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Understanding how cooperative behaviours can emerge from competitive interactions is an open
problem in biology and social sciences. While interactions are usually modelled as pairwise networks,
the units of many real-world systems can also interact in groups of three or more. Here, we introduce
a general framework to extend pairwise games to higher-order networks. By studying social dilemmas
on hypergraphs with a tunable structure, we find an explosive transition to cooperation triggered
by a critical number of higher-order games. The associated bistable regime implies that an initial
critical mass of cooperators is also required for the emergence of prosocial behaviour. Our results
show that higher-order interactions provide a novel explanation for the survival of cooperation.

Introduction. The pervasiveness of cooperation in our
world has long puzzled researchers [1, 2]. After all, the
natural world, and human society is not an exception,
obeys Darwinian selection, which is driven by the self-
interest of individuals. In such a competitive world, costly
altruistic behaviours seem inappropriate, since they do
not bring any immediate advantage to the cooperators
[3–6]. It is instead more profitable for self-interested
individuals to defect, exploiting the benefits from the
actions of cooperators who, in turn, see their sustainability
jeopardized by the higher profits of free-riders [7, 8].

Social dilemmas are a well-known theoretical framework
for studying cooperation. In a social dilemma, each actor
in a group can choose either to cooperate or to defect
[9, 10]. Cooperating benefits the group at an individual
cost, while defectors exploit collective benefits provided
by cooperators without paying any cost [11, 12]. There-
fore, while cooperation would be the best outcome from
a group perspective, defection is the favoured strategy
by selfish rational decision-makers. This tension between
the two strategies defines the dilemma [13–16]. Social
dilemmas are typically studied in evolutionary game the-
ory [3, 7, 17–21] by implementing games, such as the
Prisoner’s Dilemma (PD), on structured populations [22–
24]. The underlying structure of a population is usually
modelled as a network, where links represent the inter-
actions between pairs of agents [25–27]. In some cases,
the structure of the network has been shown to promote
prosocial behaviours through, e.g., mechanisms of net-
work reciprocity [4, 28, 29], the heterogeneity of the nodes
[30–33] and the presence of clustering [34]. Networks are
however limited in their representation of real-world sys-
tems. The links of a network can indeed only describe
pairwise interactions, while the units of a complex system
can also interact in groups of more than two. Thus, net-
works do not allow to accommodate more realistic and
general forms of higher-order social interactions.

In recent years, mathematical structures like hyper-
graphs and simplicial complexes have been used to rep-
resent interactions among three or more units [35–37].
From contagion processes [38] to synchronization [39–41]
and ecological competition [42], various studies have illus-
trated that higher-order interactions can lead to the emer-
gence of collective behaviours and dynamic patterns not
seen in pairwise networks [36]. Since its origin [43], game
theory has been formulated as an n-body problem. There-
fore it comes as no surprise that higher-order interactions
have attracted attention also in the study of evolutionary
game theory [11, 44–50]. However, a general framework
for social dilemmas on structured populations with group
interactions is still missing. In fact, when higher-order
payoffs for n-body games have been considered, it has
been for well-mixed populations or for simple pairwise
networks, such as regular lattices [12, 44, 45, 47, 51, 52].
When, instead, more general interaction patterns have
been considered, it has been for specific problems and pay-
off structures relying on strong assumptions [50, 53, 54].
For example, when hypergraphs were used to model group
interactions at the microscopic level [49, 55, 56], they
often employed a linear function of the number of cooper-
ators in a group as the group payoff, limiting the general
representation of social dilemma dynamics [11].

In this Letter, we introduce a general framework to ex-
tend social dilemmas to structured populations accounting
for interactions in groups of variable size. In our model,
the players are the nodes of a hypergraph and are involved,
at the same time, in both pairwise and higher-order games
as represented by hyperedges of different sizes. We do
so by assigning a payoff tensor of dimension n to each
hyperedge of size n. In this way, our model combines
n-body games [12, 44, 45, 47, 57] with the potential of
higher-order networks in representing the most general
microscopic structure of the interactions [48, 55, 58, 59].
By studying the evolutionary dynamics of the model on
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different types of hypergraphs, we find that the pres-
ence of higher-order interactions and their microscopic
structure play an important role in the survival of co-
operation in social dilemmas. In fact, above a critical
number of higher-order interactions, the dynamics can
show an explosive transition to a bistable state [60–62],
where besides full defection (the only stable equilibrium
for the pairwise PD) a cooperative stable state emerges.
We provide an analytical characterization of the observed
phase transition and its dependence on the parameters of
the game. In particular, we found that an initial critical
mass of cooperators is also needed to sustain cooperation
in the long term: below this critical mass, every player
becomes a defector, even if the number of higher-order
interactions is above the critical threshold.

The model. We consider a population of N players
taking part in a number M of different games, which can
either be pairwise or in groups of three or more players.
Such interactions are described by a hypergraph H(V, E),
where V is the set of |V| = N nodes representing players,
and E is the set of |E| = M hyperedges [35, 36]. Each
hyperedge eg, with g ∈ {1, · · · ,M}, is a group (a subset
of V) of two or more players interacting in game g. The
hypergraph can be represented by an N ×M incidence
matrix B, whose entry big is equal to 1 if player i is play-
ing game g, and is zero otherwise. The number of games
in which a player i takes part is given by the hyperdegree
ki =

∑M
g=1 big, while the number of players in a game g

is the size of the hyperedge qg = |eg| =
∑N

i=1 big. We
focus here on the case of hypergraphs with hyperedges
of size two (2-hyperedges, or simply edges) and three (3-
hyperedges), respectively corresponding to classical pair-
wise games (2-games) and games played in groups of three
players (3-games). Regarding payoffs, since there are qg
players involved in a symmetric game g, if we indicate as
ns the number of different strategies available, the total
number of different payoffs is ns

(ns+(qg−1)−1
(qg−1)

)
(see Sup-

plemental Material, SM). Here we consider only ns = 2
possible strategies, cooperation (C) and defection (D), as
in the classical pairwise social dilemmas, resulting in 4 pos-
sible different payoffs for 2-games and 6 for 3-games. As
usual, the payoffs for 2-games can be displayed as a 2× 2
matrix Π, whose element πsisj =

[
πsi(sj), πsj (si)

]
is the

pair of payoffs for player i and j respectively, when the first
player plays strategy si and the second sj . Generalizing to
interactions in groups of three players, payoffs for 3-games
can then be represented as a 2× 2× 2 tensor T , whose el-
ement τsisjsk =

[
τsi(sj , sk), τsj (si, sk), τsk(si, sj)

]
is now

a 3-tuple with the value of the payoff for each of the
three players i, j and k, playing strategies si, sj , sk.
The complete payoff structure for both 2-games (qg = 2)
and 3-games (qg = 3) is shown in Fig. 1, using different
symbols for different payoff values. As commonly done
in the study of social dilemmas, without loss of gener-
ality we choose the payoff for mutual cooperation equal

FIG. 1. Higher-order games on a hypergraph. The orange
triangular areas are hyperedges of size qg = 3, corresponding
to games played by three players (3-games), while the purple
segments are hyperedges of size qg = 2, representing pairwise
games (2-games). The payoff structures of symmetric 2-games
and 3-games are reported in the two boxes.

1, while the payoff for mutual defection is equal 0, for
both 2-games and 3-games [53]. In a similar manner, i.e.
independently from the number of players (2 or 3) in the
game, with and we indicate the payoffs received
for unilaterally deviating from mutual cooperation and
defection respectively. In this way, it is immediate to
identify in and in the payoffs usually denoted, in
pairwise social dilemmas, as the temptation T and the
sucker ’s payoff S. Identifying T and S is crucial for the
characterization of the game. The values of T and S
classify classical pairwise games into four different types,
each with different Nash Equilibria (NE): the Prisoner’s
Dilemma (T > 1, S < 0), the Chicken game (T > 1,
S > 0), the Stag Hunt game (S < 0, T < 1) and the
Harmony game (S > 0, T < 1) (see SM). Hence, we
propose extending the same classification to 3-games. In
3-games there are two additional payoffs, for defection
against a cooperator and a defector ( namely W), and
for cooperation against a cooperator and a defector (
namely G). Depending on the relative value of these two
additional payoffs (if G > W or G < W ) each type of
3-games is divided into two subsets with different Nash
Equilibria. As shown in SM, by restricting G and W to
the range 0 ≤ G,W ≤ 1 (as we do for our results) the
resulting 3-games are social dilemmas [12, 63, 64].

Stochastic simulations. To investigate the effects
of higher-order interactions on the equilibria of a system
with N players, we considered the following stochastic
evolutionary game dynamics. We start with a population
having an initial fraction ρ0 of cooperators. At each time
step, one player (the focal) is selected at random, and
a second player (the model) is chosen among the neigh-
bouring nodes on the hypergraph, connected to the focal
player by hyperedges of any size. Each of the two selected
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players plays a 2-game with all its neighbors connected
through a 2-hyperedge, and a 3-game for each 3-hyperedge
it takes part in. A 2-game is completely defined by the
values of the payoff matrix entries T and S, while the
3-game has the same T and S of the 2-game, but is also
defined by the payoffs G and W . In each game, the focal
(respectively, the model) player earns a payoff based on its
strategy and the strategies of the other players involved
in that particular game. The total payoff πf of the focal
player (πm of the model player) is the sum of all the game
payoffs. The focal player has then the possibility to adopt
the strategy of the model player sm, with a probability
which is a non-decreasing function of the total payoff dif-
ference πm − πf , modelled as a Fermi function [9, 19, 65]:
psf→sm = {1+ exp[−w(πm − πf )]}−1 where w represents
the strength of selection [66]. We iterate the stochastic
dynamics to compute the quasistationary (QS) probabil-
ity distribution [67, 68] of the fraction of players adopting
strategy C (cooperators). This distribution is the sta-
tionary distribution of the stochastic process conditioned
on non-extinction [69], and for a wide class of stochastic
processes, its properties have been shown to converge
to the stationary properties when N → ∞ [70, 71]. In
particular, in the context of evolutionary game theory, the
QS distribution local maxima can converge, in unstruc-
tured populations and homogeneous random networks, to
the stable fixed points ρ∗ of the mean-field deterministic
evolution given by the replicator dynamics [50, 72]. As
for the underlying structure of interactions, we have con-
sidered random hypergraphs in which we can control the
number of higher-order interactions. By forming indepen-
dently 2 and 3-hyperedges we have constructed random
hypergraphs of N nodes with tunable average hyperdegree
⟨k⟩ =

∑N
i=1 ki/N and probability δ = n∆/(N⟨k⟩) for a

player to interact in a 3-game. Here, N⟨k⟩ = n/ + n∆,
where n/ and n∆ are respectively the number of 2-player
interactions (the number of 2-hyperedges multiplied by
2) and the number of 3-player interactions (the number
of 3-hyperedges multiplied by 3) in the system (see SM).

Fig. 2 shows the results for the case of the Prisoner’s
Dilemma (PD). We recall that the pairwise PD is de-
fined by payoff values T > 1 and S < 0. In particular,
for our simulations we chose T = 1.1, S = −0.1 and
strength of selection w = 1/⟨k⟩ [73]. As for the 3-game
we consider a social dilemma with the same values of T
and S of the pairwise PD, and with G and W such that
0 ≤ G,W ≤ 1 and (G −W ) > 0, since in this case the
one-shot 3-game has 4 different pure NE: full defection
(D,D,D) and all the permutations of 2 cooperators and 1
defector (see SM). Fig. 2(a) reports the fraction of coop-
erators at equilibrium as a function of the fraction δ of
3-game interactions, for different values of a = 2(G−W ).
Symbols represent the simulation results obtained from
the peaks of the QS distribution pQS(ρ) in panels (b-e).
A bifurcation is observed when the fraction δ exceeds a
critical value δc(a). For δ < δc the only stable fixed point,
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FIG. 2. (a) Fraction of cooperators at equilibrium for the
PD on random hypergraphs with N = 1500, ⟨k⟩ = 20 and
tunable ratio δ of 3-player interactions. (b-e) Quasistationary
distributions for a = 1 and four values of δ. Continuous curves
and symbols represent the simulation results averaged over
1500 runs, while dashed lines are the analytical mean-field
predictions of Eqs. (3) and (4). (f) Susceptibility χ as a
function of δ for increasing N . (g) Scaling of the position and
height (inset) of the peak of χ. The black line is the fitting.

as in the pairwise PD, is full defection ρ∗D = 0 [74], while
for δ ≥ δc we have bistability, with a new stable state ρ∗+
appearing due to the effect of higher-order interactions.
The observed phase transition is explosive [60–62] as, for
δ ≥ δc, the cooperative phase has ρ∗+ ≥ 0.5. To better
characterize the phase transition we have computed the
susceptibility χ = N

(
⟨ρ2⟩ − ⟨ρ⟩2

)
as a function of δ for

different hypergraph sizes N . In first-order transitions,
this susceptibility peaks around the value of the control
parameter where the new phase ρ∗+ appears, and the peak
diverges in the limit N → ∞ because the system oscil-
lates between the two phases [75]. Fig. 2(f) shows that,
in our case, χ becomes more pronounced with increasing
hypergraph size N . The critical value of δ in the ther-
modynamic limit can be extracted through a finite-size
scaling analysis. The results are reported in Fig. 2(g),
where δ∞c = 0.334(5) is obtained as the y-intercept of the
fitting of the critical δnumc (N) measured numerically (see
SM) [75]. Fig. 3(a) illustrates the typical time evolution
of the system. It reports the fraction of cooperators ρ(t)
as a function of time for 20 different initial conditions ρ0.
We notice that when ρ0 is smaller than a given threshold
ρ∗−, the dynamics typically converges to the full defection
state. Conversely, when ρ0 > ρ∗−, it converges to the
stable state ρ∗+ where a finite fraction of the population
are cooperators. In other words, ρ∗− represents the initial
critical mass of cooperators needed for cooperation to
survive in the long term. Fig. 3(b) shows that ρ∗− is a
decreasing function of δ for any value of the parameter a.
This implies that smaller initial densities of cooperators
are sufficient to sustain stable cooperation in systems
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with a larger fraction δ of 3-game interactions (see SM
for further details on the stochastic simulations). No-
tice that the results above depend on the topology of
the hypergraph, as we found that a cooperative state is
still possible, but the explosive transition for δ ≥ δc is
replaced by a continuous one in the more constrained case
of regular lattices with a tunable number of higher-order
interactions (see SM).
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FIG. 3. Basins of attraction and critical mass of cooperators
for the PD on random hypergraphs. (a) Temporal evolution
of the fraction of cooperators for various initial conditions and
δ = 0.4, a = 1.5, ⟨k⟩ = 20. (b) Unstable stationary state
ρ∗− as a function of δ for average hyperdegree ⟨k⟩ = 20 and
different values of a. Symbols show the simulation results,
while the lines are the analytical mean-field predictions. The
shaded areas represent the errors.

Analytical results. To better understand the influ-
ence of higher-order interactions on the game outcome,
we analytically examined the case of a well-mixed popula-
tion, where each player interacts either in a 3-game with
probability δ or in a 2-game with probability 1− δ. The
dynamics of the fraction ρ of cooperators for a well-mixed
population in the thermodynamic limit is described by
the mean-field Replicator Equation (RE) [7, 19, 76, 77]:

dρ

dt
= ρ(1− ρ) [πC(ρ, δ)− πD(ρ, δ)] (1)

where πC and πD are the expected payoffs of a cooperator
and a defector, functions of the density of cooperators
ρ and of the fraction δ of 3-game interactions (see SM).
Hence, the payoff difference is also a function of ρ and δ:

πC − πD = −ρ2cδ + ρ (cδ − b− 2S) + S (2)

where c = (a + b), b = T − S − 1 and a = 2(G − W ).
Therefore, besides the two absorbing states full-defection
ρ∗D = 0 and full-cooperation ρ∗C = 1, Eq. 1 has two
non-trivial stationary states ρ∗± for which πC − πD = 0:

ρ∗± =
cδ − b− 2S ±

√
(cδ − b)2 + 4S(b+ S)

2cδ
(3)

The existence of real-valued ρ∗± depends on the discrimi-

nant ∆ = (cδ − b)
2
+4S(b+S) ≥ 0. Given that (cδ − b)

2

is always positive, a sufficient condition for the existence
is 4S(b+S) = 4S(T −1) > 0, which is always satisfied for
the Stag-Hunt game and Chicken game. For the Prisoner’s
Dilemma and the Harmony game instead ∆ ≥ 0 holds

only for certain values of the parameters. In particular,
for the game we are focusing on in this Letter, namely the
PD, we have T > 1 and S < 0, hence b = T − S − 1 > 0.
Also, c = a+ b > 0, as we are considering a 3-game with
a = 2(G−W ) > 0. This leads to positive real-valued ρ∗±
when:

δ ≥δth1 =
b+

√
−4S(b+ S)

c
(4)

In particular, for δ = δth1 , where the two solutions ρ∗+
and ρ∗− appear and coincide (∆ = 0), they take the value

ρ∗±(δ
th
1 ) = 0.5 − (b + 2S)/[2(b +

√
−4S(b+ S))], while

for δ > δth1 we have 0 < ρ∗− < ρ∗±(δ
th
1 ) < ρ∗+ < 1 (see

SM). A stability analysis of the solutions reveals that,
while ρ∗D = 0 and ρ∗+ are stable, ρ∗− and ρ∗C = 1 are
unstable stationary states. Therefore, Eq. (4) gives us the
mean-field critical threshold δth1 of 3-player interactions
for cooperation to survive in the higher-order PD. In fact,
if δ is below this critical threshold the only stable station-
ary state is full defection ρ∗D = 0, as in the pairwise PD.
If instead the fraction of 3-game interactions δ exceeds
δth1 , an explosive transition to a bistable state emerges,
where both ρ∗D = 0 and 0 < ρ∗+ < 1 are stable stationary
states. In Fig. 2(a-e) the analytical mean-field results
are reported as dashed lines. In particular, the analyt-
ical predictions for the stable states ρ∗+ and ρ∗D are in
perfect agreement with the peaks of the quasistationary
distributions in Fig. 2(b-e) and with the symbols in panel
(a) reporting the stable fixed points obtained through
stochastic simulations on random hypergraphs. At the
same time, the critical fraction of 3-game interactions
δth1 (vertical lines in Fig. 2(a)) accurately marks the dis-
continuous transition to bistability observed numerically,
coinciding with the appearance of ρ∗±(δ

th
1 ). In particular,

for the specific values of the parameters used in our simu-
lations, we have δth1 = 0.3 and ρ∗±(δ

th
1 ) = 0.5, in perfect

agreement with the simulation results. Fig. 3 displays
the unstable solution ρ∗−, which defines the basins of at-
traction of the two stable stationary states ρ∗D and ρ∗+,
showing again a good agreement between the mean-field
predictions (dashed lines) and the stochastic simulations
(trajectories in Fig. 3(a) and symbols in Fig. 3(b)).

Conclusions. In this Letter, we introduce a general
game theory framework to study social dilemmas when
both pairwise and higher-order interactions are possible.
Our main finding is that cooperation can persist even in
scenarios like the PD, where pairwise interactions typically
lead to full defection. The transition to a stable coopera-
tive state is explosive when the number of higher-order
interactions surpasses a critical threshold determined by
game parameters. The presence of bistability, however,
indicates that the survival of cooperators is not guaran-
teed: a critical mass of initial cooperators is needed to
sustain stable prosocial behaviour. This is in agreement
with empirical observations regarding the critical mass of
initiators required to trigger social and cultural changes
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[78, 79]. Our findings show that higher-order interactions
can foster cooperation in competitive settings, offering
a novel solution to social dilemmas. While we focus on
the PD in this Letter, our higher-order framework readily
applies to other games. We also hope our work inspires
systematic investigations into the impact of various real-
world features, such as different topologies of higher-order
networks and temporal changes in their connectivity, on
evolutionary game dynamics.
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Rev. E 78, 10.1103/PhysRevE.78.017101 (2008).
[35] F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas,

A. Patania, J.-G. Young, and G. Petri, Phys. Rep. 874, 1
(2020).

[36] F. Battiston, E. Amico, A. Barrat, G. Bianconi, G. Fer-
raz de Arruda, B. Franceschiello, I. Iacopini, S. Kéfi,
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NUMBER OF DIFFERENT PAYOFFS

We consider a general qg-person game, where each player can choose among ns different strategies. If the players
are distinguishable (i.e. not identical) then there are n

qg
s possible different elements of the payoff tensor and for each

element, there are qg possible different individual payoffs. That is, in the case of distinguishable players the maximum
number of different payoffs Nmax

π is:

Nmax
π = nqg

s qg (S.1)

Instead, if the players are identical, the payoff of a player depends on its strategy and on the unordered sample of the
strategies of the other qg − 1 players. Unordered because, since the players are identical, it does not matter which
player plays which strategy. Given that there are ns possible different strategies, by applying the formula for unordered
sampling with replacement of qg − 1 items picked at random from ns choices, we find that for identical players (i.e. for
symmetric games) the maximum number of different payoffs is:

Nmax
π = ns

(
ns + (qg − 1)− 1

(qg − 1)

)
(S.2)

Substituting, qg = 3 and ns = 2, we get Nmax
π = 6. In our model we set the payoff for mutual cooperation R = 1 and

that for mutual defection P equals 0. The remaining four payoffs are then denoted as , , , and .

CLASSIFICATION OF SOCIAL DILEMMAS

In a social dilemma each player can choose between two strategies, either to cooperate (strategy C) or to defect
(strategy D) [1–3]. The dilemma arises from the inherent trade-off between these strategies. Opting to defect offers
a higher individual payoff than cooperation when confronted by one or more cooperating players, allowing one to
free-ride on the cooperative efforts of others. However, if all players collectively defect, it leads to a detrimental
outcome for everyone, including the defectors, as the collective payoff diminishes. In the context of pairwise (2-player)
social dilemmas, it is customary to set the payoffs for mutual cooperation (known as “Reward”, denoted as R) and
mutual defection (namely “Punishment”, P ) to 1 and 0, respectively. Moreover, the payoff associated with unilaterally
deviating from mutual cooperation is T (“Temptation”), while a player receives the payoff S (“Sucker”) for deviating
from mutual defection. It follows that if S > 0 it is convenient for a rational player to deviate from mutual defection,
while if T > 1 it is preferable to deviate from mutual cooperation. Therefore, depending on the combination of
values of T and S (i.e, above or below the threshold values 1 and 0), we get four scenarios that depict four possible
different games. These games are characterized by different Nash equilibria and can be conveniently represented as a
“square of games” as shown in Fig. 1. In particular, a Prisoner’s Dilemma arises for T > 1, S < 0, a Chicken game for
T > 1, S > 0, a Stag Hunt game for T < 1, S < 0, and T < 1, S > 0 define a Harmony game.

A pairwise game can be represented using the so-called payoff matrix representation, where the element of the matrix
πsisj =

[
πsi(sj), πsj (si)

]
is the pair of payoffs for player i and j respectively, when the first player plays strategy si

and the second sj [4]. For 3-player games, the payoff matrix is then substituted by a 2× 2× 2 payoff tensor T , whose
element τsisjsk =

[
τsi(sj , sk), τsj (si, sk), τsk(si, sj)

]
is now a 3-tuple with the value of the payoff for each of the three

players i, j and k, playing strategies si, sj , sk. As shown in the first section of the SM, the number of possible different
payoffs for 3-player symmetric games is equal to 6. The complete 2× 2× 2 payoff tensor is visually represented in
Figure 2. Consistently with the pairwise social dilemmas, we choose the payoff for full cooperation (i.e. strategy profile
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FIG. 1. Games square showing the games defined by the combination of values of T and S above or below the thresholds given
by the values of the payoffs R and P . In particular, we choose R = 1 and P = 0, as commonly done in the study of social
dilemma games. It is worth noticing that the constraints 2R− P and 2P −R, respectively for T and S, are not strictly required
to have a social dilemma, but are usually added for the sake of symmetry in the representation.

(C,C,C)) equal to (1, 1, 1) and the payoff for mutual defection (strategy profile (D,D,D)) equal to (0, 0, 0). As shown
in the manuscript, in a 3-player game the payoff for unilaterally deviating from mutual cooperation (respectively the
payoff for deviating from mutual defection) is analogous to the temptation payoff T (respectively sucker’s payoff S)
in the pairwise social dilemma. In fact, as in pairwise games, in 3-person games it is advantageous for a rational player

FIG. 2. Payoff tensor for 3-player social dilemmas. Consistently with the notation for pairwise games, we assume the payoffs for
mutual cooperation and defection respectively equal to (1, 1, 1) and (0, 0, 0). The two matrices represent the two levels of the
2× 2× 2 payoff tensor, whose elements are the triplets of payoffs (τ1, τ2, τ3). The top matrix shows the payoffs when player 3
adopts cooperation, i.e. for s3 = C. The matrix on the bottom reports the payoffs for the case s3 = D. It is worth noticing that
despite the game being symmetric it would be not obvious to reconstruct the whole payoff tensor just from the payoffs of player
1, as usually done in the case of pairwise symmetric games.

to deviate from mutual cooperation if > R = 1, while it is beneficial to deviate from mutual defection if > P = 0.
However, unlike the pairwise games, in 3-person games there are two additional payoffs ( and ) that define a new
threshold. In particular, if > , it is favourable to be a defector when playing against a cooperator and a defector,
while if < , it is convenient to side with the cooperator.

Classification of 3-player games

In light of their definitions, it becomes apparent that the payoffs and represent the natural extension of T
and S to the realm of 3-player games. To prevent any potential confusion, we propose to consistently refer to these
3-player counterparts using the same labels as their pairwise equivalents, specifically denoting as T and as S.
With this alignment, we propose to extend the classification scheme based on the values of T and S from pairwise
social dilemmas to 3-player games. Consequently, in 3-person games, we identify the same four social dilemmas that
are recognizable in the pairwise case. However, the scenario becomes more complex for 3-player games, where the
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FIG. 3. Games cube showing the classification of 3-player symmetric games according to the values of the payoffs T, S,G,W .
On the T and S axis we have the same restraints as for the pairwise games in Fig. 1, where we choose R = 1 and P = 0 as in
the manuscript. However for 3-person games we have an extra dimension: depending on whether G > W or G < W , each of the
four pairwise games is now split in two distinct games with different NE. In the figure we show the different NE for the two HO
PD, i.e. for the two disjoint subsets of 3-player games corresponding to the same values of T and S that define the pairwise PD
(T > 1 and S > 0). The black arrow in the plot indicates the increasing direction of G−W .

relative magnitude of and now becomes an additional defining factor. This leads to a division of each of these four
games into two separate subsets, each characterized by distinct Nash Equilibria. Consequently, the game square for
pairwise games transforms into a game cube for 3-person games, as depicted in Fig. 3. The classification of 3-player
games is detailed in the following list.

3-player Prisoner’s Dilemma game

Pairwise Prisoner’s Dilemma (PD) is defined by T > 1 and S < 0. For 3-player, the condition > defines two PD
with different NE:

• > : (D,D,D) is the only NE of the game.

• < : the game has 4 different pure NE, (D,D,D), (C,C,D), (C,D,C), (D,C,C).

3-player Harmony game

Pairwise Harmony games are defined by T < 1 and S > 0. Depending on the values of and we now have the
following Nash Equilibria:

• > : the game has 4 different pure NE, (C,C,C), (C,D,D), (D,C,D), (D,D,C).

• < : (C,C,C) is the only NE of the game.

3-player Chicken game

The pairwise Chicken game (CG) is defined by T > 1 and S > 0. The values of and characterize two different
subsets of CG with different Nash Equilibria as:

• > : the NE are (D,D,C), (D,C,D) and (C,D,D).

• < : the NE are (C,C,D), (C,D,C) and (D,C,C).
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3-player Stag hunt game

The Stag hunt game is defined by T < 1 and S < 0. In this case, the values of the payoffs and do not change
the two NE, (C,C,C) and (D,D,D). However, depending on which payoff between and is higher, the ways in
which is possible to reach these two NE changes, and one NE is favored over the other. In Game theory notation, this
threshold influences the basin of attraction of the two NE, without changing the NE themselves, i.e. it makes one or
the other NE risk dominant:

• > : there are more strategic moves leading to (D,D,D) (it has a larger basin of attraction, i.e. it is risk
dominant) than to (C,C,C); defection is promoted over cooperation.

• < : cooperation is promoted since there are more strategic paths bringing to (C,C,C).

WHAT IS A SOCIAL DILEMMA?

FIG. 4. Conditions for a 3-player social dilemma. (a-b), payoffs restraints for having a cooperation game, as defined in Ref. [5].
The green dashed arrows are used to compare the payoffs of different players (dots), each arrow pointing in the direction of
the higher payoff. These conditions on the payoff define what represents strategies of cooperation (in blue) and defection (red
dots) in N-player games [6]. (c, d), payoffs conditions defining the temptation to defect, as given in Ref. [7]. The purple solid
arrows are used to compare the payoffs of different players (dots), each arrow pointing in the direction of the higher payoff.
Differently from conditions (a-b), in this case it is possible for the focal player (the node attached to the tail of the arrow) to
change its strategy adopting the one of the player pointed by the arrow. (e), by combining all the previous conditions we have a
representation of a social dilemma, as defined in Ref. [6].

The game theory literature does not provide a universally agreed-upon definition of social dilemmas, with varying
interpretations [5–9]. In our study, the concept of a higher-order social dilemma is grounded in the definition put
forward by Ref. [6]. This definition hinges on a combination of two key conditions: first, a game must qualify as
a cooperation game, which implies the identification of one strategy as cooperation and the other as defection [5].
Second, defection should be tempting, indicating that it is advantageous from a self-centered individual perspective
but detrimental from a collective standpoint [7]. Fig. 4 illustrates this set of conditions for a 3-player game. More
specifically, Fig. 4.(a-b) defines a cooperation game according to the criteria laid out in Ref. [5]:

(a) A focal player prefers other group members to cooperate, regardless of its own strategy:

πC(j + 1) ≥ πC(j) for j = 0, 1, . . . , d− 2 (S.3)

πD(j + 1) ≥ πD(j) for j = 0, 1, . . . , d− 2 (S.4)

where πX is the payoff of a focal player with strategy X = C,D, while j represents the number of other group
members (excluding the focal player) who are cooperators and d is the size of the group. For d = 3 and using for
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the payoffs the notation introduced in the manuscript, we have:

1 ≥G ≥ S (S.5)

T ≥W ≥ 0 (S.6)

(b) Mutual cooperation brings a higher payoff than mutual defection:

πC(d− 1) > πD(0) (S.7)

That for a 3-game reads:

1 > 0 (S.8)

which is trivially satisfied for our choice of parameters, being 1 the payoff for mutual cooperation and 0 for
mutual defection.

Panels (c-d) shows instead the conditions for the defection to be tempting, as presented in Ref. [7]:

(c) In a given group, defectors do better than cooperators:

πD(j) > πC(j − 1) for 0 < j < d− 1 (S.9)

By denoting the payoffs as in the manuscript, for a 3-game it gives:

T > G (S.10)

W > S (S.11)

(d) It is better to switch from cooperator to defector:

πD(j) > πC(j) (S.12)

For a 3-game we have:

T > 1 (S.13)

W > G (S.14)

0 > S (S.15)

According to Ref. [7], if all the conditions presented in (c, d) are satisfied, the game is deemed a social dilemma.
Conversely, if only some of these conditions are met, the game falls into the category of a relaxed social dilemma. To
exemplify, the pairwise Prisoner’s Dilemma is classified as a social dilemma, while games like the pairwise Chicken
game and the Stag Hunt game as relaxed social dilemmas, based on this categorization. Fig. 4.(e) combines together
all the conditions, revealing the underlying tension inherent in social dilemmas. It visually depicts the conflict between
a self-interested focal individual’s actions aimed at maximizing its payoff, adopting the more profitable defection
strategy (depicted by the purple solid arrows), and full cooperation, the more desirable outcome for the group, which
remains elusive. In fact, the path towards full cooperation does not depend on the actions of the focal individual, but
on the strategies adopted by the other members of the group (green dashed arrows). However, since also the other
players are self-interested (as the focal individual) they will not cooperate just to increase the payoff of the focal, and
the group will eventually reach the less desirable state of full defection.
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Is the higher-order (HO) PD a social dilemma?

We defined as HO PD the HO game with the same restriction on T and S of the pairwise PD, that is:

−1 < S < 0 and 1 < T < 2 (S.16)

For the pairwise PD these restraints are sufficient for having a social dilemma (i.e. the 2-game respects the conditions
(a-d)). For the 3-player PD, we can obtain a social dilemma game, by adding restrictions to the payoffs G and W in
order for the 3-game to respect conditions (a-d). In particular, we can define a HO PD with G−W > 0 (the one that
we used for the results in the manuscript), which satisfies all the conditions except obviously W > G in (d), simply by
choosing G and W such that:

0 ≤ W < G ≤ 1 (S.17)

or analogously:

0 < G−W ≤ 1−W , for W ≥ 0 (S.18)

Therefore, with these restrictions, the HO PD with G−W > 0 is a relaxed social dilemma, according to Ref. [7]. It is
worth noticing that the restraints given by Eq. (S.17) are sufficient, but not necessary, conditions for the payoffs to
respect (a,d). Moreover, they are sufficient for the 3-game to define a social dilemma only if Eqs. (S.16) also hold.
Similarly, for the HO PD with G−W < 0, all the conditions (a-d) are satisfied if:

0 ≤ G < W ≤ 1 (S.19)

or analogously:

G− 1 ≤ G−W < 0, for G ≥ 0 (S.20)

In this case, all the conditions (a-d) are satisfied, and then the 3-game PD with G−W < 0 is a social dilemma [7].
Fig. 5 shows the cube of 3-games with the new restrictions on G,W given by Eqs.(S.17),(S.19), which make the HO
PD a social dilemma. Similar conditions can be found to define HO (relaxed) social dilemma version of the Chicken,
the Stag hunt and Harmony games.

FIG. 5. Cube representing the classification of the 3-games depending on the values of the payoffs T, S,G,W , for R = 1 and
P = 0. On the G axis we added in red the restraints given by Eqs.(S.17),(S.19), and that are sufficient conditions for the HO
PD (i.e, a 3-game with T > 1 and S < 0 as a pairwise PD) to be a social dilemma.

GENERATING RANDOM HYPERGRAPHS

Before describing the procedure for generating random hypergraphs, let us introduce some standard hypergraph
notation and provide an example of its application. As stated in the manuscript, we represent a population of N
players taking part in a number M of different games as a hypergraph H(V, E), where V is the set of |V| = N nodes
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FIG. 6. A hypergraph with N = 5 nodes and M = 4 hyperedeges/groups (two 2-hyperedges and two 3-hyperedges) and its
representation as a 5× 4 incidence matrix. The nodes (blue circles) can belong to different hyperedeges (coloured lines) at the
same time. If a node i belongs to hyperedge g the element of the incidence matrix bi,g is equal 1, otherwise is zero. The sum over
the elements bi,g of the i-th row of the incidence matrix gives the hyperdegree of the i node, while summing over the elements of
the g-th column gives the size of the corresponding hyperedge. The total number of interactions can be computed as the sum
over all the elements of the incidence matrix, and it is equal to N⟨k⟩ =

∑
i

∑
g bi,g =

∑
i(
∑

g|qg=2 bi,g +
∑

g|qg=3 bi,g) = n/ +n∆.

Therefore n/ is the sum of the elements of the second and fourth columns, while n∆ is the sum of the first and third columns
corresponding to hyperedges of size 3. These definitions imply that n/ and n∆ correspond to the count of hyperedges of size 2
and 3, respectively, multiplied by their size (i.e. multiplied by 2 for 2-hyperedges and by 3 for 3-hyperedges). Hence, the total
number of interactions in a system is equal to the number of hyperedges of a given size multiplied by the hyperedge size, and
summed over all sizes.

representing players, and E is the set of |E| = M hyperedges [10, 11]. Each hyperedge eg, with g ∈ 1, · · · ,M , represents
a group (a subset of V) of two or more players interacting in game g. The hypergraph can be represented by an
N ×M matrix, namely the incidence matrix B, whose entry bi,g is equal to 1 if player i is playing game g, and is
zero otherwise. Here, i and g are labels, with i ∈ 1, . . . , N identifying the node, while g ∈ 1, . . . ,M identifying the
game. The number of games in which a player i takes part is given by its hyperdegree ki =

∑M
g=1 bi,g, while the

number of players in a game g is the size of the hyperedge qg = |eg| =
∑N

i=1 bi,g. Fig. 6 illustrates a hypergraph of
N = 5 nodes and M = 4 hyperedges, along with its representation as a 5× 4 incidence matrix. In general, a player
i can take part in more games at the same time, and therefore for a given i, bi,g can be equal to 1 for different g.
For instance, in the hypergraph represented in Fig. 6 player/node i = 1 belongs to hyperedges eg=1, e2 and e3, and
as a consequence b1,1 = 1, b1,2 = 1 and b1,3 = 1, while b1,4 = 0, since node 1 is not in hyperedge 4. By summing

together the elements of the first row, we find the hyperdegree k1 =
∑4

g=1 b1,g = 3, while by performing the sum
column-wise we find the size of the corresponding hyperedge. For example, by summing over the element of the
first column we find the size q1 of the hyperedge e1, namely q1 = |e1| =

∑5
i=1 bi,1 = 3. We can also sum over the

hyperdegree of all nodes i, finding the total hyperdegree, representing the total number of interactions in the system
counted from a node/player perspective:

∑N
i=1 ki = ⟨k⟩N , since the average hyperdegree ⟨k⟩ is, by its very definition,

equal to ⟨k⟩ =
∑N

i=1 ki/N . In particular, in the study case considered in our manuscript, where only 2-player and
3-player games are allowed, one can count separately the contribution to the total number of interactions coming
from 3-player games (i.e. hyperedges of size 3 or 3-games), denoted in the manuscript as n∆, and instead from
2-games, denoted as n/. That is, N⟨k⟩ = n∆ +n/, where n∆

∑
i

∑
g|qg=3 bi,g is the sum of the element of the incidence

matrix restricted to hyperedeges of size 3, while n/ =
∑

i

∑
g|qg=2 bi,g is restricted to groups of size 2. For example,

considering the systems depicted in Fig. 6, we have: N⟨k⟩ =
∑

i

∑
g bi,g =

∑
i ki =

∑
g qg = 10, ⟨k⟩ =

∑N
i=1 ki/N = 2,

n∆ =
∑

i

∑
g|qg=3 bi,g = 6, n/ =

∑
i

∑
g|qg=2 bi,g = 4.

We can now introduce the procedure employed to generate the random hypergraphs used as substrates for the
simulations. As for the underlying structure of interactions, we have constructed random hypergraphs of size
N with tunable average hyperdegree ⟨k⟩ and numbers n/, n∆ of 2- and 3-player interactions, respectively. Let
δ = n∆/(n∆ + n/), where n∆ + n/ = N⟨k⟩ is the total number of interactions in the hypergraph, be the probability
for a player to interact in a 3-game. For fixed values of N , δ and ⟨k⟩, we start with N nodes and first connect each of
the possible N(N − 1)/2 pairs of distinct nodes with a probability:

p/ = (1− δ)⟨k⟩/(N − 1) (S.21)

We then connect each of the N(N − 1)(N − 2)/6 triplets of distinct nodes with a probability:

p∆ = 2δ⟨k⟩/((N − 1)(N − 2)) (S.22)
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Given that every time we add a pairwise edge the total hyperdegree of the network N⟨k⟩ =
∑N

i=1 ki (where ki is
the hyperdegree of player i) increases by 2, while when we add a 3-hyperedge it increases by 3, we obtain a random
hypergraph with the desired ⟨k⟩ and δ. If the final hypergraph is not connected, we take the largest connected
component. Fig. 7 shows that the networks obtained through this algorithm correctly reproduce the desired numbers
of 2 and 3-player interactions, and average hyperdegree. In particular, in Fig. 7.a we notice that the numbers of
2-hyperedges and 3-hyperedges in which each player takes part in are distributed as binomial distributions centered
around k = 10, as expected for random hypergraphs given the chosen parameters ⟨k⟩ = 20 and δ = 0.5 [12].

ρ y

ρ* ρ* −

t

p Q
S(ρ

)

ρδ δ = 0.5
δ = 0.35
δ = 0.3

δ = 0.9

ρ*−

k

PD
F

δ
ki ⟨k⟩
19.7 20.0 20.3

0.0

0.1

0.2

0.49 0.50 0.51
0.00

0.15

0 10 20 30
0.0

0.1

0.2

3-hyperedge

2-hyperedge ρ* ρ* −

p Q
S(ρ

)

ρδ δ = 0.5
δ = 0.35
δ = 0.3

δ = 0.9

ρ*−

PD
F

δ

(a) (b)

y

ρ

t
p Q

S(

ρ δ = 0.5
δ = 0.35
δ = 0.3

δ = 0.9
ki ⟨k⟩

t/N

PM
F

(c)

ρ y t

p

ρδ δ = 0.5
δ = 0.35

δ = 0.9

k

PD
F

δ
ki

FIG. 7. (a) Probability mass function (PMF) of the hyperdegree k, distinguishing between the contribution to k of 2-hyperedges
and 3-hyperedges. (b) PMF of δ, the fraction of 3-player interactions. (c) PMF of the average hyperdegree ⟨k⟩ of an hypergraph.
The PMF are computed over 100 instances of a random hypergraph of size N = 1500. The dotted lines denote the mean of the
distributions. The desired fraction of 3-hyperedges and average hyperdegree are δ = 0.5 and ⟨k⟩ = 20, respectively.

DETAILS OF THE STOCHASTIC SIMULATIONS

Stable states

In order to estimate ρ∗+, we simulated 1500 runs of the stochastic evolutionary dynamics. For each run, we start
with a randomly chosen fraction of cooperators 0 < ρ0 < 1 and we use a different instance of the random hypergraph.
We use the quasistationary (QS) method [13, 14] to evolve the system allowing sufficient time for thermalization. In
particular, for our simulations on hypergraphs of size N = 1500, we chose a thermalization time tth ≈ N × 103 time
steps and a total simulation length of ttot ≈ N × 104 time steps. We recall from the manuscript that we are focusing
on the case of the Prisoner’s Dilemma and to define the game we chose the payoff values T = 1.1 and S = −0.1.
As for the strength of selection we chose w = 1/⟨k⟩, however we have verified that the results are consistent for at

least one order of magnitude above and below this choice for w. We chose w proportional to 1/⟨k⟩ in order to have
a comparable strength of selection among different hypergraphs with different ⟨k⟩, since the average payoff in the
hypergraph increases with the average hyperdegree. The peaks of the QS probability distribution of players with a
given strategy (in our case cooperation) converge for N >> 1 to the stable steady state of the deterministic dynamics
[15, 16]. We therefore use the peak(s) of the QS probability distribution obtained by averaging the distribution of
cooperators over all the 1500 runs to estimate ρ∗D and ρ∗+, the stable stationary states of the deterministic dynamics.
The peaks are pronounced local maxima of the QS distribution. According to the value of δ we observe either one
local maximum at ρmax1 (corresponding to the stable state ρ∗D) or two local maxima at ρmax1 and ρmax2, respectively.
In particular, as δ increases above a critical value δc a second peak appears in ρmax2, corresponding to the stable state
ρ∗+. We considered the peak in ρmax2 significant (i.e. ρ∗+ appeared) if its size, relative to the size of the first peak in

ρmax1, is above a given threshold
PQS(ρmax2)
PQS(ρmax1)

> r. We chose r = 0.02 and we verified the consistency of our results

over a range of r ≈ [0.01, 0.1].
To estimate the error on our measurements of the stable stationary states, we then applied the same procedure used

to measure ρ∗D and ρ∗+ to the QS probability distribution of each of the 1500 runs, obtaining in this way one value,
(ρ∗D)i, or two values, (ρ∗D)i and (ρ∗+)i, for each run i. Finally, we computed the absolute deviations of the values of
(ρ∗D)i and (ρ∗+)i from the measured stable stationary states ρ∗D and ρ∗+ respectively (i.e., from the corresponding peak
of the QS distribution averaged over all 1500 runs). The median of these absolute deviations is taken as the error ∆
on the estimate of the stable stationary state, that is:

∆ρ∗D = median [|ρ∗D − (ρ∗D)i|] (S.23)

∆ρ∗+ = median
[
|ρ∗+ − (ρ∗+)i|

]
(S.24)
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Unstable state (critical mass of cooperators)

Here, we describe how we numerically measured ρ∗−, which represents the critical mass of cooperators required to
sustain stable cooperation. As ρ∗− is the unstable solution of the replicator dynamics, we employed a different approach
than the one used for finding the stable stationary states. The idea behind this method is that if the system starts
with an initial fraction of cooperators ρ0 < ρ∗− the trajectory in time of the evolutionary stochastic dynamics will
typically converge to the absorbing state ρ∗D, while the trajectories starting in ρ0 > ρ∗− will converge to the non-trivial
stable state ρ∗+. Therefore, finding ρ∗− is equivalent to finding the basins of attraction of the two stable stationary
states ρ∗D and ρ∗+. In particular, by denoting as BD the sets of initial conditions ρ0 converging to ρ∗D and as B+ the
basin of attraction for ρ∗+, we expect:

ρ∗− = |BD|/(|BD|+ |B+|) (S.25)

where | · | represents the cardinality, i.e., the number of elements in the set.

To find the basins of attraction, we considered 2000 simulation runs divided into 50 batches consisting of 40 runs.
As the initial fraction of cooperators for the 40 runs, we chose equally spaced values ρ0 ranging from 0 to 1. For each
batch j, we determine the peak(s) of the QS distribution for each of the 40 runs, following the method outlined in
the section regarding the stochastic simulation results for the stable states. If there is only one peak at ρ∗D, we stop

the procedure. Instead, if ρ∗+ exists, we proceed to find ρ∗−. For each run i in batch j, we compute ⟨ρ⟩ji , the average
fraction of cooperators over the last tstat ≈ ×N × 10 timesteps of the dynamics. Thus, for each batch j, we end up
with 40 values of ⟨ρ⟩ji distributed around ρ∗D and ρ∗+ in two separate clusters Cj

D and Cj
+, respectively. We then utilize

the K-means clustering method [17] to computationally determine the two clusters. Each data point ⟨ρ⟩ji is assigned to

either Cj
D or Cj

+, resulting in |Cj
D|+ |Cj

+| = 40 for every batch j. Here, | · | represents the cardinality, i.e., the number

of elements in the set. In other terms, Cj
D and Cj

+ represent the basins of attraction of ρ∗D and ρ∗+, respectively, given
40 equally spaced initial conditions ρ0. Then, for each batch j, we estimate the unstable stationary state as:

ρ∗−(j) = |Cj
D|/(|Cj

D|+ |Cj
+|) (S.26)

Finally, we computed the unstable stationary solution as the average over all the batches:

ρ∗− =
1

50

50∑
j=1

ρ∗−(j) (S.27)

and as the error on the estimate of ρ∗− we took the standard deviation:

∆ρ∗− =

√√√√ 1

50− 1

50∑
j=1

[
ρ∗ − ρ∗−(j)

]2
(S.28)

DETAILS OF THE ANALYTICAL RESULTS

We adopt an evolutionary game theoretic approach to describe a well-mixed population of players engaged in a
higher-order game. At each time step a randomly selected player (namely the focal) interacts with probability δ with
other two players in a 3-person game (namely 3-game) described by the payoff tensor in Fig. 2, while with probability
1− δ it plays with another player in the pairwise version of the game (2-game). We recall that the 2-game is completely
defined by the values of S and T since by definition the payoffs for mutual defection and mutual cooperation are 1
and 0 respectively. The focal player can adopt the strategy (i.e. cooperation C or defection D) of another randomly
selected player, namely the model player, with a probability that is a non-decreasing function of the payoff difference
between the model and focal players. By denoting with ρ(t) the fraction of cooperators in the population at time t
(i.e. 1− ρ(t) is the fraction of defectors), the evolution in time of the cooperators’ fraction is given by the replicator
equation [18, 19]:

dρ

dt
= ρ [πC − ⟨π⟩] (S.29)
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where ⟨π⟩ = ρπC + (1− ρ)πD is the average payoff, and πC and πD are the expected payoffs of a cooperator and a
defector respectively. Substituting the expression for ⟨π⟩ in Eq. S.29 we get Eq. (1) in the manuscript, as follows:

dρ

dt
=ρ [πC − (ρπC + (1− ρ)πD)]

=ρ [(1− ρ)πC − (1− ρ)πD)]

=ρ(1− ρ) [πC − πD] (S.30)

In particular, the expected payoffs for a cooperator πC and defector πD are given by:

πC =(1− δ) [ρ+ (1− ρ)S] + δ
[
ρ2 + 2ρ(1− ρ)G+ (1− ρ)2S

]
(S.31)

πD =(1− δ) [ρT ] + δ
[
ρ2T + 2ρ(1− ρ)W

]
(S.32)

where G ( ), W ( ), T ( ), and S ( ) are the elements of the payoff tensor as shown in Fig. 2. Note that the
expected payoffs are both functions of the density of cooperators ρ and the fraction of 3-game interactions δ. Besides
the two trivial absorbing stationary states ρ∗D = 0 and ρ∗C = 1, Eq. S.30 has two other stationary states ρ∗± for which
dρ
dt = 0. We introduce the quantities a := 2(G−W ), b := T −S− 1 and c := (a+ b) to simplify the payoff difference as:

πC − πD = −ρ2cδ + ρ(cδ − b− 2S) + S (S.33)

By solving πC − πD = 0 we find the non-trivial stationary solutions as

ρ∗± =
cδ − b− 2S ±

√
(cδ − b)2 + 4S(b+ S)

2cδ
(S.34)

It follows that when ∆ = [cδ − b]
2
+4S(b+S) ≥ 0, then ρ∗± are real valued for every b, c, δ, S. In particular, given that

[cδ − b]
2
is always positive, a sufficient condition for the existence of the stationary solutions is 4S(b+S) = 4S(T−1) > 0,

which is always satisfied for the Stag Hunt game and Chicken game. For the Prisoner’s Dilemma and the Harmony
game instead ∆ ≥ 0 requires that the parameters satisfy certain conditions. If c > 0, these conditions are:

δ ≥δth1 :=
b+

√
−4S(b+ S)

c
(S.35)

δ ≤δth2 :=
b−

√
−4S(b+ S)

c
(S.36)

while if c < 0:

δ ≤δth1 :=
b+

√
−4S(b+ S)

c
(S.37)

δ ≥δth2 :=
b−

√
−4S(b+ S)

c
(S.38)

In particular, for the case under investigation in the manuscript, that is the Prisoner’s Dilemma with a > 0 (and hence
c > 0, see manuscript), it is easy to verify that if d = cδ − b− 2S < 0, then ρ∗± < 0. Instead if d = cδ − b− 2S > 0,
then ρ∗± > 0. In particular, we have d > 0 when

δ > δth+ :=
b+ 2S

c
(S.39)

It can be shown that δth2 < δth+ < δth1 and therefore we have positive real-valued stationary solutions 0 < ρ∗± < 1 only
for δ ≥ δth1 , since if δ ≤ δth2 < δth+ the real-valued solutions are negative. We notice that in the interval δth1 ≤ δ ≤ 1, ρ∗+
is a strictly increasing function of δ, while ρ∗− is strictly decreasing. By substituting the expression for δth1 in Eq. (S.34)
we find the value that the two (coinciding) non-trivial solutions assume when they emerge. This is:

ρ∗±(δ
th
1 ) =

1

2
− b+ 2S

2(b+
√
−4S(b+ S))

(S.40)

In particular, ρ∗±(δ
th
1 ) > 0 when

2S <
√

−4S(b+ S) (S.41)

which is always satisfied in the case of the Prisoner’s Dilemma, given that for this game S < 0 and b+ S = T − 1 > 0.
Consequently, for the PD the appearance in δth1 of the non-trivial stationary solution ρ∗+ is always abrupt.
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SCALING ANALYSIS

To characterize the phase transition, we have investigated the scaling with N of the critical fraction of 3-games
required for the emergence of the bistable state. Following the standard definition of susceptibility χ = N

(
⟨ρ2⟩ − ⟨ρ⟩2

)
we computed χ as a function of the control parameter δ. To compute the susceptibility we performed extensive
simulations of the stochastic dynamics, with a thermalization time tth = N×103, total simulation time of ttot = N×104

timesteps, and running for each value of δ 200 simulation runs for random initial conditions ρ0, the initial fraction of
cooperators, for T = 1.1, S = −0.1, G = 0.8, W = 0.3, and ⟨k⟩ = 20. It is worth noticing that very long thermalization
and simulation times are required in this case, because the susceptibility is extremely sensitive to fluctuations in the
quasistationary distribution.
Results reported in Fig.8(a) show that the susceptibility peaks around the value δ ∼ δc where ρ∗+ appears (e.g.,

for the parameters used for these results, the well-mixed prediction for δc is δ1th = 0.3). Fig.8(b) shows the height
of the peak of the susceptibility as a function of N . The fact that the peak of the susceptibility becomes more and
more pronounced as N increases is an indication of the existence of a phase transition. Moreover, this is an indication
that at δc a new phase coexists with the full defection phase: the susceptibility diverges at δc because the system is
oscillating between these two phases. This is the typical signature of a first-order phase transition [20]. The critical
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FIG. 8. (a) Susceptibility χ = N(⟨ρ2⟩ − ⟨ρ⟩2) as a function of δ for different sizes N of the random hypergraph. (b) Scaling of
the height of the susceptibility peak as a function of system size N . The parameters used for these simulations are ⟨k⟩ = 20,
T = 1.1, S = −0.1, G = 0.8, and W = 0.5.

value of δ in the thermodynamic limit can then be extracted through a finite-size scaling analysis. The results are
reported in Fig. 9, where δc is estimated as the y-intercept δ∞c of the fitting of the critical δnumc corresponding to
different sizes N . In each panel, we used a different method to compute δnumc , finding consistent results. In particular,
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FIG. 9. Scaling of the numerically measured δnum
c (N). The value of δ∞c in the limit N → ∞ is obtained as the y-intercept of

the fitting. We found consistent results for three different methods used to compute δnum
c , namely: (a) peak of the susceptibility,

(b) relative peaks’ size, (c) equal area.

in panel (a) we show the value of δnumc corresponding to the peak of the susceptibility, while in panel (b) we measured
δnumc as the minimum value of δ for which we have a ratio between the height of two peaks above a given threshold,
that is when the second peak of the QS distribution ρ∗+ is at least 1/50 times as high as the first peak (we also checked
the consistency of this method for value of the threshold different from 1/50). Finally, in panel (c) we measured δnumc

as the value of δ for which the areas around the two peaks of the bimodal QS distribution are equal [20].

DIFFERENT STRATEGY UPDATE RULES

We tested the robustness of our findings under different update rules. We compared the pairwise comparison process
used for the results in the manuscript with the birth-death and death-birth update dynamics. In fact, it has been
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shown that different update rules can have a crucial impact on the outcome of the stochastic evolutionary dynamics
on finite [21] and structured populations [22], depending on the game underlying the evolutionary dynamics and the
network topology. We observe that for our framework the results are consistent among all the three update rules. In
particular, the simulation results for both the pairwise comparison and the birth-death process on random hypergraphs
are in excellent agreement with the analytic results for the replicator dynamics on well-mixed populations. For the
death-birth process, we still observe a good qualitative agreement, with a slight enhancement in the level of cooperation
observed for δ close to δc (i.e. where the bistable behaviour emerges), compared to the other two update rules.

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

* PWC
BD
DB

FIG. 10. Effect of different update rules on the numerical characterization of the dynamics’ steady states on random hypergraphs.
The pairwise comparison (PWC) and the birth-death (BD) processes show an excellent agreement and match very well the
theoretical predictions of the deterministic replicator dynamics (dashed lines). The results for the death-birth (DB) process are
still in good qualitative agreement, but the level of cooperation seems enhanced for δ close to δc. The error bars are smaller
than the size of the data points. In this case, the values of the parameters adopted are G = 0.8, W = 0.3, and N = 500.

THE ROLE OF THE SELECTION STRENGTH AND OF THE AVERAGE HYPERDEGREE

We investigated how different levels of selection strength in strategy adoption impact the stable stationary states of
the system. In the manuscript we compared the fraction of cooperators at equilibrium for the stochastic evolutionary
dynamics on random hypergraph to the stable fixed points of the replicator equation, finding a very good agreement.
We recall that in our model the probability of strategy adoption is given by the Fermi function psf→sm = {1 +
exp[−w(πm − πf )]}−1 where w represents the strength of selection, sf and sm are the strategies respectively of a focal
and model player, πf and πm their payoffs. As shown in Ref. [23] for large unstructured populations, in general (i.e.

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
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* w = 0.5
w = 0.05
w = 0.005

FIG. 11. Effect of different levels of selection strength w on the numerical characterization of the stationary state(s). We observe
that the results are very consistent for at least two orders of magnitude of the strength of selection and the stochastic simulation
results (coloured dots) are in perfect agreement with the theoretical predictions (dashed lines) given by stable fixed points of
the replicator equation. The error bars are smaller than the size of the data points. In this case, the values of the parameters
adopted are G = 0.8, W = 0.3, ⟨k⟩ = 20 and N = 1500.

for general strength of selection w) the strategies evolution under a strategy adoption probability given by the Fermi
function can be approximated by a stochastic differential equation with a drift and a diffusion term:

dρ

dt
= ρ(1− ρ) tanh

(w
2
(πC − πD)

)
+

√
ρ(1− ρ)

N
ξ (S.42)
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where ρ is the fraction of players with strategy C (cooperation), πC and πD are the average payoff of a cooperator and
defector respectively, ξ is Gaussian white noise. This stochastic term vanishes in the limit N → ∞, giving us:

dρ

dt
= ρ(1− ρ) tanh

(w
2
(πC − πD)

)
(S.43)

which in the limit w << 1 leads to the replicator equation:

dρ

dt
∝ ρ(1− ρ) (πC − πD) (S.44)

We notice that Eq. (S.43) and Eq. (S.44) have the same stationary states: ρ = 0, 1 and ρ such that πC − πD = 0, since
tanh(x) = 0 if and only if x = 0. This means that independently from the value of w (i.e. also when the condition
w << 1 does not hold) for sufficiently large N on unstructured populations we expect to find identical stationary
states. In Fig. 11 we report the stable stationary states found numerically, through stochastic simulations, for different
orders of magnitude of the selection strength w on random hypergraphs of size N = 1500. These results show that,
even if in our simulations the population is structured, the strength of selection in this range of values does not impact
significantly on the stable stationary states measured numerically, which remains in very good agreement with the
theoretical predictions (i.e. the fixed points of the replicator equation) for all the values of w. It is worth stressing that
these conclusions are not universal. In fact, it has been shown that, depending on the specific game and the strategy
update rule, even in well-mixed populations the outcome of the evolutionary dynamics can vary with the strength of
selection [24]. Thus, it remains crucial to assess how the system under investigation behaves at different selection
intensity levels to determine the generality of the results and the robustness of the conclusions.
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FIG. 12. Numerical characterization of the stationary state(s) for random hypergraphs with various average hyperdegrees ⟨k⟩.
We observe consistent results for all the values of ⟨k⟩, in good agreement with the theoretical predictions (dashed lines) given by
stable fixed points of the replicator equation. The error bars are smaller than the size of the data points. The values of the
parameters adopted are G = 0.8, W = 0.3 and N = 1500.

For our simulations, both in this section and in the manuscript, we used random hypergraphs with an average
hyperdegree ⟨k⟩ = 20. To assess the impact of average hyperdegree on the model’s outcome, we tested different values
of ⟨k⟩. Fig. 12 displays the numerically measured steady states of the evolutionary dynamics for random hypergraphs
with various values of ⟨k⟩, showing no significant differences in the results.

REGULAR LATTICES

As we saw in the manuscript, the outcome of the evolutionary dynamics on random hypergraphs is in very good
agreement with the predictions of the replicator equation (i.e. for a well-mixed infinite population). However, in this
section we show that for different hypergraph topologies this is not always the case. In fact, as Fig.14 shows, taking
as a substrate for the evolutionary dynamics a regular lattice with a tunable number of higher-order interactions
completely changes the outcome of the model. To account for 3-body interactions, we considered two types of lattice:
regular triangular lattices where each player is connected to exactly six neighbours, and double triangular (or Moore’s)
lattices, where each node is connected to eight neighbours (defining a so-called Moore’s neighbourhood). To create a
hypergraph, we start with a standard lattice, which has only pairwise interactions. We then define hyperedges of size
3, corresponding to 3-player games, by randomly selecting a fraction p of the lattice’s triangles and promoting them to
higher-order interactions. To find the probability p which gives us the desired fraction of higher-order interactions δ,
we start from the definition of δ, given by δ = n∆/(n∆ + n/), where n∆ represents the number of 3-player interactions,
and n/ denotes the interactions in 2-player games. An alternative definition is that n∆ accounts for the contribution
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Triangular Double triangular/Moore's

FIG. 13. The two regular lattices we have considered. A triangular lattice (left panel) where each node is connected to six
neighbours and a double triangular lattice (right panel) where each node is connected to eight neighbours (defining a so-called
Moore’s neighbourhood). The links represent pairwise interactions and the colored triangles are 3-body interactions.

to the total hyperdegree from interactions in 3-player games, while n/ represents the contribution from interactions
in 2-player games. Each 2-hyperedge/game gives a contribution of 2 to the total hyperdegree, contributing 1 to the
hyperdegree of each of the two players involved in the game. Given that the total number of 2-hyperedges is e, we have
n/ = 2e. Conversely, each 3-hyperedge contributes 3 to the total hyperdegree, as each 3-player game involves 3 players
simultaneously. The total number of 3-hyperedges is tp, where t denotes the total number of triangles in the lattice,
and p represents the fraction of these triangles that are promoted to 3-hyperedges. Hence, n∆ = 3tp. Substituting
these values into the definition of δ, we find:

δ =
3tp

2e+ 3tp
(S.45)

Hence, we can express the parameter p as a function of the desired δ as follows:

p =
2δe

(1− δ)3t
(S.46)

where e is the number of distinguishable edges in the lattice, while t represents the number of unique triangles in the
lattice. It is straightforward to verify that the maximum possible value of δ, denoted as δmax and corresponding to
p = 1 in Eq. (S.45), is given by:

δmax =
3t

2e+ 3t
(S.47)

For a triangular lattice of size N , where the number of different edges is e ∼ 3N and the number of distinguishable
triangles t ∼ 2N , we find that δmax ≈ 0.5. This can be easily understood as follows. Each node i is connected by a
pairwise edge to 6 neighbours. This applies to all N nodes, yielding a total of 6N pairs of neighbours [25]. However,
if the order of the indices does not matter, among these 6N pairs of neighbours half are repeated, since if i is a
neighbour of j then j is also a neighbour of i. Therefore, the number of pairwise edges of an undirected triangular
lattice, which represents the number of unique pairs, is e ∼ 6N/2. Similarly, each node i participates in 6 triangles
with its neighbours, resulting in a total of 6N triangles in the network. However, if the order of indices does not
matter, among the 6N triangles each unique triangle is counted 3 times: once for j and k neighbours of i, then for k
and i neighbours of j, and finally for j and i as neighbours of k. As a consequence, the number of unique triangles, i.e.
the maximum number of 3-hyperedeges in an undirected triangular lattice, is given by t ∼ 6N/3. For double triangular
(or Moore’s) lattice instead, being e ∼ 4N and t ∼ 4N , we have δmax ≈ 0.6. We then characterized numerically the
stable stationary states of the dynamics on regular lattices, following the same procedure used for random hypergraphs.
In Fig. 13 we compare the results of the stochastic simulations for regular lattices to those for random hypergraphs. In
particular, we observe that the discontinuous transition from pure defection to a cooperative state as a function of
δ in the case of random hypergraphs, becomes a second-order (i.e., continuous) transition for lattices. One possible
explanation for this difference is that on a regular lattice, the network effects are stronger compared to a random
graph. The presence of shortcuts in a random graph leads to a slow growth of the graph’s diameter ϕ with the size N ,
such as ϕ ∼ log(N) (the so-called small-world effect, [12]). On the other hand, on a lattice, the diameter grows as
ϕ ∼ N1/2. As a consequence, a dynamical process takes longer on a lattice to spread than on a random hypergraph.
This means that a random hypergraph is closer to a mean-field population (where every individual can interact with
everyone else, as in a fully connected network) than a lattice. Therefore, the better agreement with the predictions of
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FIG. 14. Comparison of uniform random hypergraphs to triangular and double triangular (or Moore’s) lattices. (a) The
discontinuous transition to a bistable state observed on random hypergraphs and predicted by the mean-field replicator equation
(dashed line) is replaced on regular lattices by a continuous transition to full cooperation. The results are consistent for various
values of G and W for (b) triangular and (c) Moore’s lattices.

the replicator equation is as expected. The high level of correlation between three players and two players interactions
on the lattice could also play a significant role. In fact, in a lattice, for every 3-hyperedge there are necessarily three
2-hyperedges connecting the three nodes in the 3-hyperedge. This leads to correlation in the dynamics that are difficult
to treat mathematically. In contrast, in a random hypergraph 3-hyperedges and 2-hyperedges are created through two
independent processes. Consequently, in random hypergraphs, the number of 2-hyperedges, ki/, and of 3-hyperedge,

ki∆, incident on each node i are not correlated.

BIFURCATION AS A FUNCTION OF a

4 6 8 10 12
a

0.0
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FIG. 15. Fraction of cooperators at equilibrium as a function of a for average hyperdegree ⟨k⟩ = 20 and different values of δ.
Symbols represent the stochastic simulation results averaged over 1500 independent runs (the error bars are smaller than the
symbols), while dashed lines are the analytical mean-field predictions. For these results we choose T = 1.5 and S = −0.5.

In the section regarding the details of the analytical results, we found that the non-trivial stationary states ρ∗±
described by Eq. S.34 exist (i.e., are real-valued and positive) iff δ > δth1 , where the critical threshold of 3-player
interactions δth1 is a function of a, b and S. However, the condition given by inequality Eq. (S.35) can also be expressed
as a critical threshold on one of the other variables a, b, and S. For example, we can easily get a critical threshold on
a as a function of δ, b and S:

a > ac =
b(1− δ) +

√
−4S(b+ S)

δ
(S.48)

Fig. 15 shows the bifurcation curve as a function of a for various values of δ. We observe a bifurcation in the stable
points of the dynamics when a = 2(G−W ) exceeds a critical value ac. In particular, while for a < ac the only stable
NE is full defection ρ∗D, as in the standard pairwise PD, for a > ac we observe the emergence of a bistable behaviour
where cooperation survives: besides the full defection ρ∗D, a new stable state 0 < ρ∗+ < 1 appears due to the effect of
the payoffs associated with higher-order interactions.
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SYSTEMS WITH NO PAIRWISE GAMES (3-GAMES ONLY)

In our model we are “mixing” a fraction 1− δ of interactions in pairwise PD with a fraction δ of interactions in
higher-order games with the same payoffs T and S of the pairwise PD and with (DDD) and (DCC), (CDC),(CCD)
as pure NE, as described in the main text. The characterization of the replicator dynamics (RD) for only 3-player
games can be obtained as a special case of our framework by setting δ = 1 (meaning that all the interactions are
3-player, with no pairwise games). Replacing δ = 1 in Eq. (3) in the manuscript and following the procedure detailed
in the SM’s analytical section, we find that the non-trivial fixed points ρ∗± exist if and only if ∆ = a2 + 4S(b+ S) > 0.
Substituting the definitions of a and b it is straightforward to derive the condition for the existence of the internal
stationary states ρ∗± for the case δ = 1 (i.e. for only 3-player games):

G−W >
√

(1− T )S (S.49)

This condition is always satisfied for values of G, W , T and S for which we observe a bifurcation (i.e. the discontinuous
transition to the bistable state) as a function of δ. In fact, to have a bistable stationary state we need ∆ =
(cδ− b)2+4S(b+S) > 0 (the ∆ of Eq. (3) in the manuscript). By the very definition of δ1th, we know that the condition
∆ > 0 is satisfied (and we observe the bistable state) ∀δ > δ1th, where 0 ≤ δ ≤ 1 is the fraction of 3-player interactions.
Therefore, as long as the payoff G, W , T and S are such that δ1th < 1, ∆(δ = 1) is guaranteed to be greater than 0 and

the corresponding condition on the payoffs G−W >
√
(1− T )S holds true. As a consequence, whenever there are

values of δ1th < δ ≤ 1 for which we observe the bistable state, the symmetric 3-game in the “mixture” has two interior
NE, as shown in Ref. [26].
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[6] M. Broom, K. Pattni, and J. Rychtář, Bull. Math. Biol. 81, 4643–4674 (2019).
[7] M. Nowak, J. Theor. Biol. 299, 1 (2012).
[8] W. B. Liebrand, Simul. Gaming 14, 123 (1983).
[9] B. Kerr, P. Godfrey-Smith, and M. Feldman, Trends Ecol. Evol. 19, 135 (2004).

[10] F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania, J.-G. Young, and G. Petri, Phys. Rep. 874, 1
(2020).

[11] F. Battiston, E. Amico, A. Barrat, G. Bianconi, G. Ferraz de Arruda, B. Franceschiello, I. Iacopini, S. Kéfi, V. Latora,
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