
Citation: Alrubayyi, H.; Goteng, G;

Jaber, M. AIS for Malware Detection

in a Realistic IoT System: Challenges

and Opportunities. Network 2023, 3,

522–537. https://doi.org/10.3390/

network3040023

Academic Editor: Sidi Mohammed

Senouci

Received: 1 June 2023

Revised: 20 October 2023

Accepted: 3 November 2023

Published: 16 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

AIS for Malware Detection in a Realistic IoT System:
Challenges and Opportunities
Hadeel Alrubayyi , Gokop Goteng and Mona Jaber *

School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK;
h.s.alrubayyi@qmul.ac.uk (H.A.); g.l.goteng@qmul.ac.uk (G.G.)
* Correspondence: m.jaber@qmul.ac.uk

Abstract: With the expansion of the digital world, the number of Internet of things (IoT) devices
is evolving dramatically. IoT devices have limited computational power and a small memory.
Consequently, existing and complex security methods are not suitable to detect unknown malware
attacks in IoT networks. This has become a major concern in the advent of increasingly unpredictable
and innovative cyberattacks. In this context, artificial immune systems (AISs) have emerged as an
effective malware detection mechanism with low requirements for computation and memory. In
this research, we first validate the malware detection results of a recent AIS solution using multiple
datasets with different types of malware attacks. Next, we examine the potential gains and limitations
of promising AIS solutions under realistic implementation scenarios. We design a realistic IoT
framework mimicking real-life IoT system architectures. The objective is to evaluate the AIS solutions’
performance with regard to the system constraints. We demonstrate that AIS solutions succeed in
detecting unknown malware in the most challenging conditions. Furthermore, the systemic results
with different system architectures reveal the AIS solutions’ ability to transfer learning between IoT
devices. Transfer learning is a pivotal feature in the presence of highly constrained devices in the
network. More importantly, this work highlights that previously published AIS performance results,
which were obtained in a simulation environment, cannot be taken at face value. In reality, AIS’s
malware detection accuracy for IoT systems is 91% in the most restricted designed system compared
to the 99% accuracy rate reported in the simulation experiment.

Keywords: artificial immune systems (AIS); Amazon Web Services (AWS); cloud computing; Internet
of things (IoT); malware detection

1. Introduction

The Internet of things (IoT) paradigm is continuously revolutionizing the world
we live in through innovative IoT applications. As a result, the number of IoT devices
has increased exponentially since 2002 when small security cameras were installed, and
the market is expected to grow to USD 11 billion in 2026 [1]. IoT systems consist of
lightweight devices connected to the internet giving a real-time interaction in advanced
networks [2]. Lightweight devices indicate devices with a small battery, small memory, and
constrained processing power, thus with limited options for complex security methods [3].
The proliferation of IoT devices and their spiral role in critical applications, such as e-health
and smart cities, increases the risk of security attacks. In fact, in the first six months of
2021, there were almost 1.5 million attacks against IoT devices [4]. As detailed in [3],
the interconnectivity of IoT devices and the exposure of often private data pose a major
security challenge to the spread of IoT systems. Postquantum cryptosystems for the
Internet of things is discussed in [5] with a focus on the emerging lightweight lattice-based
cryptography (LW-LBC) as a promising solution to secure data transmission in view of
its low-power footprint, narrow area, lightweight bandwidth requirements, and good
performance. This work focuses on IoT malware attacks which are malicious files that are

Network 2023, 3, 522–537. https://doi.org/10.3390/network3040023 https://www.mdpi.com/journal/network

https://doi.org/10.3390/network3040023
https://doi.org/10.3390/network3040023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/network
https://www.mdpi.com
https://orcid.org/0000-0002-2028-1597
https://orcid.org/0000-0002-6450-6700
https://orcid.org/0000-0002-0908-3207
https://doi.org/10.3390/network3040023
https://www.mdpi.com/journal/network
https://www.mdpi.com/article/10.3390/network3040023?type=check_update&version=1

Network 2023, 3 523

installed on devices by hackers without the user’s knowledge or permission. One of the
major malware attacks was in March 2021 against Verkada [6]. Hackers managed to gain
access to the company’s security cameras invading the privacy of many major locations,
such as hospitals and police stations.

In the past years, many effective methods have been proposed to detect such attacks.
These methods can be categorized as either signature-based or behavior-based [3]. The
signature-based technique consists in comparing incoming files to an existing list of known
malware attacks. This method suffers from two drawbacks. Firstly, often times, malware
files are encrypted which would then require extensive processing time to extract their
signature. Secondly, signature-based techniques are limited to detecting known malware
and fail to detect new attacks. In contrast, the behavioral-based technique can detect un-
seen malware since it is designed to analyze the behavior of the file rather than reading
its signature. To this end, this technique first collects and interprets information about the
incoming file and matches it with the known legitimate behavior of benign files. However,
behavior-based techniques are complex and computationally expensive, and their effec-
tiveness is negatively impacted with the increase in the number of files to be examined.
Readers are encouraged to refer to [3] for a detailed survey of malware detection techniques
in the IoT and other systems.

Signature-based methods are not sufficient to secure IoT devices from unknown
malware attacks. Moreover, behavior-based methods are expensive to install in IoT devices.
Indeed, online detection of malware-attacks on IoT devices is extremely difficult, which
has led researchers to consider an alternate approach which consists in shrinking the attack
surface in order to reduce the threat of the attack [7]. Such an approach would require IoT
devices to undergo stringent security tests before being deployed. A promising emerging
approach for malware detection in currently deployed IoT systems leverages artificial
immune systems (AISs). AIS methods emulate the behavioral patterns of the adaptive
immune system within the human body to identify and detect attacks [8]. AIS methods
are lightweight, adaptive, and distributed, hence fitting the requirements of IoT malware
detection. The advantages of using AISs to secure the IoT systems are discussed in [3,9],
showing that the NPS is the most promising method compared to state-of-the-art solutions.
However, these reported results are based on ideal simulation environments and do not
reflect the constraints of realistic IoT systems in terms of memory and processing power.
In this work, we examine the realistic gains and reveal hidden challenges of leading AIS
methods by implementing these in actual IoT systems with differing characteristics. Our
aim is to delve into the implementation implications of an AIS within a realistic IoT system,
shedding light on its practical applications and challenges. While prior work validates
IoT security methods at a device level using field-programmable gate array (FPGA) or a
Raspberry Pi, such as [10,11], this article aims to validate the AIS methods at a system level
with multiple devices. For this reason, we utilize Amazon Web Services (AWS) to simulate
realistic IoT system scenarios.

Contribution and Paper Structure

State-of-the-art work in AISs such as [3,9] demonstrates the potential of AISs in
IoT malware detection; however, no existing work validates this approach in a realistic
implementation. In this work, we present the first study that examines the applicability of
AIS methods in an IoT-like architecture under different constraints and datasets:

• We use multiple state-of-the-art datasets with different types of malware attacks in the
IoT to run AIS solutions for malware detection. We benchmark the results against the
state-of-the-art intrusion detection methods that use the same datasets.

• We propose an AWS-enabled validation framework for the evaluation of AIS malware
detection solutions, under realistic architecture and characteristics.

• The proposed framework is used to evaluate the performance of two leading AIS
solutions under constrained systems. The memory size is found to be the most limiting

Network 2023, 3 524

factor that results in under-par performance compared to the reported simulation
results for both solutions.

• We propose the first trial of transfer learning within IoT systems to combat the con-
strained memory in IoT devices. We demonstrate the transfer learning effectiveness of
AIS solutions in securing the IoT.

In Section 2, we present relevant research concerning malware detection in IoT systems
utilizing AIS methodologies. In Section 3, we present using multiple datasets to run AIS
solutions for malware detection. In Section 4, we present the AIS solutions’ implementation
in a realistic setup. We describe the IoT systems’ architectures and the problem formulation.
In Section 5, we present the implementation results, performance analysis, and discussion.
We finally conclude in Section 6.

2. State-of-the-Art AIS Solutions

AIS is a discipline influenced by the immune system of the human body. In the
adaptive immune system of the human body, B-cells and T-cells work together as primary
agents to recognize antigens [12]. Antigens are any foreign substance entering the body.
Once an antigen is recognized, the immune system response is triggered to produce
antibodies. Similarly, AIS methods use classifiers to detect any malicious files that are
not part of the system [13,14]. AIS methods require less computational power and time;
therefore, they are a good fit for malware detection in the IoT [3].

We present promising state-of-the-art malware detection solutions using AIS tech-
niques. The first AIS algorithm we review is a combination of negative selection and neural
networks methods (NSNN) for intrusion detection in the IoT [15]. The goal of designing
NSNN is to meet the IoT devices’ properties, mainly lightweight and distributive. The
highest F1-score that NSNN achieve is 0.77 for denial-of-service attack detection. This
approach is restricted to creating negative selection and employing a neural network. Also,
only the simulation results of the methods are published, and there is no presented way to
implement this method online.

The second AIS algorithm we review is a combination of negative and positive selec-
tion for intrusion detection in the IoT (MNSA) [16]. The findings indicate that the MNSA
algorithm can identify up to 34% of intrusions without prior knowledge about nonself.
Furthermore, the MNSA can validate over 90% of the identified files. However, a significant
drawback of this approach is that the results were achieved using random strings rather
than real malware files. Moreover, the memory needed to generate detectors as calculated
in [3] was very high, which does not make it a good candidate to secure the IoT systems.

The third AIS algorithm we review is the NPS algorithm presented in [9]. The NPS
uses a combination of negative detectors to recognize nonself data and positive detectors
to recognize self-data. Also, the original negative selection algorithm generates 12-bit-size
detectors, while the NPS generates 16-bit-size detectors. The authors prove the efficiency
of combining both techniques and generating large-size detectors by presenting a high
detection accuracy rate with minimal false negatives. The results presented are for a
simulation of the NPS method and it was not run on a real-time platform.

Since the NPS is the recent promising solution for malware detection in the IoT, in
this work we first ran the NPS using multiple datasets. The aim of this experiment was to
validate the accuracy of the detection results of the method under different circumstances,
such as different malware attack types and different file sizes. Second, we implemented
the NPS using a real-time platform. We created different IoT system architectures to test
the AIS solutions efficiency in detecting unknown malware attacks while minimizing the
memory utilization in the IoT device. We also implemented the MNSA, which is the second
promising AIS solution for malware detection, using the same scenarios. We conducted a
quantitative analysis studying the detection behavior of AIS solutions in a realistic setup.
In the next sections, we present the AIS solutions methodology, the simulation results using
multiple datasets, the implementation including the IoT system architectures and problem
formulation, and results and discussion.

Network 2023, 3 525

Most of the presented AIS methods have inherent limitations when applied to IoT
malware detection. For instance, NSNN employ a neural network that requires a high
computation power whereas the MNSA consumes a high amount of memory to generate
the required detectors. Given that IoT devices are often constrained with respect to both
computation power and memory, the promising model performance may not be applicable
in a realistic scenario. The NPS algorithm stands out as the best-performing AIS model with
the least memory and computation power requirements. Nonetheless, the NPS algorithm
has not yet been validated in a realistic IoT architecture with differing datasets. This work
aims to bridge this gap and therefore offer a comprehensive study of AISs in IoT malware
detection under realistic conditions.

The methodology of leading AIS solutions, NPS and MNSA, is similar and comprises
two stages: the detectors generation stage and the detection stage (see Figure 1). In the
detectors generation stage, two different sets of detectors are generated: the negative
detectors, represented as CNeg, which do not match self-data, and the positive detectors,
represented as CPos, which match self-data. In the detection stage, if an incoming file
matches one of the negative detectors, it is tagged as a malicious file. In contrast, if an
incoming file matches one of the positive detectors, it is tagged as a benign file.

Figure 1. Stages for detector generation and detection in artificial immune systems. The new file
represents incoming files which may be benign or malicious.

3. NPS Simulations and Evaluation

In this section, we first describe the datasets used in our simulations to evaluate the
leading AIS solution, the NPS algorithm [9]. In addition to the widely used NSL-KDD
dataset [17] used in [3,9], we present new NPS results with two recent datasets that were
created by the intelligent security group at the University of New South Wales (UNSW)
Canberra. The first dataset is the Bot-IoT dataset and the second one is the UNSW-NB15. Next,
we benchmark the newly obtained results with existing works that employ the same datasets
to highlight the systematic superiority of the NPS algorithm regardless of the dataset.

3.1. NSL-KDD Dataset

The NSL-KDD dataset is an extension of the KDD’99 dataset [18], aiming to eliminate
redundant records present in the original KDD’99 dataset. This refinement led to a reduction
in the number of borderline records, setting it apart from other datasets. It has gained
widespread popularity for evaluating AIS methods, including NPS and NSNN methods.
The dataset’s traffic data were captured using 420 machines and 30 servers across 5 distinct
departments. While not IoT-specific, the NSL-KDD dataset encompasses diverse malware
attack types and provides a range of file features, making it well suited for experimentation
in this context. See the details of the dataset in Table 1.

Network 2023, 3 526

Table 1. NSL-KDD dataset.

NSL-KDD Dataset Features

Total number of records over 1,074,992

Attack Files 262,178

Benign files 812,814

Types of attacks
Brute-force, Heartbleed attack, botnet,
denial of service, distributed denial of service, Web attacks,
infiltration of the network from inside

Number of traffic features 80

Some of the traffic features
Destination port, flow duration, average size of
packet, number of forward packets per second,
number of backward packets per second

3.2. Bot-IoT Dataset

The Bot-IoT dataset was developed by simulating a realistic network environment that
encompasses both regular and botnet-related network activity. This dataset encompasses
various types of attacks such as DDoS, DoS, operating system (OS) and service scan,
keylogging, and data exfiltration. (see Table 2). The Bot-IoT is introduced and explained by
the authors in [19–23].

Table 2. Bot-IoT Dataset.

Bot-IoT Dataset Features

Total number of records over 73,000,000

Attack files 73,360,900

Benign files 9543

List of attacks
DDoS, DoS,
operating system (OS) and service scan,
keylogging and data exfiltration attacks

Number of traffic features 46

Some of the traffic features
Destination port, flow duration, average size of
packet, number of forward packets per second,
number of backward packets per second

3.3. UNSW-NB15 Dataset

The UNSW-NB15 dataset was generated using the IXIA PerfectStorm tool, blending
actual contemporary normal activities with artificially created contemporary attack behav-
iors. This dataset encompasses nine attack categories: fuzzers, analysis, backdoors, dos,
exploits, generic, reconnaissance, shellcode, and worms (refer to Table 3). The authors
introduced and provided an explanation of the UNSW-NB15 dataset in [24–29].

Network 2023, 3 527

Table 3. UNSW-NB15 Dataset.

UNSW-NB15 Dataset Features

Total number of records over 25,000,000

Attack files 321,283

Number of benign files 2,218,761

List of attacks
Fuzzers, analysis, backdoors,
DoS, exploits, generic,
reconnaissance, shellcode and worms

Number of traffic features 49

Some of the traffic features
Destination port, flow duration, average size of
packet, number of forward packets per second,
number of backward packets per second

3.4. Performance Analysis of NPS

In this section, we first summarize the performance of published malware detection
algorithms using both UNWS datasets followed by the NPS simulations results. First, the
authors in [30] presented the LSTM-based unsupervised deep learning model for malware
detection in the IoT. The authors reported a 96% detection rate accuracy for running their
model using both the Bot-IoT and UNSW-NB15 datasets combined. The main focus of this
work is on detecting DoS and DDoS attacks. Second, the method presented in [31] achieved
a 99% detection accuracy rate using the UNSW-NB15 dataset; however, the number of
classes used for the classification was unclear. Next, the method presented in [32] achieved
a 70% detection accuracy rate using the UNSW-NB15 dataset. The results were obtained
using only 10% of the total number of records in the dataset. Similarly, the authors in [33]
used only 10% of the total number of records in the UNSW-NB15 dataset and reported a 89%
detection rate accuracy. Finally, the feed-forward ANN (FNN) and self-normalized neural
network (SNN) presented in [34] used the Bot-IoT for their experiment. They reported a
95% detection accuracy rate for the FNN and 91% for the SNN. They only used 20% of the
total number of records and 10 best features to run the proposed solutions.

We ran the NPS algorithm with each of the UNSW datasets and reproduced the results
with the NSL-KDD dataset under two scenarios: 20 detectors (see Figure 2) and 30 detectors
(see Figure 3). Details of the implementation and a description of detectors are available
in [9]. The detection accuracy rate was calculated as in Equation (1) presented in [9] where:

• True positive (TP): malware is detected as a malicious application;
• True negative (TN): a benign application is detected as a nonmalicious application;
• False positive (FP): a benign application is detected as a malicious application;
• False negative (FN): malware is detected as a nonmalicious application.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

In addition, we calculated the precision (Equation (2)), recall (Equation (3)), and F1-
score (Equation (4)) (as presented in [9]) to underline the performance of the algorithm
regardless of the imbalance ratio in each dataset.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

Network 2023, 3 528

The figure below (Figure 2) shows the performance analysis of running the NPS
algorithm using the NSL-KDD, Bot-IoT, and UNSW-NB15 datasets with 20 detectors in
each set, CPos and CNeg. The NPS algorithm achieves high detection performance using all
three datasets. The detection accuracy is up to 92%, the precision rate is up to 95%, and
the recall rate is up to 97%. The results of creating 30 detectors in each set, negative and
positive, using multiple datasets are shown in Figure 3. The detection accuracy goes up to
99%, the precision rate is 99%, and the recall rate is close to 100%.

Figures 2 and 3 show a negligible gap when running the NPS using the three datasets.
This difference is justifiable by the different number of records and types of attacks in each
of the datasets. Therefore, this performance analysis shows the effectiveness of the NPS
algorithm in detecting unknown malware attacks in IoT systems.

Figure 2. Running the NPS algorithm using multiple datasets—20 detectors results.

Figure 3. Running the NPS algorithm using multiple datasets—30 detectors results.

As anticipated, the NPS algorithm outperforms the state-of-the-art solutions listed here,
achieving a higher detection accuracy rate by up to 42% whilst requiring less computation

Network 2023, 3 529

power than those based on neural networks [30,31,34]. This validates the claim that the
NPS algorithm is fit to secure the IoT from unknown malware attacks.

Despite the encouraging results obtained with the NPS algorithm across the three
different datasets, it still remains to be validated in a realistic IoT system which is the target
of the next section.

4. AIS Solutions’ Implementation

This work investigates the relationship between, on one hand, the achievable per-
formance of AIS malware detection algorithms and on the other hand, the hardware and
system architecture limitations. First, we present the IoT system architectures in Section 4.1.
Then, we formulate the malware detection problem as a function using these factors and
the related labeled dataset in Section 4.2. We identify the hardware and software factors
and their realistic range in Section 4.3.

We implemented the NPS algorithm and the MNSA, the leading state-of-the-art AIS solu-
tions proposed in [9,16], using a real-time platform. This allowed us to conduct a quantitative
performance analysis and study the behavior of the AIS solutions in realistic setups.

4.1. IoT System Architecture

In this work, we used AWS to create the desired architecture for the implementa-
tion. We introduce the main services used in this section and a brief description of each
service [35].

• Amazon Elastic Compute Cloud (Amazon EC2) provides scalable computing capacity
in the AWS Cloud. Users have total control over the EC2 configuration as it is not an
AWS managed service.

• Virtual Private Cloud (Amazon VPC) creates a logically isolated virtual network when
launching AWS resources. This service provides an extra layer of security to the
implementation by using public and private subnets, and network access control
list configuration.

• AWS IoT Core enables IoT devices connected to the AWS cloud. It supports a large
number of devices and messages by providing reliable and secure services.

• Device Gateway: the entry point for IoT devices connected to AWS
• AWS Lambda runs programming code in a serverless computing service in response

to events and automatically manages the underlying computing resources.
• Cloudwatch: monitoring and management services for AWS resources.

In this implementation, since we had total control over the configuration of the EC2,
we used it to configure the IoT device to be connected to the network. We created two
system architectures (see Figures 4 and 5) using AWS to run this experiment to mirror real
system scenarios and conduct a performance analysis.

4.2. Problem Formulation

In this implementation, we used the CSE-CIC-IDS2018 dataset (available in [17]).
We used this particular dataset for mainly two reasons. First is the fact that it was used
in the simulation experiment for both methods, NPS and MNSA. The other reason for
using this dataset is that AWS computing platforms were used to collect the traffic data
for this dataset. Consequently, to obtain more coherent and accurate results, we ran the
implementation on AWS using the IDS2018 dataset. This dataset contains seven different
malware attacks: brute-force attack, Heartbleed attack, botnet, denial-of-service attack,
distributed denial-of-service attack, web attacks, and infiltration of the network from
inside [3].

Network 2023, 3 530

Figure 4. IoT system architecture implementation using AWS-1-.

Figure 5. IoT system architecture implementation using AWS-2-.

Network 2023, 3 531

We represented the total number of dataset records as DTotal , and we represented each
record in DTotal as Di, where: i = [1 to |DTotal|].

The size of Di was represented as Z, and each Di included the same number of features
represented as FZ, where:

F = [f1, f2, f3, . . . FZ] (5)

Each record Di was associated with the ground truth Yi where Yi = 0, 1. Yi = 0
indicates that the record is benign and Yi = 1 indicates that it is malicious. We defined Y as
the vector including all the labels of Yi for: i = [1 to |DTotal|].

The dataset DTotal was split into two parts, DTrain and DTest, where:

DTotal = DTrain ∪ DTest (6)

Different from [3,9], this work examines the realistic implementation of AIS solutions
in constrained IoT systems. The objective of malware detection mechanisms is surely
to maximize the detection rate of unknown malware while reducing false alarms (when
benign files are wrongly classified as malicious). Thus, we maximized the number of
correct predictions (Ŷ) by the AIS solutions (see Equation (7)). To this end, we studied
how the different parameters of the AIS algorithms could be tuned to accommodate the
given constrained conditions of the IoT systems, while we still achieved a high detection
performance of unknown malware. In particular, we found the suitable number of positive
and negative detectors, CPos and CNeg, the size of each detector L, and the possible size of
DTrain (indicated as |DTrain|), that would allow the highest number of correct predictions.
We defined the range of the minimum and the maximum number of detectors as ND, and
the range of the minimum and the maximum number of DTrain as NT. Equation (7) presents
the problem formulation and the optimization constraint defined by the total memory TM.

max
|DTrain |,CPos ,CNeg ,L

|DTest |

∑
k=1

Ŷk == Yk (7)

s.t.

ND((Cpos + Cneg)× L) + NT(DTrain × Z) <= TM (8)

4.3. Implementation

The system configuration and the memory size range were inspired by the Internet of
medical things (IoMT) devices presented in [36] for heart monitoring. First, the volume
size represented the memory size of the IoT device used in each system. The memory
size ranged between 30 GB and 128 GB. Since IoT devices are lightweight with a small
memory and computation capacity, we only increased the volume size to 128 GB to fit the
IoT devices’ requirements and mimic real-life scenarios. Second, the size of DTrain was 25%
of DTotal and the size of DTest was 75% of DTotal . The size of DTotal varied depending on
the experiment undertaken (see Table 4). This was decided based on the memory capacity,
method performance, and CPU utilization. In all five systems, we used only one memory
and one CPU in the IoT device. We set the memory performance from moderate to low, and
we used only the TCP protocol. This setup mimicked the lightweight, low-memory-capacity
IoT devices often connected to the network.

We explain the setup and the variable values for each system. We set the values for
the following variables in Table 4: the volume size, DTotal , and the number of devices to be
connected to the network.

Network 2023, 3 532

Table 4. IoT system specifications for all systems.

System 1 System 2 System 3 System 4 System 5

Volume size 30 GB 32 GB 64 GB 128 GB 30 GB
|DTotal| 12,000 14,000 28,000 400,000 24,000
Number of IoT devices One One One One Two

The table below (Table 5) shows the size and the number of detectors used in this
implementation for the NPS algorithm and MNSA.

Table 5. Detectors’ size used for the NPS and MNSA.

NPS MNSA

|CPos| 30 20
|CNeg| 30 150
|L| 16 12

We used the system architecture shown in Figure 4 for the first four systems where
we connected only one IoT device. In the fifth setup of this implementation (System 5),
we connected two IoT devices to the IoT core as shown in Figure 5. As demonstrated in
the figure, The traffic went both ways between the two IoT devices. The algorithm was
implemented and trained on one IoT device, then it was tested using the traffic coming
from IoT Core and the other IoT device. Since the load was divided between two devices
in this setup, we used the total number of DTotal in one of the IoT devices in the detector
generation stage of the method. Then, we used the total number of DTotal in the other IoT
device in the detection stage, meaning DTrain and DTest both had a size of 12,000 records.

5. Results and Discussion

In this section, we present the results of our implementation followed by a discussion
and interpretation. We calculated the detection accuracy, precision, recall, and F1-score
using the equations presented in [9]. An important characteristic in the context of malware
detection is to reduce false alarms. This metric is referred to as detection recall. An increase
in false alarms may slow down the data acquisition process and may affect the acceptance of
a malware detection algorithm. Also, it is critical that any algorithm successfully identifies
all malicious files as malware. This metric is referred to as detection precision. To this
end, the F1-score of the proposed methods was measured as this captures the accuracy of
detecting malware and the rate of false alarms jointly. The detection performance results are
presented in Section 5.1. Then, we present the CPU Utilization for the NPS algorithm and
MNSA in Section 5.2. Finally, we present the implementation and simulation performance
analysis in Section 5.3.

5.1. Detection Performance

The figure below (Figure 6) shows the results for the five system scenarios implemented
in this project for both the NPS algorithm and MNSA. Since the F1-score takes both
negative and positive detection into account, we used it as the main metric to evaluate the
performance in this analysis. First, we started with systems 1 to 4 where we used only one
IoT device in the implementation. As predicted in [3,9], the NPS algorithm succeeds in
detecting malware better than the MNSA in all four systems, as evidenced by the higher
F1-score by up to 20% than that of the MNSA. As anticipated, the performance of both the
NPS algorithm and MNSA improved when we moved from system 1 to 4 by 8% and 10%
for the NPS algorithm and MNSA, respectively. Increasing the volume size allowed for an
increase in the number of DTrain. Therefore, this resulted in better detection performance in
all four systems for both methods.

In system 5, we connected two IoT devices to the system. That system architecture
was used to evaluate the method’s transfer learning abilities. Since we trained the method

Network 2023, 3 533

on one IoT device, we could use the total number of DTotal to create the detectors. Both AIS
solutions, the NPS algorithm and MNSA, showed the capability of transferring learning
and protecting both IoT devices connected to the system. However, as anticipated, the NPS
algorithm succeeded in a better detection performance when protecting the two IoT devices
than the MNSA by 16%. This shows that the NPS algorithm has better transfer learning
abilities than the MNSA. Therefore, the NPS algorithm is better at protecting distributed
and robust IoT systems.

We demonstrated the NPS and MNSA detection performance and lightweight abilities
on one IoT device using systems 1 to 4. System 5 demonstrated the transfer learning
abilities. In this implementation, by increasing the volume size of the device, we could use
a larger number of dataset records in the detectors’ generation stage. This resulted in a
better learning curve and thus a better classification accuracy when detecting malware files.
Furthermore, AIS solutions can secure the IoT system with multiple IoT devices if only
installed on one IoT device as demonstrated in system 5.

Figure 6. Malware detection performance results for the NPS algorithm and MNSA using AWS.

5.2. CPU Utilization

One of the AWS services we used in this implementation was Cloudwatch, which is
for monitoring and managing services. Cloudwatch shows the CPU average utilization for
AWS resources, the implemented IoT devices in this case. The objective was to validate
the claims in [3,9] that AIS solutions are lightweight in realistic settings. To this end, the
CPU utilization was measured in each system for both the NPS algorithm and MNSA as
shown in Figure 7. The NPS algorithm required less CPU utilization by up to 36.6% than
the MNSA, hence, it is more suitable for lightweight IoT systems under all conditions
depicted by all five systems. The results also showed that the CPU utilization dropped
systematically when moving from system 1 to system 5 for both NPS algorithm and MNSA.
We saw a decrease of 12.7% and 10.3% in CPU utilization for the NPS algorithm and MNSA,
respectively. By increasing the volume size of the IoT device, we can decrease the CPU
utilization in the device, which is one of the main objectives when implementing security
methods in IoT devices.

Network 2023, 3 534

Figure 7. CPU average utilization for IoT devices used in the implementation of the NPS algorithm
and MNSAS.

5.3. Algorithm Simulation and Implementation Performance Analysis

In this section, we compare the actual implementation results shown in Figure 6 and
the ideal simulation results in [3,9]. In this work, we used the F1-score as the main factor
to compare the implementation and the simulation results of the AIS solutions. In this
implementation, the size of CPos+Neg when we ran the NPS algorithm was 60 detectors, and
it was 170 detectors for the MNSA. Consequently, to present a valid quantitative analysis,
we compared the results for the same number of detectors in the simulation. Moreover,
since the simulation was run as one entity, we analyzed the performance of the first four
system architectures, where we ran the implementation using one IoT device. Figure 8
shows the analysis of the results for both the ideal simulation and the actual implementation
results for the NPS algorithm and MNSA.

Figure 8. Comparing the actual to the ideal performance of AISs for different IoT systems.

Network 2023, 3 535

We compared the ideal simulation results with system 1’s results since it used one
IoT device with the most constrained memory size. The MNSA showed a decrease of
almost 12.7% from the simulation results and system 1’s results. While the NPS algorithm’s
performance decreased by 8% when compared to the simulation results. As anticipated,
both AIS solutions, the NPS algorithm and the MNSA underperformed compared to their
ideal simulation results. This validates the claim that IoT security solutions should be
tested in a realistic environment to demonstrate sufficient findings.

6. Conclusions

The growth of IoT devices forms a huge security threat to data privacy, increasing the
number of malware attacks. Thus, developing an algorithm that meets the IoT devices’
requirements is crucial. AIS methods are not expensive to implement, which makes them a
good fit to secure the IoT. Even though the AIS solutions are promising in this context, the
published results are based on computer simulations only. In this paper, we first validate
the malware detection results of AIS solutions using multiple datasets with different types
of malware attacks. Next, we presented the first implementation of AIS solutions using a
real-time IoT platform. We used AWS to create different IoT system architectures mirroring
real-life scenarios. We demonstrated the lightweight, transfer-learning, and detection
capabilities of the AIS methods. The results showed that increasing the size of the IoT
device’s memory allowed us to increase the size of the dataset to train the module, which
led to better detection performance. The results also showed that running an AIS solution
on one of the IoT devices could secure the device itself from malware attacks and any
other IoT devices connected to the same network. Finally, we validated the claim that AIS
security solutions should be tested in a real setup to obtain accurate results.

In future work, we will connect more IoT devices to the network to further investigate
the AIS solutions’ robustness and fault tolerance. Also, using different datasets with
different malware attack files might improve the learning curve, which might lead to better
classification results.

Author Contributions: Conceptualization, H.A., G.G. and M.J.; methodology, H.A.; software, H.A.;
validation, H.A., G.G. and M.J.; formal analysis, H.A., G.G. and M.J.; investigation, H.A.; writing—original
draft preparation, H.A.; writing—review and editing, H.A., G.G. and M.J.; visualization, H.A.; supervision,
G.G. and M.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: We used the NSL-KDD dataset to run the performance analysis in
this research. The dataset is available at https://www.unb.ca/cic/datasets/nsl.html, accessed on
25 March 2023.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AIS Artificial immune systems
AWS Amazon Web Services
IoT Internet of things
NSNN Neural networks methods
OS Operating system
IoMT Internet of medical things

References
1. Wang, J.; Lim, M.K.; Wang, C.; Tseng, M.L. The evolution of the Internet of Things IoT over the past 20 years. Comput. Ind. Eng.

2021, 155, 107174. [CrossRef]
2. Mazlumi, S.H.H.; Kermani, M.A.M. Investigation the structure of the Internet of things (IoT) patent network using social network

analysis. IEEE Internet Things J. 2022 9, 13458–13469.

https://www.unb.ca/cic/datasets/nsl.html
http://doi.org/10.1016/j.cie.2021.107174

Network 2023, 3 536

3. Alrubayyi, H.; Goteng, G.; Jaber, M.; Kelly, J. Challenges of Malware Detection in the IoT and a Review of Artificial Immune
System Approaches. J. Sens. Actuator Netw. 2021, 10, 61. [CrossRef]

4. The Most Vulnerable IOT Devices: Think before You Buy. Available online: https://tdwi.org/articles/2021/11/05/most-
vulnerable-iot-devices.aspx (accessed on 1 June 2023).

5. Asif, R. Post-Quantum Cryptosystems for Internet-of-Things: A Survey on Lattice-Based Algorithms. IoT 2021, 2, 71–91.
[CrossRef]

6. Summary: 9 March 9 2021 Security Incident Report. Available online: https://www.verkada.com/uk/security-update/report/
(accessed on 1 June 2023).

7. Keerthi, K.; Roy, I.; Hazra, A.; Rebeiro, C., Formal Verification for Security in IoT Devices. In Security and Fault Tolerance in
Internet of Things; Chakraborty, R.S., Mathew, J., Vasilakos, A.V., Eds.; Springer International Publishing: Cham, Switzerland, 2019;
pp. 179–200. [CrossRef]

8. Jim, L.E.; Islam, N.; Gregory, M.A. Enhanced MANET security using artificial immune system based danger theory to detect
selfish nodes. Comput. Secur. 2022, 113, 102538. [CrossRef]

9. Alrubayyi, H.; Goteng, G.; Jaber, M.; Kelly, J. A novel negative and positive selection algorithm to detect unknown malware in
the IoT. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), Virtual, 10–13 May 2021; pp. 1–6.

10. Iqbal, M.; Ari Laksmono, A.M.; Prihatno, A.T.; Pratama, D.; Jeong, B.; Kim, H. Enhancing IoT Security: Integrating MQTT with
ARIA Cipher 256 Algorithm Cryptography and mbedTLS. In Proceedings of the 2023 International Conference on Platform
Technology and Service (PlatCon), Busan, Republic of Korea, 16–18 August 2023; pp. 91–96. [CrossRef]

11. Liu, C.; Zhang, Y.; Xu, J.; Zhao, J.; Xiang, S. Ensuring the Security and Performance of IoT Communication by Improving
Encryption and Decryption With the Lightweight Cipher uBlock. IEEE Syst. J. 2022, 16, 5489–5500. [CrossRef]

12. Netea, M.G.; Schlitzer, A.; Placek, K.; Joosten, L.A.; Schultze, J.L. Innate and Adaptive Immune Memory: an Evolutionary
Continuum in the Hostâ€™s Response to Pathogens. Cell Host Microbe 2019, 25, 13–26. [CrossRef] [PubMed]

13. Pump, R.; Ahlers, V.; Koschel, A. Evaluating Artificial Immune System Algorithms for Intrusion Detection. In Proceedings of the
2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July 2020;
pp. 92–97. [CrossRef]

14. Abdullahi, M.; Baashar, Y.; Alhussian, H.; Alwadain, A.; Aziz, N.; Capretz, L.F.; Abdulkadir, S.J. Detecting Cybersecurity Attacks
in Internet of Things Using Artificial Intelligence Methods: A Systematic Literature Review. Electronics 2022, 11, 198. [CrossRef]

15. Pamukov, M.E.; Poulkov, V.K.; Shterev, V.A. Negative Selection and Neural Network Based Algorithm for Intrusion Detection
in IoT. In Proceedings of the 2018 41st International Conference on Telecommunications and Signal Processing (TSP), Athens,
Greece, 4–6 July 2018; pp. 1–5. [CrossRef]

16. Pamukov, M.; Poulkov, V. Multiple negative selection algorithm: Improving detection error rates in IoT intrusion detection
systems. In Proceedings of the 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS), Bucharest, Romania, 21–23 September 2017; Volume 1, pp. 543–547. [CrossRef]

17. NSL-KDD Dataset. Available online: https://www.unb.ca/cic/datasets/nsl.html (accessed on 1 June 2023).
18. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009

IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009;
pp. 1–6. [CrossRef]

19. The bot-IoT dataset. Available online: https://research.unsw.edu.au/projects/bot-iot-dataset (accessed on 1 June 2023).
20. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the Internet of

Things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]
21. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Slay, J. Towards Developing Network Forensic Mechanism for Botnet Activities in the

IoT Based on Machine Learning Techniques. In Proceedings of the Mobile Networks and Management, Melbourne, Australia,
13–15 December 2017; pp. 30–44.

22. Koroniotis, N.; Moustafa, N.; Sitnikova, E. A new network forensic framework based on deep learning for Internet of Things
networks: A particle deep framework. Future Gener. Comput. Syst. 2020, 110, 91–106. [CrossRef]

23. Koroniotis, N.; Moustafa, N.; Schiliro, F.; Gauravaram, P.; Janicke, H. A Holistic Review of Cybersecurity and Reliability
Perspectives in Smart Airports. IEEE Access 2020, 8, 209802–209834. [CrossRef]

24. The UNSW-NB15 Dataset.Available online: https://research.unsw.edu.au/projects/unsw-nb15-dataset (accessed on 1 June 2023).
25. Moustafa, N.; Slay, J. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network

data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, ACT,
Australia, 10–12 November 2015; pp. 1–6. [CrossRef]

26. Moustafa, N.; Slay, J. The evaluation of Network Anomaly Detection Systems: Statistical analysis of the UNSW-NB15 data set
and the comparison with the KDD99 data set. Inf. Secur. Journal: Glob. Perspect. 2016, 25, 18–31. [CrossRef]

27. Moustafa, N.; Slay, J.; Creech, G. Novel Geometric Area Analysis Technique for Anomaly Detection Using Trapezoidal Area
Estimation on Large-Scale Networks. IEEE Trans. Big Data 2019, 5, 481–494. [CrossRef]

http://dx.doi.org/10.3390/jsan10040061
https://tdwi.org/articles/2021/11/05/most-vulnerable-iot-devices.aspx
https://tdwi.org/articles/2021/11/05/most-vulnerable-iot-devices.aspx
http://dx.doi.org/10.3390/iot2010005
https://www.verkada.com/uk/security-update/report/
http://dx.doi.org/10.1007/978-3-030-02807-7_9
http://dx.doi.org/10.1016/j.cose.2021.102538
http://dx.doi.org/10.1109/PlatCon60102.2023.10255171
http://dx.doi.org/10.1109/JSYST.2022.3140850
http://dx.doi.org/10.1016/j.chom.2018.12.006
http://www.ncbi.nlm.nih.gov/pubmed/30629914
http://dx.doi.org/10.1109/WorldS450073.2020.9210342
http://dx.doi.org/10.3390/electronics11020198
http://dx.doi.org/10.1109/TSP.2018.8441338
http://dx.doi.org/10.1109/IDAACS.2017.8095140
https://www.unb.ca/cic/datasets/nsl.html
http://dx.doi.org/10.1109/CISDA.2009.5356528
https://research.unsw.edu.au/projects/bot-iot-dataset
http://dx.doi.org/10.1016/j.future.2019.05.041
http://dx.doi.org/10.1016/j.future.2020.03.042
http://dx.doi.org/10.1109/ACCESS.2020.3036728
https://research.unsw.edu.au/projects/unsw-nb15-dataset
http://dx.doi.org/10.1109/MilCIS.2015.7348942
http://dx.doi.org/10.1080/19393555.2015.1125974
http://dx.doi.org/10.1109/TBDATA.2017.2715166

Network 2023, 3 537

28. Moustafa, N.; Creech, G.; Slay, J., Big Data Analytics for Intrusion Detection System: Statistical Decision-Making Using Finite
Dirichlet Mixture Models. In Data Analytics and Decision Support for Cybersecurity: Trends, Methodologies and Applications;
Palomares Carrascosa, I., Kalutarage, H.K., Huang, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2017;
pp. 127–156. [CrossRef]

29. Sarhan, M.; Layeghy, S.; Moustafa, N.; Portmann, M. NetFlow Datasets for Machine Learning-Based Network Intrusion Detection
Systems. In Big Data Technologies and Applications; Deze, Z., Huang, H., Hou, R., Rho, S., Chilamkurti, N., Eds.; Springer: Cham,
Switzerland, 2021; pp. 117–135.

30. Zeeshan, M.; Riaz, Q.; Bilal, M.A.; Shahzad, M.K.; Jabeen, H.; Haider, S.A.; Rahim, A. Protocol-Based Deep Intrusion Detection
for DoS and DDoS Attacks Using UNSW-NB15 and Bot-IoT Data-Sets. IEEE Access 2022, 10, 2269–2283. [CrossRef]

31. Larriva-Novo, X.; VillagrÃ¡, V.A.; Vega-Barbas, M.; Rivera, D.; Sanz Rodrigo, M. An IoT-Focused Intrusion Detection System
Approach Based on Preprocessing Characterization for Cybersecurity Datasets. Sensors 2021, 21, 656. [CrossRef] [PubMed]

32. Guizani, N.; Ghafoor, A. A Network Function Virtualization System for Detecting Malware in Large IoT Based Networks. IEEE J.
Sel. Areas Commun. 2020, 38, 1218–1228. [CrossRef]

33. Yang, Y.; Zheng, K.; Wu, C.; Yang, Y. Improving the Classification Effectiveness of Intrusion Detection by Using Improved
Conditional Variational AutoEncoder and Deep Neural Network. Sensors 2019, 19, 2528. [CrossRef] [PubMed]

34. Ibitoye, O.; Shafiq, M.O.; Matrawy, A. Analyzing Adversarial Attacks against Deep Learning for Intrusion Detection in IoT
Networks. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA 9–13
December 2019; pp. 1–6.

35. Perlitz, L.; Elliott, S.G. The Products. 2000. Available online: https://aws.amazon.com/products/ (accessed on 1 June 2023).
36. 8 of the Best Heart Rate Monitors of 2023. 2023. Available online: https://www.healthline.com/health/fitness/heart-rate-monitor

(accessed on 1 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-319-59439-2_5
http://dx.doi.org/10.1109/ACCESS.2021.3137201
http://dx.doi.org/10.3390/s21020656
http://www.ncbi.nlm.nih.gov/pubmed/33477875
http://dx.doi.org/10.1109/JSAC.2020.2986618
http://dx.doi.org/10.3390/s19112528
http://www.ncbi.nlm.nih.gov/pubmed/31159512
https://aws.amazon.com/products/
https://www.healthline.com/health/fitness/heart-rate-monitor

	Introduction
	State-of-the-Art AIS Solutions
	NPS Simulations and Evaluation
	NSL-KDD Dataset
	Bot-IoT Dataset
	UNSW-NB15 Dataset
	Performance Analysis of NPS

	AIS Solutions' Implementation
	IoT System Architecture
	Problem Formulation
	Implementation

	Results and Discussion
	Detection Performance
	CPU Utilization
	Algorithm Simulation and Implementation Performance Analysis

	Conclusions
	References

