) 0.00648(23) 0.00347(20) 0.00382(18)

24 16 0.14656(39) 0.02502(26) 0.00480(21) 0.00180(19) 0.00157(17)
24 0.14711(50) 0.02594(25) 0.00530(21) 0.00172(18) 0.00172(16)
32 0.15323(41) 0.02773(26) 0.00584(21) 0.00191(19) 0.00167(16)

32 16 0.14674(22) 0.02455(13) 0.00443(11) 0.001313(97) 0.000991(91)
24 0.15044(30) 0.02625(15) 0.00466(12) 0.00118(11) 0.001140(97)
32 0.15446(20) 0.02732(14) 0.00523(11) 0.00139(10) 0.000989(90)

64 16 0.14876(21) 0.02429(13) 0.00388(11) 0.000710(98) 0.000189(90)
24 0.15305(19) 0.02606(10) 0.004208(88) 0.000703(74) 0.000110(66)
32 0.15572(18) 0.027028(99) 0.004563(80) 0.000816(71) 0.000190(65)

Table 11. Wmix for L = 1, 2, 3, 4, 5, constrained, T = 0.29.

Permutation of Polyakov line phases in the constrained simulation of second
kind. When ∆Sdec and ∆Scon are added, the SN permutation symmetry is explicitly
broken to SM×SN−M . The ordering of the α’s — say αi1 < αi2 < αi3 < · · · — does not
change (or very rarely changes) in the HMC simulation, which can cause a problem when
the permutation symmetry is explicitly broken. To avoid this problem, we choose αi and
αj randomly from the deconfined and confined sectors and perform a permutation using
the Metropolis algorithm. Note that the i-th and j-th rows and columns in Uµ have to be
exchanged, too. We do this 10 times after each HMC steps. This method is the same as
the one used in ref. [21].
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P N nt W (1) W (2) W (3) W (4) W (5)
0.2 16 16 0.31420(51) 0.19824(28) 0.18637(25) 0.19100(22) 0.19865(21)

24 0.31659(41) 0.19991(30) 0.18692(24) 0.19110(22) 0.19882(21)
32 0.32003(52) 0.20061(29) 0.18713(24) 0.19126(22) 0.19927(21)

24 16 0.33554(37) 0.21962(20) 0.20452(17) 0.20506(15) 0.20854(14)
24 0.33592(29) 0.22067(19) 0.20486(17) 0.20536(15) 0.20895(13)
32 0.34119(37) 0.22169(20) 0.20528(17) 0.20555(15) 0.20885(14)

32 16 0.32265(26) 0.20719(14) 0.19100(12) 0.19007(11) 0.19192(10)
24 0.32574(25) 0.20918(16) 0.19166(13) 0.19041(12) 0.19206(11)
32 0.32924(24) 0.20992(14) 0.19185(12) 0.19072(11) 0.192287(95)

64 16 0.32819(16) 0.21602(11) 0.198914(93) 0.196599(80) 0.196673(80)
24 0.33471(53) 0.21786(13) 0.19951(12) 0.19681(10) 0.196764(92)
32 0.33630(20) 0.21869(11) 0.199764(96) 0.196940(84) 0.196834(77)

0.25 16 16 0.30670(34) 0.19424(23) 0.18135(19) 0.18456(17) 0.19108(16)
24 0.30748(33) 0.19576(23) 0.18229(19) 0.18534(17) 0.19154(17)
32 0.30880(33) 0.19676(23) 0.18264(19) 0.18571(18) 0.19191(16)

24 16 0.29786(28) 0.18699(20) 0.17150(17) 0.17095(15) 0.17347(14)
24 0.30475(37) 0.18914(21) 0.17190(17) 0.17158(15) 0.17376(14)
32 0.30477(29) 0.18926(22) 0.17214(17) 0.17185(15) 0.17418(14)

32 16 0.29571(16) 0.18425(11) 0.167607(92) 0.166404(79) 0.167424(75)
24 0.30153(20) 0.18604(12) 0.16829(10) 0.166629(91) 0.167586(88)
32 0.30259(16) 0.18686(11) 0.168547(90) 0.166706(79) 0.167646(75)

64 16 0.29883(16) 0.18903(11) 0.171897(94) 0.169310(87) 0.169291(81)
24 0.30404(15) 0.190567(90) 0.172290(74) 0.169675(74) 0.169527(63)
32 0.30702(16) 0.191836(92) 0.172973(74) 0.169992(67) 0.169785(68)

Table 12. Wdec for L = 1, 2, 3, 4, 5, constrained, T = 0.29.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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