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Abstract
In this paper, we establish a number of geometrical inequalities such as
Hardy, Sobolev, Rellich, Hardy–Littlewood–Sobolev, Caffarelli–Kohn–Nirenberg,
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elliptic differential operators on general connected Lie groups, which include both
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1 Introduction

LetG be a connected Lie group, letρ andλ denote a right and left Haarmeasure onG, δ
themodular function onG so that dλ(x) = δ(x)dρ(x), x ∈ G. Let X = (X1, . . . , Xn)

be a collection of left-invariant vector fields on G satisfying Hörmander’s condition.
Let χ denote a positive continuous character and e the identity element on G, and

define μχ = χρ and let �χ be the differential operator

−
n∑

j=1

(X2
j + X j (χ)(e)X j ). (1.1)

It was shown in [11] that �χ , when initially defined on C∞
0 (G), is essentially self-

adjoint in L2
(
μχ

)
and conversely, if μ is a positive Borel measure on G such that

�1 − X is essentially self-adjoint in L2(μ), where X is a left-invariant vector field,
then there exists a positive continuous character χ on G such that X = �1 − �χ and
μ = μχ . By a common abuse of notation, from now on we will denote the unique
self-adjoint realization of�χ by the same symbol. Thus, the family of sub-Laplacians
with drift�χ turns out to be “the” natural family of second-order differential operators
for which it is reasonable to apply functional calculus results and methods to define
and study function spaces, and regularity of solutions of differential equations. In
particular, when χ = δ, so that μχ = λ is the left Haar measure, then �δ is the
intrinsic sub-Laplacian, introduced by Agrachev, Boscain, Gauthier and Rossi [1].

Sobolev spaces defined in terms of �χ were introduced and studied in [3], where
various embedding and algebra properties were proved.When 1 < p < ∞ and α ≥ 0,
the Sobolev spaces L p

α

(
μχ

)
were defined as the completion of C∞

0 (G) with respect
to the norm

‖ f ‖L p
α(μχ) := ‖ f ‖L p(μχ ) +

∥∥∥�α/2
χ f

∥∥∥
L p(μχ )

.

These spaces, in particular thesemeasures, appear naturally in embeddings and algebra
properties, where the case χ = δ, that is, μχ = λ, plays a fundamental role. In the
case when G is a unimodular group and with χ = 1, we note that the spaces L p

α(μχ)

coincide with the Sobolev spaces defined by �1 = −∑n
j=1 X2

j (see [6]). In the case

χ �= 1, we note that this operator �1 is not symmetric on L2(μχ), so that a Sobolev
space adapted to μχ when χ �= 1 cannot be defined by means of fractional powers of
�1. For more details, we refer to [11, 14] and [3].

It became natural to study geometric inequalities for the scale of Sobolev spaces
L p

α

(
μχ

)
, at least in the cases 1 < p < ∞ and α > 0.

In the unimodular case and with χ = 1, for embedding theorems for these Sobolev
spaces, we refer to [7] on stratified group, and to [8] and [9] on graded groups, as well
as to [21] for the weighted versions. On general homogeneous groups, we refer to [15]
and [16].

In the non-unimodular case, we refer to [23] for the first-order Sobolev spaces when
χ is a power of δ, and to [3] for the higher order case.
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For algebra properties of the Sobolev spaces, we refer to [6] on unimodular groups,
and refer to [14] and to [3] on non-unimodular groups.

In this paper, we obtain a number of (versions of) classical geometric inequalities
on Sobolev spaces in a unified way, in the setting of general Lie groups, for an ample
class of sub-elliptic differential operators.

As usual, in this paper, A � B means that there exists a positive constant c such
that A ≤ cB. If A � B and B � A, then we write A ≈ B. In these notations, if the
left and right-hand sides feature some functions f , the constant (using this notation)
does not depend on f .

Let us begin with the following Hardy–Sobolev–Rellich inequality on general
connected Lie groups:

Theorem 1.1 LetG be a connected Lie group. Let e be the identity element ofG, and let
χ be a positive character of G. Let |x | := dC (e, x) denote the Carnot-Carathéodory
distance from e to x. Let d be the local dimension of G as recalled in (2.3) and α > 0,
0 ≤ β < d, 1 < p, q < ∞. Then, we have

∥∥∥∥∥
f

|x | β
q

∥∥∥∥∥
Lq (μ

χq/pδ1−q/p )

� ‖ f ‖L p
α (μχ ) (1.2)

for all q ≥ p such that 1/p − 1/q ≤ α/d − β/(dq).

Remark 1.2 Note that in the case α ≥ d/p the condition 1/p − 1/q ≤ α/d − β/(dq)

automatically holds true since

α

d
− β

dq
≥ 1

p
− β

dq
>

1

p
− 1

q
,

which means the inequality (1.2) holds for all q ≥ p when α ≥ d/p.

Note that Theorem 1.1 when β = 0 implies the Sobolev embedding on general
connected Lie group

L p
α(μχ) ↪→ Lq(μχq/pδ1−q/p ). (1.3)

The Sobolev embedding (1.3) was proved in [3] in the noncompact case. We also refer
to the very recent work [4] for the investigation of the behaviour of the Sobolev embed-
ding constant on a general connected Lie group, endowed with a left Haar measure.
On nilpotent Lie groups, we refer to [20] and [18] for the best constants in Sobolev,
Gagliardo-Nirenberg and their critical cases for general left-invariant homogeneous
hypoelliptic differential operators.

Furthermore, for q = p and β/q = α, the inequality (1.2) gives the following
inhomogeneous Hardy inequality on general connected Lie groups:

∥∥∥∥
f

|x |α
∥∥∥∥

L p(μχ )

� ‖ f ‖L p
α (μχ ), (1.4)
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where 0 ≤ α < d/p. In particular, for χ = 1 and χ = δ (respectively, with μ1 = ρ

andμδ = λ), this gives both right and left versions of Hardy inequalities, respectively.
We note that the inequality (1.4) was obtained for χ = 1 on stratified (hence also,
in particular, nilpotent and unimodular) Lie groups in [5]. Note that when α = 2 the
inequality (1.4) yields the following inhomogeneous Rellich inequality on general
connected Lie groups:

∥∥∥∥
f

|x |2
∥∥∥∥

L p(μχ )

� ‖ f ‖L p
2 (μχ ) ≈ ‖ f ‖L p(μχ ) + ∥∥�χ f

∥∥
L p(μχ )

, 0 ≤ 2p < d. (1.5)

Since the inequality (1.2) contains the Hardy, Rellich and Sobolev inequalities, we
call this inequality Hardy–Sobolev–Rellich inequality. The remaining cases of the
inequality (1.2) can be thought of as Sobolev embeddings in weighted Lq -spaces.

Moreover, we establish the Hardy–Sobolev–Rellich inequality (1.2) in the critical
case β = d that involves a logarithmic factor in the weight:

Theorem 1.3 Let G be a connected Lie group. Let χ be a positive character of G. Let
1 < p < r < ∞ and 1/p + 1/p′ = 1. Then, we have

∥∥∥∥∥∥∥

f
(
log

(
e + 1

|x |
)) r

q |x | d
q

∥∥∥∥∥∥∥
Lq (μ

χq/pδ1−q/p )

� ‖ f ‖L p
d/p(μχ ) (1.6)

for every q ∈ [p, (r − 1)p′).

When χ = δ, Theorems 1.1 and 1.3 give the weighted embeddings with the same
measure, namely with the left Haar measure (see Theorem 3.2 and 3.4), which is the
unique case when such embeddings hold true as in the unweighted case. Moreover,
for q = p, this gives the following critical Hardy inequality on general connected
Lie groups: ∥∥∥∥∥∥∥

f
(
log

(
e + 1

|x |
)) r

p |x | d
p

∥∥∥∥∥∥∥
L p(μχ )

� ‖ f ‖L p
d/p(μχ ), (1.7)

where 1 < p < r < ∞, which is a critical case α = d/p of the Hardy inequality
given in (1.4).

Remark 1.4 First, we will prove the above theorems in the noncompact case. Conse-
quently, in Sect. 4, we show that these Theorems 1.1 and 1.3 with δ = 1 hold on
compact Lie groups (which are automatically unimodular) as well.

We also show that Theorem 1.1 gives the following fractional Caffarelli–Kohn–
Nirenberg type inequality:

Theorem 1.5 LetG be a connected Lie group. Let e be the identity element ofG, and let
χ be a positive character of G. Let |x | := dC (e, x) denote the Carnot-Carathéodory
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distance from e to x. Let 1 < p < ∞, 0 < q, r < ∞ and 0 < θ ≤ 1 be such that
θ > (r − q)/r and p ≤ qθr/(q − (1− θ)r). Let a and b be real numbers and α > 0
such that 0 ≤ qr(b(1−θ)−a)/(q −(1−θ)r) < d and 1/p−(q −(1−θ)r)/(qrθ) ≤
α/d − (b(1 − θ) − a)/(θd). Then, we have

‖|x |a f ‖Lr (μ
χ q̃/pδ1−q̃/p ) � ‖ f ‖θ

L p
α (μχ )

‖|x |b f ‖1−θ
Lq (μ

χ q̃/pδ1−q̃/p ), (1.8)

where q̃ := qrθ
q−(1−θ)r .

Remark 1.6 Note that when θ = 1 then θ > (r − q)/r automatically holds, q̃ = r ,
p ≤ qθr/(q − (1 − θ)r) gives p ≤ r , while conditions 0 ≤ qr(b(1 − θ) − a)/(q −
(1 − θ)r) < d and 1/p − (q − (1 − θ)r)/(qrθ) ≤ α/d − (b(1 − θ) − a)/(θd) are
equivalent to 0 ≤ −ar < d and 1/p − 1/r ≤ α/d + a/d, respectively. Then, in this
case, the inequality (1.8) has the following form

‖|x |a f ‖Lr (μ
χr/pδ1−r/p ) � ‖ f ‖L p

α (μχ ),

which is (1.2).

Remark 1.7 We note that if we take a = b = 0 in (1.8), then it gives the Gagliardo-
Nirenberg type inequality on general connected Lie groups: Let 1 < p < ∞, 0 <

q, r < ∞, 0 < θ ≤ 1 and α > 0 be such that θ > (r − q)/r , p ≤ qθr/(q −
(1 − θ)r) and 1/p − (q − (1 − θ)r)/(qrθ) ≤ α/d. Then, we have the following
Gagliardo-Nirenberg inequality:

‖ f ‖Lr (μ
χ q̃/pδ1−q̃/p ) � ‖ f ‖θ

L p
α (μχ )

‖ f ‖1−θ
Lq (μ

χ q̃/pδ1−q̃/p ), (1.9)

where q̃ := qrθ
q−(1−θ)r .

Similarly, from (1.6), we can obtain the inequality (1.8) in the critical case a =
b(1 − θ) − d(q − (1 − θ)r)/qr :

Theorem 1.8 Let G be a connected Lie group. Let χ be a positive character of G. Let
b ∈ R, 1 < p < r < ∞, 0 < q, r < ∞ and 0 < θ ≤ 1 be such that θ > (r − q)/r
and p ≤ q̃ < (r − 1)p′ with p′ = p/(p − 1) and q̃ := qrθ

q−(1−θ)r . Then, we have

‖ωb(1−θ)−dθ/q̃
r f ‖Lr (μ

χ q̃/pδ1−q̃/p ) � ‖ f ‖θ

L p
d/p(μχ )

‖ωb
r f ‖1−θ

Lq (μ
χ q̃/pδ1−q̃/p ), (1.10)

where ωr := (log(e + 1/|x |) r
d |x |.

We also introduce the following Hardy-Littlewood-Sobolev inequality:

Theorem 1.9 LetG be a connected Lie group. Let e be the identity element ofG, and let
χ be a positive character of G. Let |x | := dC (e, x) denote the Carnot-Carathéodory
distance from e to x. Let 1 < p, q < ∞, α ≥ 0 and 0 ≤ β < d/q. Let 0 ≤ a1 <
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dp/(p + q), a2 > 0 with 0 ≤ 1/p − q/(p + q) ≤ α/d and 1/q − p/(p + q) ≤
(a2 − a1)/d. Then, we have

∣∣∣∣∣

∫

G

∫

G

f (x)g(y)Gc
a2,χ (y−1x)

|x |a1 |y|β dμχ(p+q)/pq δ1−(p+q)/pq (x)dρ(y)

∣∣∣∣∣ � ‖ f ‖L p
α (μχ )‖g‖Lq

β (μχ ),

(1.11)
where Gc

a2,χ is defined in (2.8). In particular, Gc
a2,χ is the convolution kernel of the

operator (�χ + cI )−a2/2, i.e. (�χ + cI )−a2/2 f = f ∗ Gc
a2,χ .

Moreover, we show that Theorems 1.1 and 1.3 imply the following uncertainty
type principles:

Corollary 1.10 Let G be a connected Lie group. Let χ be a positive character of G.
Let 1/p + 1/p′ = 1 and 1/q + 1/q ′ = 1.

• If 0 ≤ β < d, 1 < p, q < ∞ and α > 0, then we have

‖ f ‖L p
α (μχ )‖|x | β

q f ‖Lq′
(μ

χq/pδ1−q/p )
� ‖ f ‖2L2(μ

χq/pδ1−q/p )
(1.12)

for all q ≥ p such that 1/p − 1/q ≤ α/d − β/(dq), where |x | := dC (e, x) is the
Carnot-Carathéodory distance from the identity element e to x;

• If 1 < p < r < ∞, then we have

‖ f ‖L p
d/p(μχ )

∥∥∥∥∥

(
log

(
e + 1

|x |
)) r

p |x | d
p f

∥∥∥∥∥
Lq′

(B1,μχq/pδ1−q/p )

� ‖ f ‖2L2(μ
χq/pδ1−q/p )

(1.13)
for all q ∈ [p, (r − 1)p′).

On compact Lie groups, note that all the above results still hold true with δ = 1,
which we will discuss in Sect. 4.

The main novelty of the paper is the extension to the case of general connected Lie
groups and to the case of sub-Laplacianswith drift, of results proved by various people,
including the authors of this paper, in the cases of stratified, and general nilpotent Lie
groups, and also compact groups, in the case of sub-Laplacians. , The organisation of
the paper is as follows. In Sect. 2, we briefly recall some known properties of Sobolev
spaces on connected Lie groups. Then, in Sect. 3, we prove Theorems 1.1, 1.3, 1.5,
1.8, 1.9 and Corollary 1.10. Finally, in Sect. 4 we discuss the obtained results of Sect.
3 on compact Lie groups.

2 Preliminaries

In this section, we very briefly recall some known properties of Sobolev spaces on
connected Lie groups.
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LetG be a noncompact connected Lie group with identity e. Let us denote the right
and left Haar measure by ρ and λ, respectively. Let δ be the modular function, i.e. the
function on G such that

dλ = δdρ. (2.1)

Then, recall that δ is a smooth positive character of G, i.e. a smooth homomorphism
of G into the multiplicative group R+. Let χ be a continuous positive character of G,
which is then automatically smooth. Let μχ be a measure with density χ with respect
to ρ,

dμχ = χdρ. (2.2)

Then, by above (2.1) and (2.2), we see that μδ = λ and μ1 = ρ.
Let X = {X1, . . . , Xn} be a family of left-invariant, linearly independent vector

fields which satisfy Hörmander’s condition. We recall that these vector fields induce
the Carnot-Carathéodory distance dC (·, ·). Let B = B(cB, rB) be a ball with respect
to such distance, where cB and rB are its centre and radius, respectively. We write
|x | := dC (e, x). If V (r) = ρ(Br ) is the volume of the ball B(e, r) =: Br with respect
to the right Haar measure ρ, then it is well-known (see e.g. [10] or [23]) that there
exist two constants d ∈ N

∗ and D > 0 such that

V (r) ≈ rd ∀r ∈ (0, 1], (2.3)

V (r) � eDr ∀r ∈ (1,∞). (2.4)

We say that d and D are local and global dimensions of the metric measure space
(G, dC , ρ), respectively. Recall that d is uniquely determined by G and X , while the
set of D > 0 such that (2.4) holds is independent of X but does not have a minimum
in general, see e.g. [6, p. 285], [24, Chapter 4] or [4]. We fix a D > 0 such that (2.4)
holds. One can observe that the metric measure space (G, dC , ρ) is locally doubling,
but not doubling in general.

We shall denote by �1 the smallest self-adjoint extension on L2(ρ) of the “sum-
of-squares” operator

�1 = −
n∑

j=1

X2
j

on C∞
0 (G). We shall denote with Pt (·, ·) and pt the smooth integral kernel of e−t�1

and its smooth convolution kernel (i.e. e−t�1 f = f ∗ pt ) with respect to the measure
ρ, respectively, where ∗ is the convolution between two functions f and g (when it
exists), i.e.

f ∗ g(x) =
∫

G

f (xy−1)g(y)dρ(y).

Recall the following relation

Pt (x, y) = pt (y−1x)δ(y) ∀x, y ∈ G.
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It is also known that the generated semigroup e−t�χ on L2(μχ) admits an integral
kernel Pχ

t ∈ D′(G × G) with respect to the measure μχ

e−t�χ f (x) =
∫

G

Pχ
t (x, y) f (y)dμχ(y),

and admits a convolution kernel pχ
t ∈ D′(G)

e−t�χ f (x) = f ∗ pχ
t (x) =

∫

G

f (xy−1)pχ
t (y)dρ(y).

For Pχ
t and pχ

t , we have

Pχ
t (x, y) = pχ

t (y−1x)χ−1(y)δ(y).

Denoting bX := 1
2

(∑n
i=1 c2i

)1/2
with ci = (Xiχ)(e), we also have

pχ
t (x) = e−tb2X pt (x)χ−1/2(x), (2.5)

so that Pχ
t and pχ

t are smooth on G × G and G, respectively.
According to [3], we now recall some useful properties of L p

α(μχ). For every
1 < p < ∞, α ≥ 0 and c > 0, we have

‖ f ‖L p
α (μχ ) ≈ ‖(�χ + cI )α/2 f ‖L p(μχ ) (2.6)

and

‖(�χ + cI )α2/2 f ‖L p(μχ ) ≤ ‖(�χ + cI )α1/2 f ‖L p(μχ )

when α1 > α2, i.e. L p
α1(μχ) ↪→ L p

α2(μχ).
Denote by I the set {1, . . . , n}. Let Im be the set of multi-indices J = ( j1, . . . , jm)

such that ji ∈ I for every m, i ∈ N, and let X J be the left differential operator
X J = X j1 . . . X jm for J ∈ Im .

Proposition 2.1 [3, Propositions 3.3 and 3.4]

• Let k ∈ N and 1 < p < ∞. Then, we have

‖ f ‖L p
k (μχ ) ≈

∑

J∈Im ,m≤k

‖X J f ‖L p(μχ ).

• For every α ≥ 0 and 1 < p < ∞, we have

f ∈ L p
α+1(μχ) ⇔ f ∈ L p

α(μχ) and Xi f ∈ L p
α(μχ)
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for every i ∈ I. In particular,

‖ f ‖L p
α+1(μχ ) ≈ ‖ f ‖L p

α (μχ ) +
n∑

i=1

‖Xi f ‖L p
α (μχ ).

Proposition 2.2 [11, Proposition 5.7 (ii)] LetG be a noncompact connected Lie group.

Let ‖X‖ = (∑n
i=1 c2i

)1/2
with ci = (Xiχ)(e), i ∈ I. Then, for every r ∈ R

+, we
have

sup
x∈Br

χ(x) = e‖X‖r .

Wealso recall that for every characterχ and R > 0, there exists a constant c = c(χ, R)

such that
c−1χ(x) ≤ χ(y) ≤ cχ(x) ∀x, y ∈ G s.t. dC (x, y) ≤ R, (2.7)

which means that the metric measure space (G, dC , μχ) is locally doubling.

Lemma 2.3 [3, Lemma 2.3] Let G be a noncompact connected Lie group. Then, we
have

(i) e−t�χ is a diffusion semigroup on (G, μχ);
(ii) Let χ be a positive character of G. Then, we have

∫
Br

χdρ ≤ e(‖X‖+D)r for every

r > 1, where ‖X‖ = (∑n
i=1 c2i

)1/2
with ci = (Xiχ)(e), i ∈ I.

(iii) Furthermore, there exist two positive constants ω and b such that, for every m ∈ N

and J ∈ Im, we have |X J pχ
t (x)| � χ−1/2(x)t−(d+m)/2eωte−b|x |2/t , for all t > 0

and x ∈ G.

By virtue of the next proposition, proofs of Theorems 1.1 and 1.3 can be reduced to
proofs of Theorems 3.2 and 3.4, respectively:

Proposition 2.4 [3, Proposition 3.5] Let p ∈ (1,∞) and α ≥ 0. Then, we have

‖ f ‖L p
α (μχ ) ≈ ‖χ1/p f ‖L p

α (ρ).

We note (see also [3]) that the function

Gc
α,χ (x) = C(α)

∫ ∞

0
tα/2−1e−ct pχ

t (x)dt (2.8)

is the convolution kernel of the operator (�χ + cI )−α/2, i.e.

(�χ + cI )−α/2 f = f ∗ Gc
α,χ , (2.9)

where c > ω and ω is from Lemma 2.3.
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Lemma 2.5 [3, Lemma 4.1] Let b and ω be as in Lemma 2.3. Let c > ω and c′ =
1
2

√
b(c − ω). Then, we have

|Gc
α,χ | ≤ C

{
|x |α−d if 0 < α < d and |x | ≤ 1,

χ−1/2(x)e−c′|x | when |x | > 1
(2.10)

for some positive constant C.

We will also use Young’s inequalities in the following form:

Lemma 2.6 [3, Lemma 4.3] Let 1 < p ≤ q < ∞ and r ≥ 1 be such that 1/p +1/r =
1 + 1/q. Then, we have

‖ f ∗ g‖Lq (λ) ≤ ‖ f ‖L p(λ)(‖ǧ‖r/p′
Lr (λ)‖g‖r/q

Lr (λ)), (2.11)

where ǧ(x) = g(x−1).

Remark 2.7 For a simpler version of Young’s inequality on general locally compact
groups, we refer to [13, cf. Lemma 2.1].

The following integral Hardy inequalities on general metric measure spaces, which
are the special cases of [12, Theorems 2.1 and 3.1 (a)] (see also [22]), play important
role in the proof of the main results:

Theorem 2.8 Let X be a metric measure space with a σ -finite measure. Let 0 be a
fixed element of X and |x | = d(0, x). Let 1 < p ≤ q < ∞. Let {φi }2i=1 and {ψi }2i=1
be positive functions on X. Then, the inequalities

(∫

X

(∫

B(0,|x |/2)
f (z)dz

)q

φ1(x)dx

) 1
q

≤ A1

(∫

X

( f (x))pψ1(x)dx

) 1
p

(2.12)

and

(∫

X

(∫

X\B(0,2|x |)
f (z)dz

)q

φ2(x)dx

) 1
q

≤ A2

(∫

X

( f (x))pψ2(x)dx

) 1
p

(2.13)

hold for all f ≥ 0 a.e. on X if we have

B1 := sup
R>0

(∫

{|x |≥R}
φ1(x)dx

) 1
q

(∫

{|x |<R}
(ψ1(x))1−p′

dx

) 1
p′

< ∞ (2.14)

and

B2 := sup
R>0

(∫

{|x |≤R}
φ2(x)dx

) 1
q

(∫

{|x |≥R}
(ψ2(x))1−p′

dx

) 1
p′

< ∞, (2.15)
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respectively. Moreover, if {Ai }2i=1 are the smallest constants for which (2.12) and
(2.13) hold, then

ci
1Bi ≤ Ai ≤ ci

2Bi , i = 1, 2. (2.16)

Remark 2.9 In the setting of metric measure spaces, first Theorem 2.8 was proved in
[19] on metric measure spaces possessing polar decompositions. We can also refer to
[2] for the analysis of polar decompositions in metric measure spaces. To avoid such
technicalities, we will be using this result as it follows from [12].

3 Proof of Main Results

3.1 Proof of Theorem 1.1

In this section, we prove Theorems 1.1, 1.3, 1.5, 1.8 and Corollary 1.10 when G is
noncompact, and in the case whenG is compact we refer to Sect. 4 for the differences
in the argument in this setting.

Before starting the proof, we need to prove the following lemma:

Lemma 3.1 Let a, s ∈ R and r > 0. If c′ > 0 is sufficiently large, then we have

∫

Bc
1

|δaχ se−c′|x ||r dρ < ∞. (3.1)

Actually, the proof of this lemma follows from the proof of [3, Corollary 4.2], but to
be more precise, let us give it.

Proof of Lemma 3.1 Taking into account Lemma 2.3 (ii), a direct calculation gives that

∫

Bc
1

|δaχ se−c′|x ||r dρ =
∞∑

k=0

e−rc′2k
∫

{2k≤|x |<2k+1}
(δ(x))ra(χ(x))rsdρ(x)

�
∞∑

k=0

e−rc′2k
eC ·2k

< ∞,

since c′ is large enough. ��
Once we prove the special case χ = δ of Theorem 1.1, then we can immediately
obtain Theorem 1.1 by Proposition 2.4. Therefore, let us prove the following theorem:

Theorem 3.2 Let α > 0, 0 ≤ β < d and 1 < p, q < ∞. Then, we have

∥∥∥∥∥
f

|x | β
q

∥∥∥∥∥
Lq (λ)

� ‖ f ‖L p
α (λ) (3.2)

for all q ≥ p such that 1/p − 1/q ≤ α/d − β/(dq).
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Remark 3.3 When β = 0, in [3, Sect. 4], it was shown that an embedding of the form

L p
α(μχ) ↪→ Lq(μχ), 1 < p < ∞, α ≥ 0, q ∈ (1,∞]\{p}

for some positive character χ may hold only if μχ = λ is the left Haar measure ofG.
In the exactly same way, one can show that the same statement is true for the weighted
Sobolev embedding case. However, this is different for q = p, see (1.4).

Proof of Theorem 3.2 Notice that we may reduce to prove Theorem 3.2 when 0 < α <

d, since when α ≥ d we may find 0 < α′ < d such that

α′

d
− β

dq
≥ 1 − 1

q
>

1

p
− 1

q
,

so that the condition 1/p − 1/q ≤ α′/d − β/(dq) holds. Then, we apply Theorem
3.2 to α′ ∈ (0, d) and use the Sobolev embedding L p

α(λ) ⊆ L p
α′(λ) (see (1.3) when

q = p and μχ = λ). Therefore, it is enough to prove Theorem 3.2 when 0 < α < d.
By (2.6) and (2.9), we note that to obtain (3.2) it is enough to prove the following

∫

G

|( f ∗ Gc
α,χ )(x)|q dλ(x)

|x |β � ‖ f ‖q
L p(λ).

For this, let us split the left-hand side of above inequality into three parts as follows

∫

G

|( f ∗ Gc
α,χ )(x)|q dλ(x)

|x |β ≤ 3q(M1 + M2 + M3), (3.3)

where

M1 :=
∫

G

(∫

{2|y|<|x |}
|Gc

α,χ (y−1x) f (y)|dλ(y)

)q dλ(x)

|x |β ,

M2 :=
∫

G

(∫

{|x |≤2|y|<4|x |}
|Gc

α,χ (y−1x) f (y)|dλ(y)

)q dλ(x)

|x |β

and

M3 :=
∫

G

(∫

{|y|≥2|x |}
|Gc

α,χ (y−1x) f (y)|dλ(y)

)q dλ(x)

|x |β .

Let us start by estimating the first term M1. By using the reverse triangle inequality
and 2|y| < |x |, we have

|y−1x | ≥ |x | − |y| > |x | − |x |
2

= |x |
2

,

|y−1x | ≤ |x | + |y| <
3|x |
2

.

(3.4)
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Taking into account this, for M1, we write

M1 ≤
∫

G

(∫

{2|y|<|x |}
| f (y)|dλ(y)

)q
(

sup
{|x |<2|z|<3|x |}

|Gc
α,χ (z)|

)q
dλ(x)

|x |β .

In order to apply the integral Hardy inequality (2.12), let us check the following
condition (2.14):

(∫

{2r0≤|x |}

(
sup

{|x |<2|z|<3|x |}
|Gc

α,χ (z)|
)q

dλ(x)

|x |β
) 1

q (∫

{|x |<2r0}
dλ(x)

) 1
p′

< ∞ (3.5)

for all r0 > 0. Indeed, once (3.5) has been established, the integral Hardy inequality
(2.12) implies

M
1
q
1 ≤ C‖ f ‖L p(λ), (3.6)

where C does not depend on f .
Now, let us check (3.5). By Lemma 2.5, we have

sup
{|x |<2|z|<3|x |}

|Gc
α,χ (z)| ≤ C1

{
|x |α−d if 0 < α < d and |z| ≤ 1,

eC2|x |e−c′|x |/2 if |z| > 1
(3.7)

where we have used sup
{|x |<2|z|<3|x |}

χ−1/2(z) ≤ eC2|x | by Proposition 2.2.

For this, we consider the following cases: r0 > 1 and 0 < r0 ≤ 1.
In the case r0 > 1, we have 2 < 2r0 ≤ |x | < 2|z|. Then, using (3.7) one has

∫

{2r0≤|x |}

(
sup

{|x |<2|z|<3|x |}
|Gc

α,χ (z)|
)q

dλ(x)

|x |β ≤ C1
e−qc′ r0

4

rβ
0

∫

{2r0≤|x |}
e−c′q |x |

4 eC2q|x |dλ(x)

= C1
e−qc′ r0

4

rβ
0

∞∑

k=0

∫

{2k+1r0≤|x |≤2k+2r0}
e−c′q |x |

4 eC2q|x |dλ(x)

≤ C1
e−qc′ r0

4

rβ
0

∞∑

k=0

e−c′q2k−1r0eC22k+2r0q
∫

{2k+1r0≤|x |≤2k+2r0}
dλ(x) � r−β

0 e−qc′ r0
4 , (3.8)

where the sum is finite since c (hence c′) is large enough.
By Part (ii) of Lemma 2.3, for r0 > 1, we also have

∫

{|x |<2r0}
dλ(x) =

∫

{|x |<2r0}
δdρ(x) ≤ e2Cr0 . (3.9)
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Then, plugging (3.8) and (3.9) into (3.5), we obtain

(∫

{2r0≤|x |}

(
sup

{|x |<2|z|<3|x |}
|Gc

α,χ (z)|
)q

dλ(x)

|x |β
) 1

q (∫

{|x |<2r0}
dλ(x)

) 1
p′

� r
− β

q
0 e−c′ r0

4 e
2C

r0
p′ < ∞, (3.10)

since c (hence c′) is large enough.
Now, we check the condition (3.5) for 0 < r0 ≤ 1. As noticed above, when |z| > 1

due to the exponential decay Gc
α,χ (z) from (3.7), we can easily obtain (3.5). So, let us

discuss the case |z| ≤ 1. In this case, taking into account |x | < 2|z| ≤ 2, we write

∫

{2r0≤|x |}

(
sup

{|x |<2|z|<3|x |}
|Gc

α,χ (z)|
)q

dλ(x)

|x |β

=
∫

{2r0≤|x |≤1}

(
sup

{|x |<2|z|<3|x |}
|Gc

α,χ (z)|
)q

dλ(x)

|x |β

+
∫

{1<|x |<2}

(
sup

{|x |<2|z|<3|x |}
|Gc

α,χ (z)|
)q

dλ(x)

|x |β . (3.11)

Using estimate (3.7), one can observe that the last integral is finite. To estimate the first
integral on the right-hand side of (3.11), we split it into two cases: (α−d)q−β+d �= 0
and (α − d)q − β + d = 0. In the first case, taking into account (3.7), we calculate

∫

{2r0≤|x |≤1}

(
sup

{|x |<2|z|<3|x |}
|Gc

α,χ (z)|
)q

dλ(x)

|x |β �
∫

{2r0≤|x |≤1}
|x |(α−d)q−βdλ(x)

�
∫ 1

2r0
u(α−d)q−βud−1du

� 1 + r (α−d)q−β+d
0 .

(3.12)
For the inequality of passing from the integral with respect to dλ to the onewith respect
to u, we first observe that the left Haar measure is absolutely continuous with respect
to the Riemannian measure. Indeed, if one considers a full form on the Lie algebra
of G, it can be moved around by the group action to yield the left Haar measure on
G. By the uniqueness of the left Haar measure, one gets the absolute continuity as
above, with the left Haar measure being a smooth multiple of the volume measure.
Consequently, dλ is absolutely continuous with respect to the radial measure, see e.g.
[2, Corollary 2, p. 81], but the question of the Jacobian remains. However, for an
estimate (as opposed to the exact equality), we can give a short direct argument.

Let Br denote the ball, centred at a fixed point, of radius r with respect to the
Carnot-Carathéodory distance, that is, x ∈ Br if |x | < r . Let us introduce the function
s = s(r) given by s(r) := λ(Br )

1/d , where dλ is the left Haar measure onG, and d is
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the local dimension of G. Let us identify the balls with radii given by s(r) and r , by
writing B̃s = Br . Then, we have λ(B̃s) = λ(Br ) = sd . Since λ(Br ) ≤ crd , we have
that

sd = λ(B̃s) = λ(Br ) ≤ crd ,

that is, s ≤ cr for some c > 0. Consequently, for any γ > 0, we have r−γ ≤ cs−γ

for some c > 0, and Br0 ⊂ Bs0/c, for s0 = s(r0). Consequently, we can estimate, with
r = |x |, and using that now we have the equality λ(B̃s) = sd ,

∫

Br0

r−γ dλ(x) ≤ C
∫

Bs0/c

s−γ dλ(x) ≤ C
∫ s0/c

0
s−γ sd−1ds < ∞, (3.13)

provided that γ < d. Applying and adapting arguments of this type here and in the
sequel justify local estimates like the one in (3.12).

Taking into account (3.11) and (3.12) in (3.5), we have for any 0 < r0 ≤ 1 that

(∫

{2r0≤|x |}

(
sup

{|x |<2|z|<3|x |}
|Gc

α,χ (z)|
)q

dλ(x)

|x |β
) 1

q (∫

{|x |<2r0}
dλ(x)

) 1
p′

≤ Cr
d
p′
0 (1 + r

(α−d)q−β+d
q

0 ) < ∞ (3.14)

since 1/p − 1/q ≤ α/d − β/(dq).
Now, in the case (α − d)q − β + d = 0, from (3.12) and noting the fact that

r
d
p′
0 |log r0|

1
q → 0 as r0 → 0 we have

(∫

{2r0≤|x |}

(
sup

{|x |<2|z|<3|x |}
|Gc

α,χ (z)|
)q

dλ(x)

|x |β
) 1

q (∫

{|x |<2r0}
dλ(x)

) 1
p′

≤ Cr
d
p′
0 |log r0|

1
q < ∞ (3.15)

for all 0 < r0 ≤ 1.
Now let us estimate M3. Similarly to (3.4), it is easy to see that the condition

2|x | < |y| implies |y| < 2|y−1x | < 3|y|. Then, taking into account this and (3.7), we
obtain for M3 that

M3 ≤ C
∫

G

(∫

{|y|≥2|x |}
| f (y)| sup

{|y|≤2|z|≤3|y|}
|Gc

α,χ (z)|dλ(y)

)q
dλ(x)

|x |β .
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Here, we now apply the conjugate integral Hardy inequality (2.13) for M3, for which
we need to check the following condition (2.15):

(∫

{|x |≤2r0}
dλ(x)

|x |β
) 1

q

⎛

⎝
∫

{2r0≤|y|}

(
sup

{|y|≤2|z|≤3|y|}
|Gc

α,χ (z)|
)p′

dλ(y)

⎞

⎠

1
p′

< ∞
(3.16)

for all r0 > 0. Indeed, once (3.16) has been established, the conjugate integral Hardy
inequality (2.13) yields

M
1
q
3 ≤ C‖ f ‖L p(λ), (3.17)

where C does not depend on f .
For this, we again consider two cases: r0 > 1 and 0 < r0 ≤ 1. When r0 > 1, hence

|z| > 1, then as in (3.8), we have

∫

{2r0≤|y|}

(
sup

{|y|≤2|z|≤3|y|}
|Gc

α,χ (z)|
)p′

dλ(y) ≤ Ce−p′c′ r0
4 . (3.18)

Applying Part (ii) of Lemma 2.3, one gets for r0 > 1 that

∫

{|x |≤2r0}
dλ(x)

|x |β ≤
∫

{|x |≤1}
dλ(x)

|x |β +
∫

{1<|x |≤2r0}
dλ(x)

≤ C
∫ 1

0
ud−1−βdu +

∫

{|x |≤2r0}
δdρ(x) ≤ C3 + eC4r0

(3.19)

for some positive constants C3 and C4. Then, putting (3.18) and (3.19) in (3.16), we
obtain

(∫

{|x |≤2r0}
dλ(x)

|x |β
) 1

q

⎛

⎝
∫

{2r0≤|y|}

(
sup

{|y|≤2|z|≤3|y|}
|Gc

α,χ (z)|
)p′

dλ(y)

⎞

⎠

1
p′

≤ C(C3 + eC4r0)
1
q e−c′ r0

4 < ∞ (3.20)

since c (hence c′) is large enough.
Now, let us check the condition (3.16) for 0 < r0 ≤ 1. When |z| > 1, we readily

obtain (3.16) because of the estimate (3.7). In the case |z| ≤ 1, as in (3.11) and (3.12),
we obtain for (α − d)p′ + d �= 0 that

∫

{2r0≤|y|}

(
sup

{|y|≤2|z|≤3|y|}
|Gc

α,χ (z)|
)p′

dλ(x) ≤ C(1 + r (α−d)p′+d
0 ). (3.21)
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Using this in (3.16) implies for 0 < r0 ≤ 1 that

(∫

{|x |≤2r0}
dλ(x)

|x |β
) 1

q

⎛

⎝
∫

{2r0≤|y|}

(
sup

{|y|≤2|z|≤3|y|}
|Gc

α,χ (z)|
)p′

dλ(y)

⎞

⎠

1
p′

≤ C(1 + r (α−d)p′+d
0 )

1
p′ r

d−β
q

0 < ∞ (3.22)

since d > β and 1/p − 1/q ≤ α/d − β/(dq).
Note that (3.22) is still finite for (α − d)p′ + d = 0 and 0 < r0 ≤ 1, since as in

(3.12) and (3.15), we have

(∫

{|x |≤2r0}
dλ(x)

|x |β
) 1

q

⎛

⎝
∫

{2r0≤|y|}

(
sup

{|y|≤2|z|≤3|y|}
|Gc

α,χ (z)|
)p′

dλ(y)

⎞

⎠

1
p′

≤ C | log r0|
1
p′ r

d−β
q

0 < ∞ (3.23)

since | log r0|
1
p′ r

d−β
q

0 → 0 as r0 → 0 when d > β.
Now, it remains to estimate M2. We rewrite M2 as

M2 =
∑

k∈Z

∫

{2k≤|x |<2k+1}

(∫

{|x |≤2|y|≤4|x |}
|Gc

α,χ (y−1x) f (y)|dλ(y)

)q dλ(x)

|x |β .

We obtain that 2k−1 ≤ |y| < 2k+2 from |x | ≤ 2|y| ≤ 4|x | and 2k ≤ |x | < 2k+1. Let
us show that Gc

α,χ ∈ Lr (λ) for r ∈ [1,∞] such that 1 + 1
q = 1

r + 1
p , which is useful

in the rest of proof. Indeed, by Lemmata 2.5 and 3.1, we see that

∫

G

|Gc
α,χ (x)|r dλ(x) =

∫

{|x |<1}
|Gc

α,χ (x)|r dλ(x) +
∫

{|x |≥1}
|Gc

α,χ (x)|r dλ(x)

≤ C1

∫ 1

0
u(α−d)r ud−1du + C2

∫

{|x |≥1}
(χ(x))−r/2e−c′r |x |δdρ(x) < ∞

(3.24)

for some positive C1 and C2, since α > d(1/p−1/q) and c (hence c′) is large enough.
Similarly, one can show that

‖Ǧc
α,χ‖Lr (λ) < ∞, (3.25)

where Ǧc
α,χ (x) = Gc

α,χ (x−1).
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Then, taking into account (3.24) and (3.25), and applying Young’s inequality (2.11)
for 1 + 1

q = 1
r + 1

p with r ∈ [1,∞], we calculate

M2 ≤ C
∑

k∈Z

∫

{2k≤|x |<2k+1}

(∫

{|x |≤2|y|≤4|x |}
|Gc

α,χ (y−1x) f (y)|dλ(y)

)q

dλ(x)

≤ C
∑

k∈Z
‖[ f · χ{2k−1≤|·|<2k+2}] ∗ Gc

α,χ‖q
Lq (λ)

≤ C‖Ǧc
α,χ‖qr/p′

Lr (λ)‖Gc
α,χ‖r

Lr (λ)

∑

k∈Z
‖ f · χ{2k−1≤|·|<2k+2}‖q

L p(λ)

= C
∑

k∈Z

(∫

{2k≤|x |<2k+1}
| f (x)|pdλ(x)

) q
p

= C‖ f ‖q
L p(λ).

(3.26)
Thus, (3.6), (3.17), (3.26) and (3.3) complete the proof of Theorem 3.2. ��

3.2 Proof of Theorem 1.3

We now prove the critical case β = d of Theorem 1.1 on B1.
As in Sect. 3.1, we first show the special case χ = δ of Theorem 1.3, that is,

Theorem 3.4 Let 1 < p < r < ∞ and 1/p + 1/p′ = 1. Then, we have

∥∥∥∥∥∥∥

f
(
log

(
e + 1

|x |
)) r

q |x | d
q

∥∥∥∥∥∥∥
Lq (λ)

� ‖ f ‖L p
d/p(λ) (3.27)

for every q ∈ [p, (r − 1)p′).

Once we prove Theorem 3.4, then by Proposition 2.4 we obtain immediately Theorem
1.3. Therefore, we only prove Theorem 3.4.

Proof of Theorem 3.4 As in the proof of Theorem 3.2, we split the integral into three
parts

∫

G

|( f ∗ Gc
d/p,χ )(x)|q dλ(x)∣∣∣log

(
e + 1

|x |
)∣∣∣

r |x |d
≤ 3q(N1 + N2 + N3), (3.28)

where

N1 :=
∫

G

(∫

{2|y|<|x |}
|Gc

d/p,χ (y−1x) f (y)|dλ(y)

)q dλ(x)∣∣∣log
(
e + 1

|x |
)∣∣∣

r |x |d
,

123



Hardy–Sobolev–Rellich, HLS and CKN Inequalities on Lie Groups Page 19 of 28   223 

N2 :=
∫

G

(∫

{|x |≤2|y|<4|x |}
|Gc

d/p,χ (y−1x) f (y)|dλ(y)

)q dλ(x)∣∣∣log
(
e + 1

|x |
)∣∣∣

r |x |d

and

N3 :=
∫

G

(∫

{|y|≥2|x |}
|Gc

d/p,χ (y−1x) f (y)|dλ(y)

)q dλ(x)∣∣∣log
(
e + 1

|x |
)∣∣∣

r |x |d
.

First, we estimate N1. As in the case of M1, taking into account (3.4) and (3.7), we
have

N1 ≤
∫

G

(∫

{2|y|<|x |}
| f (y)|dλ(y)

)q
(

sup
{|x |<2|z|<3|x |}

|Gc
d/p,χ (z)|

)q
dλ(x)∣∣∣log

(
e + 1

|x |
)∣∣∣

r |x |d
.

(3.29)

Here, we will apply the integral Hardy inequality (2.12), for which we need to check
the following condition (2.14):

⎛

⎜⎝
∫

{2r0≤|x |}

(
sup

{|x |<2|z|<3|x |}
|Gc

d/p,χ (z)|
)q

dλ(x)∣∣∣log
(
e + 1

|x |
)∣∣∣

r |x |d

⎞

⎟⎠

1
q

(∫

{|x |<2r0}
dλ(x)

) 1
p′

< ∞ (3.30)

holds for all r0 > 0. Indeed, once (3.30) has been established, the integral Hardy
inequality (2.12) gives

N
1
q
1 ≤ C‖ f ‖L p(λ), (3.31)

where C does not depend on f .
Let us now verify the condition (3.30). For this, we consider the cases: r0 > 1 and

0 < r0 ≤ 1.
In the case r0 > 1, we have 2 < 2r0 ≤ |x | < 2|z|. For r0 > 1, by (3.7) and (3.8),

one has

∫

{2r0≤|x |}

(
sup

{|x |<2|z|<3|x |}
|Gc

d/p,χ (z)|
)q

dλ(x)∣∣∣log
(
e + 1

|x |
)∣∣∣

r |x |d

≤
∫

{2r0≤|x |}

(
sup

{|x |<2|z|<3|x |}
|Gc

d/p,χ (z)|
)q

dλ(x)

|x |d

� r−d
0 e−qc′ r0

4 .

(3.32)
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Then, as in (3.10), plugging (3.32) and (3.9) into (3.30), we obtain

(∫

{r0≤|x |}

(
sup

{|x |<2|z|<3|x |}
|Gc

d/p,χ (z)|
)q

dλ(x)

|x |d
) 1

q (∫

{|x |<r0}
dλ(x)

) 1
p′

� r
− d

q
0 e−c′ r0

4 e
C

r0
p′ < ∞ (3.33)

since c (hence c′) is large enough.
Let us now check (3.30) for 0 < r0 ≤ 1. When |z| > 1 using the exponential decay

estimate of Gc
d/p,χ (z) from (3.7), it is easy to verify (3.30). So, let us show the case

|z| ≤ 1. In this case, taking into account |x | < 2|z| ≤ 2, we write

∫

{2r0≤|x |}

(
sup

{|x |<2|z|<3|x |}
|Gc

d/p,χ (z)|
)q

dλ(x)∣∣∣log
(
e + 1

|x |
)∣∣∣

r |x |d

=
∫

{2r0≤|x |≤1}

(
sup

{|x |<2|z|<3|x |}
|Gc

d/p,χ (z)|
)q

dλ(x)∣∣∣log
(
e + 1

|x |
)∣∣∣

r |x |d

+
∫

{1<|x |<2}

(
sup

{|x |<2|z|<3|x |}
|Gc

d/p,χ (z)|
)q

dλ(x)∣∣∣log
(
e + 1

|x |
)∣∣∣

r |x |d
. (3.34)

We see from (3.7) that the second integral on the right-hand side of (3.34) is finite.
For the first integral on the right-hand side, noting (3.7) we deduce that

∫

{2r0≤|x |≤1}

(
sup

{|x |<2|z|<3|x |}
|Gc

d/p,χ (z)|
)q

dλ(x)∣∣∣log
(
e + 1

|x |
)∣∣∣

r |x |d

≤
∫

{2r0≤|x |≤1}

(
sup

{|x |<2|z|<3|x |}
|Gc

d/p,χ (z)|
)q

dλ(x)

|x |d

�
∫

{2r0≤|x |≤1}
|x |−dq/p′−ddλ(x)

� r−dq/p′
0 ,

which implies with (3.34) that

⎛

⎜⎝
∫

{2r0≤|x |}

(
sup

{|x |<2|z|<3|x |}
|Gc

d/p,χ (z)|
)q

dλ(x)∣∣∣log
(
e + 1

|x |
)∣∣∣

r |x |d

⎞

⎟⎠

1
q (∫

{|x |<2r0}
dλ(x)

) 1
p′

≤ C(r−d/p′
0 + 1)rd/p′

0 ≤ C

for any 0 < r0 ≤ 1.
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Now we estimate N3. As in the case for M3, we have for N3 that

N3 ≤
∫

G

(∫

{|y|≥2|x |}
| f (y)|

(
sup

{|y|≤2|z|≤3|y|}
|Gc

d/p,χ (z)|
)

dλ(y)

)q
dλ(x)∣∣∣log

(
e + 1

|x |
)∣∣∣

r |x |d
.

For N3, we apply the conjugate integral Hardy inequality (2.13), for which we need
to check the following condition (2.15):

⎛

⎜⎝
∫

{|x |≤2r0}
dλ(x)∣∣∣log

(
e + 1

|x |
)∣∣∣

r |x |d

⎞

⎟⎠

1
q

×
⎛

⎝
∫

{2r0≤|y|}

(
sup

{|y|≤2|z|≤3|y|}
|Gc

d/p,χ (z)|
)p′

dλ(y)

⎞

⎠

1
p′

< ∞ (3.35)

for all r0 > 0. Indeed, once (3.35) has been established, the conjugate integral Hardy
inequality (2.13) yields

N
1
q
3 ≤ C‖ f ‖L p(λ), (3.36)

where C does not depend on f .
In order to check this, we consider the cases: r0 > 1 and 0 < r0 ≤ 1. If we write

∫

{|x |≤2r0}
dx∣∣∣log

(
e + 1

|x |
)∣∣∣

r |x |d
=

∫
{
|x |< 1

2

}
dx∣∣∣log

(
e + 1

|x |
)∣∣∣

r |x |d

+
∫

{
1
2≤|x |≤2r0

}
dx∣∣∣log

(
e + 1

|x |
)∣∣∣

r |x |d
,

then we see that the first summand on the right-hand side of above is finite since r > 1.
For the second term, using (3.9) we have

∫
{
1
2≤|x |≤2r0

}
dλ(x)∣∣∣log

(
e + 1

|x |
)∣∣∣

r |x |d
≤

∫
{
1
2≤|x |≤2r0

}
dλ(x)

|x |d ≤ 2deC5r0 (3.37)

for some positive constant C5. Combining (3.18) and (3.37), one obtains for r0 > 1
that

⎛

⎜⎝
∫

{|x |≤2r0}
dλ(x)∣∣∣log

(
e + 1

|x |
)∣∣∣

r |x |d

⎞

⎟⎠

1
q ⎛

⎝
∫

{2r0≤|y|}

(
sup

{|y|≤2|z|≤3|y|}
|Gc

d/p,χ (z)|
)p′

dλ(y)

⎞

⎠

1
p′

� (1 + 2deC5r0 )
1
q e−c′ r0

4 < ∞,
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since c (hence c′) is large enough.
Now we check the condition (3.35) for 0 < r0 ≤ 1. As above, for |z| > 1 using

(3.7), it is straightforward to get (3.35). So, for |z| ≤ 1, we write

∫

{2r0≤|y|}

(
sup

{|y|≤2|z|≤3|y|}
|Gc

d/p,χ (z)|
)p′

dλ(y)

=
∫

{2r0≤|y|≤1}

(
sup

{|y|≤2|z|≤3|y|}
|Gc

d/p,χ (z)|
)p′

dλ(y)

+
∫

{|y|>1}

(
sup

{|y|≤2|z|≤3|y|}
|Gc

d/p,χ (z)|
)p′

dλ(y). (3.38)

We note from (3.18) that the second integral on the right-hand side of above is finite.
Then, by (3.7), we get for the first integral that

∫

{2r0≤|y|≤1}

(
sup

{|y|≤2|z|≤3|y|}
|Gc

d/p,χ (z)|
)p′

dλ(y) ≤ C
∫

{2r0≤|y|≤1}
|y|−d dλ(y) ≤ C log

(
1

r0

)
.

It follows with (3.38) that

∫

{2r0≤|y|}

(
sup

{|y|≤2|z|≤3|y|}
|Gc

d/p,χ (z)|
)p′

dλ(y) ≤ C

(
1 + log

(
1

r0

))
. (3.39)

Since we have

∫

{|x |≤2r0}
dx∣∣∣log

(
e + 1

|x |
)∣∣∣

r |x |d
≤ C

(
log

(
e + 1

r0

))−(r−1)

,

and (3.39), then taking into account r > 1 and q < (r − 1)p′, we obtain that

⎛

⎜⎝
∫

{|x |≤2r0}
dλ(x)∣∣∣log

(
e + 1

|x |
)∣∣∣

r |x |d

⎞

⎟⎠

1
q ⎛

⎝
∫

{2r0≤|y|}

(
sup

{|y|≤2|z|≤3|y|}
|Gc

d/p,χ (z)|
)p′

dλ(y)

⎞

⎠

1
p′

≤ C

(
log

(
e + 1

r0

))− r−1
q

(
1 +

(
log

(
1

r0

)) 1
p′

)

≤ C .

(3.40)
Now it remains to estimate N2. We rewrite N2 as

N2 =
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∑

k∈Z

∫

{2k≤|x |<2k+1}

(∫

{|x |≤2|y|≤4|x |}
|Gc

d/p(y−1x) f (y)|dλ(y)

)q dλ(x)∣∣∣log
(
e + 1

|x |
)∣∣∣

r |x |d
.

Since the function
(
log

(
1
|x |

))r |x |d is non-decreasing with respect to |x | near the
origin, then we can say that there exists an integer k0 ∈ Z with k0 ≤ −3 such that
this function is non-decreasing in |x | ∈ (0, 2k0+1). We decompose N2 with this k0 as
follows

N2 = N21 + N22, (3.41)

where

N21 :=
k0∑

k=−∞

∫

{2k≤|x |<2k+1}

(∫

{|x |≤2|y|≤4|x |}
|Gc

d/p(y−1x) f (y)|dλ(y)

)q dλ(x)∣∣∣log
(
e + 1

|x |
)∣∣∣

r |x |d

and

N22 :=
∞∑

k=k0+1

∫

{2k≤|x |<2k+1}

(∫

{|x |≤2|y|≤4|x |}
|Gc

d/p(y−1x) f (y)|dλ(y)

)q dλ(x)∣∣∣log
(
e + 1

|x |
)∣∣∣

r |x |d
.

Let us first estimate N22. Using (3.26), we obtain the following estimate for N22

N22 ≤ C
∞∑

k=k0+1

∫

{2k≤|x |<2k+1}

(∫

{|x |≤2|y|≤4|x |}
|Gc

d/p(y−1x) f (y)|dy

)q
dx ≤ C‖ f ‖q

L p(λ)
.

(3.42)
To complete the proof of Theorem 3.4, it is left to estimate N21. Note that the condition
|y| ≤ 2|x | implies

3|x | = |x | + 2|x | ≥ |x | + |y| ≥ |y−1x |. (3.43)

Since
(
log

(
1
|x |

))r |x |d is non-decreasing in |x | ∈ (0, 2k0+1) and 3|x | ≥ |y−1x |, we
get

(
log

(
1

|x |
))r

|x |d ≥
⎛

⎝log

⎛

⎝ 1∣∣∣ y−1x
3

∣∣∣

⎞

⎠

⎞

⎠
r ∣∣∣∣

y−1x

3

∣∣∣∣
d

.

Then, these and (3.7) give

N21 ≤

C
k0∑

k=−∞

∫

{2k≤|x |<2k+1}

(∫

{|x |≤2|y|≤4|x |}
|y−1x |−

d
p′ | f (y)|dλ(y)

)q dλ(x)
(
log

(
1
|x |

))r |x |d
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= C
k0∑

k=−∞

∫

{2k≤|x |<2k+1}

⎛

⎜⎜⎝

∫

{|x |≤2|y|≤4|x |}
|y−1x |−

d
p′ | f (y)|

((
log

(
1
|x |

))r |x |d
) 1

q

dλ(y)

⎞

⎟⎟⎠

q

dλ(x)

≤ C
k0∑

k=−∞

∫

{2k≤|x |<2k+1}

⎛

⎜⎜⎜⎜⎝

∫

{|x |≤2|y|≤4|x |}
|y−1x |−

d
p′ | f (y)|dλ(y)

((
log

(
3

|y−1x |
))r ∣∣∣ y−1x

3

∣∣∣
d
) 1

q

⎞

⎟⎟⎟⎟⎠

q

dλ(x).

Since the conditions |x | ≤ 2|y| ≤ 4|x | and 2k ≤ |x | < 2k+1 with k ≤ k0 imply
2k−1 ≤ |y| < 2k+2, while (3.43) and k0 ≤ −3 yield |y−1x | ≤ 3|x | < 3 ·2k0+1 ≤ 3/4.
By these and setting

g2(x) :=
χB 3

4
(0)(x)

(
log

(
1
|x |

)) r
q |x | d

q + d
p′

,

we obtain for N21 that

N21

≤ C
k0∑

k=−∞

∫

{2k≤|x |<2k+1}

⎛

⎜⎝
∫

{|x |≤2|y|≤4|x |}
| f (y)|dλ(y)

(
log

(
1

|y−1x |
)) r

q |y−1x | d
q + d

p′

⎞

⎟⎠

q

dλ(x)

≤ C
k0∑

k=−∞
‖[ f · χ{2k−1≤|·|<2k+2}] ∗ g‖q

Lq (λ).

Since p ≤ q < (r − 1)p′, we apply Young’s inequality (2.11) for 1 + 1
q = 1

r̃ + 1
p

with r̃ ∈ [1,∞) to get

N21 ≤ C‖g2‖q
Lr̃ (λ)

k0∑

k=−∞
‖ f · χ{2k−1≤|·|<2k+2}‖q

L p(λ) ≤ C‖ f ‖q
L p(λ), (3.44)

provided that g2 ∈ Lr̃ (λ). Since
(

d
q + d

p′
)

r̃ = d, rr̃
q = r p′

p′+q and q < (r − 1)p′, then

the change of the variable t = log
(

1
|x |

)
gives

‖g2‖r̃
Lr̃ (λ)

=
∫

B(0,3/4)

dλ(x)

(
log

(
1
|x |

)) rp′
p′+q |x |d

≤ C
∫ ∞

log
(
4
3

)
dt

t
rp′

p′+q

< ∞.

Thus, (3.29), (3.36), (3.41), (3.42), (3.44) and (3.28) complete the proof of Theorem
3.4. ��
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3.3 Proof of Theorems 1.5, 1.8, 1.9 and Corollary 1.10

First, let us prove Theorem 1.5, using the Hardy–Sobolev–Rellich inequality (1.2).

Proof of Theorem 1.5 Since θ > (r − q)/r , using Hölder’s inequality for q−(1−θ)r
q +

(1−θ)r
q = 1, we calculate

‖|x |a f ‖Lr (μ
χ q̃/pδ1−q̃/p ) =

(∫

G

| f (x)|θr

|x |r(b(1−θ)−a)
· | f (x)|(1−θ)r

|x |−br(1−θ)
dμχ q̃/pδ1−q̃/p (x)

) 1
r

≤
⎛

⎜⎝

(∫

G

| f (x)|θr q
q−(1−θ)r

|x |r(b(1−θ)−a)
q

q−(1−θ)r
dμχ q̃/pδ1−q̃/p (x)

) q−(1−θ)r
q

×
(∫

G

| f (x)|(1−θ)r q
(1−θ)r

|x |−br(1−θ)
q

(1−θ)r
dμχ q̃/pδ1−q̃/p (x)

) (1−θ)r
q

⎞

⎟⎠

1
r

=
∥∥∥∥∥

f

|x | b(1−θ)−a
θ

∥∥∥∥∥

θ

L
qrθ

q−(1−θ)r (μ
χ q̃/pδ1−q̃/p )

‖|x |b f ‖1−θ
Lq (μ

χ q̃/pδ1−q̃/p ).

Now, since we have α > 0, p ≤ qθr/(q − (1 − θ)r), 0 ≤ qr(b(1 − θ) − a)/(q −
(1− θ)r) < d and 1/p − (q − (1− θ)r)/(qrθ) ≤ α/d − (b(1− θ) − a)/(θd), then
applying (1.2) we obtain (1.8).

Similarly, one can obtain Theorem 1.8 from Theorem 1.3.
Now let us give the proof of Hardy-Littlewood-Sobolev inequality (1.11) on general

Lie group:

Proof of Theorem 1.9 Using Hölder’s inequality for q/(p + q) + p/(p + q) = 1, one
has

∣∣∣∣
∫

G

∫

G

f (x)g(y)Gc
a2,χ (y−1x)

|x |a1 |y|β dμχ(p+q)/pqδ1−(p+q)/pq (x)dρ(y)

∣∣∣∣∣

=
∣∣∣∣∣∣

∫

G

f (x)

(
g

|x |β ∗ Gc
a2,χ

)
(x)

|x |a1 dμχ(p+q)/pqδ1−(p+q)/pq (x)

∣∣∣∣∣∣

≤ ‖ f ‖L(p+q)/q (μ
χ(p+q)/pq δ1−(p+q)/pq )

∥∥∥∥∥

g
|x |β ∗ Gc

a2,χ

|x |a1
∥∥∥∥∥

L(p+q)/p(μ
χ(p+q)/pq δ1−(p+q)/pq )

.

(3.45)
Since α ≥ 0, 1/p − q/(p + q) ≤ α/d, and the fact that 0 ≤ 1/p − q/(p + q) implies
(p + q)/q ≥ p, then applying unweighted version of the Hardy–Sobolev–Rellich
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inequality (1.2), we have

‖ f ‖L(p+q)/q (μ
χ(p+q)/pq δ1−(p+q)/pq ) � ‖ f ‖L p

α (μχ ). (3.46)

Since 0 ≤ a1 < dp/(p + q), a2 > 0 and 1/q − p/(p + q) ≤ (a2 − a1)/d, then (1.2)
implies

∥∥∥∥∥

g
|x |β ∗ Gc

a2,χ

|x |a1
∥∥∥∥∥

L(p+q)/p(μ
χ(p+q)/pq δ1−(p+q)/pq )

�
∥∥∥∥

g

|x |β
∥∥∥∥

Lq (μχ )

� ‖g‖Lq (μχ ), (3.47)

where we have used (1.4) in the last inequality since 0 ≤ β < d/q. Thus, plugging
(3.46) and (3.47) into (3.45), we obtain (1.11).

Now we prove Corollary 1.10.

Proof of Corollary 1.10 By (1.2) andHölder’s inequality for 1/q+1/q ′ = 1, we obtain

‖ f ‖L p
α (μχ )‖|x | β

q f ‖Lq′
(μ

χq/pδ1−q/p )

�
∥∥∥∥∥

f

|x | β
q

∥∥∥∥∥
Lq (μ

χq/pδ1−q/p )

‖|x | β
q f ‖Lq′

(μ
χq/pδ1−q/p )

≥ ‖ f ‖2L2(μ
χq/pδ1−q/p )

,

which is (1.12).
Similarly, Theorem 1.3 implies the second part of Corollary 1.10.

4 Appendix: The Case of Compact Lie Groups

In this section, we show that the obtained results on noncompact Lie groups actually
hold also on compact Lie groups in a similar way. In the setting of compact Lie
groups, we have δ = 1 hence dλ = dρ, and the continuous positive character χ must
be identically equal to 1. We refer to [17] for the background material as well as the
Fourier analysis on compact Lie groups.

Let us recall the following result:

Theorem 4.1 [24, VIII.2.9 Theorem] If G has a polynomial growth, there exist two
positive constants C1 and C2 such that

C1V (
√

t)−1 exp(C2|x |2/t) ≤ pt (x) ≤ C2V (
√

t)−1 exp(−C1|x |2/t) (4.1)

for all t > 0 and x ∈ G.

Now we give an analogue of Lemma 2.5 on compact Lie groups when 0 < α < d,
since we have actually used only this case of Lemma 2.5 in the noncompact case:
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Lemma 4.2 Let 0 < α < d. If c > 0 is sufficiently large, then we have

|Gc
α,χ | ≤ C |x |α−d (4.2)

for all x ∈ G and some positive constant C.

Proof of Lemma 4.2 Taking into account Theorem 4.1 with (2.3) and (2.4) as well as
the relation (2.8), we have

|Gc
α,χ (x)| =

∣∣∣∣C(α)

∫ ∞

0
tα/2−1e−ct pt (x)dt

∣∣∣∣

�
∫ 1

0
t (α−d)/2−1e−cte−C|x |2/t dt

+
∫ ∞

1
t (α−D)/2−1e−cte−C|x |2/t dt =: G1(x) + G2(x).

It is easy to see that G2(x) � 1, since c is large enough.
In the exact same way as in the proof of Lemma 2.5 (see [3, Proof of Lemma 4.1]),

using the change of variables |x |2/t = u, we arrive at

G1(x) �
∫ 1

0
t (α−d)/2−1e−C|x |2/t dt = |x |α−d

∫ ∞

|x |2
u

d−α
2 e−Cu du

u
,

which gives the estimate (4.2). ��

Since we have Lemma 4.2, sup
x∈Br

χ(x) = const and
∫

Br
χdρ = const for every r � 1,

which play key roles in the proof of Theorems 1.1 and 1.3, then we also have these
Theorems 1.1 and 1.3 with δ = 1 on compact Lie group.

Note that in the proof of Theorems 1.5, 1.8 and 1.9, and Corollary 1.10, we only
use Hölder’s inequality, and Theorems 1.1 and 1.3. Therefore, since now we have
Theorems 1.1 and 1.3 with δ = 1 on compact Lie groups, then Theorems 1.5, 1.8 and
1.9, and Corollary 1.10 also hold on compact Lie group, with δ = 1.
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