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UðNÞ supersymmetric Yang-Mills theory naturally appears as the low-energy effective theory of a
system of N D-branes and open strings between them. Transverse spatial directions emerge from scalar
fields, which are N × N matrices with color indices; roughly speaking, the eigenvalues are the locations of
D-branes. In the past, it was argued that this simple “emergent space” picture cannot be used in the context
of gauge/gravity duality, because the ground-state wave function delocalizes at largeN, leading to a conflict
with the locality in the bulk geometry. In this paper, we show that this conventional wisdom is not correct:
the ground-state wave function does not delocalize, and there is no conflict with the locality of the bulk
geometry. This conclusion is obtained by clarifying the meaning of the “diagonalization of a matrix” in
Yang-Mills theory, which is not as obvious as one might think. This observation opens up the prospect of
characterizing the bulk geometry via the color degrees of freedom in Yang-Mills theory, all the way down to
the center of the bulk.
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I. INTRODUCTION

The low-energy effective dynamics of N Dp-branes
parallel to each other and open strings connecting them
can be described by (pþ 1)-dimensional maximally super-
symmetric Yang-Mills (SYM) theory with the UðNÞ gauge
group [1]. SYM theory has 9 − p scalar fields XI

(I ¼ 1; 2;…; 9 − p) which are N × N Hermitian matrices.
When all scalar fields can be (almost) simultaneously
diagonalized, diagonal elements of the matrices are inter-
preted as the positions of Dp-branes in the transverse
directions [ðXii

1 ;…; Xii
9−pÞ ∈ R9−p is regarded as the coor-

dinate of the ith D-brane] and the off-diagonal elements Xij
I

are interpreted as the amount of the open-string excitations
connecting ith and jth Dp-branes. If the matrices are not
(almost) simultaneously diagonalizable but can be taken
block diagonal, each block is a bound state of D-branes
and strings.
Matrix theory conjecture [2] claims the (0þ 1)-

dimensional SYM—D0-brane quantum mechanics—is
not just a low-energy effective theory, but it actually de-
scribes M theory in certain parameter region. Bound states,
or equivalently noncommutative blocks, are interpreted
as various objects such as graviton, higher-dimensional

D-brane and black hole. If we separate the ðN;NÞ compo-
nent from others and see how they interact, we can study
the geometry formed by (N − 1) D-branes and strings
between them, by using the Nth D-brane as a probe.

A. A puzzle

Can the same geometric picture be valid in the
Maldacena-type gauge/gravity duality [3,4]? Naively, we
would expect that this simple mechanism of the emergent
space works as follows. In (3þ 1)-dimensional super Yang-
Mills theory, there are six scalars with which the coordinate
inR6 can be specified. This, andR1;3 along which D-branes
are extended, gives ten-dimensional (10D) spacetime.
D-branes and open strings can interact with each other
and nontrivial metric can be induced effectively. R1;3 and
the radial coordinate of R6 form AdS5 (five-dimensional
anti-de Sitter space), and the angular part of R6 is S5. We
can imagine similar stories for SYM in different dimen-
sions. It would be nice if such a simple mechanism can
actually work. However, it is widely believed that this
picture does not work, or at least a more sophisticated
approach is required; see, e.g., [5–9]. Such skepticism is
based on the observation that the matrices are highly
noncommutative in the region where weakly coupled string
theory is valid, and the notion of “location” is not apparent
there. This can also be phrased that the bound state of
D-branes and matrices are very big compared to the
counterpart in the gravity side. Later in this paper, we will
show that this argument is not correct and the location can
actually make sense. But for now let us follow the reasoning
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in the previous references. Let us consider the D0-brane
matrix model1 with the following normalization:

L ¼ Tr

�
1

2
ðDtXIÞ2 þ

g2

4
½XI; XJ�2 þ fermion part

�
: ð1Þ

HereDtXI ¼ ∂tXI − i½At; XI� is the gauge-covariant deriva-
tive. In the ’t Hooft large-N limit (’t Hooft coupling
λ ¼ g2N ∼ N0, energy E ∼ N2) and at sufficiently strong
coupling (λ ≫ ðE=N2Þ3), type IIA supergravity is a good
dual description [4]. In the ’t Hooft large-N limit, the
expectation value hTrX2

I i is of order N2, at any temperature
including zero and any coupling. At zero temperature, all
contributions are from zero-point fluctuations. If we diag-
onalize each XI, the eigenvalues are of order

ffiffiffiffi
N

p
. So the

bound state is parametrically large at large N. If we take the
’t Hooft coupling λ ¼ g2N to be large, then the eigenvalues
scale as λ−1=6

ffiffiffiffi
N

p
at sufficiently low temperature

(T ≪ λ1=3). This is larger than the size of the black hole
(black zero-brane) sitting at the center of the bulk geometry
and completely covers the region where weakly coupled
string theory is valid. When XI¼1 is diagonalized, XI¼2;3;…;9

are not diagonal at all, and the off-diagonal elements
dominate hTrX2

I¼2;…;9i. Hence, the location of D-brane is
not a crisp notion when weakly coupled string theory is
valid. The same argument holds in any gauge theory in the
’t Hooft limit, including (3þ 1)-dimensional SYM; when
OðN0Þ is expected from the gravity picture, Oð ffiffiffiffi

N
p Þ is

obtained in the gauge theory side. This has been regarded as
an obstruction for the sub-AdS-scale bulk reconstruction in
AdS=CFT correspondence.

B. A resolution

In this paper, we show that the size of the bound state in
the gauge theory side is actually much smaller, and the
location can make sense. Whether the metric expected in
the holographic duality actually emerges is a separate issue,
which will not be discussed in this paper. (Wewill suggest a
few future directions aiming for the verification of the
emergence of the local bulk geometry.)
The starting point of our discussion is this question:
What do we mean by the diagonalization of a matrix?
Of course, when an N × N Hermitian matrix is given,

there is no ambiguity; it is a well-defined linear-algebra
problem. However, because we are talking about a physics
problem, we have to make sure what is the “matrix”
suitable for the problem under consideration.
Namely, we have to answer the following question:
What is the matrix that characterizes the bulk geometry?

The argument in the past implicitly used one of the
following two pictures: (i) interpret a typical configuration
(∼ master field) in the path integral as a “bound state,” or
(ii) interpret a typical result of the measurement of XI;ij

(which is a coordinate eigenstate described by the coor-
dinates XI;ij, i.e., a state jXi that satisfies X̂I;ijjXi ¼
XI;ijjXi for all I, i, j) as a bound state.2 Either way, there
are c-number matrices XI;ij, so we can diagonalize one of
them and define “eigenvalues of a matrix XI;ij.” In the
picture (2), XI;ij is the “eigenvalue of operator X̂I;ij.” Both
(1) and (2) fail in more or less the same manner, so let us
focus on (2) below for concreteness. Furthermore, we
consider the D0-brane theory that has nine scalars
XI¼1;2;…;9. (The generalizations to other theories are
straightforward.)
By assumption, we are interested in low-energy states

including the ground state. A coordinate eigenstate cannot
be a low-energy state due to the uncertainty principle;
instead, we must consider linear combinations of coordi-
nate eigenstates, such as a wave packet. In general, a low-
energy state jΦi is written in terms of the coordinate
eigenstates jXi as

jΦi ¼
Z
R9N2

dXjXihXjΦi≡
Z
R9N2

dXΦðXÞjXi: ð2Þ

The wave function ΦðXÞ has to be extended smoothly in
R9N2

to some extent.3 Hence the eigenvalue of operator
X̂I;ij is not well defined, and a naive diagonalization based
on the intuition from coordinate eigenstates is not well
defined either. That hTrX2

I i is of order N2 does not
necessarily mean the eigenvalues of XI are of order

ffiffiffiffi
N

p
;

actually the very notion of the eigenvalues has to be defined
more carefully. In order to define the “coordinate of
D-branes” in R9, we have to define the “coordinate of
matrices” in R9N2

.
In fact, there is a very standard way to introduce the

coordinate of matrices: if ΦðXÞ is a wave packet around
YI;ij, the center of the wave packet YI;ij is a natural
coordinate of matrices.4 This point is explained in
Sec. II. We will see that this YI;ij is naturally related to
the locations of D-branes and open-string excitations. It

1We impose the traceless condition for each matrix so that the
bound state is centered around the origin of R9.

2Strictly speaking, we have to take into account the fermions as
well.

3We emphasize that the wave packet under consideration is in
R9N2

and not inR9. The bound state of D-branes and open strings
can be extended inR9, but it is a completely different story. In the
past, these two completely different notions—a wave packet
extended in R9N2

and a bound state extended in R9—were not
properly distinguished.

4This way of introducing a coordinate of matrices does not
work for more generic states, such as a superposition of multiple
wave packets. This is not a bug; this is a generic feature of
quantum mechanics.
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turns out that the ground state is a wave packet localized
around the origin of R9N2

, i.e., YI;ij ¼ 0. Along each

direction of R9N2

, the width of the wave packet is of order
N0. This is the reason that hTrX2

I i is of order N2. The
ground state is gauge invariant, i.e., it is impossible to
change the shape of the wave packet via gauge trans-
formation. It is perfectly consistent with a simple and
natural interpretation: in the ground state, all D0-branes are
sitting at the origin of the bulk, and no open string is
excited.

C. The organization of this paper

This paper is organized as follows. In Sec. II, we
consider matrix models. To make the logic transparent,
we use the canonical quantization and quantum states,
rather than the path-integral formalism. All the essence
which can readily be generalized to Yang-Mills theory in
any dimension can be understood just by considering the
Gaussian matrix model, which is the subject of Sec. II A.
We show that the wave function does not delocalize, and
probes can be introduced in a very standard manner. In
Sec. II B, we will see how simple results obtained for the
Gaussian matrix model are generalized to interacting
theories. In Sec. II C, we consider the D0-brane matrix
model and dual gravity description. Section II C is rather
speculative, because we have not yet fully understood the
dynamics of the model. In Sec. III, we consider (3þ 1)-
dimensional super Yang-Mills and AdS5=CFT4 correspon-
dence. Potentially interesting future directions are dis-
cussed in Sec. IV.

II. MATRIX MODEL VIA CANONICAL
QUANTIZATION

In this section, we consider the matrix model. Before
studying the D0-brane matrix model, let us consider a
simpler example, a nine-matrix model with the following
Lagrangian (with the Minkowski signature):

L ¼ Tr

�
1

2
ðDtXIÞ2 −

1

2
X2
I þ

g2

4
½XI; XJ�2

�
: ð3Þ

The zero-coupling limit (the Gaussian matrix model) is
analytically solvable, and we can understand everything
explicitly. At strong coupling, the quadratic term − 1

2
X2
I is

negligible and this model reduces to the bosonic part of the
D0-brane matrix model. This model was studied in
detail via lattice Monte Carlo simulation [10,11]. While
this theory does not have a weakly coupled gravity dual, all
the essential points can be illuminated by using this
example, without having technical complications. We will
discuss the D0-brane matrix model toward the end of this
section.

From the Lagrangian (3), we obtain the Hamiltonian

Ĥ ¼ Tr

�
1

2
P̂2
I þ

1

2
X̂2
I −

g2

4
½X̂I; X̂J�2

�
: ð4Þ

Because we are studying the gauged matrix model, the
physical states are gauge invariant. Let us denote the
Hilbert space of gauge-singlet states as Hinv. When
the matrices are related to D-branes and strings, our
brains tend to think in the “Higgsed” picture, namely,
we often consider the situation that diagonal elements are
large and well separated. This intuition uses nonsinglet
states. Hence, let us also consider the extended Hilbert
space Hext that contains nonsinglet states as well. The
partition function associated with the canonical ensemble at
temperature T can be written as ZðTÞ ¼ TrHinv

e−Ĥ=T , where
TrHinv

is the trace over gauge singlets. We can also write it
by using the trace in the extended Hilbert space as
ZðTÞ ¼ 1

vol UðNÞ
R
dUTrHext

ðÛe−Ĥ=TÞ. Here U is an element

of UðNÞ, and the integral is taken by using the Haar
measure. The operator Û enforces the gauge transformation
corresponding to a group element U, and

R
dUÛ serves as

the projector to Hinv. In terms of Hext, “gauge fixing” can
naturally be understood as in the path integral formalism.
See Appendix A 1 for more details.
Each state jΦi can be expressed by using the wave

function in the coordinate basis,

hXjΦi ¼ ΦðXÞ; ð5Þ

where ΦðXÞ is a function of 9N2 variables Xij
I . If ΦðXÞ is a

well-localized wave packet in the 9N2-dimensional space
centered around Xij

I ¼ xI;iδij, then x⃗i ¼ ðx1;i;…; x9;iÞ ∈
R9 is naturally interpreted as “the location of the ith
D-brane.”
Let us use the generators of UðNÞ, which are denoted by

τα and normalized as TrðτατβÞ ¼ δαβ. We can write X̂I and

P̂I as X̂ij
I ¼ P

α X̂
α
I τ

ij
α and P̂ij

I ¼ P
α P̂

α
I τ

ij
α . The commu-

tation relation is

½X̂α
I ; P̂

β
J� ¼ iδIJδαβ: ð6Þ

By using the annihilation operators âI;α ¼ X̂I;α−iP̂I;αffiffi
2

p and

creation operators â†I;α, we can construct the Fock basis for
Hext. For each ðI; αÞ, the number operator is defined by
n̂I;α ¼ â†I;αâI;α, and the Fock state is defined as the
eigenstate of the number operator, n̂I;αjniI;α ¼ nI;αjniI;α.
Specifically, the Fock vacuum j0iI;α is specified by
âI;αj0iI;α ¼ 0, and the excited states are constructed as

jniI;α ¼ ðâ†I;αÞnffiffiffi
n!

p j0iI;α. Then we can simply take the tensor

product,
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jfnI;αgi ¼⊗I;α jnI;αiI;α; ð7Þ

to obtain the orthonormal basis ofHext. If we take a specific
set of fnI;αg in which the diagonal elements are highly
excited while the off-diagonal elements are not, then such
state is analogous to the Higgsed states. Indeed, by taking a
linear combination of such states, we can build a wave
packet localized about XI;ii ≠ 0 (i ¼ 1; 2;…; N) and
XI;ij ¼ 0 (i ≠ j).
The UðNÞ transformation is defined by

X̂I;ij → ðUX̂IU−1Þij ¼
XN
k;l¼1

UikX̂I;klU−1
lj ð8Þ

and

P̂I;ij → ðUP̂IU−1Þij ¼
XN
k;l¼1

UikP̂I;klU−1
lj : ð9Þ

Creation and annihilation operators are transformed in the
same manner. With the adjoint index α, the transformation
rule is

X̂α ¼ TrðX̂ταÞ → X̂ðUÞ
α ¼ TrððUX̂U−1ÞταÞ;

P̂α ¼ TrðP̂ταÞ → P̂ðUÞ
α ¼ TrððUP̂U−1ÞταÞ;

âα ¼ TrðâταÞ → âðUÞ
α ¼ TrððUâU−1ÞταÞ: ð10Þ

The Fock vacuum jf0gi ¼⊗I;α j0iI;α is UðNÞ invariant,
and the excited states transform as

jfnI;αgi ¼
�Y

I;α

ðâ†I;αÞnI;αffiffiffiffiffiffiffiffiffi
nI;α!

p
�
jf0gi →

�Y
I;α

ðâðUÞ†
I;α ÞnI;αffiffiffiffiffiffiffiffiffi
nI;α!

p
�
jf0gi:

ð11Þ

From each nonsinglet state, a UðNÞ-invariant state is
obtained by averaging over all group elements of UðNÞ
and then properly normalizing the norm.

A. Gaussian matrix model

Let us consider the case of g2 ¼ 0, i.e., the Gaussian
matrix model. This example is solvable and contains all the
essence.

1. Ground state (completely confined state)

In the free limit (g2 ¼ 0), the Hamiltonian is

ĤGaussian ¼
XN2

α¼1

�
1

2
P̂2
I;α þ

1

2
X̂2
I;α

�
: ð12Þ

The ground state is the Fock vacuum,

jground statei ¼ jf0gi ¼⊗I;α j0iI;α: ð13Þ

The vacuum expectation value of
P

I TrX̂
2
I is 9

2
N2 due to

the zero-point fluctuation. Hence, based on the conven-
tional wisdom, one would conclude that the size of the
ground-state wave function is of order

ffiffiffiffi
N

p
. However, this is

actually not the case. Because the Fock vacuum of each
harmonic oscillator is represented by the Gaussian wave

function hXI;αj0iI;α ¼ e
−X2

I;α
=2

π1=4
, the wave function describing

all matrix entries is

hXjground statei ¼ 1

π9N
2=4

exp

�
−
1

2

X
I;α

X2
I;α

�

¼ 1

π9N
2=4

exp

�
−
1

2

X
I

TrX2
I

�
: ð14Þ

This is manifestly UðNÞ invariant. The size of the wave
function is the same for all matrix entries. We cannot
arrange the ground-state wave function such that we can
observe a large value of a diagonal element (more specifi-
cally, of order

ffiffiffiffi
N

p
) with large probability, in any gauge.

Typically, TrX2
I is of order N2, but this is because all the

entries can take order N0 values, and the probability of at
least one eigenvalue becoming of order

ffiffiffiffi
N

p
scales roughly

as e−N , which is negligible at large N. This state is a well-
localized wave packet in the 9N2-dimensional space
centered around Xij

I ¼ 0.5 Namely, all D-branes are sitting
at the origin, and no open string is excited. Note that the full
UðNÞ invariance is a natural property of N-coincident
D-branes without open-string excitations [1].
Of course, each jXi is not UðNÞ invariant, and we can

“choose a gauge,” e.g., in which X1 is diagonal, if we like.
However, the linear combination

R
dXjXihXjground statei

is UðNÞ invariant and there is no way to choose any gauge.
As far as we consider low-energy states, it is meaningless to
talk about the eigenvalue distribution of the coordinate
eigenstate jXi.
It may be instructive to emphasize the difference

between two kinds of the “size of bound state” that were
not properly distinguished in the past. The first one is the
distribution of D-branes (diagonal elements) that can be
read off from the center of the wave packet. This is defined

5It may be instructive to rephrase it as follows. Imagine
a uniform probability distribution on a sphere with radius
R in D dimensions parametrized by x1;…; xD. By integrating
out x2;…; xD, we obtain the distribution of x1 scaling as

ρðx1Þ ∼ ð1 − x2
1

R2ÞðD−2Þ=2
. In the matrix model, we roughly have

a situation that D ∼ N2 → ∞, R ∼ N → ∞, which leads to

ρðx1Þ ∼ e−
Dx2

1

2R2 ∼ e−x
2
1 . Therefore, if the radius increases

with dimensions as D ∼ R2, large radius does not mean the
delocalization.
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in R9. The second one is the width of the wave packet in
R9N2

. These two notions correspond to the “slow modes”
and “fast modes” in the references, respectively. We have
seen that, for the ground state, the latter is of order N0. All
D-branes are sitting at the origin, so the former is zero.

2. Coherent states

Perhaps it is not easy to grasp the essence of the
statement just by looking at the ground state. Let us
examine the coherent states, which nicely illuminate the
important points.
We can put the wave packet at any point in

fYI;αg ∈ R9N2

, just by acting the translation operator,

jwave packet atfYI;αgi¼e−i
P

9

I¼1

P
N2

α¼1
YI;αP̂I;α jground statei

¼e−i
P

9

I¼1
TrðYIP̂IÞjground statei:

ð15Þ

A more generic wave packet with nonzero momentum is

e−i
P

9

I¼1
TrðYIP̂I−QIX̂IÞjground statei: ð16Þ

Below we mainly focus on the case of QI ¼ 0 for
simplicity.
The center of the wave packet fYI;αg ∈ R9N2

describes
the D-brane configuration, which corresponds to the slow
mode in the references. It can change via the UðNÞ
transformation as

jwave packet at fYI;αgi → jwave packet at fYðUÞ
I;α gi; ð17Þ

where

YðUÞ
I;ij ¼ ðU−1YIUÞij: ð18Þ

See Fig. 1 for a visual sketch. Therefore, it makes sense to
talk about the diagonalization of the slow mode Y.6

However, the width of the wave packet, that comes from
jground statei, does not change via the UðNÞ transforma-
tion; see Fig. 1 again. This is because

hwave packet atfYI;αgjðX̂I;α−YI;αÞkjwave packet atfYI;αgi
¼hground statejX̂k

I;αjground statei ð19Þ

holds for each ðI; αÞ and any k, and the right-hand side is
gauge invariant. This part picks up the quantum fluctuation,
which corresponds to the fast mode in the references;

hence, it does not make sense to talk about the diagona-
lization of the fast mode.
If we measure the coordinate in R9N2

, we get a localized
distribution around fYI;αg. The width of the fluctuation
along each of 9N2 directions is of order N0. Therefore, the
location of the center of the wave packet can be distin-
guished from the origin if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
I TrY

2
I

p
is sufficiently larger

than 1. If there are two wave packets around fYI;αg and

fY 0
I;αg, they can be distinguished if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
I TrðYI − Y 0

IÞ2
p

is
sufficiently larger than 1.
The problem with the past treatment [5,6] was that they

took a typical configuration in the path integral, or a typical
result in the measurement of X̂I;ij, and diagonalized it
without separating the slow modes, that can actually be
diagonalized, and the fast modes, that cannot really be
diagonalized.7 A better procedure is to diagonalize the
center of the wave packet, or equivalently, to diagonalize
the expectation value of X̂. This procedure has a well-
defined meaning at the level of the quantum states in the
Hilbert space.
Another way to phrase it is that the past treatment was

the gauge fixing of jXi rather than that of jground statei or
jwave packet at fYI;αgi. The position-eigenstate jXi is not
the low-energy state relevant for physics under consider-
ation; the uncertainty principle forces us to consider a wave
packet.
Let us see a few special cases whose meanings are

obvious.
(i) Let us separate one of the D-branes from others

sitting at the origin, without exciting any open string.

FIG. 1. The coherent state in R9N2

defined by (15). Each gray
disk and black point represents a wave packet and its center,
respectively. Under the gauge transformation, the location of the
center moves, but the shape of the wave packet in R9N2

does not
change.

6The eigenvalues of YI;ij are gauge invariant, and the distance
from the origin in R9N2

, that can be expressed as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

I TrY
2
I

p
, is

also gauge invariant.

7To their credit, they clearly pointed out the necessity of the
separation of slow and fast modes, but did not identify a concrete
procedure for the separation.
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Specifically, we can construct a wave packet cen-
tered around a point Y⃗ij ¼ δiNδjNy⃗ ∈ R9N2

as

e−iy⃗·
ˆP⃗NN jground statei: ð20Þ

As long as jy⃗j≳ 1, the position of the probe is a
legitimate notion.

(ii) By using the U(1) part, we can easily make a UðNÞ-
invariant state describing N-coincident D0-branes at
point y⃗, as

e−iy⃗·ð
P

N
k¼1

ˆP⃗kkÞjground statei: ð21Þ

Note that this full UðNÞ invariance is exactly what
we expect when N D-branes are sitting on top of
each other [1].

(iii) We can construct a state describing “diagonal
matrices” Y⃗ij ¼ y⃗iδij as

e−i
P

N
k¼1

y⃗k·
ˆP⃗kk jground statei: ð22Þ

If some y⃗i’s take the same value, say N1 of them are
x⃗, N2 of them are x⃗0, and so on, then such a state is
invariant under UðN1Þ × UðN2Þ × � � �. This sym-
metry enhancement is consistent with the interpre-
tation that y⃗i is the location of ith D-brane [1].

We can add further justification for the interpretation that
the center of the wave packet should be identified with the
location of D-branes, and more generally, matrices.8 The
Hamiltonian Ĥ is a polynomial of P̂I and X̂I , so let us write
it as Ĥ ¼ HðP̂; X̂Þ. Then we can show that

ei
P

I
TrðYIP̂IÞHðP̂; X̂Þe−i

P
I
TrðYIP̂IÞ ¼ HðP̂; X̂ þ YÞ: ð23Þ

Therefore, instead of acting HðP̂; X̂Þ on jwave packet
at fYI;αgi, we could act HðP̂; X̂ þ YÞ on jground statei,
if we like. In the latter treatment, when the coupling
constant g2 is nonzero (which will be studied in
Sec. II B), if we take Y to be diagonal, the mass terms
for the off-diagonal elements are generated from the
commutator-squared term in the action. They are identified
with the mass terms for open strings [1].
We emphasize that the coherent state discussed here is

just one of many possible realizations of the wave packets.
When the interaction is introduced, it may or may not be a
stable wave packet. If we consider strongly coupled
theories with gravity duals, D-brane probes in the gravity
side may not be described by the coherent state precisely,
and a large modification may be needed. We will discuss
this point further in later sections.

Note also that, generically, these states are not UðNÞ
invariant, i.e., they belong to Hext but not to Hinv. If we
want to discuss everything in terms of Hinv, we have to
project them to the singlet sector. Equivalently, we can
take a superposition of all wave packets along the gauge
orbit9,10; see Fig. 2. On the other hand, the ground state is
automatically gauge invariant without performing such a
projection. In this sense, the ground state is “genuinely”
UðNÞ invariant [12]. The N-coincident-D-brane state (21)
is also genuinely UðNÞ invariant. In Appendix, we explain
how such “genuine” gauge singlets can be distinguished
from the other kind of singlets.
The same situation appears in a system of N identical

bosons, which can be regarded as a gauged quantum
mechanics of N-component vectors [12]. That the bosons
are “identical” means the physical states have to be
invariant under the SN permutation; hence, this system is
a gauge theory with SN gauge group. This system can be
analyzed by using the extended Hilbert space, and Bose-
Einstein condensation [13] is characterized by the same
genuine gauge invariance [14–18].

3. Generic excited states

Let us take a generic wave packet, by taking YI andQI in
(16) to be generic matrices whose eigenvalues are of orderffiffiffiffi
N

p
. (More generally, we can take a superposition of such

states.) Generically, such a state is not invariant under any

gauge orbit of 

FIG. 2. Gauge-symmetrized version of the wave packet shown
in Fig. 1 (gray ring). The wave function is localized near the
gauge orbit of fYI;αg (dotted circle). The ground state (gray disk)
is localized around the origin. Note that the shape and volume of
the gauge orbit depend on fYI;αg.

8The author would like to thank Alexey Milekhin for useful
discussion regarding this point.

9In (16), we should choose QI appropriately such that the
configuration does not move along the gauge orbit.

10An implicit but important assumption here is that jΦi and its
UðNÞ-symmetrized version have similar properties, in that the
expectation values of gauge-invariant operators are identical up to
small corrections.
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UðNÞ transformation (11), except that any state is trivially
invariant under the adjoint action of the U(1) part.
Therefore, we can choose a gauge such that the diagonal
elements are more highly excited than the off-diagonal
elements. In this case, the size of the bound state is actually
of order

ffiffiffiffi
N

p
.

The same holds for other kinds of excited states such as
the Fock state jfnI;αgi ∈ Hext at sufficiently high energy.

4. Partially deconfined states

More interesting physics can be observed at the inter-
mediate energy scale. As shown in Ref. [19], there are two
phase transitions at11 E

N2 ¼ 0 (Hagedorn transition) and
E
N2 ¼ 1

4
(Gross-Witten-Wadia transition). In between these

two phase transitions, at E ¼ M2

4
, the UðMÞ subgroup of

UðNÞ is deconfined. This is a particular example of partial
deconfinement [11,19–22] that is conjectured to be a
generic feature among various large-N gauge theories.
We can fix a gauge such that deconfinement is taking
place in the M ×M upper-left block. Equivalently, we
restrict YI and QI to be M ×M. This fixes UðNÞ down to
UðMÞ × UðN −MÞ. We can further fix UðMÞ such that the
diagonal entries of the deconfined block becomes as large
as Oð ffiffiffiffiffi

M
p Þ. The genuine symmetry U(N −M) is left

unfixed. Hence, we obtain a bound state whose radius is
∼

ffiffiffiffiffi
M

p
. This bound state is conjectured to be the gauge-

theory realization of the small black hole [20]. (See also
Ref. [23] for a recent application of this idea to the black
hole evaporation.)
As a probe, we can excite the ðN;NÞ component. The

notion of a location can make sense if the distance from the
origin is sufficiently larger than the “BH radius” ∼

ffiffiffiffiffi
M

p
.

B. Finite coupling

Even at finite coupling (g2 > 0), we can expect that the
confining vacuum is genuinely gauge invariant, even in the
extended Hilbert space containing the nonsinglet modes.
While this is a natural assumption, some of the audience
would request the evidence. For small system size, we can
check it numerically. In the large-N limit, the distribution of
the phases of the Polyakov loop can be used to see if a
given state in Hinv is genuinely gauge invariant [12]. As a
starting point, let us write the canonical partition function at
temperature T as

ZðTÞ ¼ 1

volUðNÞ
Z

dUTrHext
ðÛe−Ĥ=TÞ; ð24Þ

where TrHexit
is the trace in the extended Hilbert space. Here

U is an element of UðNÞ, and the integral is taken by using
the Haar measure. The operator Û enforces the gauge

transformation. This U corresponds to the Polyakov line in
the path integral formulation. The contribution of the
ground state is

1

volUðNÞ
Z

dUe−E0=Thground statejÛjground statei; ð25Þ

where E0 is the energy of the ground state. If the ground state
is not genuinely UðNÞ-invariant, there are degenerate vacua
inHext related by gauge transformation, and we need to sum
them up. Either way, only such U ∈ UðNÞ that leaves
jground statei invariant can contribute to the partition func-
tion. This U is the Polyakov loop. That the phases of the
Polyakov loop are uniform at zero temperature is consistent
with the genuine UðNÞ-invariance of the ground state, i.e., it
is invariant under any UðNÞ transformation. For details, see
Ref. [12]. Note that this argument is essentially identical to
the characterization of Bose-Einstein condensation of N
indistinguishable bosons via the SN invariance [14–16].
In the ’t Hooft large-N limit (λ ¼ g2N ∼ N0, T ∼ N0,

E ∼ N2), the expectation value hTrX2
I i is proportional to

N2. At low temperature T ≪ λ1=3 and strong coupling
λ ≫ 1, it scales as hTrX2

I i ∼ λ−1=3N2. From this, in the past
it has been interpreted that the size of the ground-state wave
function is λ−1=6N1=2. However, with a natural assumption
that the ground-state wave function is gauge invariant, this
scaling simply means that the width of the ground-state
wave function is proportional to λ−1=6 with respect to each
direction of R9N2

. Just as in the free theory, we can
introduce a probe by exciting the ðN;NÞ component by
using (20), by taking jground statei to be the vacuum of the
interacting theory. Such probe is well outside the bound
state of N − 1 D-branes if the distance from the origin is
sufficiently larger than λ−1=6. We can use (15) to construct
various other wave packets.

1. Correction to the coherent state

As explained in the paragraph that contains (23), the
open-string mass term is naturally induced by considering a
wave packet (15). For example, if we put the ðN;NÞ
component at y⃗ ¼ ðL; 0; 0;…; 0Þ, then the induced mass
term is g2L2

P
9
I¼2

P
N−1
i¼1 jX̂I;iN j2. A caveat here is that we

did not touch the off-diagonal elements. If the off-diagonal
elements acquire mass due to the Higgsing, the energy of
the wave packet becomes large unless the width of the wave
packet along these directions in R9N2

(in the example
above, X̂I;iN , I ¼ 2;…; 8, i ¼ 1; 2;…; N − 1) shrinks. We
did not take into account such effects. In order to obtain a
stable, low-energy wave packet, probably we should fix the
location of the center of the wave packet and then minimize
the energy,12

11We subtracted the zero-point energy 9N2

2
.

12It would be better to use the UðNÞ-symmetrized version of
jΦi (Fig. 2) to evaluate the energy.
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The symmetry enhancement we observed for the coherent
states in Sec. II A 2 persists here: if ðYI; QIÞ is invariant
under the action of a subgroup of UðNÞ, the corresponding
quantum state jΦi is also invariant.

2. Partially deconfined states

The strong-coupling limit (λ → ∞) has been studied
numerically via lattice Monte Carlo simulation and partial
deconfinement has been demonstrated [10,11]. Therefore,
the argument provided in Sec. II A 4 can be repeated. The
deconfined sector in the partially deconfined state is
interpreted as a thermally excited bound state that is
analogous to the small black hole in string theory.

C. D0-brane matrix model

The argument given above applies to the D0-brane
matrix model (1) as well.13 Modulo a natural assumption
that the ground state is genuinely gauge invariant, the
scaling hTrX2

I i ∼ λ−1=3N2 at low temperature simply means
that the width of the ground-state wave function with
respect to each direction of R9N2

is λ−1=6.
We repeat that the coherent state (15), and more gen-

erally (16), is merely one of many possible realizations of
the wave packet. An apparent issue when we try to relate
the coherent state to the probe D-brane in gravity side is
supersymmetry: the wave packet ought to be supersym-
metric when YI’s are simultaneously diagonalizable and
QI’s vanish. Probably the most natural wave packet jΦi is
obtained by minimizing hΦjĤjΦi with the constraints
hΦjX̂IjΦi ¼ YI and hΦjP̂IjΦi ¼ QI; see Sec. II B. After
the gauge transformation, the wave packet is localized

about YðUÞ
I and QðUÞ

I .
We expect that the D0-brane matrix model has signifi-

cantly richer dynamics than the bosonic theories. Dual
gravity analysis of this system [4], combined with the
analogy to the partial-deconfinement proposal for 4D SYM
[20], leads to the following speculations regarding finite-
temperature physics:

(i) At λ1=3N−5=9 ≲ T ≪ λ1=3, the system is dual to black
zero-brane in type IIA superstring theory [4]. The
black zero-brane is analogous to the large black hole

in AdS which has positive specific heat. According
to the proposal in Refs. [20,22], such states should
be completely deconfined. (Still, at very low energy,
the off-diagonal elements should be highly sup-
pressed; otherwise, the energy cannot be parametri-
cally small. In this sense, this state may be almost
block diagonal, and the size of the block shrinks at
low temperature. See Appendix A 3 for a related
material.) If we simply identify the size of the bound
state R and the radius of black zero-brane, we
obtain R ∼ ðλT2Þ1=5N1=2.

(ii) As the energy goes down, the finite extent of the M
theory circle becomes non-negligible. Around
T ∼ λ1=3N−5=9, the transition to 11-dimensional
Schwarzschild black hole takes place [4]. Below
this energy scale, the specific heat is negative, i.e.,
temperature goes up as the energy goes down and
black hole shrinks. Such phase is naturally described
by partially deconfined states [20,22].14,15 It would
be natural to identify the size of the M ×M
deconfined block with the radius of the Schwarzs-
child black hole.

In principle, these speculations can be tested via lattice
Monte Carlo simulation,16 or perhaps also via the machine-
learning approach along the line of Ref. [25].
By generalizing the probe picture, and by following the

philosophy of the matrix theory conjecture [2], it would be
natural to interpret the small bound states as physical
objects such as a graviton or tiny black hole. For example, a
simple operator

TrðX̂IX̂JX̂KÞ ¼
XN

p;q;r¼1

X̂pq
I X̂qr

J X̂rp
K ð26Þ

is the UðNÞ-symmetrized version of

13We may have to remove the flat direction in order to pick up
the gauge-invariant vacuum. It can be achieved, e.g., by adding a
small mass to scalars, taking the large-N limit, and then removing
the mass.

14There is a subtle difference from the original proposal [20]:
in the original proposal N −M, D-branes not contributing to
black hole were supposed to be hovering somewhere outside
black hole, but in the current proposal they are sitting at the center
of the bulk. The same holds for a proposal on the small black hole
in AdS5 × S5 discussed in Sec. III.

15The idea that a nontrivial M dependence may explain the
negative specific heat of the 11-dimensional Schwarzschild black
hole was proposed in Ref. [24], though that reference contains a
few apparent mistakes and confusions.

16See Ref. [11] for the analysis of the partially deconfined
phase in the bosonic matrix model.
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X̂N;N−1
I X̂N−1;N−2

J X̂N−2;N
K ; ð27Þ

and hence it can be regarded as a small bound state
occupying a 3 × 3 block. Machine learning [25] and
quantum simulation [26] can be practically useful approach
to study such small bound state.

III. (3 + 1)-D YANG-MILLS

The same puzzle regarding the size of the bound state
existed for quantum field theories including (3þ 1)-D
maximal SYM compactified on S3 (see, e.g., Ref. [7]).
The resolution provided for the matrix models can work
for quantum field theories as well, because the key
ingredient—genuine gauge invariance of the ground
state—is not specific to the matrix models. The only
difference is that D3-brane can take a nontrivial shape,
namely, XI;ij can be a nontrivial function on S3.
The weak-coupling limit of (3þ 1)-D maximal Yang-

Mills on S3 can be studied analytically via technologies
introduced in Refs. [27,28], regardless of the details of the
theory such as supersymmetry or matter content. We can
explicitly confirm the genuine gauge-invariance of the
ground state [12] and partial deconfinement in the inter-
mediate-energy regime [19] with the size of the UðMÞ-
deconfined states scaling as

ffiffiffiffiffi
M

p
.

Strong-coupling region is challenging; nonetheless, let
us make a crude, heuristic estimate. (The following is
essentially the argument in Ref. [20], with slight improve-
ment.) For concreteness, we take the radius of S3 to be
RS3 ¼ 1. We use the normalization L ¼ 1

4g2 TrðF2
μν þ � � �Þ,

in which the ’t Hooft counting is straightforward.
Our hypothesis is that the thermal bound state (decon-

fined block) is a black hole, and we identify the radius of
the thermal bound state with the radius of black hole up to a
multiplicative factor. Hence, let us first estimate the radius
of the thermal bound state. We focus on the UðMÞ partially
deconfined state, and assume17 that the radius and the
energy of the thermal bound state can roughly be estimated
by truncating N × N matrices to M ×M, with the effective
’t Hooft coupling λM ≡ g2M. This truncated system is
strongly coupled when λM ≫ 1, and the interaction term
1
g2 Tr½XI; XJ�2 ¼ M

λM
Tr½XI; XJ�2 dominates the dynamics. By

noticing that the dependence on λM disappears when X̃I ≡
λ−1=4M XI is used, we can see that the eigenvalues of X̃I are of
orderM0 and those of XI are proportional to λ

1=4
M .18 Hence,

we estimate that the radius of black hole RBH is propor-
tional to M1=4. In our setup, RBH is of order 1 when the
transition between large and small black holes takes place,

and this transition should be at M ∼ N. Therefore, RBH ∼
ðMNÞ1=4 and TBH ∼ ðMNÞ−1=4.
The next step is to estimate the entropy SBH. From the

’t Hooft counting, the entropy SBH should be written as
SBH ∼ fðλMÞ ·M2, with some function f. To determine f,
we again look at the transition between large and small
black holes takes place. There the entropy is simply
proportional to N2 as long as λ ¼ g2N is large, and hence,
we conclude fðλMÞ is just constant at λM ≫ 1, and the
entropy is SBH ∼M2.
By combining RBH ∼ ðMNÞ1=4, TBH ∼ ðMNÞ−1=4 and

SBH ∼M2, we obtain

SBH ∼ N2R8
BH ∼

R8
BH

GN
∼

1

GNT8
BH

; ð28Þ

where GN is the ten-dimensional Newton constant. This is
the expected behavior of the small black hole.
If the effective coupling describing the thermal bound

state is small (g2M ≲ 1), it can be described in terms of long
free strings. Strong-coupling description (small black hole)
and weak-coupling description (free string) should be
switched at g2M ∼ 1 that translates to SBH ∼ g−4. This is
the same as the expectation from the dual gravity
analysis [27,29].
This argument is based on many nontrivial assumptions

(including that partial deconfinement takes place at the
strongly coupled region of 4D SYM), and hence we do not
claim it is a “derivation.” Our purpose here was to show
how the bulk geometry, including black hole, might be
described by color degrees of freedom. A better test might
be doable by using the index [30] with complex chemical
potential [31].

IV. FUTURE DIRECTIONS

In this paper, we suggested that a classic way of seeing
the emergent bulk geometry, analogous to the matrix theory
proposal by Banks et al. [2]—roughly speaking, “eigen-
values are coordinates”—can make sense in the
Maldacena-type gauge/gravity duality [3,4]. The key was
to understand the meaning of matrices and eigenvalues
precisely. Because we are interested in low-energy states,
we need to consider a wave packet whose center is
identified with matrices. The genuine gauge invariance
of the ground state [12] played the important role for the
determination of the size of the ground-state wave function.
A natural expectation would be that probe D-branes,

whose locations are identified with the diagonal elements
of the matrices, are described by the Dirac-Born-Infeld
action in the black-brane spacetime as in Maldacena’s
original proposal [3]. (Note however that the determination
of the appropriate wave packet is a nontrivial problem that
requires further study, as we emphasized a few times in this
paper.) An ideal way to test it is to realize supersymmetric

17This is a highly nontrivial assumption, given that we are
studying the strongly coupled region.

18Here by the eigenvalues we mean the slow-mode
contribution.
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gauge theories on a quantum computer [26] and
then perform the D-brane-scattering experiments. See
Refs. [32–36] for analytic calculations related to such
scattering processes. Another interesting approach is the
machine-learning method to obtain the wave function [25],
which might be useful for determining the potential energy
as a function of the location of the probe D-brane. Such an
approach is analogous to the analysis based on the probe
effective action via path integral [37]. References [38,39]
propose a way of detecting the emergent space by using
the probe action that may be connected our proposal.
Monte Carlo simulation based on Euclidean path integral
can also be a powerful tool. In the past, similar but slightly
different setups were studied. In Ref. [40], the ðN;NÞ
component was Higgsed by adding an extra term to the
potential, and the interaction between the probe and
thermal bound state was studied. The parameter region
studied in that paper was T ≳ λ1=3, where the subtlety
associated with “delocalization” in the path-integral picture
was not the important issue. Reference [41] used the
D0/D4-system described by the Berkooz-Douglas matrix
model [42]. A theoretically cleaner setup would be to use

ZðT;YÞ≡ X
jEi∈Hinv

hEje−HðP̂;X̂þYÞ=T jEi ð29Þ

to estimate the interaction between the probe and black
hole, by using a coherent state as a probe. Although the
coherent state may not be an ideal probe, there may be a
qualitative change when it goes into the thermal
bound state.
Another interesting direction is to understand the rela-

tionship to other approaches to the emergent space. This is
very important toward the understanding of the interior of
the black hole, where a simple geometric picture discussed
in this paper may not be applicable. Recently, there are
several attempts to use the entanglement between color
degrees of freedom for this purpose [43–49]. It would be
useful to study the meanings of these proposals, or to
make a better proposal, based on the geometric picture
discussed in this paper. For example, for the D0-brane
quantum mechanics, we can consider a wave packet
localized about Y⃗ij ¼ y⃗iδij, where y⃗1;…; y⃗M ∈ A ⊂ R9

and y⃗Mþ1;…; y⃗N ∈ Ā ⊂ R9. Then we can integrate out
the upper-left M ×M block to define the entanglement
entropy between the probes in a region A and those in a
region Ā.
How can we see the “shape” of a bound state? One

natural approach is to make it “maximally diagonal,” e.g.,
by fixingU ∈ UðNÞ such thatP9

I¼1

P
N
i¼1 jðUXIU−1Þiij2 is

maximized [50,51]. In the past, this procedure was applied
by using typical configurations in the path integral as
matrices. Obviously, we should apply this procedure to the
slow modes.

The Ishibashi-Kawai-Kitazawa-Tsuchiya matrix model
[52] is another interesting model that may exhibit the
emergence of spacetime. It is more ambitious than the class
of theories discussed in this paper, in that even time
direction should emerge from color degrees of freedom.
The argument in this paper does not apply to the IKKT
matrix model because we assumed the existence of time
when we defined the Hamiltonian. It would be interesting
to think about a proper definition of diagonalization and
eigenvalue distribution in this model.
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APPENDIX: RELATION BETWEEN
BOSE-EINSTEIN CONDENSATION (BEC)

AND COLOR CONFINEMENT, AND
GENUINE GAUGE INVARIANCE

1. Hext and Hinv

Let us consider generic gauge group G. The canonical
partition function of gauge theory is defined as

ZðTÞ ¼ TrHinv
ðe−Ĥ=TÞ: ðA1Þ

Let us show that this can also be written as

ZðTÞ ¼ 1

volðGÞ
Z
G
dgTrHext

ðĝe−Ĥ=TÞ; ðA2Þ

where volðGÞ is the volume of G.
Let jΦi ∈ Hext be an energy eigenstate in certain gauge.

It can be projected to a singlet state jΦiinv ∈ Hinv as

jΦiinv ¼
1ffiffiffiffiffiffiffi
CΦ

p
Z
G
dgðĝjΦiÞ; ðA3Þ

where the integral is taken over the gauge groupG by using
the Haar measure, and ĝ generates the gauge transformation
associated with the group element. The normalization
factor CΦ is
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CΦ ¼
Z
G
dg

Z
G
dg0ðhΦjĝ−1Þðĝ0jΦiÞ

¼ volðGÞ ·
Z
G
dghΦjĝjΦi ¼ volðGÞ · volðGΦÞ; ðA4Þ

where GΦ is a subgroup of G that leaves jΦi invariant.
When the trace is taken over the extended Hilbert space,

the overcounting factor associated with an energy eigen-
state jΦi is volðGÞ

volðGΦÞ. Therefore,

TrHinv
ðe−Ĥ=TÞ ¼

X
Φ

volðGΦÞ · e−EΦ=T

volðGÞ ; ðA5Þ

where the sum with respect to energy eigenstates jΦi is
taken over Hext. We can also show that

Z
G
dgTrHext

ðĝe−Ĥ=TÞ ¼
Z
G
dg

X
Φ
e−EΦ=ThΦjĝjΦi

¼
X
Φ
volðGΦÞ · e−EΦ=T: ðA6Þ

Therefore, (A1) and (A2) are equivalent.

2. BEC, confinement, and genuine gauge invariance

We emphasized the importance of the genuine gauge
invariance throughout this paper. A crisp characterization
of this notion can be illuminated via the close connection
between Bose-Einstein condensation and color confine-
ment at large N [12].
Let us consider a system of N free bosons in the

harmonic trap. The Hamiltonian is

Ĥ ¼
XN
i¼1

� ˆp⃗2
i

2m
þmω2

2
ˆx⃗2i

�
; ðA7Þ

where ˆx⃗i ¼ ðx̂i; ŷi; ẑiÞ and ˆp⃗i ¼ ðp̂x;i; p̂y;i; p̂z;iÞ are the
coordinate and momentum of ith particle.
Because N bosons are indistinguishable, this is a gauged

quantum mechanics with the gauge group SN . As the basis
of the extended Hilbert space Hext, we can use the Fock
states jn⃗1;…; n⃗Ni, which are energy eigenstates with the
energy E ¼ P

N
i¼1 En⃗i ¼

P
N
i¼1 ððnx;i þ ny;i þ nz;iÞωþ 3

2
Þ.

The partition function is given by

ZðTÞ ¼ 1

N!

X
σ∈SN

X
n⃗1;…;n⃗N

hn⃗1;…; n⃗N jσ̂e−Ĥ=T jn⃗1;…; n⃗Ni

¼ 1

N!

X
n⃗1;…;n⃗N

e−ðEn⃗1
þ���þEn⃗N

Þ=T
�X

σ∈SN

hn⃗1;…; n⃗N jn⃗σð1Þ;…; n⃗σðNÞi
�
: ðA8Þ

The factor
P

σ∈SN hn⃗1;…; n⃗N jn⃗σð1Þ;…; n⃗σðNÞi counts the
number of σ ∈ SN that leaves jn⃗1;…; n⃗Ni invariant. [This
is corresponds to volðGΦÞ in (A6).] If all n⃗i’s are the same
(e.g., the ground state, n⃗1 ¼ � � � n⃗N ¼ 0⃗), then a large
enhancement factor N! appears. Let us call such states
genuinely SN-invariant states. For generic states, most
permutations σ ∈ SN change the state and hence such
enhancement factor does not appear.
Bose-Einstein condensation [13] is a phenomenon that

many particles fall into the ground state. It is triggered by
the enhancement mechanism mentioned above: if M
particles are excited while N −M particles are in the
ground state, then the enhancement factor ðN −MÞ!
appears from the latter. The same mechanism triggers color
confinement: volðGΦÞ in (A6) serves as the enhancement
factor, and genuinely gauge-invariant state that satisfies
G ¼ GΦ becomes dominant at low temperature. Partially
BEC phase corresponds to the partially confined phase (¼
partially deconfined phase).
As we mentioned in Sec. II B, the distribution of the

Polyakov loop in UðNÞ gauge theory becomes uniform at
low temperature is the consequence of the genuine gauge
invariance of the ground state. Exactly the same holds

for the Bose-Einstein condensation; see Ref. [12] for
details.
For BEC, the off-diagonal long-range order (ODLRO)

[17,18] is often used to detect the genuine SN invariance
[14–16]. Let ρ̂ ¼ jΦihΦj be the N-particle density matrix
made of the state jΦi ∈ Hinv. From ρ̂, the one-particle
density matrix ρ̂1 is defined by tracing out N − 1 particles
as ρ̂1 ¼ Tr2;…;N ρ̂. We perform the spectral decomposition
of ρ̂1 as

ρ̂1 ¼ nmaxjΨihΨj þ
X
i

nijΨiihΨij; ðA9Þ

where nmax is the largest eigenvalue of ρ̂1. If nmax is of order
one, hxjρ̂1jyi does not vanish at long distance, and the
system has the ODLRO. This nmax counts the number of
degrees of freedom in BEC. For example, for the ground
state jΦi ¼ j0⃗;…; 0⃗i, we obtain ρ̂1 ¼ j0⃗ih0⃗j; hence,
nmax ¼ 1, because

ρ̂1 ¼ Tr2;…;Nðj0⃗;…; 0⃗ih0⃗;…; 0⃗jÞ ¼ j0⃗ih0⃗j: ðA10Þ
On the other hand, if all n⃗i’s are different, nmax ¼ 1

N,
because
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ρ̂1 ¼ Tr2;…;N

�
1

N!

X
σ;σ0

jn⃗σð1Þ;…; n⃗σðNÞihn⃗σ0ð1Þ;…; n⃗σ0ðNÞj
�

¼ 1

N

XN
i¼1

jn⃗iihn⃗ij: ðA11Þ

This nmax is related to the Polyakov loop as follows [12].
First, note that the group element σ in (A8) is the Polyakov
loop operator. In the thermodynamic limit, such an element
σ ∈ SN that leaves a typical state dominating the partition
function invariant gives the expectation value. If N0 ¼
N −M particles are in the Bose-Einstein condensate, a
typical state has an SN0

-permutation symmetry. Any
element of SN0

is a product of cyclic permutations. The
eigenvalues of a cyclic permutation of length k is
e2πil=k; l ¼ 1; 2;…; k. As N0 → ∞, dominant cyclic per-
mutations becomes infinitely long [14–16], and the con-
stant offset of the distribution of Polyakov loop phases
proportional to N0 appears. When N0 ¼ N → ∞, the phase
distribution becomes completely uniform. See Ref. [12] for
more details.

3. Speculations regarding the
Maldacena-Milekhin conjecture

In Ref. [8], Maldacena and Milekhin conjectured that the
gauge-singlet constraint is not important at the low-energy
regime of the D0-brane matrix model. That is, the gauged
partition function we have been discussing,

ZgaugedðTÞ ¼ TrHinv
ðe−Ĥ=TÞ

¼ 1

volUðNÞ
Z

dUTrHext
ðÛe−Ĥ=TÞ; ðA12Þ

should be exponentially close to the “ungauged” partition
function

ZungaugedðTÞ ¼ TrHext
ðe−Ĥ=TÞ

¼ 1

volUðNÞ
Z

dUTrHext
ðe−Ĥ=TÞ ðA13Þ

at large N.19 Specifically, the difference of the free energy
should decay as ∼ expð−Cλ1=3=TÞ, where C is of order 1.
Therefore, the gauged and ungauged theory should be
almost indistinguishable at T ≪ λ1=3, where weakly
coupled string or M theory is a legitimate dual description.
(Actually, this conjecture was developed based on the
intuition in the gravity side.) Monte Carlo simulation
provided a result consistent with this conjecture [53].
A natural mechanism in the matrix model side that can

lead to this relation is that each low-energy state in Hext is
invariant under a large subgroup of UðNÞ.20 In usual
confining gauge theory that has a mass gap of order N0,
this happens trivially at the energy scale well below the gap,
because the ground state dominates the partition function.
A highly nontrivial point in the Maldacena-Milekhin
conjecture is that they claim it happens even though the
D0-brane matrix model does not have such gap; namely,
the nonsinglet sector should be gapped while the singlet
sector is not gapped. But perhaps we should not find it too
surprising, because the same light mode, represented by a
small block, can be excited multiple times. If the multi-
plicities of light modes are n1; n2; � � �, then such a state in
Hext is invariant under Uðn1Þ × Uðn2Þ × � � �. If the multi-
plicities grow sufficiently fast as the energy goes down, it
would be hard to distinguish the gauged and ungauged
theories.
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