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Modified gravity theories such as Einstein scalar Gauss Bonnet contain higher-derivative terms in the
spacetime curvature in their action, which results in modifications to the Hamiltonian and momentum
constraints of the theory. In principle, such modifications may affect the principal part of the operator in the
resulting elliptic equations, and so further complicate the already highly nonlinear, coupled constraints that
apply to the initial data in numerical relativity simulations of curved spacetimes. However, since these are
effective field theories, we expect the additional curvature terms to be small, which motivates treating them
simply as an additional source in the constraints, and iterating to find a solution to the full problem. In this
work we implement and test a modification to the CTT/CTTK methods of solving the constraints for the
case of the most general four derivative, parity invariant scalar-tensor theory, and show that solutions can be
found in both asymptotically flat/black hole and periodic/cosmological spacetimes, even up to couplings of
order unity in the theory. Such methods will allow for numerical investigations of a much broader class of
initial data than has previously been possible in these theories, and should be straightforward to extend to
similar models in the Horndeski class.
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I. INTRODUCTION

Recent breakthroughs in well-posed formulations [1,2]
have resulted in an expansion of the class of modified
theories of gravity to which numerical relativity (NR)—
numerical simulations that solve the Einstein equations as a
time evolution problem—can be applied. This has allowed
for the simulation of strong gravity spacetimes in these
theories, including the fully nonlinear backreaction of the
additional curvature terms onto the metric [3–8], building
on previous works that neglected such effects [9–18]. Such
simulations are of particular interest for the construction of
binary merger waveforms, but also have relevance to more
general questions about the hyperbolicity of such theories
in the strongly coupled regime [3–5,19–21], and potentially
in early Universe cosmology [22]. However, in works to
date in 3þ 1 spacetime dimensions, the challenge of
satisfying the more complicated constraint equations has
limited the physical scenarios that can be investigated.
Most have begun with a trivial solution that satisfies the

regular constraint equations of general relativity (GR) and
set the additional scalar degree of freedom to zero (it is then
evolved to a nontrivial configuration over time) [3,5–7].
Alternatively, studies of spin-induced scalarization that
require a scalar “seed” have tolerated a certain level of
constraint violation in the initial data arising from a
nontrivial profile of the scalar, and relied on constraint
damping to remove it during the initial stages of the
evolution [4,8,20].
The Arnowitt-Deser-Misner (ADM) [23] decomposition

of the Einstein field equations provides the basis for
NR simulations, posing the system as a Cauchy problem,
with a set of evolution and constraint equations for the
3-dimensional spatial metric γij and the extrinsic curvature,
Kij, of the spatial slices. The ADM approach gives rise to
four independent constraint equations, which must be
satisfied on each time slice, and in particular in the initial
data that starts an NR simulation. These constraints are
given by

H≡ Rþ K2 − KijKij − 16πρ ¼ 0; ð1Þ

Mi ≡DjKj
i −DiK − 8πSi ¼ 0; ð2Þ

where K ¼ γijKij is the trace of the extrinsic curvature
(also known as the mean curvature), and R and Di are the
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Ricci scalar and covariant derivative associated with the
3-dimensional spatial metric. The energy density ρ and
momentum densities Si are functions of the matter fields
and their derivatives. These can be derived directly from the
matter action as projections of the stress-energy tensor Tμν.
In the case of modified gravity theories like Einstein scalar
Gauss Bonnet, the additional curvature terms can be treated
as further effective matter sources that depend on higher
order derivatives of the other metric variables.
Including the lapse α and shift βi, there are 16 compo-

nents that must be specified initially, but only four con-
straint equations. Whilst four of the extra components relate
to physical degrees of freedom, the remainder are gauge.
Values that represent free data and those that are fully
determined by the physical scenario are not easy to
separate, and so some must be chosen somewhat arbitrarily.
The result is that there will often be a large number of
possible ways to set the free data that appear to still meet
the physical requirements. However, poor choices can
result in uniqueness and existence problems in the initial
constraints that prevent unique solutions being found.
Many different approaches have been developed for

solving the constraint equations (for reviews see the
standard NR texts [24–26]). These approaches vary in
the degrees of freedom that have their values imposed, and
those that are solved for. The metric and extrinsic curvature
can be decomposed in various ways (e.g., through a
conformal decomposition), allowing for the freely chosen
variables to be more closely identified with a particular
physical interpretation. This can also leave the equations in
a form more amenable to numerical solutions.
One such approach is known as the conformal-

transverse-traceless (CTT) method. In this approach the
extrinsic curvature is decomposed into its trace K and a
traceless tensor Aij. The 3-metric γij is decomposed into a
conformal metric with determinant one γ̄ij, and a conformal
factor ψ, as γij ¼ ψ4γ̄ij. Aij is similarly decomposed as
Aij ¼ ψ−2Āij, and the conformal Āij is further decomposed
into a transverse-traceless part ĀTT

ij and a vector potential
Wi [see Eq. (3)]. The conformal metric γ̄ij, the mean
curvatureK, and the transverse-traceless extrinsic curvature
ĀTT
ij are then imposed to have some values (usually trivially

those of a flat spacetime), and the constraints are used
to solve for the conformal factor ψ and the vector
potential Wi. Āij can then be reconstructed as

Āij ¼ ĀTT
ij þ D̄iWj þ D̄jWi −

2

3
γ̄ijD̄kWk: ð3Þ

In this method, the term in the energy density ρ is
generically problematic, due to the nature of the resulting
elliptic equation for ψ. It is normally only possible to
specify a conformally related density ρ̄, as this allows for

the term in ρ to appear with the “right sign” to guarantee
unique solutions of the elliptic equation for ψ [27].
A modification to the CTT technique, known as CTTK,

was recently proposed to address this limitation, which is
more acute for problems involving fundamental fields as
opposed to fluids [28]. In this approach the variables are
decomposed in the same way, but the elliptic equation for ψ
is split into an algebraic equation for K in terms of ρ, and ψ
is then only required to satisfy Laplace’s equation with a
source term in Āij. The conformal metric γ̄ij and ĀTT

ij still
need to be chosen, but the mean curvature K is now solved
for as part of the algorithm and this simplifies the solution
for ψ. Overall the method was found to be highly robust,
with unique solutions being found by the solver over a wide
range of scenarios.
In this work, the CTTK method has been modified to

solve the full constraint equations of the most general four
derivative, parity invariant scalar-tensor theory of gravity
(4∂ST). It has been shown that the CTT formulation of the
elliptic equations for these theories has unique solutions
in the weak coupling limit [29], and one can expect this to
carry over to the CTTK case. To achieve this, as suggested
in [29], the contributions from the higher-derivative curva-
ture terms in the action are treated as additional sources
that are split between the available degrees of freedom.
The CTTK technique is modified in two different ways,
depending on the boundary conditions of the problem at
hand, to ensure that solutions exist. We describe the
methods in more detail below, and demonstrate their
effectiveness in practice by showing that the solutions
converge as expected.
We follow the conventions in Wald’s book [30]. Greek

letters μ; ν… denote spacetime indices and they run from 0
to 3; Latin letters i; j;… denote indices on the spatial
hypersurfaces and they run from 1 to 3. We set G ¼ c ¼ 1.

II. METHODS

A. Additional terms

In 4∂ST gravity, the Einstein-Hilbert action is modified
to include a scalar field coupled nontrivially to gravity,
through the Gauss-Bonnet term LGB,

S4∂ST ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

− VðϕÞ þ X

þ g2ðϕÞX2 þ λðϕÞLGB

�
; ð4Þ

where X ¼ − 1
2
ð∇μϕÞð∇μϕÞ,

LGB ¼ R2 − 4RμνRμν þ RμνρσRμνρσ; ð5Þ

and g2ðϕÞ and λðϕÞ are smooth functions of ϕ. This is the
most general parity-invariant scalar-tensor theory of gravity
that includes up to four derivatives of the metric, and is an
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example of the wider class of Horndeski theories [31]. The
local magnitude of the coupling λðϕÞ controls the deviation
of the solutions from the GR case, with the g2ðϕÞ term
being generally subdominant for similar coupling constants
and the same field amplitude. Deviations are also amplified
in regions of high curvature (i.e., with a larger Gauss-
Bonnet invariant).
The effects of these additional terms can be included

in ρ and Si, so that the constraints remain as they are in
Eqs. (1) and (2) but with an effective ρ and Si given by

ρ ¼ ρSF þ ρX þ ρGB; ð6Þ

Si ¼ SSFi þ SXi þ SGBi : ð7Þ

Here ρGB and SGBi include higher derivative contributions
from the scalar and tensor metric variables, and ρX and JXi
contain the contributions of the g2ðϕÞ term. Explicitly,

ρGB ¼ ΩM − 2MklΩkl; ð8aÞ

SGBi ¼ ΩiM − 2MijΩj;

− 4ðΩj
½iNj� −ΩjkD½iKj�kÞ; ð8bÞ

ρX ¼ g2ðϕÞ
4

ðΠ2 −DiϕDiϕÞð3Π2 þDiϕDiϕÞ; ð8cÞ

SXi ¼ −g2ðϕÞΠDiϕðΠ2 −DiϕDiϕÞ; ð8dÞ

with

Mij ¼ Rij þ
2

9
γijK2 þ 1

3
KAij − AikAk

j ; ð9aÞ

Ni ¼ −
2

3
DiK þDjA

j
i ; ð9bÞ

Ωi ¼ −4λ0
�
DiΠþ Aj

iDjϕþ K
3
Diϕ

�
− 4λ00ΠDiϕ; ð9cÞ

Ωij ¼ 4λ0ðDiDjϕþ ΠKijÞ þ 4λ00ðDiϕÞDjϕ; ð9dÞ

where Π is the conjugate momentum of ϕ, Ni is the GR
momentum constraint, Ω ¼ γijΩij, and Ωi and Ωij come
from the 3þ 1 decomposition of the Weyl tensor.
The contributions from the kinetic and potential terms

are given by the usual minimally coupled, real scalar terms,

ρSF ¼ 1

2
Π2 þ VðϕÞ þ 1

2
ðDiϕÞðDiϕÞ; ð10Þ

SSFi ¼ −ΠDiϕ: ð11Þ

As mentioned in the introduction, previous work in
such theories has required that ρGB þ ρX ≪ ρSF and

SGBi þ SXi ≪ SSFi everywhere. This reduces the problem
to (approximately) satisfying the regular GR constraint
equations, and still allows the solution to evolve away from
that of GR during the evolution. However, here we are able
to treat the deviations from GR fully nonperturbatively.

B. Choice of components to solve for

As discussed in the Introduction (and in more detail
in [28]), in contrast to the CTT method that imposes a
spatially constant value of the mean curvatureK, and solves
for the conformal factor ψ ¼ ðdet γÞ1=12, the CTTK method
allows both K and ψ to have a spatially varying profile.
The momentum constraint (now with an additional source
term from the spatial variation ofK) is solved as in the CTT
method, for the vector potential Wi, which is further
decomposed into a scalarU and a vector Vi. This additional
flexibility in K can be used to absorb some of the
problematic matter source terms, resulting in a more robust
method for general field configurations. The same approach
will be used here, but we will see that in general the 4∂ST
terms are better absorbed into the elliptic equation for ψ,
rather than in the mean curvature K.
The transverse-traceless part of the extrinsic curvature,

ĀTT
ij , is usually set to zero, which roughly corresponds to a

spacetime containing no gravitational waves. The con-
formal metric is also assumed to be δij for simplicity (i.e.,
conformal flatness is assumed). It should be possible to
apply the same techniques with more general choices of
ĀTT
ij and γ̄ij, such as those that are required for highly

spinning black hole initial data, which would simply result
in additional source terms in the equations. For now we
maintain these choices for simplicity.

C. Black hole spacetimes

With the 4∂ST terms included and an appropriate form
chosen for U (see the Appendix of [28] for a discussion),
we write the Hamiltonian and momentum constraints in
CTTK as follows:

K2 ¼ 24πρSF; ð12Þ

∂j∂
jψ ¼ −

1

8
ψ−7ĀijĀij − 2πψ5ðρGB þ ρXÞ; ð13Þ

∂j∂
jVi ¼

2

3
ψ6

∂iK þ 8πψ6ðSSFi þ SGBi þ SXi Þ: ð14Þ

The GR case with ρ ¼ ρSF and Si ¼ SSFi is derived
in [28]—in what follows we explain the motivation for
the positioning of the additional terms.
In regions of physical relevance, we can demand

from an effective field theory (EFT) perspective that
ρGB þ ρX < ρSF. However, in some regions of high curva-
ture this may not hold. Moreover, the value of ρGB þ ρX is
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not positive definite, and in practice for most cases of
interest it varies between positive and negative regions in
different parts of the spatial slice. For this reason, ρSF and
ρGB þ ρX have been separated between Eqs. (12) and (13).
By including only the positive definite part in Eq. (12), we
avoid the possibility of K2 having a negative source, even
in regions where the additional curvature contributions
dominate. However, since it is also not negative definite,
the ρGB þ ρX term in Eq. (13) is likely to appear with
the “wrong sign” in a linearized expansion of ψ in
certain regions, which violates the conditions of the
maximum principle and removes the guarantee of unique
solutions [27]. In all our test cases (see Sec. III), this has
not caused issues, and no further modification has been
necessary for convergence to a solution. We speculate that
this may be because we also include the contribution from
ĀijĀij in the elliptic equation for ψ, which tends to
stabilize the solutions.1

If the spacetime contains one or more black holes,
divergences will appear in ψ and Āij. This can be dealt
with by decomposing Āij (and therefore U and Vi) into a
black hole part, Ābh

ij , which contains the divergences, and a
regular part, Āreg

ij , which is solved for. The conformal factor
ψ can also be decomposed into a sum of isolated black hole
solutions, ψbh, and the regularized remainder, ψ reg. The
Poisson equations for ψ and Vi can then be solved directly,
or by linearizing around the previous solution and solving
for the error. For example, the results given in Sec. III A are
calculated by fully solving for Vi at each step, and iterating
for ψ as ψ ¼ ψ0 þ δψ .
The forms of Abh

ij and ψbh are given in [28], and are those
proposed by Bowen and York in [32,33].

D. Cosmological spacetimes

For simulations of cosmological spacetimes, periodic
boundary conditions are often used (see [34–44], although
other approaches are possible [45]). In the CTTK method
without a 4∂ST term, the method for solving the constraints
with periodic boundaries is very similar to that for
black hole spacetimes. Again, the constraints reduce to
Eqs. (12)–(14). However, the elliptic equations now impose
a set of integrability conditions, as discussed in [39,46].
In cosmological spacetimes, the differential operator in
Eq. (14) has a nontrivial kernel. Therefore, by the Fredholm
alternative, solutions to this equation (which are necessarily
nonunique) will only exist if the source is in the orthogonal
complement of the kernel—i.e., in the adjoint. Since the
kernel includes constants, it is necessary (but not sufficient)
for the right-hand side of the Poisson equation to equal zero

when integrated over the entire grid. A similar requirement
applies to the right-hand side of Eq. (13) when it is treated
as a constant source. With no 4∂ST term, this simply
corresponds to requiring a periodic distribution of the scalar
field, and ensuring that there is no net momentum flux
through the box in any direction. However, with λðϕÞ ≠ 0,
this is no longer sufficient, as there is no guarantee of the
source terms including ρGB, ρX, SGBi , and SXi averaging to
zero across the grid, and no obvious way of choosing them
such that this is always the case.
In simple cases where only the elliptic equation for ψ is

problematic (e.g., with a simple sinusoidal profile for ϕ and
no conjugate momentum Π), this can be solved by further
dividing K into two parts, one constant and one spatially
varying, which we call respectivelyKC andKGR. The “GR”
part of K satisfies Eq. (12), as in the GR case, sourced
by ρSF, that is

K2
GR ¼ 24πρSF: ð15Þ

The constant part of K, KC, can then be used to compensate
for any violation of the integrability condition for ψ. This is
achieved by setting KC to a value satisfying the condition

K2
C

Z
ψ5

12
dΩþKC

Z
ψ5KGR

6
dΩ

−
Z �

∂j∂
jψ þ 1

8
ψ−7ĀijĀij þ 2πψ5ðρGB þ ρXÞ

�
dΩ¼ 0:

ð16Þ
As a result of these choices, the equation for ψ becomes

∂j∂
jψ ¼ −

1

8
ψ−7ĀijĀij − 2πψ5ðρGB þ ρXÞ

þ 1

12
ψ5K2

C þ 1

6
ψ5KCKGR: ð17Þ

Equation (16) will always have real solutions, unless ρGB

dominates over the combined contributions of ρGR and
ĀijĀij when averaged across the grid.2

The integrability condition for the momentum constraint
can also be spoiled by the presence of various nonlinear
terms in SGBi . With a shift-symmetric or quadratic coupling
and Π ¼ 0, many of these terms are simplified. A sinus-
oidal profile for ϕ then gives a contribution to SGBi that
satisfies this constraint. For a more general SGBi , removing
the assumption of conformal flatness would provide
another source in the constraints, potentially allowing for

1This potential problem could be avoided by amending the
split further such that ρSF → ρþ ¼ ρSF þ ρP and ρGB þ ρX →
ρ− ¼ ρGB þ ρX − ρP, with any ρP that satisfies ρP > 0 and ρP >
ρGB þ ρX everywhere, and ρP → 0 at the boundaries.

2If this is true the weak-coupling condition will not be
satisfied, so the solutions can probably not be stably evolved
anyway. However, we note that real solutions for the initial data
will still be available if the sign of λðϕÞ is chosen to make the
discriminant positive, although this adds a physical restriction on
the coupling.
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this contribution to be cancelled out by a judicious choice.
In our tests below we restrict ourselves to showing that the
method works in the simpler case, and leave more general
conditions to future work.
Even once the source in Eq. (14) is in the adjoint

and the right-hand side of (17) integrates to zero, the
solution to the elliptic equations at each step suffers from
nonuniqueness—the equations have multiple solutions,
where solutions differ by the addition of a constant or
linear term in the equation for the conformal factor,3 and
one or more Killing vectors of the conformally flat metric
in the case of Vi (see [46]). This is addressed by solving
for their values perturbatively, starting with an initial
guess and solving for a small correction ðδψ ; δViÞ at each
step. This perturbative treatment naturally generates a
linear term in the equation for δψ that prevents the
constant and linear modes from growing. The freedom
in δVi can also be eliminated by adding a small linear
coefficient to the Poisson equation for δVi. The addition
of the conformal Killing vectors in Vi is unimportant as
they do not change the resulting value of the extrinsic
curvature Kij [46]. However, any nonuniqueness in ψ
has a physical consequence—its value at the start of the
iteration picks out the final uniquely chosen solution,
and this in turn determines physical properties of the
field—e.g., the density of the gradient terms measured by
normal observers.

III. TESTS

The methods described above for both black hole and
cosmological spacetimes have been tested with a modified

version of the CTTK solver used in [28]. This solver is
constructed using the open-source Chombo [47] code for
finite difference solution of PDEs with Adaptive Mesh
Refinement; in particular, here we adapt their multigrid
solver for elliptic equations. The results are imported into
GRFolres [48], the modified version of the NR evolution
code GRChombo [49,50], to check the constraint violation
using the methods verified in [7,8].
Here we show typical results for both overall conver-

gence to a solution and convergence to the true zero-
constraints solution with increasing resolution. The Chombo

multigrid solver is designed to be second order in all
derivatives, so with the assumption that the errors
are dominated by errors in the derivatives, the solver
errors should also converge at that rate as the resolution is
increased. This means that doubling the resolution should
reduce the constraints by a factor of four.4 These tests have
been conducted with a variety of coupling functions and
potentials, although (as described above) the possible
scalar field configurations are restricted in the case of
periodic boundaries. Figure 1 shows the convergence of
the constraint violations to zero (with a fixed resolution)
as the number of nonlinear iterations increases for the
black hole spacetime described in Sec. III A. This shows
good convergence to a solution of the full nonlinear
problem within ∼10 iterations. In practice, this global
measure is rather crude and ignores the fact that in some
regions with small errors (often nearer the boundaries in
black hole spacetimes) the solver takes longer to show
good local convergence. More information can be gained
by checking the spatial profiles. The convergence tests

FIG. 1. Plots of the L2 norm across the grid of the Hamiltonian constraint violation H and the momentum constraint violation
M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MiMi

p
, normalised to their initial values H0 and M0, against non-linear iterations of the elliptic solver for the black hole

spacetime with a dumbbell scalar field configuration shown in Fig. 2(b). We see that the solver converges to a good solution within ten
iterations. The behavior is similar for the cosmological initial data.

3This lack of uniqueness arises when the right-hand side of
Eq. (17) is treated as a constant source, which happens at each
nonlinear iteration if we do not solve perturbatively for ψ.

4Only two resolutions are required for the convergence tests
since the true solution is known, i.e., the constraints should be
zero across the grid.
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with increasing resolution for two particular cases are
shown below in Figs. 2 and 3. These plots show that the
solver is consistently displaying the desired second-order
convergence, but in the black hole case the solver was run
for approximately 1000 nonlinear iterations. Given that
the solver is much less costly to run than the evolution
code, such a high number of steps is not prohibitive; with
three levels of refinement, this takes a few hours with
∼100 CPU cores on a typical computing cluster. In the
cosmological case, where only one level is used, it takes
under an hour.

A. Tests of black hole method

The black hole method described in Sec. II C has been
tested with a dumbbell-shaped scalar field and momentum
configuration around a central black hole with dimension-
less spin coefficient a=M ¼ 0.5 and a spin axis along the z
direction, where M is the total bare mass. The potential
and coupling functions are both chosen to be quadratic,
i.e., λðϕÞ ¼ 1

2
λ2GBϕ

2 and VðϕÞ ¼ 1
2
m2ϕ2, with m ¼ 1 and

λGB=M ¼ 1, a scalar field amplitude of 0.1, and a
momentum amplitude of 0.01. In this test g2ðϕÞ was set

FIG. 2. Scalar-field configuration and convergence plots for a growing dumbbell scalar-field configuration around a spinning
black hole. (a) Dumbbell scalar field configuration around central black hole—this profile is used for both the field and its conjugate
momentum and (b) local values of the Hamiltonian and momentum constraint violations along a line for two different resolutions,
showing second order convergence.

FIG. 3. Scalar-field configuration and convergence plots for a sinusoidal scalar-field configuration and periodic boundary conditions.
(a) Sinusoidal scalar field configuration with periodic boundaries. Here the conjugate momentum of the field is set to zero (b) local values
of the Hamiltonian and momentum constraint violations along a line for two different resolutions, showing second order convergence.
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to zero; its impact on the solutions was found to be
negligible. This configuration was inspired by the scalar
field configuration that the field has been found to settle
into in spin induced cases—see for example the plots
in [8,20]—although in such cases the field is massless. We
do not attempt to match the stationary configuration
exactly since this is simply a proof of principle, and we
have tested other spatial configurations that show similar
results to the ones here. Figure 2(a) shows the amplitude
of the scalar field across a slice of constant y-coordinate,
passing through the singularity. Figure 2(b) then shows
the convergence as the grid spacing is halved. The results
with a finer grid are approximately second order across
the grid, other than at grid boundaries. In the Hamiltonian
constraint the errors are not fully dominated by the
derivatives, which is likely to cause the small deviation
from exact second-order convergence in the central
region. The convergence towards a solution for a fixed
resolution is also shown, in Fig. 1.
This method has also been tested with initial data for

a black hole binary. The same coupling functions and
amplitudes as the dumbbell test were used for two black
holes with Bowen-York masses m1;2 ¼ 0.5M, momenta
jPj ¼ 2M perpendicular to their separation of 12M, and
dimensionless spin parameters a=M ¼ 0.6. In this case we
set g2ðϕÞ=M2 ¼ 1, although as above this only has a small
impact on the solutions. A Gaussian scalar field with
momentum was imposed over each black hole, as shown
by the contours in Fig. 4, along with the change in the
conformal factor over that of the bare punctures.

B. Tests of cosmological spacetimes method

A similar test was conducted with periodic boundary
conditions, and a sinusoidal profile for ϕ in each direction.
The same coupling and potential functions were used,
with m ¼ 0.5 and the other parameters unchanged. As
explained above, we needed to set the momentum of
the field Π to be zero in this case. Figure 3 shows the
scalar field configuration and tests of convergence with
increasing resolution in the periodic case, and also dis-
plays second-order convergence across the grid. The
speed of convergence with nonlinear iterations is similar
to that in the black hole case.

IV. DISCUSSION AND FUTURE WORK

In this work the CTTK method was adapted to solve the
constraint equations of 4∂ST gravity, treating the addi-
tional curvature terms as another source to the Poisson
equations of the GR case, as suggested in [29]. Whilst
such a treatment is a sensible first guess given that the new
terms should be small in an effective theory (and given
that in the weakly coupled regime a unique solution has
been shown to exist [29]), it is far from clear that such an
approach will work in practice given the high nonlinearity
of the problem, especially as the coupling is made large.
We have demonstrated that this is the case, and that the
method is robust, provided certain choices are made about
the split of the new terms between the available degrees
of freedom. In fact, the method appears to be robust up to
the strongly coupled regime of the theory, with coupling
parameters of order 1. Beyond this regime the well-
posedness of the evolution is no longer guaranteed, and
in practice it will break down [3–5,19–21]; therefore the
solutions beyond this point are not of particular physical
interest.
This adapted method has been tested for both black

hole and cosmological spacetimes, and shows appropriate
convergence in both cases. Techniques have also been
described for guaranteeing the existence and uniqueness of
solutions with either asymptotically flat or periodic boun-
dary conditions.
This is the first method that has been demonstrated to

work for fully satisfying the constraint equations for
generic initial data in 3þ 1 dimensions, and it therefore
expands the possibilities for numerical investigation of
these theories. Future applications of this technique may
include simulations of black holes with nontrivial initial
scalar field configurations, and tests of inflation in 4∂ST
gravity with inhomogeneous initial conditions. It would
also be useful to extend the method to permit nonconfor-
mally flat spacetimes (which could address the issues with
integrability of the momentum constraints that we encoun-
tered in the cosmological case) and to check that a similar
approach works in the alternative extended conformal thin
sandwich (XCTS) method [51,52], in which one solves also

FIG. 4. Correction to the conformal factor of the bare punctures
for a black hole binary, with a superimposed contour plot
showing the Gaussian scalar field over each black hole.
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for the lapse and the shift functions to achieve a specific
initial time evolution of the variables. XCTS is more widely
used in practice than CTT and offers a number of
advantages, especially for identifying equilibrium initial
data. We anticipate that the approach developed here should
work equally well in such cases, but we hope to see this
demonstrated in future work by groups working with such
solvers.
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[20] D. D. Doneva, L. Aresté Saló, K. Clough, P. Figueras, and
S. S. Yazadjiev, Testing the limits of scalar-Gauss-Bonnet
gravity through nonlinear evolutions of spin-induced scala-
rization, arXiv:2307.06474.

[21] F. Thaalba, M. Bezares, N. Franchini, and T. P. Sotiriou,
Spherical collapse in scalar-Gauss-Bonnet gravity: Taming
ill-posedness with a Ricci coupling, arXiv:2306.01695.

[22] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Modified
gravity theories on a nutshell: Inflation, bounce and late-
time evolution, Phys. Rep. 692, 1 (2017).

[23] R. Arnowitt, S. Deser, and C.W. Misner, Dynamical
structure and definition of energy in general relativity, Phys.
Rev. 116, 1322 (1959).

[24] M. Alcubierre, Introduction to 3+1 Numerical Relativity
(Oxford University Press, New York, 2008).

[25] T. W. Baumgarte and S. L. Shapiro, Numerical Relativity:
Solving Einstein’s Equations on the Computer (Cambridge
University Press, Cambridge, England, 2010).

[26] M. Shibata, Numerical Relativity (World Scientific,
Singapore, 2016).

[27] T. W. Baumgarte, N. O. Murchadha, and H. P. Pfeiffer, The
Einstein constraints: Uniqueness and non-uniqueness in
the conformal thin sandwich approach, Phys. Rev. D 75,
044009 (2007).

[28] J. C. Aurrekoetxea, K. Clough, and E. A. Lim, CTTK: A
new method to solve the initial data constraints in numerical
relativity, Classical Quantum Gravity 40, 075003 (2023).

[29] A. D. Kovacs, On the construction of asymptotically flat
initial data in scalar-tensor effective field theory, arXiv:
2103.06895.

[30] R. M. Wald, General Relativity (Chicago University Press,
Chicago, USA, 1984).

[31] G.W. Horndeski, Second-order scalar-tensor field equations
in a four-dimensional space, Int. J. Theor. Phys. 10, 363
(1974).

[32] J. M. Bowen, General form for the longitudinal momentum
of a spherically symmetric source, Gen. Relativ. Gravit. 11,
227 (1979).

[33] J. M. Bowen and J. W. York, Time-asymmetric initial data
for black holes and black-hole collisions, Phys. Rev. D 21,
2047 (1980).

[34] W. E. East, M. Kleban, A. Linde, and L. Senatore, Begin-
ning inflation in an inhomogeneous universe, J. Cosmol.
Astropart. Phys. 09 (2016) 010.

[35] M. Corman and W. E. East, Starting inflation from inho-
mogeneous initial conditions with momentum, arXiv:2212
.04479.

[36] K. Clough, E. A. Lim, B. S. DiNunno, W. Fischler, R.
Flauger, and S. Paban, Robustness of inflation to inhomo-
geneous initial conditions, J. Cosmol. Astropart. Phys. 09
(2017) 025.

[37] K. Clough, R. Flauger, and E. A. Lim, Robustness of
inflation to large tensor perturbations, J. Cosmol. Astropart.
Phys. 05 (2018) 065.

[38] J. C. Aurrekoetxea, K. Clough, R. Flauger, and E. A. Lim,
The effects of potential shape on inhomogeneous inflation,
J. Cosmol. Astropart. Phys. 05 (2020) 030.

[39] E. Bentivegna, Solving the Einstein constraints in periodic
spaces with a multigrid approach, Classical Quantum
Gravity 31, 035004 (2014).

[40] J. Y. Widdicombe, T. Helfer, D. J. E. Marsh, and E. A. Lim,
Formation of relativistic axion stars, J. Cosmol. Astropart.
Phys. 10 (2018) 005.

[41] C.-M. Yoo, T. Ikeda, and H. Okawa, Gravitational collapse
of a massless scalar field in a periodic box, Classical
Quantum Gravity 36, 075004 (2019).

[42] W. G. Cook, I. A. Glushchenko, A. Ijjas, F. Pretorius, and
P. J. Steinhardt, Supersmoothing through slow contraction,
Phys. Lett. B 808, 135690 (2020).

[43] A. Ijjas, W. G. Cook, F. Pretorius, P. J. Steinhardt, and
E. Y. Davies, Robustness of slow contraction to cosmic
initial conditions, J. Cosmol. Astropart. Phys. 08 (2020)
030.

[44] E. de Jong, J. C. Aurrekoetxea, and E. A. Lim, Primordial
black hole formation with full numerical relativity, J.
Cosmol. Astropart. Phys. 03 (2022) 029.

[45] M. Corman, W. E. East, and J. L. Ripley, Evolution of
black holes through a nonsingular cosmological bounce,
J. Cosmol. Astropart. Phys. 09 (2022) 063.

[46] D. Garfinkle and L. Mead, Cosmological initial data for
numerical relativity, Phys. Rev. D 102, 044022 (2020).

[47] M. Adams, P. Colella, D. T. Graves, J. N. Johnson, N. D.
Keen, T. J. Ligocki, D. F. Martin, P. W. McCorquodale,
D. Modiano, P. O. Schwartz, T. D. Sternberg, and B.
Van Straalen, Chombo Software Package for AMR
Applications—Design Document, Lawrence Berkeley
National Laboratory, Technical Report No. LBNL-6616E.
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