
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Rosario Ferrigno,
AORN Santobono-Pausilipon, Italy

REVIEWED BY

Angela Huebner,
University Hospital Carl Gustav Carus,
Germany
Iwona Ben-Skowronek,
Medical University of Lublin, Poland

*CORRESPONDENCE

Avinaash V. Maharaj

a.v.maharaj@qmul.ac.uk

RECEIVED 27 July 2023
ACCEPTED 28 November 2023

PUBLISHED 21 December 2023

CITATION

Maharaj AV (2023) Familial Glucocorticoid
Deficiency: the changing landscape of an
eponymous syndrome.
Front. Endocrinol. 14:1268345.
doi: 10.3389/fendo.2023.1268345

COPYRIGHT

© 2023 Maharaj. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 21 December 2023

DOI 10.3389/fendo.2023.1268345
Familial Glucocorticoid
Deficiency: the changing
landscape of an
eponymous syndrome
Avinaash V. Maharaj*

Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London
(QMUL), London, United Kingdom
Familial Glucocorticoid Deficiency encompasses a broad spectrum of

monogenic recessive disorders that theoretically solely abrogate cortisol

biosynthesis. In reality, delineating clear genotype-phenotype correlations in

this disorder is made complicated by marked phenotypic heterogeneity even

within kindreds harbouring identical variants. Phenotypes range from isolated

glucocorticoid insufficiency to cortisol deficiency plus a variety of

superimposed features including salt-wasting and hypoaldosteronism,

primary hypothyroidism, hypogonadism and growth defects. Furthermore,

mutation type, domain topology and perceived enzyme activity do not

always predict disease severity. Given the high burden of disease and

implications of a positive diagnosis, genetic testing is crucial in the

management of patients warranting detailed delineation of genomic

variants including viable functional studies.
KEYWORDS

adrenocorticotropin, steroidogenesis, hypocortisolaemia, zona fasciculata,
multi-systemic
1 Introduction

1.1 Historical origins of Familial
Glucocorticoid Deficiency

Unsubstantiated reports of Addisonian-like familial disease associated with

hyperpigmentation were recorded from as early as 1900 but the disorder first came to

prominence in 1959 when Shepard and colleagues described a unique form of

hypocortisolaemia in two siblings with preserved mineralocorticoid function (1). Over

subsequent decades, the phenotypic spectrum evolved to include a distinct constellation

of features including hyperpigmentation, recurrent hypoglycaemia, seizures, high plasma

deoxycorticosterone and tall stature (2–9). Initially designated as hereditary
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adrenocortical unresponsiveness to adrenocorticotropin (ACTH)

(4), this syndrome was eventually termed Familial Glucocorticoid

Deficiency (FGD).
1.2 Physiological regulation of
cortisol production

Higher brain centres regulate the synthesis of endogenous cortisol

through an intricate negative feedback pathway governed by the tropic

Corticotrophin releasing factor (CRF) secreted by the hypothalamo-

adenohypophyseal portal system (Figure 1). CRF preferentially binds to

the CRF type 1 G-protein coupled receptor (CRF-1R) and acts as a

secretagogue to potentiate ACTH release from the anterior pituitary.

ACTH then acts as an agonist for themelanocortin 2 receptor (MC2R),

expressed in adrenocortical cells of the adrenal zona fasciculata, thereby

producing cortisol via modulation of adenylate cyclase/protein kinase

A signalling. Cortisol mediates the negative feedback loop via the

centrally expressed glucocorticoid receptor. Glucocorticoid mediated

feedback may be divided into: (i) non-genomic rapid inhibition of

glutamate release at the hypothalamic paraventricular nucleus via

endocannabinoid synthesis, (ii) genomic prefrontal limbic regulation

and, (iii) destabilization of hypothalamic pituitary adrenocortical axis-
Frontiers in Endocrinology 02
activating neuropeptide mRNA (10). Loss of feedback regulation forms

the basis of ACTH resistance syndromes of which defects in MC2R

were the first to be elucidated.
2 Familial glucocorticoid deficiency
(GCCD1/FGD Type 1) – melanocortin-
2 receptor (MC2R) defects
(OMIM #202200)

The ACTH receptor is a seven transmembrane domain receptor

encoded by the MC2R gene, which maps onto the short arm of

chromosome 18 and consists of 2 exons, the first of which is non-

coding/untranslated whilst the latter encodes the full sequence of the

receptor. Following isolation and sub-cloning of the human ACTH

receptor in 1992 (11), the first reported kindreds with primary

adrenal insufficiency secondary to defects in MC2R were

characterised by Clark et al. and Tsigos et al. in 1993 (12, 13).

Since these initial reports, around 48 mutations have been described

in association with FGD (Human Gene Mutation Database http://

www.hgmd.cf.ac.uk) (14), the majority of which are missense/

nonsense variants (Figure 2) in addition to small genomic deletions
FIGURE 1

Hypothalamic-pituitary-adrenal axis. Rhythmicity of the HPA axis is driven by hypothalamic tropic factor CRH which stimulates anterior pituitary
ACTH production. ACTH acts on the adrenal zona fasciculata to mediate glucocorticoid biosynthesis. Cortisol itself then exerts feedback inhibition
of both ACTH and CRH via a negative feedback loop.
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and insertions. Variants in MC2R account for about 25% of FGD

cases, the majority of which are non-conservative, single amino acid

substitutions that likely abrogate cyclic adenosine monophosphate

(cAMP) generation and impair receptor trafficking (17–19).

Classically in FGD Type 1, patients are mineralocorticoid

replete however, in clinical practice, the picture may be less

unambiguous. Several reports have alluded to mild disruptions of

the renin-angiotensin-aldosterone axis in patients with MC2R

defects, in whom early glucocorticoid replacement may mask

aldosterone insufficiency (20, 21). Furthermore, several patients

with homozygous frameshift truncating variants have presented in

the neonatal period with transient salt wasting (20). Interestingly

Mc2r-/- mice demonstrate reduced serum aldosterone levels (22).

This disparity may reflect the fact that the majority of human

subjects harbour missense mutations that retain some degree of

enzyme activity. Patients also invariably present with early and

significant hyperpigmentation due to the action of markedly

increased ACTH on the Melanocortin 1 receptor (MC1R). This

association was clearly demonstrable in a patient with FGD

harbouring homozygous missense variants in both MC2R and

MC1R and lacking the ‘classic’ hyperpigmented phenotype (23).

An often overlooked but increasingly recognised feature of FGD

Type 1 is hypothyroidism (18, 24–29). Patient phenotypes range

from transient neonatal hypothyroidism that normalise with short

term thyroxine replacement to subclinical hypothyroidism and

persistent thyroid hypo-function (28, 29). Despite assertions that

elevated ACTH levels may inhibit thyroid stimulating hormone

release (30), the exact mechanism underlying the incidence of

hypothyroidism in patients with FGD remain to be elucidated.

Interestingly, another feature recognised in patients with ACTH
Frontiers in Endocrinology 03
receptor defects is reduced adrenal androgen production or lack of

adrenarche. Weber et al. demonstrated consistently sub-optimal

serum DHEAS levels in 6 patients with MC2R variants (31). This

model of ‘functional’ ACTH deficiency suggests that ACTH at least

partially regulates adrenarche given that patients with central

ACTH deficiency (hypopituitarism) also exhibit low levels of

adrenal androgens (31–34).

Tall stature is an inconsistent but historically common feature of

FGD type 1 despite an unaffected Growth hormone-IGF-1 axis (35).

Although the exact mechanism underlying this phenotype is unclear, it

is likely theorised to be due to the sustained effect of markedly elevated

Adrenocorticotropin levels on the growth plate (35, 36). This also

correlates to a later median age at diagnosis (2.0 years) when compared

to FGD Type 2 (37). ACTH has been shown in vitro to increase rat

chondrocyte progenitor cell proliferation and matrix production (38).

Interestingly, growth trajectories return to normal once glucocorticoid

treatment is instituted.Mc2r knockout mice do not recapitulate this trait

and demonstrate similar body lengths to wild-type littermates (22).

There is however little genotype phenotype correlation and disease

severity and onset is highly variable (39).
3 Familial glucocorticoid deficiency
(GCCD2/FGD Type 2) – melanocortin-
2 receptor accessory protein (MRAP)
(OMIM #607398)

After initial characterisation of loss of function defects inMC2R

as a primary cause of FGD, it became apparent that other genetic
FIGURE 2

Proteoform structure of the ACTH receptor (15). The topological (extracellular, transmembrane and cytoplasmic) domains are outlined and sites of
missense variation highlighted (red). The majority of MC2R variants causing FGD Type 1 are associated with defective receptor trafficking and mainly
occur within the transmembrane domains (16). Sites of post-translational modifications are indicated in green.
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factors were involved in pathogenesis of FGD given the existence of

several families with an isolated adrenal insufficiency phenotype

and negative MC2R genomic screening. In vitro expression studies

by Noon et al. revealed that a fluorescent taggedMC2R cDNA clone

was able to traffic to the cell membranes of adrenocorticotropin

resistant murine adrenocortical tumour cells but remained

restricted to the endoplasmic reticulum in non-adrenal cells. This

suggested that an adrenal derived co-factor was necessary for MC2R

expression (40, 41) (Figure 3).

In 2005, Metherell et al. conducted autozygosity mapping in a

single family in which runs of homozygosity identified a 2.2 Mbp

region. Within this region, the adrenally expressed chromosome 21

open reading frame 61 (C21orf61) gene previously encoding a fat-

associated low-molecular-weight protein, was identified. Variants in

this gene, retitled the melanocortin 2 receptor accessory protein

(MRAP), were subsequently identified in several families with FGD

(42). Variants in MRAP (FGD Type 2) account for 20-25% of FGD

cases, with around 15 mutations being described since initial

characterisation of this gene (37, 42–45). The majority of variants

are splice site/nonsense that ultimately lead to a truncated and non-

functional receptor. Patients generally present at an earlier age

(median age of 0.08 years at diagnosis) with normal stature when

compared to subjects withMC2R variants (37, 45, 46). This suggests
Frontiers in Endocrinology 04
reduced exposure to the unfettered actions of ACTH on the growth

plate seen in FGD Type 1. Mrap-/- mice phenocopy the isolated

glucocorticoid deficiency and normal mineralocorticoid function of

human subjects. Interestingly, the adrenals from knockout mice are

small with indistinct cortical zonation and dysregulated

accumulation of WNT4/b-catenin (47).
4 Partial loss of function mutations in
steroidogenic acute regulatory protein
(STAR) and cytochrome P450 side
chain cleavage enzyme (CYP11A1)

4.1 STAR (GCCD3, OMIM #609197)

Defects in STAR disrupt steroidogenesis globally resulting in

classic congenital lipoid adrenal hyperplasia (CLAH). Patients

invariably present with hyper-reninaemic hypoaldosteronism in

the setting of hypocortisolaemia, enlarged adrenals due to

progressive lipid deposition and gonadal insufficiency. A two hit

model has been proposed to account for pathogenesis of CLAH

(Figure 4); the first ‘hit’ being lack of STAR and the second being
FIGURE 3

Adrenocortical cell surface MC2R-MRAP complex mediates glucocorticoid biosynthesis. MRAP traffics MC2R to the cell surface where ligand binding
(ACTH) induces a G-protein coupled increase in cAMP which phosphorylates Protein Kinase A (PKA). PKA then induces transcription of specific intra-
nuclear factors that mobilise STAR activity and expression of enzymes involved in steroidogenesis.
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cholesterol mediated oxidative damage. In STAR deficient

adrenocortical and testicular Leydig cells, steroidogenesis is

markedly diminished with the exception of minimal residual

STAR-independent steroid biosynthesis. The primary biosynthetic

defect leads to compensatory increases in ACTH and LH which

promote LDL receptor mediated cholesterol uptake and de novo

synthesis. Progressive lipid accumulation leads to mitochondrial

oxidative damage and cellular stress ultimately abolishing residual

STAR-independent steroidogenic capacity (48, 49). Early fetal

destruction of Leydig cell integrity in 46,XY subjects leads to lack

of testosterone and feminized external genitalia (50). The fetal

ovary, on the contrary, is relatively preserved until puberty when

gonadotrophin stimulation leads to cholesterol accumulation.

In some patients, mutations in STAR are associated with

retention of up to 20% of wild type activity and a mild

phenotype. These partial loss of function variants result in non-

classic CLAH (NCLAH), often indistinguishable from FGD due to

an isolated adrenal phenotype (51–55). Age at presentation is highly

variable, ranging from 18 months to adulthood (51, 56). NCLAH

cortisol deficient patients exhibit normal external genitalia and

consonant pubertal development however, primary gonadal

failure may occur progressively over time (51, 53).

Expression of a mutant Star protein (N47-StAR) in knockout

mice (Star−/−) gave rise to a partial loss of function phenotype.

When compared to wild type transgenic mice, Star−/−N47Tg mice

had lower basal and stimulated corticosterone levels. Star−/−N47Tg
Frontiers in Endocrinology 05
mice had normal external genitalia but exhibited progressive

gonadal insufficiency with aging (57).
4.2 Cholesterol side-chain cleavage
enzyme, P450scc (CYP11A1)
(OMIM #613743)

CYP11A1, a mitochondrial monooxygenase regulates placental

production of progesterone required for maintenance of gestational

viability (48, 58). Absolute deficiency of this enzyme was previously

thought to be incompatible with term gestation i.e. embryonically

lethal, however, several patients with side chain cleavage enzyme

deficiency have been reported. It is postulated that in these

instances, persistence of the corpus luteum throughout pregnancy

compensates for the placentation defect (59). Severe loss of function

mutations in CYP11A1 produce a phenotype not dissimilar to that

of CLAH due to STAR deficiency. Primary adrenal failure in

combination with 46, XY sex reversal characterise these patients

although unlike STAR deficient subjects, adrenal size is unaffected.

However, like STAR, partial loss of function mutations can

produce a phenotype consistent with non-classic CLAH (60).

Furthermore, partial inactivating mutations in CYP11A1 have

been implicated in development of an isolated glucocorticoid

deficiency. Parajes et al. (2011) described a homozygous mutation

(p.R451W) in two 46, XY male siblings who presented with primary
FIGURE 4

Two ‘hit’ model of lipoid congenital adrenal hyperplasia due to deficiency of STAR in adrenocortical cells. 1. Absence of STAR prevents cholesterol
import to the inner mitochondrial membrane (first hit). Some residual STAR-independent steroidogenesis occurs but relative hypocortisolaemia
ensues. 2. Loss of negative feedback to the anterior pituitary results in increased ACTH production. 3. Steroidogenic stimuli promote expressivity of
LDL receptors which increase adrenocortical cholesterol uptake. 4. Accumulation of intracellular lipids causes oxidative damage and cellular stress
(second hit) further impeding steroidogenic potential leading to hyperplastic adrenals.
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adrenal insufficiency and normal external genitalia without

hypogonadism (61). Unlike severe enzyme deficiency which

presents within the first 10 days of life, partial loss of function

variants in CYP11A1 are associated with later ages of onset ranging

from 6 months to 15 years (62–65).

Maharaj et al. (64) described a heterozygous missense variant

(rs6161, c.940G>A, p.Glu314Lys) in CYP11A1, previously

designated benign, in a cohort of 19 probands (13 families) with

isolated glucocorticoid deficiency. The variant occurred in

compound heterozygosity with a second gene disrupting allelic hit

in CYP11A1 in 17 probands and in combination with two

synonymous single nucleotide variants (p.Thr330= and

p.Ser391=) in two probands. In vitro splicing assays demonstrated

exon skipping due to aberrant splicing for these three variants. The

impact of the rs6161 variant on splicing was further corroborated by

several subsequent groups (66–69).

Cyp11a1-/- mice do not survive weaning and demonstrate

marked corticosterone and aldosterone deficiency when compared

to wild-type litter mates. Interestingly, corticosteroid

administration prolonged survival until adulthood. Cyp11a1-/- XY

males exhibit sex reversal with feminization of external genitalia

and disorganization of internal genitalia. Similar to human

counterparts, knockout adrenals are small however they

demonstrate progressive lipid droplet accumulation (70).
5 FGD-like syndrome due to altered
cellular redox status (NNT, TXNRD2)

5.1 Nicotinamide nucleotide
transhydrogenase (NNT) (GCCD4,
OMIM #614736)

Single nucleotide polymorphism genotyping and targeted

exome sequencing of consanguineous kindreds with adrenal

insufficiency identified variants in the gene encoding the inner

mitochondrial membrane enzyme, nicotinamide nucleotide

transhydrogenase (NNT) (71). The initial 15 probands

characterised by Meimaridou et al. presented with a classical FGD

phenotype indistinguishable from mutations in MC2R and MRAP.

Patients were diagnosed before age 40 months with biochemical

evidence of marked hypocortisolaemia, elevated ACTH and normal

renin and aldosterone levels. A significant number of patients (8 out

of 15) presented with sequelae of hypoglycaemia. A further study

noted that some patients were mineralocorticoid deficient

highlighting a degree of phenotypic variability (46, 72).

Lentiviral knockdown of NNT in an H295R (adrenocortical

cancer) cell line demonstrated increased mitochondrial reactive

oxygen species generation in the knockdown condition with a

lowered reduced glutathione (GSH) to oxidized glutathione

(GSSG) ratio. This was indicative of an altered cellular redox

balance with subsequent perturbations in adrenal steroidogenesis

(71, 73). A reduced GSH : GSSG ratio has also been seen in other in

vitro models of adrenal disease where oxidative stress is implicated

in the pathogenic mechanism, including TXNRD2 and AAAS-KD
Frontiers in Endocrinology 06
H295R adrenocortical cell lines (74, 75). Similarly, metabolic

profiling of glucocorticoid deficient fdx1b−/− zebrafish revealed

significant alterations to glutathione metabolism and

biochemically lowered GSH to GSSG ratios in ferredoxin null

zebrafish larvae (76).

Heterozygous loss-of-function NNT mutations have been

linked to left ventricular non-compaction (LVNC) in two

probands and their famil ies . Nnt deficient zebrafish

cardiomyocytes demonstrated reduced proliferation and

contractility leading to cardiac oedema. In vivo, co-injection of

wild-type human NNT mRNA was able to rescue the cardiac

oedema phenotype whilst mutagenized human NNT ORF

constructs failed to rescue morpholinos-induced cardiac

dysfunction (77). Roucher-Boulez et al. subsequently identified a

novel homozygous NNTmutation (p.R379*) in a single patient who

exhibited features of glucocorticoid insufficiency with progressive

left ventricular hypertrophy (78).

C57BL/6J mice possess an intrinsic inactivating mutation in

Nnt resulting in an untranslated protein. Interestingly, C57BL/6J

Nnt-null mice do not develop cardiomyopathy (79) but they do

have a lower adrenal reserve with attenuated corticosterone levels,

both basally and following ACTH provocation. Adrenal histology

revealed a markedly disorganized zona fasciculata with increased

apoptosis (71). Mitochondria isolated from Nnt null mice exhibited

an increased oxidized/reduced glutathione ratio and impaired

ability to metabolize organic peroxide suggesting that loss of Nnt

leads to redox imbalance (80). At protein level, Nnt null mice

exhibited a 65% reduction in expression of Cyp11a1, which

catalyses the rate limiting step of steroidogenesis (73).
5.2 Thioredoxin reductase 2 (TXNRD2)
(GCCD5, OMIM #617825)

Amongst the genetic causes of FGD, TXNRD2 is perhaps the

most enigmatic. Until recently, only one consanguineous kindred

was known to harbour a deleterious homozygous variant in

TXNRD2 in association with a phenotype of glucocorticoid

insufficiency. In 2014, Prasad et al. characterised 7 individuals

from a Kashmiri kindred who were found to have a stop gain

variant, p.Y447*, associated with loss of TXNRD2 (74, 81). The age

of presentation was highly variable ranging from 0.1 to 10.8 years

(74). Of the glucocorticoid deficient family members genotyped,

only one had co-morbid heart defects precipitating cardiac failure;

cardiomyopathy being a recognised feature of TXNDR2

haploinsufficiency (82).

Sibbing et al. identified two heterozygous mutations in

TXNRD2 (p.G375R and p.A59T) in 3 individuals with dilated

cardiomyopathy (DCM). When cell survival was used as a marker

of Txnrd2 function, neither mutant construct was able to rescue

Txnrd2 function in Txnrd2-/- GSH depleted mouse embryonic

fibroblasts in contrast to a wild type construct (83).

In 2022, a new study highlighted a novel homozygous missense

variant in TXNRD2 (c.1081G>A, p.V361M) in a proband with

glucocorticoid and gonadal insufficiency but normal cardiac
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function (84). This adds credence to the impact of TXNRD2 as a

player in the pathogenesis of isolated glucocorticoid deficiency and

further broadens the phenotypic continuum of this disorder.
6 FGD-like syndrome due to defective
DNA replication (Minichromosome
maintenance 4, MCM4)
(OMIM #609981)

In 2012, dual reports of partial MCM4 deficiency in 14

probands from the Irish Traveller population highlighted a

unique syndrome that encompassed adrenal insufficiency,

intrauterine and postnatal growth restriction, microcephaly and

natural killer cell (NK) deficiency (85, 86). The variant highlighted

(and to date, the only variant associated with this disorder) was a

homozygous splice site substitution c.71-2A>G leading to a single

base cDNA insertion c.70_71insG and frameshift truncation,

p.P24Rfs*4. Unlike other forms of FGD, the adrenal phenotype

was relatively mild with onset of adrenal insufficiency often in late

childhood. In healthy control derived peripheral lymphocytes, two

MCM4 isoforms are detectable at 96KDa and 85KDa. In patient

cells, only the minor isoform is present. This smaller protein is

touted to lack the N-terminal MCM4 domain and may partially

rescue patient phenotype (85, 86).

Complete loss of Mcm4 in mice is lethal. Hypomorphic

Mcm4Chaos3/–Mcm3+/– mice are viable and demonstrate abnormal

adrenal morphology. The adrenal capsule is thinned with significant

numbers of non-steroidogenic Cyp11a1/Cyp11b1 negative cells that

are on the contrary, Gata-4 and Gli1-positive. This remodelled

adrenal cortex demonstrates a lack of steroidogenic output in

keeping with human disease (85, 87).
7 Disorder of sphingolipid metabolism
due to SGPL1 deficiency (OMIM
#617575) leading to primary adrenal
insufficiency and steroid resistant
nephrotic syndrome

Until recently, inborn errors of sphingolipid metabolism due to

single enzyme defects within the sphingolipid pathway have been

characterised by their predominantly neurological phenotype.

Sphingosine-1 phosphate lyase insufficiency syndrome (SPLIS)

due to defects in SGPL1, which coordinates the final degradative

step in the sphingolipid pathway, is a newly described multi-

systemic disorder, in which adrenal failure features prominently

(88–90).

Sphingolipid synthesis involves a series of tightly regulated,

enzyme-catalysed steps that initiate in the endoplasmic reticulum

from non-sphingolipid precursors to biosynthesis of higher order

complex glycosphingolipids within the Golgi apparatus. Despite the

diversity within the biosynthetic pathway, sphingolipid metabolism
Frontiers in Endocrinology 07
begins with a common entry point and exit via a single degradative

pathway. This common initial step involves the coupling of

cytosolic serine and palmitoyl CoA to 3-ketodihydrosphingosine

through the action of serine palmitoyltransferase (SPT) whilst

SGPL1 executes the penultimate step of the metabolic pathway,

catalytic cleavage of sphingosine-1 phosphate (S1P), into 2E-

hexadecanal and phosphoethanolamine (91, 92). SGPL1 is the

major modulator of S1P signalling (93). Under normal

physiological conditions, S1P is largely pro-proliferative,

suppressing the pro-apoptotic actions of ceramide however loss of

function mutations in SGPL1 result in a pathological accumulation

of S1P which studies have shown to be associated with induction

of apoptosis.

In 2017, Prasad et al. (88) described loss of function human

mutations in SGPL1 and a novel syndrome characterised by

primary adrenal insufficiency. Extra-adrenal phenotypic features

included steroid-resistant nephrotic syndrome, hypothyroidism,

ichthyosis, neurodevelopmental delay, hypogonadism and

lymphopenia. Mass spectrometric analysis of plasma

sphingolipids in one patient and heterozygous parents revealed

elevated ceramides and S1P levels when compared to age and sex

matched controls suggesting that the underlying multi-system

pathology in these patients may be due to organ-specific cytosolic

accumulation of sphingolipid intermediates. Correspondingly,

Lovric et al. described a cohort of 7 families who were found on

next generation sequencing to harbour 9 unique, recessive

mutations in SGPL1 (89). Several studies have subsequently

corroborated these initial findings and expanded the phenotypic

spectrum to include microcephaly, sensorineural deafness, and

progressive neurological deterioration (94). A further neurological

phenotype has been described in siblings bearing compound

heterozygous loss of function mutations in SGPL1, involving

axonal mononeuropathy giving rise to Charcot Marie Tooth-like

disease (95).

Sgpl1-/- mice exhibit early postnatal mortality but those that

survive demonstrate disrupted adrenal morphology. Adrenocortical

zonation is disordered and cells of the zona fasciculata have reduced

expression of steroidogenic enzymes and contain fewer lipid

droplets when compared to wild type mice (88). Electron

microscopy of Sgpl1-/- kidneys demonstrated foot process

effacement and absent slit diaphragms (89). Tamoxifen-inducible

Sgpl1-ablated (SPLFlox/Flox Cre+) mice with partial lyase deficiency,

interestingly, demonstrated glomerulopathy with progressive

proteinuria and markedly increased intra-renal S1P levels (96).

These mice additionally showed dermal irritation and

hyperkeratosis whilst other phenotypic features of Sgpl1 silencing

were less evident suggesting that some degree of wild type activity

may be protective against developing multi-systemic disease.
8 Conclusion

From initial descriptions of defects in the ACTH receptor to

disorders of sphingolipid metabolism, the genomic landscape of

FGD has dramatically transformed over the last three decades.
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Pending the discovery of novel genes implicated in pathogenesis of

glucocorticoid deficient disorders, the likelihood of oligogenic

inheritance is augmented in the diagnosis of unsolved FGD cases.

One report suggests that digenic, tri-allelic inheritance of variants in

both STAR and CYP11A1 account for an isolated case of adrenal

failure (97). Oligogenic heterozygosity is increasingly pertinent

particularly in cases of haplotype ambiguity. Given the increasing

accessibility of next generation sequencing techniques, the

heritability of adrenal insufficiency-related phenotypes may be

more easily uncovered allowing earlier patient intervention with

significantly disease modulating impacts.
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