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Abstract
To simulate bosons on a qubit- or qudit-based quantum computer, one has to regularize the theory
by truncating infinite-dimensional local Hilbert spaces to finite dimensions. In the search for
practical quantum applications, it is important to know how big the truncation errors can be. In
general, it is not easy to estimate errors unless we have a good quantum computer. In this paper, we
show that traditional sampling methods on classical devices, specifically Markov Chain Monte
Carlo, can address this issue for a rather generic class of bosonic systems with a reasonable amount
of computational resources available today. As a demonstration, we apply this idea to the scalar
field theory on a two-dimensional lattice, with a size that goes beyond what is achievable using
exact diagonalization methods. This method can be used to estimate the resources needed for
realistic quantum simulations of bosonic theories, and also, to check the validity of the results of
the corresponding quantum simulations.

1. Introduction

The Hilbert space for bosons is infinite-dimensional. To simulate bosons on a qubit- or qudit-based
quantum computer, one has to introduce a finite-dimensional approximation of the theory by truncating the
Hilbert space [1–8]. Sometimes this truncation is referred to as digitization and it is one of the necessary
steps in the construction of efficient quantum algorithms to simulate quantum gauge theories [9–13], and to
estimate quantum resources [14–16]. We will use truncation and digitization to mean the same thing in the
rest of the manuscript, and this should not be confused with the discretization of the spacetime continuum
on the lattice.

Some errors associated with digitization are inevitable, and one needs to know how big they can be.
While previous studies on truncated bosonic Hilbert spaces [1–8] have looked at the scaling of the errors
with the digitization spacing (or equivalently, the number of qubits), this does not seem to be a
straightforward task in general. In fact, when the bosonic systems investigated are too large, one would need
to run the digitized theory on a good (noiseless) quantum computer and also efficiently compute the same
observable with classical algorithms in order to benchmark the result. So far, quantitative assessment of the
digitization errors using classical devices is limited to rather small systems because the only known
approaches applicable to generic theories are based on the explicit construction of Hilbert space whose
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dimensionality increases exponentially with respect to the system size. A thorough numerical study of
digitization errors for a ϕ4 lattice scalar theory was done in [6], where the authors studied a single-site (one
bosonic degree of freedom) and a two-site (two bosonic degrees of freedom) system. However, it was difficult
to go to larger lattice sizes, due to the exponential growth of memory resources with the number of lattice
sites (bosonic degrees of freedom). In this paper, we will resolve this issue for a rather generic class of bosonic
theories and reduce the required resources from exponential to polynomial when estimating expectation
values. We point out that this is the only known method able to do so for a rather generic class of bosonic
systems in arbitrary dimensions. As a modest demonstration, we will study the digitization effect on a
two-dimensional 16-site lattice model (16 bosonic degrees of freedom).

It is widely believed that the truncation effect vanishes exponentially, e.g. the low-lying energy eigenvalues
have correction suppressed exponentially with respect to the truncation level [3–5, 17–21]. Although this
scaling has been verified for concrete examples, there is no proof applicable to a wide class of theories.
Furthermore, there is an implicit assumption, i.e. the wave function decays exponentially fast as |x| becomes
large. Note also that, even if the exponential accuracy of the digitization is valid, the precise value of the error
for each theory is not immediately clear. However, it is practically impossible to study the digitization effects
via the explicit construction of the Hilbert space except for small systems, e.g. lattice field theories with a few
local degrees of freedom and less than a dozen lattice sites [5, 6]. It is a frustrating situation that prevents us
from quantitative resource estimates for quantum simulations. A related issue is that it is not easy to check
the validity of the results of the quantum simulation with specific digitization on NISQ devices: the presence
of noise can quickly invalidate the results without a working error-correction strategy. It would be practically
useful if we can do some calculations on classical devices to establish robust truncation error quantification
which, as a byproduct, offers us some ways to cross-check quantum simulations on NISQ devices12.

In this paper, we show that a Markov Chain Monte Carlo (MCMC) method can be used to estimate the
digitization effects in a rather generic class of bosonic systems. MCMCmethods [22] (see [23] for an
elementary introduction) are straightforward in the original bosonic theory before digitization. Indeed, one
can use the Euclidean path-integral method combined with MCMC to study some features of the quantum
systems as long as there is no sign problem. If similar simulations are doable for the digitized theory, one can
estimate the digitization effects.

A caveat is that the absence of the sign problem in the Euclidean path integral without digitization does
not necessarily guarantee the absence of the sign problem in the digitized theory. In this work, we will show
that we can apply MCMC to a wide class of theories without having the sign problem, at least for a certain
digitization scheme. As a result, we are able to properly assess the amount of digitization effects even for large
systems, well beyond the limits of exact diagonalization techniques.

We consider the generic system of Nbos bosons consisting of coordinate variables x̂i (i = 1,2, · · · ,Nbos)
and conjugate momentum variables p̂i that satisfy the canonical commutation relation13[

x̂j, p̂k
]
= iδjk . (1)

We assume that the Hamiltonian is given by

Ĥ=
1

2

Nbos∑
i=1

p̂2i +V(x̂1, · · · , x̂Nbos) , (2)

where V(x1, · · · ,xNbos) is a real function bounded from below and represents the potential energy as a
function of the coordinate variables only. This is a rather generic class and it even includes SU(N) Yang–Mills
theories described by using the orbifold lattice formulation [24, 25]. We use the truncation in the coordinate
basis defined in section 2. As we will see, this scheme admits the MCMC simulations without sign problem.

This paper is organized as follows. In section 2, we introduce the digitization scheme associated with the
coordinate basis. Firstly, the case of a single bosonic variable is explained, and then it is generalized to the
case of a generic number of variables. The digitization of (2+ 1)-dimensional scalar quantum field theory
(QFT) on a lattice is explained as a concrete example. In section 3, the Monte Carlo technique is introduced
and some numerical experiments are conducted. Section 4 is devoted to concluding remarks and discussion
of future directions.

12 Note that the MCMCmethod can be used only for a limited class of quantities. Although such quantities enable us to cross-check the
validity of the simulation (e.g. we can check if the correct ground-state wave function is obtained), theMCMCmethod cannot replace the
quantum simulation (e.g. it is impossible to add a small excitation to the ground state and determine the Hamiltonian time evolution).
13 In our convention, h̄= 1.
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2. Truncation scheme

In this section, we specify the truncation scheme.

2.1. Coordinate-basis truncation for the single-boson system
Here, we introduce digitization in the coordinate basis [1, 2, 5], also called the field amplitude basis [6, 8].
Let us start with a review of the single boson field example. Let {|x⟩|x ∈ R} be the coordinate basis for this
particle that satisfies

x̂|x⟩= x|x⟩ . (3)

A simple way to digitize it is to introduce a cutoff to the value of the eigenvalue x as

−R⩽ x⩽ R , (4)

and introduce Λ points,

x(n) =−R+ nadig , adig =
2R

Λ− 1
, n= 0,1, · · · ,Λ− 1 . (5)

The digitization parameters Λ, adig, and R should be sent to infinity, zero, and infinity, respectively, to
recover the action of the original operator x̂. By using |n⟩ to denote |x(n)⟩, we can write

x̂=
Λ−1∑
n=0

x(n) |n⟩⟨n|. (6)

The momentum operator p̂ appears in the Hamiltonian only in the form of p̂2. A convenient way of
regularizing it is

p̂2 =
1

a2dig

{
Λ−1∑
n=0

2|n⟩⟨n| −
Λ−2∑
n=0

|n+ 1⟩⟨n| −
Λ−2∑
n=0

|n⟩⟨n+ 1|

}
. (7)

The dimension of the Hilbert space is Λ and the truncated Hamiltonian is expressed as a Λ×Λmatrix.
For each concrete example, we can diagonalize the Hamiltonian up to a rather large value of Λ and confirm
that the digitization effects below a fixed energy scale disappear exponentially as∼ e−cΛ with some c> 0. In
terms of the number of qubits q, the truncation level is Λ = 2q, and hence the suppression of the digitization
effects is expected to be doubly exponential,∼ e−c·2q .

2.2. Coordinate-basis truncation for multi-boson system
Next, let us consider the more interesting case where we have multiple bosonic degrees of freedom. Suppose
there are Nbos variables x⃗= (x1, · · · ,xNbos) ∈ RNbos . We introduce Nbos integers n⃗= (n1, · · · ,nNbos)
∈ {0,1, · · · ,Λ− 1}Nbos that are related to xi(ni) as

xi (ni) =−R+ ni adig , adig =
2R

Λ− 1
, ni = 0,1, · · · ,Λ− 1 . (8)

Note that we can take different R, Λ, and adig for each bosonic coordinate xi; here we use the same values
for simplicity. For each i = 1,2, · · · ,Nbos, the momentum operator p̂i appears in the Hamiltonian only in the
form of p̂2i . This is a natural extension of the single-particle case presented in the previous section. Again we
choose a regularization

p̂2i =
1

a2dig

{
Λ−1∑
n=0

2|⃗n⟩⟨⃗n| −
Λ−2∑
n=0

|⃗n+ î⟩⟨⃗n| −
Λ−2∑
n=0

|⃗n⟩⟨⃗n+ î|

}
. (9)

The dimension of the Hilbert space is ΛNbos and the truncated Hamiltonian is expressed as a ΛNbos ×ΛNbos

matrix. Unless Nbos is relatively small, it is difficult to directly determine the energy eigenvalues. Still, it is
believed that the digitization effects below a fixed energy scale disappear exponentially as∼e−cΛ with some
c> 0 [5, 6]. As far as we know, there is no proof for this scaling. (Here, an implicit assumption is that the
wave function decays exponentially fast as |x| becomes large.) Note also that, even if the exponential accuracy
of the digitization is valid, the precise dependence of the errors on adig for each theory is not immediately
clear. Therefore, it is important to have a method to make a quantitative estimation of the truncation effect
that is applicable to a wide class of theories. Our solution to this problem in presented later in section 3.
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2.3. Scalar QFT on spatial lattice
As a particularly important example and prototypical QFT, we consider a scalar QFT on a d-dimensional
spatial lattice. We consider the square lattice with equal lattice spacing alat in all d directions. The lattice
Hamiltonian is defined by

Ĥlat = alatĤ=
∑
n⃗lat

(
1

2
π̂2
n⃗lat

+
1

2

d∑
µ=1

(
ϕ̂n⃗lat+µ̂ − ϕ̂n⃗lat

)2
+V

(
ϕ̂n⃗lat

))
. (10)

Fields ϕ̂ and π̂ are dimensionless, and they correspond to the fields in the continuum theory by

ϕ̂= a(d−1)/2
lat ϕ̂cont. and π̂ = a(d+1)/2

lat π̂cont.. Parameters such as mass are also made dimensionless, e.g.
mlat = alat ×m. A vector n⃗lat ∈ Zd labels the lattice sites. This is different from n⃗ used for the digitization,
which we now denote by n⃗dig. The canonical commutation relation is imposed, i.e.[

ϕ̂n⃗lat , π̂n⃗ ′
lat

]
= iδ⃗nlat ,⃗n ′

lat
. (11)

The operators ϕ̂ and π̂ are the same as x̂ and p̂ in the previous sections: here we have used a different
notation to more easily connect with the traditional symbols used in the physics community.

µ̂ is the unit vector along the µth dimension of the spatial lattice (µ= 1, · · · ,d). This is different from the
unit vector î used for the digitization (i = 1, · · · ,Nbos). As infrared regularization, we introduce the periodic
boundary condition with period L to all directions. Typically, the continuum limit (alat → 0) is taken by
fixing the physical volume alatL. The number of bosonic degrees of freedom is Nbos = Ld. Hence the

dimension of the truncated Hilbert space is ΛNbos = ΛLd .
We digitize ϕ̂ just as before, by introducing R, Λ and adig. We use the same digitization parameters for all

lattice points for sake of simplicity. Note that alat → 0 and adig → 0 do not necessarily commute: the correct
order is adig → 0 first, then alat → 0.

3. Monte Carlo estimate for truncation effect

In this section, we show that the MCMCmethods [22] (see [23] for an elementary introduction) can be used
to estimate the digitization effects. Numerical demonstrations will be provided as well. A short review of the
MCMCmethods is provided in appendix. The crucial point is that, as long as the problem under
consideration reduces to an average over non-negative weights, the MCMCmethods allow efficient
computations.

3.1. Formulation and algorithm
Let us estimate the truncation effect in the coordinate-basis scheme by using Markov Chain Monte Carlo
simulation. For Nbos variables x⃗= (x1, · · · ,xNbos), we define integers n⃗= (n1, · · · ,nNbos) via the relation (8).
For a Hamiltonian defined by (2), we consider the thermal partition function defined by

Z(β) = Tre−βĤ . (12)

Here, β is related to the temperature T by β = 1
T . The trace is over the truncated Hilbert space. We

rewrite it as

Z(β) =
∑

n⃗(1),··· ,⃗n(K)
⟨⃗n(1)|e−∆·Ĥ |⃗n(2)⟩ · ⟨⃗n(2)|e−∆·Ĥ |⃗n(3)⟩ · · · ⟨⃗n(K)|e−∆·Ĥ |⃗n(1)⟩ , (13)

where β =∆×K has been divided up into K intervals. If∆ is sufficiently small, we can rewrite
⟨⃗n( j)|e−∆·Ĥ |⃗n( j+1)⟩ as

⟨⃗n( j)|e−∆·Ĥ |⃗n( j+1)⟩ ≃ ⟨⃗n( j)|e−∆·
∑

i

p̂2i
2 e−∆·V(x̂) |⃗n( j+1)⟩

= ⟨⃗n( j)|e−∆·
∑

i

p̂2i
2 |⃗n( j+1)⟩ · e−∆·V(⃗n( j+1)) . (14)

To handle ⟨⃗n( j)|e−∆·
∑

i

p̂2i
2 |⃗n( j+1)⟩, we can truncate the Fourier expansion of e−∆·

∑
i

p̂2i
2 .

If we keep order-∆ terms, we obtain

4
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≃ ⟨⃗n( j)|

(
1−∆ ·

∑
i

p̂2i
2

)
|⃗n( j+1)⟩ · e−∆·V(⃗n( j+1))

=

{(
1− Nbos∆

a2dig

)
δ⃗n( j) ,⃗n( j+1) +

∆

2a2dig

Nbos∑
i=1

(
δ⃗n( j) ,⃗n( j+1)+̂i + δ⃗n( j) ,⃗n( j+1)−̂i

)}
· e−∆·V(⃗n( j+1)) . (15)

The crucial point that enables us to use MCMCmethods is that the final form in (15) is non-negative for
any n⃗( j) and n⃗( j+1), if 1− Nbos∆

a2dig
> 0. In other words, we can write the partition function as a sum of

non-negative weights.
Of course, when the digitization is removed and xi are treated as continuous variables, we can easily

rewrite the partition function in the form of the standard Feynman path integral, which is well known to be
amenable to MCMC simulations. In some sense, we are solving a simple problem in a complicated manner,
to estimate the digitization artifact. On the other hand, we are using a mature classical numerical simulation
technique to understand an issue arising in the new growing field of quantum simulations for quantum field
theories.

Note that ∆
a2dig

has to be small for (15) to be a good approximation. Therefore, as adig becomes smaller, we

need smaller∆ and hence more Trotterization steps. For this reason, the classical simulation cost is sensitive
to adig, but not to Λ. In the demonstrations shown in the later sections, we take Λ and R very large so that the
finite-R effect is negligible and we can focus on the finite-adig effect.

Via the Monte Carlo simulation, expectation values of functions of x⃗ can be estimated from stochastic
samples. We write the expectation value as

⟨f (⃗x)⟩β =
1

Z(β)

∑
n⃗(1),··· ,⃗n(K)

⟨⃗n(1)|e−∆·Ĥ |⃗n(2)⟩ · ⟨⃗n(2)|e−∆·Ĥ |⃗n(3)⟩ · · · ⟨⃗n(K)|e−∆·Ĥ |⃗n(1)⟩f (⃗x) . (16)

Here, x⃗ and n⃗ are related by (8). We use the approximation (15) for the simulation. In the limit of∆→ 0,
the approximation becomes exact, and expectation values at finite temperature can be obtained including the
digitization effects. By dialing the temperature, the digitization effects at various energy scales can be studied.

3.1.1. Metropolis algorithm
In the Metropolis algorithm, the chain of configurations {n⃗(1), · · · , n⃗(K)} is generated in such a way that the
probability distribution of configurations is proportional to the right-hand side of (13), where the
approximation (15) is understood. More explicitly, the probability distribution is proportional to

e−S(⃗n(1),··· ,⃗n(K);∆), where

exp
(
−S
(
n⃗(1), · · · , n⃗(K);∆

))
≡

K∏
j=1

{(
1− Nbos∆

a2dig

)
δ⃗n( j) ,⃗n( j+1) +

∆

2a2dig

Nbos∑
i=1

(
δ⃗n( j) ,⃗n( j+1)+̂i + δ⃗n( j) ,⃗n( j+1)−̂i

)}
· e−∆·V(⃗n( j+1)) . (17)

Note that

lim
K→∞

∑
n⃗(1),··· ,⃗n(K)

exp
(
−S
(
n⃗(1), · · · , n⃗(K);∆

))
→ Z(β) (β = K∆ : fixed) . (18)

In the following, we describe a naive update move for the Metropolis algorithm. The algorithm will start
from an initial point, or configuration of all variables. For the initial configuration, we take all n⃗( j) to be the
same and between 0 and Λ− 1. (Practically, we should take n∼ Λ

2 , x∼ 0.) We perform the following

procedure to j = 1,2, · · · ,K= β
∆ and i = 1,2, · · · ,Nbos:

1. Proposal: as a candidate for the new value of n( j)i , n ′ ≡ n( j)i ± 1 (equivalently, n⃗ ′ = n⃗( j) ± î) is proposed
with probability 1

2 for each.

2. The candidate n′ is automatically rejected (i.e. n( j)i remains unchanged) unless the following three
conditions are satisfied:

0⩽ n ′ ⩽ Λ− 1 , (19)

|⃗n ′ − n⃗( j+1)|= 0 or 1, (20)

|⃗n ′ − n⃗( j−1)|= 0 or 1. (21)

5
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3. Metropolis test: the candidate n′ is accepted (i.e. n( j)i becomes n′) with the probability min
(
1,e−δS

)
,

where δS is the increment of the action. Otherwise the candidate n′ is rejected (i.e. n( j)i remains
unchanged).

This is ‘one sweep’. We repeat many sweeps and collect successive configurations along the Markov Chain.
The above naive approach is not efficient because x⃗ is changed only locally (i.e. only one time slice at each
step), while x⃗ should slowly change along the imaginary-time circle following dominant configurations.

In classical MCMC simulations of spin systems, local update rules for the Metropolis algorithm are
known to perform poorly, in particular in regions of metastability or close to phase transitions. Inspired by
cluster algorithms [26], we improve the algorithm by allowing the simultaneous update of a cluster as follows:

1. Choose 1⩽ B⩽ Bmax randomly, where B labels the size of the ‘clusters’ (or blocks)

2. Proposal: as a candidate for the next configuration, we vary n( j)i ,n( j+1)
i , · · · ,n( j+B)

i simultaneously. For

l= j, j+ 1, · · · , j+B, n ′(l) ≡ n(l)i ± 1 (equivalently, n⃗ ′(l) = n⃗(l) ± î) are proposed with probability 1
2 for

each. Note that we use the same sign for all l’s.
3. The candidate n′ is automatically rejected unless the following three conditions are satisfied for all

l= j, · · · , j+B:

0⩽ n ′ ⩽ Λ− 1 , (22)

|⃗n ′( j+B) − n⃗( j+B+1)|= 0 or 1, (23)

|⃗n ′( j) − n⃗( j−1)|= 0 or 1. (24)

4. Metropolis test: the candidate n′ is accepted with the probability min
(
1,e−δS

)
, where δS is the increment

of the action. Otherwise, the candidate n′ is rejected.

Bmax can be any number between 1 and K. The optimal value depends on the detail of the Hamiltonian
and digitization parameters and in principle it can be found via a standard analysis of the autocorrelation
time (see e.g. [23]). As an example, one would first try the algorithm with Bmax = 1 and measure the
autocorrelation time of the observable of interest. Then, one would increase Bmax by 1 unit and measure
again the autocorrelation time. For some larger value of Bmax the autocorrelation time will start decreasing
because the update sweeps become more efficient at finding new configurations. For the simulations
reported in this paper, we set Bmax =

K
2 , except for figure 2 in which Bmax = 1 is used for comparison. We

chose B= 1,2, · · · ,Bmax with equal probability.

3.1.2. Simulation cost
Suppose that R is sufficiently large so that the support of the wave function is mostly contained in the
truncated Hilbert space. As long as this loose condition is satisfied, the simulation cost is not sensitive to R.
On the other hand, the cost is sensitive to adig, because it appears in the expansion parameter ∆

a2dig
in (15). To

keep the expansion parameter small, we need to scale the number of Trotter steps K proportionally to a−2
dig .

Therefore, the number of variables in the Monte Carlo simulation scales as NbosK∼ Nbos

a2dig
∼ 22nqNbos. This can

be considered the scaling of the memory size, because we need this amount to store all the variables. Note
that this memory scaling is much better than 2Nbosnq , which is required for the direct computation of the
eigenvalues with exact diagonalization methods. For practical applications, nq does not increase with Nbos

(each bosonic degree of freedom is represented with the same number of qubits), and hence the necessary
memory size increase only linearly with the system size. In addition to the memory scaling, the
computational cost for one sweep scales polynomially with Nbos and adig.

Strictly speaking, it is difficult to establish the exponential suppression of the truncation effect unless a
clear exponential behavior sets in at a small truncation level because exponentially large statistics and hence
exponentially large computational costs are needed to have exponentially small statistical error14. However,
to establish that the error decays faster than a certain power, only a polynomially large cost is needed.

3.2. Single boson (Nbos = 1)
As a sanity check of the method, let us consider the case of a single boson. In this case, the exact
diagonalization method can be used to determine the low-energy spectrum rather accurately even for large

14 In the Monte Carlo simulation, the statistical error scales as (number of configurations)−1/2.
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Table 1. ⟨V⟩T=0.1 from Monte Carlo (MC) and exact diagonalization (Exact) for V(x) = 1
4
x4 + m2

2
x2,m2 =±1.0, T= 0.1, various

choices of adig, with the infrared cutoff R= 1000adig (Λ = 2001). For MC,∆= 0.001 was used and 104 sweeps were performed.

adig m2 = 1.0, MC m2 = 1.0, Exact m2 =−1.0, MC m2 =−1.0, Exact

0.3 0.2626(26) 0.2618 −0.06326(68) −0.06354
0.5 0.2533(53) 0.2539 −0.0664(27) −0.06633
0.7 0.2482(70) 0.2414 −0.0717(18) −0.07024

Figure 1. Simulation history of T= 0.1, adig = 0.5,∆= 0.001, Bmax =
K
2
= 5000. The exact value obtained by exact

diagonalization is 0.2539 in this case.

truncation level Λ. Therefore, we can confirm that the values obtained from the Monte Carlo simulations
described in the previous sections are correct.

We considered the Hamiltonian with the following quartic interaction:

V(x̂) =
λ

4
x̂4 +

m2

2
x̂2 . (25)

Note that we can consider negativem2 as well. We studied λ= 1.0,m2 =±1.0 and adig = 0.3,0.5,0.7.
The step size∆ is set to 0.001 so that ∆

a2dig
is small and the error associated with the truncation of the Taylor

expansion of e−∆· p̂
2

2 is suppressed. To focus on the errors coming from adig and not from R, we took R and Λ
to be very large (specifically, Λ = 2001 and R= 1000adig).

The results are summarized in table 1. ‘Exact’ values are obtained by exactly diagonalizing the
corresponding Hamiltonian in the truncated coordinate basis, with a sufficiently large value of Λ such that
the first four nonzero digits are obtained precisely. Both methods give consistent results by taking into
account the stochastic (statistical) error from the MCMC simulation. The simulation history for adig = 0.5,
m2 =+1.0 is shown in figure 1. For this plot, we set the maximum cluster size that is updated simultaneously
to be Bmax =

K
2 . The advantage of updating a large cluster simultaneously can be understood by comparing

this plot with figure 2 corresponding to a simulation with Bmax = 1.

3.3. Scalar QFT (Nbos = Ld)
Let us consider the scalar QFT on a square d-dimensional lattice of L sites in each direction. The number of
bosons is Nbos = Ld, which quickly grows and makes it impossible to construct the Hilbert space explicitly on
classical devices.

To demonstrate the validity of the method, we consider the free theory with the potential:

V=
m2

lat

2

∑
n⃗

ϕ̂2
n⃗ , (26)

7
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Figure 2. Simulation history of T= 0.1, adig = 0.5,∆= 0.001, Bmax = 1. Autocorrelation is much longer than the simulation
with Bmax =

K
2
= 5000 shown in figure 1.

wheremlat = alatm in the Hamiltonian defined by (10). We focus on quantities that can be analytically
computed for the case of the infinite-dimensional local Hilbert space (the full QFT without digitization
effects) and we reproduce those results by taking the limit of adig → 0 in our Monte Carlo simulations. (We
use this particular setup because the analysis is simpler and the essence of the MCMC approach can be
conveyed efficiently. We will comment on the cases without analytic results later in this section.)

The Fourier transform on a lattice is defined by

ˆ̃
ϕ⃗q =

1√
Ld

∑
n⃗

e−i⃗q·⃗nϕ̂n⃗, ϕ̂n⃗ =
1√
Ld

∑
q⃗

ei⃗q·⃗n ˆ̃ϕ⃗q ,

ˆ̃π⃗q =
1√
Ld

∑
n⃗

e−i⃗q·⃗nπ̂n⃗, π̂n⃗ =
1√
Ld

∑
q⃗

ei⃗q·⃗n ˆ̃π⃗q , (27)

where q⃗= (q1, · · · ,qd), qj = 2π
L ℓj, ℓj = 1,2, · · · ,L. We can write the free Hamiltonian in terms of ˆ̃ϕ⃗q and ˆ̃π⃗q as

Ĥlat, free =
∑
n⃗

(
1

2
π̂2
n⃗ +

1

2

d∑
µ=1

(
ϕ̂n⃗+µ̂ − ϕ̂n⃗

)2
+

m2
lat

2
ϕ̂2
n⃗

)

=
∑
q⃗

(
1

2
ˆ̃π⃗q
ˆ̃π−⃗q +

(
2

d∑
µ=1

sin2
(qµ
2

)
+

m2
lat

2

)
ˆ̃
ϕ⃗q

ˆ̃
ϕ−⃗q

)

=
∑
q⃗

(
1

2
ˆ̃π⃗q
ˆ̃π−⃗q +

ω2
lat,⃗q

2
ˆ̃
ϕ⃗q

ˆ̃
ϕ−⃗q

)
, (28)

where

ω2
lat,⃗q =m2

lat + 4
d∑

µ=1

sin2
(qµ
2

)
. (29)

Each mode contributes
ω⃗q

2 to the ground-state energy. The zero-point fluctuation of each mode is

⟨
ˆ̃
ϕ⃗q

ˆ̃
ϕ−⃗q

⟩
=

1

2ωlat,⃗q
. (30)
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Table 2.
⟨
ˆ̃
ϕ⃗q

ˆ̃
ϕ−⃗q

⟩
for q⃗= (qx,qy) = (0,0) and (π,π) on 2d 4× 4 lattice, alat = 1,m2 = 1, λ= 0, and T= 1 via MCMC.

R= adig × 1000, Λ = 2001. We chose∆ such that ∆
2a2dig

⩽ 0.01. The exact value without digitization (∆→ 0 followed by adig → 0) is
1

2 tanh(0.5)
≃ 1.081977 and 1

6 tanh(1.5)
≃ 0.184131. Simulations are conducted by using multiple (nstream) streams with different random

seeds. Each stream has nstep ⩾ 3.93× 105 steps. The auto-correlation length for each q⃗ is estimated by computing the integrated
auto-correlation time for each stream, and for the largest length d⃗q, the initial 10d⃗q steps are discarded as a burn-in period, and the
following steps are split into 10d⃗q-step samples. d⃗q < 103 for a ⩽ 0.8, and for a= 0.9 and 1.0, stream sizes are greater than 2200d⃗q. The
number shown in the parenthesis indicates the unbiased estimation of the standard deviation from the averages of at least ten streams.

adig ∆ K= β/∆ q⃗= (0,0) q⃗= (π,π) d(0,0) d(π,π) nstream nstep

0.20 0.0008 1250 1.0778(20) 0.18 288(8) 37 4 40 3.93× 105

0.25 0.00 125 800 1.0800(13) 0.18 230(5) 38 4 39 1.1× 106

0.30 0.0015 667 1.0793(11) 0.18 120(4) 37 4 22 2.57× 106

0.40 0.002 500 1.0751(12) 0.17 819(4) 41 4 19 2.59× 106

0.50 0.002 500 1.0709(10) 0.17 611(3) 59 5 10 1× 107

0.60 0.005 200 1.0645(15) 0.16 961(4) 130 7 10 1× 107

0.70 0.005 200 1.0579(26) 0.16 156(6) 369 15 10 1× 107

0.80 0.005 200 1.0208(39) 0.15 214(10) 968 55 10 1.1× 107

0.90 0.005 200 0.9039(55) 0.14 167(17) 2174 148 10 1.1× 107

1.00 0.005 200 0.7038(70) 0.12 792(25) 4491 319 10 1× 107

This exact value should be obtained in the limits∆→ 0, R→∞, adig → 0 and T→ 0. Note that we need to
take both the digitization spacing to zero, and the energy scale to zero. On the other hand, at finite
temperatures we have:

⟨
ˆ̃
ϕ⃗q

ˆ̃
ϕ−⃗q

⟩
=

eβω⃗q/2 + e−βω⃗q/2

eβω⃗q/2 − e−βω⃗q/2
× 1

2ωlat,⃗q
=

1

2ωlat,⃗q tanh
(
βωq⃗/2

) . (31)

To reproduce this result, we only take the limits∆→ 0, R→∞ and adig → 0. We use this relation for the
numerical demonstrations that follow. Note that the digitization and Fourier transform do not commute in
general. Therefore, even for the free theory, the estimation of the digitization effect is not trivial.

The ground-state wave function for each mode ϕ̃⃗q is Gaussian with the width 1√
ωlat,⃗q

. For the

higher-momentummodes, the widths are narrower, and smaller adig will be needed for better approximation.
For numerical demonstration, we study a two-dimensional 4× 4 lattice. The number of bosons is

Nbos = 4× 4= 16 and the dimension of the Hilbert space ΛNbos increases so quickly with Λthat numerical
analysis on classical devices is practically impossible if the Hilbert space is constructed explicitly.

We choose the parameters to be alat = 1 andm2 = 1. For q⃗= (qx,qy) = (0,0) and (π,π), 1
2ωlat,⃗q

is 1
2 and

1
6 ,

respectively. Combined with (31), the values shift to 1
2 tanh(0.5) ≃ 1.0819 and 1

6 tanh(1.5) ≃ 0.1841, respectively,
at T= 1. We estimate the truncation effects on these values.

We took ∆
2a2dig

to be 0.01 at maximum. Therefore, we expect the error associated with Trotterization is at

most a few percent. The values we obtained are shown in table 2. In figure 3, we plot Exact−MC
Exact , where ‘Exact’

is the exact value (31) which should be obtained in the limit of∆→ 0, R→∞ and adig → 0, and ‘MC’ is the
numerical result in table 2. The horizontal axis is 1

adig
. We can see that the error decreases to Exact−MC

Exact ∼ 0.01,

which is more or less the expected value of the Trotterization effect.

Very roughly, the width of the distribution of ϕ̃⃗q is estimated by

√
⟨ ˆ̃ϕ⃗q

ˆ̃
ϕ−⃗q⟩, which is

√
1.0819≃ 1.04 for

q⃗= (qx,qy) = (0,0) and
√
0.1841≃ 0.43 for q⃗= (qx,qy) = (π,π). A natural expectation is that the error

associated with the digitization disappears exponentially fast once adig becomes smaller than these values.
Qualitatively, we can see such an exponential decrease in figure 3.

For the example discussed above, we knew the analytic results in the limit of adig → 0. Even without
knowing the analytic result, the digitization error analysis is straightforward, because our method works for
any R and adig. For simplicity, let us assume that R=∞ and focus on the finite-adig effect, as above. For
various values of adig, we can calculate ⟨O⟩, whereO is observable under consideration, say ϕ2. Then, we can
determine the adig-dependence by fitting the numerical results at finite adig values. If the analytic result at
adig = 0 is known, such a fit is easier (has less free parameters), but the fit can be conducted even without
knowing the value at adig = 0. In figure 4 we show how to perform a fit that includes the adig = 0 value of the
observable as a free parameter. We compare the fitted result with the known adig = 0 result and find that they
are statistically compatible. Alternatively, even if an analytical result is not available, one can determine the
value at adig = 0 (without any digitization of the degrees of freedom) by performing the standard Euclidean
path integral computation via MCMC.

9
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Figure 3. By using the values in table 2, Exact−MC
Exact

is plotted, where ‘Exact’ is the exact value (31) which should be obtained in the

limit of∆→ 0, R→∞ and adig → 0 and ‘MC’ is the numerical results in table 2. The horizontal axis is 1
adig

. We performed a fit

of the data in table 2 using the function ⟨ ˆ̃ϕ⃗q
ˆ̃
ϕ−⃗q⟩= Ae−B/adig +C. In this plot we fix C to the exact value 1.081977 for q⃗= (0,0)

and 0.184131 for q⃗= (π,π). This is different from figure 4, in which C is treated as a fitting parameter. We obtained
A=−0.079(11), B= 0.983(66) for q⃗= (0,0) from adig = 0.25,0.30,0.40,0.50 and A=−0.0430(69), B= 0.794(58) for
q⃗= (π,π) from adig = 0.20,0.25,0.30,0.40.

Figure 4. By using the values in table 2, we performed a fit using the function ⟨ ˆ̃ϕ⃗q
ˆ̃
ϕ−⃗q⟩= Ae−B/adig +C. Unlike figure 3, here we

treated C as a fitting parameter. For q⃗= (0,0), we obtained A=−0.096(47), B= 1.10(28) and C= 1.0814(11) from
adig = 0.25,0.30,0.40,0.50. For q⃗= (π,π), we obtained A=−0.0780(85), B= 1.094(50) and C= 0.18324(10) from

adig = 0.20,0.25,0.30,0.40. We plot Fit−MC
Fit

, where ‘Fit’ is the fit value C. This is again in contrast to figure 3 where we used the

‘Exact’ value for C. The horizontal axis is 1
adig

.

4. Conclusion and discussion

In this paper, we introduced an MCMC-based technique to determine the digitization effects in a class of
bosonic systems, which have the Hamiltonian of the form (2), in the coordinate-basis truncation scheme.
This technique enables us to study the expectation values of various operators at finite temperature including
their digitization effects. By dialing the temperature, various energy scales can be studied. As a prototypical
QFT application, we studied the (2+ 1)-dimensional scalar QFT regularized on a lattice. To check its
convergence to the right answer, we studied the weak-coupling limit. The inclusion of the interactions is
straightforward, as we have demonstrated in the case of a single-boson system. Our method can be used to

10
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estimate the resources needed for realistic quantum simulations, and also, to check the validity of the results
of the quantum simulations. As a specific example relevant for the NISQ era, we can consider a variational
algorithms to determine low-energy quantum states of a multi-dimensional lattice system. By using the
MCMCmethod, one determines the ground-state energy of the digitized theory, including the scaling of the
digitization effects. Whether this value can be reproduced is a good test of variational algorithms on NISQ
devices when no other classical methods can be used due to the exponentially increasing requirements with
the lattice size. Once we could find a quantum algorithm and quantum device that can pass this benchmark
test, then we can use it to study more complicated observables which cannot be accessed by the MCMC
method, such as excited-state energies or time-dependent correlation functions.

In this paper, we took the ‘infrared’-cutoff parameter R very large and focused on the effects due to finite
adig. In near-term quantum simulations the finite-R effects can also be relevant. It is straightforward to study
small values of R and estimate the finite-R effects, by using the same simulation technique we have proposed.

To apply the method introduced in this paper, each bosonic variable must take values in R. An interesting
class of theories of this kind is Hermitian multi-matrix models, which are important in the context of the
holographic duality. A nontrivial issue for those models is how to reconcile the digitization of the gauge field
with the existence of the gauge symmetry. However, the study of the corresponding ungauged
models [27–29], which are also relevant for the duality, is straightforward. It is not necessarily a problematic
issue if one considers a quantum simulation on the extended Hilbert space, which is a rather common
approach. For such an approach to work, one has to make sure that the low-energy states of the ungauged
model in the extended Hilbert space are correctly described. Lattice gauge theories form another interesting
class. Although unitary variables which appear in the Kogut–Susskind formulation [30] of lattice gauge
theory cannot be studied by using the formulation given in this paper, it is straightforward to study the
orbifold lattice [24, 25].

Whether it is possible to study other digitization schemes by Monte Carlo methods is an interesting
question. For SU(N) gauge theories, digitization schemes based on discrete subgroups have been
proposed [11–13, 31]. The effects of such schemes can be studied by using the standard lattice
simulations [14, 16] and in principle, it is possible to take the continuum limit along the time directions both
for gauged and ungauged theories. While such digitization schemes lack systematic un-digitization limits,
they might be sufficiently good tools in the NISQ era. Another interesting approach that can be studied by
Monte Carlo is the use of non-commutative geometry. For example, [7, 32] studied the truncation of the
target space of the O(3) nonlinear sigma model by fuzzy sphere.

Another potentially useful direction is the use of variational Monte Carlo methods, specifically with the
neural quantum states. Such an approach, which was confirmed to be valid for some theories before
digitization [18, 33–35], may work even with digitization, and the introduction of fermions is
straightforward at least conceptually. The introduction of the singlet constraint is also straightforward, for
example by adding the square of the generators of gauge symmetry to the action as a penalty term. The
MCMC technique introduced in this paper could be used for cross checking purposes.
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Appendix. Short review of MCMC

Markov Chain Monte Carlo (MCMC) is a class of theories that are used to create a probability distribution
efficiently. Specifically, let us consider n variables x1, · · · ,xn which may be real numbers or integers. The goal

is to obtain a sequence of ‘configurations’ {x(i)}= (x(i)1 , · · · ,x(i)n ) (i = 1,2, · · · ) whose distribution converges
to the target probability distribution P(x1, · · · ,xn). Such a sequence allows us to calculate the expectation
value of a function f(x1, · · · ,xn) as

⟨f(x1, · · · ,xn)⟩ ≡
ˆ

dx1 · · ·dxnf(x1, · · · ,xn)P(x1, · · · ,xn)

= lim
Nconfig→∞

1

Nconfig

Nconfig∑
i=1

f
(
x(i)1 , · · · ,x(i)n

)
. (32)

The MCMC algorithms [22, 36] are designed so that the sequence is a Markov chain, i.e. the probability
of obtaining {x(i+1)} after {x(i)} depends only on {x(i)} and does not depend on {x(i−1)},{x(i−2)}, · · · , and
the transition probability between configurations denoted by T({x}→ {x ′}) satisfies the following three
conditions:

1. Irreducibility. The Markov chain defined by T({x}→ {x ′}) is irreducible, i.e. transition between any
pair {x} and {x ′} is possible with a finite number of steps.

2. Aperiodicity. The greatest common divisor of the numbers of steps needed for a transition from {x} to
itself is called the period. The transition probability T({x}→ {x ′}) is chosen in such a way that the
Markov chain defined is aperiodic, i.e, the period is 1 for any {x}.

3. Detailed balance condition is satisfied, i.e.

P({x}) ·T({x}→ {x ′}) = P({x ′}) ·T({x ′}→ {x}) . (33)

for any {x} and {x ′}.

In the Metropolis algorithm [22, 36], transition from {x} to {x ′} and that from {x ′} to {x} are proposed
with the same probability, and the proposal {x} to {x ′} is accepted with the probability
min(1,P({x ′})/P({x})). It is straightforward to check that the detailed balance condition is satisfied.
Whether the other two conditions are satisfied depends on the details of the transition probability
T({x}→ {x ′}).

In the MCMC algorithms, most of the computational resources are used to create important
configurations dominating the probability distribution. This feature, which is called importance sampling,
allows us to drastically save simulation time.
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