
Learning by Erasing: Conditional Entropy Based Transferable
Out-of-Distribution Detection

Meng Xing1,3, Zhiyong Feng1, Yong Su2, Changjae Oh3

1College of Intelligence and Computing, Tianjin University
2Tianjin Normal University

3Centre for Intelligent Sensing, Queen Mary University of London
{xingmeng, zyfeng, suyong}@tju.edu.cn, c.oh@qmul.ac.uk

Abstract

Detecting Out-of-distribution (OOD) inputs is crucial to de-
ploying machine learning models to the real world safely.
However, existing OOD detection methods require an in-
distribution (ID) dataset to retrain the models. In this pa-
per, we propose a Deep Generative Models (DGMs) based
transferable OOD detection that does not require retrain-
ing on the new ID dataset. We first establish and substan-
tiate two hypotheses on DGMs: DGMs are prone to learn
low-level features rather than high-level semantic informa-
tion; the lower bound of DGM’s log-likelihoods is tied to the
conditional entropy between the model input and target out-
put. Drawing on the aforementioned hypotheses, we present
an innovative image-erasing strategy, which is designed to
create distinct conditional entropy distributions for each ID
dataset. By training a DGM on a complex dataset with the
proposed image-erasing strategy, the DGM could capture the
discrepancy of conditional entropy distribution for varying
ID datasets, without re-training. We validate the proposed
method on the five datasets and show that, without retraining,
our method achieves comparable performance to the state-
of-the-art group-based OOD detection methods. The project
codes will be open-sourced on our project website.

Introduction
Deep neural networks (DNNs) have demonstrated their po-
tential in solving various safety-related computer vision
tasks (Wang, Shi, and Yeung 2016), such as autonomous
driving (Casas, Sadat, and Urtasun 2021) and healthcare
(Kim et al. 2021). However, DNNs tend to yield confident
but incorrect predictions for the distribution-mismatched ex-
amples (Nguyen, Yosinski, and Clune 2015; Sensoy, Kaplan,
and Kandemir 2018; Shekhovtsov and Flach 2019), and re-
sults in serious consequences, e.g., accidents by autonomous
vehicles (Times 2018) and incorrect diagnosis in healthcare
(BBC 2020). Therefore, determining whether inputs are out-
of-distribution (OOD) is an important task to safely deploy
machine learning models to the real world.

OOD detection can be performed using labeled data by
utilizing output characteristics (Hsu et al. 2020), training
dynamics (Huang et al. 2021), adversarial training (Laksh-
minarayanan, Pritzel, and Blundell 2017; Bevandic et al.
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Figure 1: Original images (top row) and their reconstruc-
tion results (bottom row) by a pre-trained DGM. The model
pre-trained on CI (CIFAR10) / Fa (FashionMNIST) can re-
construct SV (SVHN) / MN (MNIST) samples well, but not
vice versa. Reconstruction performances on the test set of
the target datasets are evaluated with (SSIM↑ / PSNR↑).

2018; Huang and Li 2021), and metric learning (Lee et al.
2018b; Zaeemzadeh et al. 2021; Ming et al. 2023). Since
it is time-consuming and laborious to obtain labeled data
in real scenarios, as an alternative, Deep Generative Mod-
els (DGMs) have been used to capture the sample distri-
bution of In-Distribution (ID) datasets (Serrà et al. 2020).
However, most DGMs-based methods focus on elaborating
architectures (Ren et al. 2019; Serrà et al. 2020), designing
loss functions (Xiao, Yan, and Amit 2020) or statistical mod-
els (Zhang et al. 2020; Jiang, Sun, and Yu 2022), targeting
the specific feature representation or data distribution of ID
samples (Sun et al. 2023), i.e., need retraining to adapt to
the normal pattern of the new ID datasets. This motivates
the following unexplored question: How can we make OOD
detection transferable across new ID datasets?

In this paper, we aim to achieve transferable OOD de-
tection based on the following two key hypotheses: 1)
The DGMs are prone to learn low-level features, rather
than semantic information (Kirichenko, Izmailov, and Wil-
son 2020). Following the experimental setup in (Xiao, Yan,
and Amit 2020), we use the Variational Auto-Encoder to re-
construct the input image and show some results compar-
isons in Figure 1. Figure 1 demonstrates that a DGM pre-
trained on a complex dataset, which includes diverse se-
mantic categories and a complex image texture, can cap-



Figure 2: The (a) and (b) are the DGM’s negative log-likelihood distribution on different datasets. The model of (a) is trained by
reconstructing the input, while the model of (b) is trained by generating the erased patch based on its surrounding information.
The real negative conditional entropy distribution between the erased patch and its surrounding is given in (c). The DGM is
an auto-encoder proposed in this paper and is trained with ImageNet. The image size is 32 × 32, and the erased image patch
in (b) and (c) is at the center of the image with the size of 16 × 16. Kernel Density Estimation (KDE) is used to estimate the
probability distribution.

ture the distribution of simple datasets, but not vice versa.
This means that the DGMs pre-trained on a complex dataset
can approach the lower bounds of negative-log-likelihoods
of simple datasets without retraining.

2) In the DGMs, the lower bound of negative-log-
likelihoods is determined by the conditional entropy between
the model input and target output. We give supporting ex-
perimental results in Figure 2 and theoretically demonstrate
this hypothesis in Motivation. The log-likelihood distribu-
tions of all datasets in Figure 2(a) are approaching 0 since
the conditional entropy between the model input and out-
put is 0 in this experiment setting. This result explains why
traditional DGMs cannot be used directly for OOD detec-
tion(Serrà et al. 2020). In contrast, the log-likelihood distri-
butions of five datasets in Figure 2(b) are significantly dif-
ferent from each other and the distribution discrepancy is
consistent with real conditional entropy distribution in Fig-
ure 2(c). Therefore, we can assign an exclusive conditional
entropy distribution for each dataset by designing an appro-
priate image-erasing strategy, which is an indispensable pre-
requisite for achieving transferable OOD detection.

Motivated by the proven hypotheses, we propose a novel
Conditional Entropy based Transferable OOD detection
(CETOOD). Specifically, we first propose an image-erasing
strategy that creates exclusive conditional entropy distribu-
tion for different datasets by considering the erased patch
and its surrounding information as the content and condi-
tion. Subsequently, we design the Uncertainty Estimation
Network (UEN), which estimates the Maximum A Poste-
riori of generating the erased patch by reconstructing the
surrounding information and generating the erased patch.
Finally, we train the UEN on ImageNet (Deng et al. 2009)
dataset, affording our model approaching the lower bounds
of negative-log-likelihoods on different ID datasets, which
reflects their distribution discrepancy of conditional entropy.
In the experiment, we demonstrate that our method achieves
comparable performance with state-of-the-art methods in
group-based OOD detection. More importantly, our pipeline
drastically curtails the time and memory cost of model de-

ployment due to its transferability and concise network ar-
chitecture. In summary, our contributions are as follows:

• We introduce the concept of conditional entropy into
OOD detection for model transferability, and theoret-
ically demonstrate the lower bound of negative-log-
likelihoods in DGMs is determined by the conditional
entropy between the model input and target output.

• We propose a transferable OOD detection method (CE-
TOOD), which captures the distribution discrepancy of
conditional entropy of different ID datasets to achieve
transferable OOD detection.

• We demonstrate the effectiveness and lightweight of the
proposed method through extensive comparisons with
state-of-the-art techniques, across different datasets.

Related Work
Some Classifier-based approaches detect OOD samples
by utilizing the statistical characteristic of class proba-
bilities. Hendrycks et al. (Hendrycks and Gimpel 2017)
propose maximum softmax probability as a baseline for
OOD detection in deep neural network (DNN) algorithms,
and ODIN (Liang, Li, and Srikant 2018) further enhance
the performance by using temperature scaling and adding
small perturbations on ID inputs. Since the distribution
of OOD data is not available, some methods have ex-
plored using synthesized data from generative adversarial
networks (GANs) (Lee et al. 2018a) or using unlabeled data
(Hendrycks, Mazeika, and Dietterich 2019; Mohseni et al.
2020) as auxiliary OOD training data, which allows the
model to be explicitly regularized by fine-tuning, produc-
ing lower confidence on anomalous examples. In addition to
these softmax-classification-based frameworks, recently, re-
searchers focus on the feature embedding of the model. With
the observation that the unit activation patterns of a particu-
lar layer show a significant difference between ID and OOD
data, Djurisic et al. (Djurisic et al. 2023) utilize feature trans-
formation to generate the OOD score. Similarly, some meth-
ods exploit hyperspherical embeddings (Ming et al. 2023) or



cosine similarity (Nguyen et al. 2023) between features to
promote strong ID-OOD separability. Despite the promising
results, classification-based approaches show limitations on
the non-labeled tasks.

As an alternative, most DGM-based OOD detection
methods separate the ID and OOD samples by exploiting
the inductive bias of DGMs, including background statistics
(Ren et al. 2019; Cai and Li 2023), inputs complexity (Serrà
et al. 2020) and low-level features (Sun et al. 2023). Xiao et
al. (Xiao, Yan, and Amit 2020) propose the Likelihood Re-
gret, which is a log-ratio between the likelihood of input ob-
tained by posteriori distribution and approximated by VAE,
to detect OOD samples. Serrà et al. (Serrà et al. 2020) design
a complexity estimate score and utilize the subtraction be-
tween negative log-likelihoods and the complexity estimate
score to detect OOD inputs. Kirichenko et al. (Kirichenko,
Izmailov, and Wilson 2020) prove through experiments that
what DGMs learn from images is local pixel correlation and
local geometric structure rather than semantic information.
Therefore, Sun et al. (Sun et al. 2023) utilizes sample repair-
ing to encourage the generative model to focus on semantics
instead of low-level features. A recent work (Zhang, Gold-
stein, and Ranganath 2021) has shown that for the point-
based OOD detection method, a perfect model can perform
worse than a falsely estimated one when the ID and OOD
data are overlapped.

Therefore, Group-based OOD detection methods uti-
lize the distribution characteristics of grouped inputs for
OOD detection. Most group-based methods consider either
the raw input or a certain representation of samples for OOD
detection. Nalisnick et al. (Nalisnick et al. 2019) propose
an explicit test for typicality employing a Monte Carlo es-
timate of the empirical entropy. As an alternative, exploit
data representations in the latent space can also be utilized
to achieve OOD. Zhang et al. (Zhang et al. 2020) find that
the representations of inputs in DGMs can be approximated
by fitted Gaussian and the distance between the distribution
of representations of inputs and prior of the ID dataset can be
utilized to detect OOD samples. Jiang et al. (Jiang, Sun, and
Yu 2022) propose to compare the training and test samples
in the latent space of a flow model. However, these meth-
ods require retraining when encountering new ID datasets,
which is computationally expensive and time-consuming.

Motivation
In this section, we demonstrate the relationship between
the lower bound of DGM’s negative-log-likelihoods and the
conditional entropy between model input and target output.
We take the grayscale image as an example, which can be
extended to RGB easily.

Given an image pair (A,B), we can calculate the uncer-
tainty of random variable B given random variable A, i.e.,
the conditional entropy H(B|A) as follows:

H(B|A) =− ΣNB
i=0Σ

NA
j=0P (Aj , Bi)log(P (Bi|Aj))

=− ΣNB
i=0P (Bi)log(P (Bi|A))

where Aj and Bi are the pixel value at locations j and i of
images A and B. NA and NB are the number of pixel of

Figure 3: The pipeline of the proposed CETOOD.

images A and B.
For image generation, given the model input A, target out-

put B and a pre-trained DGM (parameters: Z), the Maxi-
mum A Posteriori (MAP) of generating output can be esti-
mated as follows:

MAP = argmin
Z

KL(P (B|Z)P (Z) || P (B|A)P (A))

According to the information bottleneck theory (Tishby,
Pereira, and Bialek 2000), the lower bound of the negative-
log-likelihoods of DGM can be formulated as follows:

Llower bound = −(log(P (B|A)) + log(P (A)))

= −(ΣNB
i=0log(P (Bi|A))/NB)− log(P (A))

= −(ΣNB
i=0P (Bi)log(P (Bi|A)))︸ ︷︷ ︸

H(B|A)

−log(P (A))

where P (Bi|A) is modeled by the pre-trained DGM.
Therefore, given A as input, the conditional entropy be-

tween A and B would determine the lower bound of DGM’s
negative-log-likelihoods.

Method
The proposed framework consists of the image-erasing strat-
egy, UEN, and OOD detection algorithm, as shown in Figure
3.

Image-Erasing Strategy
To create exclusive conditional entropy distribution for dif-
ferent datasets, we design an image-erasing strategy that di-
vides the image into the erased patch and its surrounding in-
formation. Conditional entropy is a measure of the informa-
tion difference between the image’s erased patch and its sur-
rounding. Due to semantic differences existing between dif-
ferent datasets, exclusive conditional entropy distributions
can be generated for different datasets by erasing the most
semantically meaningful regions. We empirically choose to
erase the center of the input, but also propose other erasing
strategies for comparison. The details of the image-erasing
strategies are shown in Figure 4.



Figure 4: The center (a), corner (b) and side (c) of the image
is erased, which is indicated with white color.

With the original image x, the model input (surrounding
information) xr and output (erased patch) xf are generated
as follows:

xr = Mask(x), with xf = x− xr, (1)

where Mask(x) indicates putting a mask on x.

Uncertainty Estimation Network
To capture the distribution discrepancy of conditional en-
tropy for different datasets, we propose UEN, a concise
auto-encoder, as shown in Figure 3. To estimate the MAP
of generating the erased patch, UEN needs to calculate the
probability of generating the target output directly based on
the model input. We assume that the pixel values at each po-
sition of the image conform to a continuous distribution, and
all parameters of the distribution depend on the model input.
Inspired by PixelCNN++ (Salimans et al. 2017), we use the
mixed logistic distribution as the above continuous distribu-
tion and name the feature space on which the parameters of
the distribution depend as uncertainty estimation space, Z:

Z ∼
K∑

k=1

πk
e−(x−µk)/γk

γk(1 + e−(x−µk)/γk)2
, (2)

where K is the number of components in the mixed logistic
distribution, πk is the weight of each component, µk and γk
are the shape and position parameters of the logistic distri-
bution, respectively (πk, µk and γk are learnable parameters,
where k = {1, 2, . . . ,K}).

Given the erased patch, xf , the likelihood of each dis-
cretized pixel value can be directly calculated as follows:

P (xf |Z) =

K∑
k=1

πk[σ(
xf + 1

255 − µk

γk
)−σ(

xf − 1
255 − µk

γk
)],

(3)
where σ(·) is the sigmoid function, and we set K to 10 in this
paper. For RGB images, we only allow linear dependence
between three-channel pixel values.

The encoder consists of three parallel multi-layer convo-
lutional branches with different kernel sizes. Upsampling
layers are designed to ensure the size of the feature map in
the uncertainty estimation space is consistent with the input.
The deep feature in uncertainty estimation space is further
mapped into the image domain by a decoder.

To ensure that no surrounding information is lost in the
process of constructing the uncertainty estimation space, i.e,
P (xf |Z) ≈ P (xf |xr), we design the reconstruction loss,
Lr, as follows:

Lr = ∥xr − or∥2, (4)

Algorithm 1: OOD Detection Algorithm

Require: Z: pre-constructed uncertainty estimation space;
X∗ = {x∗

1, x
∗
2, . . . x

∗
N}: all of ID samples; X =

{x1, x2, . . . xm}: a batch of of test samples; Mask():
the function of erasing image patch; t: threshold.

1: i← 1
2: while i ≤ N do
3: x∗

if = x∗
i −Mask(x∗

i )

4: L∗[i] = Le(x
∗
if |Z); i← i+ 1

5: end while
6: P (L∗) = KDE(L∗)
7: while testset ̸= ∅ do
8: j ← 1
9: while j ≤ m do

10: xjf = xj −Mask(xj)
11: L[j] = Le(xjf |Z); j ← j + 1
12: end while
13: P (L) = KDE(L)
14: k = KL(P (L)∥P (L∗))
15: if k > t then
16: return X is out-of-distribution data.
17: else
18: return X is in-distribution data.
19: end if
20: reload X
21: end while

where or = Mask(o) is the masked output and o is the
model output.

To highlight the distribution discrepancy, the generation
loss, Le, which measures the posterior probability of gener-
ating the erased patch, is presented as:

Le = −log2[P (xf |Z)]

= −
N∑
i=1

log2[P (xfi|Z)]/Nf , (5)

where i is the pixel location, xfi is the pixel value at location
i and Nf is the number of pixels in the erased patch, xf .
Le encourages UEN to narrow the log-likelihood distribu-

tion gap between the samples that contain similar semantic
discrepancies. The final loss function is as follows:

Ltotal = λLr + (1− λ)Le, (6)
where λ is used to balance the effect between Lr and Le.
OOD Detection Algorithm
Algorithm 1 shows the proposed OOD detection using the
pre-trained uncertainty estimation network. Given all ID
samples X∗ = {x∗

1, x
∗
2, . . . x

∗
N} and image-erasing strat-

egy Mask(), we first utilize Kernel Density Estimation
(KDE) to obtain the distribution of log-likelihood for ID
dataset. Then, in the same way, given a set of test sam-
ples X = {x1, x2, . . . , xn}, we estimate the distribution
of log-likelihood on the test group. Finally, we measure the
estimated total correlation between the test group and the
ID samples by using KL-divergence, and determine the test
group as the OOD data if there exists a significant distribu-
tion discrepancy.



Methods DOCR-TC-M Ty-test RF-GM Ours
(Retraining) (Required) (Required) (Required) (Not required)

GS ID OOD AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

5

MNIST F-MNIST - - - - - - 99.2 97.2
F-MNIST MNIST 100.0 100.0 95.5 92.1 99.0 99.0 93.8 89.5

SVHN CIFAR10 99.7 99.7 100.0 100.0 89.0 93.0 99.2 97.5
CelebA 100.0 100.0 100.0 100.0 92.0 94.0 98.9 96.0

CelebA CIFAR10 91.6 91.9 5.7 31.2 92.0 93.0 91.2 86.8
SVHN 100.0 100.0 83.1 80.1 97.0 96.0 91.2 87.2

CIFAR10 SVHN 99.0 99.6 98.6 99.3 88.0 83.0 99.7 85.6
CelebA 100.0 100.0 100.0 100.0 76.0 77.0 98.6 92.6

10

MNIST F-MNIST - - - - - - 100.0 100.0
F-MNIST MNIST 100.0 100.0 99.4 99.3 99.0 99.0 99.1 96.3

SVHN CIFAR10 100.0 100.0 100.0 100.0 95.0 98.9 100.0 100.0
CelebA 100.0 100.0 100.0 100.0 98.0 99.0 100.0 100.0

CelebA CIFAR10 99.2 99.3 0.9 30.7 98.0 99.0 99.4 93.9
SVHN 100.0 100.0 91.6 90.5 100.0 100.0 99.0 94.6

CIFAR10 SVHN 100.0 100.0 99.9 100.0 99.0 98.0 99.3 99.7
CelebA 100.0 100.0 100.0 100.0 89.0 90.0 99.9 99.9

Table 1: The OOD detection results with different group size (GS) on five different datasets. Unlike other methods, our trans-
ferable method does not require retraining on the ID dataset.

Experiments
Implementation Details
All three parallel encoder branches consist of multiple con-
volution and upsampling layers with different kernel sizes
(3×3, 5×5 and 7×7). A shared convolutional layer with a
kernel size of 1×1 is utilized to transform the features from 3
parallel encoder branches into uncertainty estimation space.
The decoder consists of two convolutional layers with kernel
size of 3×3. We set the batch size and learning rate to 64 and
10−5, respectively. λ is empirically set to 0.8. We trained the
network for 250 epochs, taking about 48.29 hours. We con-
duct all experiments on a single NVIDIA GPU 3080 that
follows the experimental setup of the baseline methods.

Experimental Setting
Datasets We train our model on ImageNet32 (Deng et al.
2009) and validate our model on different ID datasets, in-
cluding MNIST (LeCun et al. 1998), FashionMNIST (Xiao,
Rasul, and Vollgraf 2017), SVHN (Netzer et al. 2011),
CelebA (Liu et al. 2015) and CIFAR10 (Krizhevsky and
Hinton 2009). All the inputs are resized to 32×32 to fit the
input size of UEN. We transform the grayscale image into
an RGB image by replicating the channel.

Metrics We use threshold-independent metrics: the area
under the receiver operating characteristic curve (AU-
ROC) (Davis and Goadrich 2006) and the area under the
precision-recall curve (AUPR) to evaluate our method. We
consider OOD data and ID data as positive and negative ones
for detection, respectively. Unless noted otherwise, we cal-
culate the False Positive Rate (FPR) of the detector when
the threshold is set at 95% TPR. We randomly select 10k
samples from the test set of the target dataset. We generate
test sample groups according to group size gs. For the fair
comparison, we generate the test set 2 times and test groups
5 times then report the averaged result.

OOD Detection
To evaluate the robustness of our method, we utilize five
different datasets as ID datasets and test each of them on
one (MNIST or FashionMNIST) or three (SVHN, CelebA
and CIFAR10) different disjoint OOD datasets. The ob-
tained performance for OOD detection and comparison with
three baselines including the Ty-test (Nalisnick et al. 2019),
DOCR-TC-M (Zhang et al. 2020) and RF-GM (Jiang, Sun,
and Yu 2022) are shown in Table 1. We utilize the three
methods as our baselines as they outperform other existing
group-based OOD detection methods. As shown in Table 1,
our method can achieve competitive performance compared
with the SOTA methods. Our method achieves higher AU-
ROC compared to RF-GM across various detection sce-
narios, especially, our method outperforms RF-GM 22.6%
AUROC when detecting CelebA from CIFAR10 with 5 as
group size. Likewise, our method shows 0.7% higher AU-
ROC compared to DOCR-TCM when detecting SVHN from
CIFAR10 with 5 as group size. Notably, compared to the
baseline methods, our framework does not require retrain-
ing when deployed on new ID datasets.

Deployment Cost Analysis
In order to comprehensively analyze the performance of our
model, we compare training time and memory cost of net-
work parameters of our approach with that of the baseline
methods. Due to both DOCR-TC-M and RF-GM are based
on the flow model, we choose the DOCR-TC-M with bet-
ter performance as a baseline. The experiment settings for
DOCR-TC-M (Zhang et al. 2020) and Ty-test (Nalisnick
et al. 2019) are consistent with the original papers. The train-
ing time and memory cost comparison are shown in Fig-
ure 5. Our method does not require retraining and only needs
to calculate the DGM’s likelihood distribution of the new
ID dataset in the testing stage. Therefore, the time cost of
model deployment can be greatly reduced. Our model needs



ID OOD (a) Group size (b) Erasing strategy (c) Erasing strategy (H)
20 50 100 corner side center corner(H) side(H) center(H)

MNIST F-MNIST 100.0 100.0 100.0 95.2 99.7 100.0 99.7 99.9 99.9
F-MNIST MNIST 99.9 100.0 100.0 91.4 97.2 99.1 94.2 97.7 99.6

SVHN CelebA 100.0 100.0 100.0 100.0 100.0 100.0 99.7 99.7 99.9
CIFAR10 100.0 100.0 100.0 99.9 100.0 100.0 99.5 99.1 99.9

CelebA SVHN 99.9 100.0 100.0 89.4 90.1 99.0 100.0 100.0 100.0
CIFAR10 99.8 100.0 100.0 64.8 63.7 99.4 56.3 54.3 86.3

CIFAR10 SVHN 99.6 99.9 100.0 90.3 95.2 99.3 100.0 100.0 100.0
CelebA 100.0 100.0 100.0 59.3 58.7 99.9 51.2 51.0 89.6

ID OOD (d) Loss function (e) Training set
Le Lr Ltotal MNIST F-MNIST SVHN CelebA CIFAR10 ImageNet

MNIST F-MNIST 99.7 99.9 100.0 100.0 99.2 99.9 100.0 99.8 100.0
F-MNIST MNIST 93.3 98.4 99.1 99.7 97.9 97.7 98.5 98.1 99.1

SVHN CelebA 61.4 77.6 100.0 61.6 74.6 100.0 49.1 100.0 100.0
CIFAR10 62.0 76.1 100.0 49.2 90.2 99.9 99.9 78.0 100.0

CelebA SVHN 64.1 82.0 99.0 88.6 71.8 97.3 58.5 98.4 99.0
CIFAR10 70.9 79.5 99.4 74.7 65.2 77.5 90.5 97.8 99.4

CIFAR10 SVHN 62.8 78.1 99.3 75.0 88.9 96.9 99.0 68.4 99.3
CelebA 68.1 77.5 99.9 46.4 65.1 63.2 68.4 99.6 99.9

Table 2: Model performance with different hyperparameters and training variations (group size for b-e is 10).

Figure 5: The time (t, hours) and space (m, FLOPs) com-
plexity comparison between our method and the baseline ap-
proaches.

48.3 hours to be pre-trained on ImageNet, which is still less
than the time cost of training the baseline methods on all
ID datasets. In addition, the space complexity comparison
in Figure 5 shows that the memory cost of our model is sig-
nificantly lower than the baseline methods.

Ablation Study
Effect of group size Table 2(a) reports the model per-
formance with different group sizes. Experiment results
demonstrate that the group size only has a slight impact on
model performance and it is sufficient to ensure the perfor-
mance of the model with the group size higher than 5.

Effect of image-erasing strategy To analyze the effect
of the image-erasing strategy, we use three image-erasing
strategies to train the model. Note that the same image-
erasing strategy is applied to both training the model and
OOD detection. For the image-erasing strategy with differ-
ent variations, we calculate the average of all the variations.

Figure 6: Top: Different image-erasing strategies. Bottom:
The averaged likelihood heatmaps of all CIFAR10 test sam-
ples generated by our model with image-erasing strategies.

We tabulate the model performance in Table 2(b), denoted
as corner, side and center. The experimental results indicate
that the center strategy can significantly improve the de-
tection performance in some scenarios (CelebA versus CI-
FAR10 and CIFAR10 versus CelebA), but only slight per-
formance improvement is observed in other scenarios. To
explore the reasons for poor robustness in performance im-
provement, we feed the real conditional entropy under dif-
ferent image-erasing strategies into Algorithm 1 and calcu-
late the OOD detection results, as shown in Table 2(c). The
experimental results show that in the scenarios with slight
performance improvement, the corner and side strategies can
create exclusive conditional entropy distributions for differ-
ent datasets. The above experimental results support hypoth-
esis 2), i.e., the detection performance of the model depends
on the conditional entropy distribution discrepancy between
different datasets. See the appendix for more intuitive visu-
alization results.

In addition, as the Le encourages UEN to narrow the log-
likelihood distribution gap between the samples with sim-
ilar semantic discrepancies, the detection performance of
the model should be superior to the detection results based
on real conditional entropy. However, in some experimen-
tal settings, the experimental results do not match expecta-
tions. For example, when detecting SVHN from CIFAR10,
the performance of the model decreases compared to the



detection results based on real conditional entropy, and the
performance degradation caused by different image-erasing
strategies varies significantly. To investigate the impact of
the image-erasing strategy on the conditional entropy cap-
turing, we presented the averaged likelihood heatmaps of
all samples in the CIFAR10 dataset under different image-
erasing strategies, as shown in Figure 6. The expected ex-
perimental results should be like Figure 6(a), the blue re-
gion in the bottom heatmap is aligned with the white region
in the top sketch map, which indicates the information dis-
crepancy between the erased patch and its surrounding can
be captured by the proposed model effectively. However, in
the corner (Figure 6(b)) and side (Figure 6(c)) strategies, the
blue regions in the heatmaps are much smaller than their
corresponding white regions. The results demonstrate that
the model with these two erasing strategies could generate
partial information about the target output. In other words,
the model’s ability to capture conditional entropy is affected
by the value of conditional entropy, the larger the better.

Effect of loss functions We show the quantitative com-
parison results of different model objectives in Table 2(d).
We also show the feature visualization of samples when
the model is trained with different model objectives in Fig-
ure 7. Experimental results in Table 2(d) show that the per-
formance of Lr consistently outperforms Le across different
datasets, which demonstrates ensure P (xf |Z) ≈ P (xf |xr)
plays a major role in capturing the inter-dataset distribution
discrepancy (the conclusion is consistent with the results in
Figure 7 (b) and (c)). In addition, the comparison between
Figure 7 (c) and (d) shows that Le reduces the distribution
variance of each dataset, thus further increasing the distri-
bution discrepancy. The results demonstrate that Lr ensures
the model captures the condition (surrounding information)
of the conditional entropy, whileLe encourages the model to
capture the content (erased patches), and the complementar-
ity between them helps to accurately capture the conditional
entropy.

Effect of training set To analyze the effect of the training
set, we train our model using training sets of 6 datasets, in-
cluding MNIST, F-MNIST, SVHN, CelebA, CIFAR10 and
ImageNet. As shown in Table 2(e), the results show that
the model performance improves with the increases in train-
ing data’s complexity and achieves optimal performance on
ImageNet. The experimental results support hypothesis 1),
i.e., the DGMs learn low-level features rather than seman-
tic information. As the same image-erasing strategy is used
among 6 experiment settings, the experimental results also
demonstrate that conditional entropy capturing is affected
by the complexity of training data. Highly complex training
data helps the model better capture the conditional entropy
of generating the erased patch from its surrounding. See the
appendix for more intuitive visualization results.

Limitation To further explore the potential of CETOOD,
we utilize the model that is pre-trained on ImageNet to dis-
tinguish CIFAR100 (Krizhevsky and Hinton 2009) and CI-
FAR10. We also feed the real conditional entropy into Algo-
rithm 1 for OOD detection. The center image-erasing strat-

Figure 7: Feature visualization of 1000 samples from CI-
FAR10, extracted from the uncertainty estimation space (Z).
The model is trained with Le (b), Lr (c) and Ltotal (d), with
center image-erasing. The control experiment is training the
model with Ltotal, without image-erasing.

ID OOD Ours Ours (H)
AUROC AUPR AUROC AUPR

C10 C100 64.1 52.3 50.1 49.4
C100 C10 62.2 53.4 48.4 49.8

Table 3: The OOD detection results on CIFAR10 (C10) and
CIFAR100 (C100), the group size is 10.

egy is used in both experiments. The reason for poor model
performance in Table 3 is that the current image-erasing
strategy cannot create exclusive conditional entropy distri-
bution for CIFAR10 and CIFAR100. The performance im-
provement compared with the detection results of real con-
ditional entropy proves that our model has the ability to cap-
ture conditional entropy. For more detailed experimental re-
sults, see Appendix.

Conclusion
We proposed a method to perform transferable OOD de-
tection by leveraging the concept of conditional entropy
to OOD detection. We first validated two hypotheses: The
DGMs are prone to learn low-level features rather than
semantic information. In the DGMs, the lower bound of
negative-log-likelihoods is determined by the conditional
entropy between the model input and target output. Based
on these hypotheses, we presented an image-erasing strat-
egy and UEN to assign and capture the conditional entropy
distribution discrepancy between different ID datasets. Our
model, trained on a complex dataset, becomes transferable
to other ID datasets. Experimental results on the five datasets
show that our method, without retraining, achieves compara-
ble performance with the SOTA group-based OOD detection
methods that require retraining on the ID datasets.
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