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Abstract: Calabi–Yau manifolds can be obtained as hypersurfaces in toric varieties

built from reflexive polytopes. We generate reflexive polytopes in various dimensions

using a genetic algorithm. As a proof of principle, we demonstrate that our algorithm

reproduces the full set of reflexive polytopes in two and three dimensions, and in four

dimensions with a small number of vertices and points. Motivated by this result, we

construct five-dimensional reflexive polytopes with the lowest number of vertices and

points. By calculating the normal form of the polytopes, we establish that many of

these are not in existing datasets and therefore give rise to new Calabi–Yau four-folds.

In some instances, the Hodge numbers we compute are new as well.
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1 Introduction

Ever since the early days of string phenomenology [1], the construction of Calabi–Yau

(CY) manifolds had been an active pursuit in the theoretical physics and mathematics

communities. (See, for example, the classic reference [2] as well as the recent text-

books [3, 4].) This is motivated by the existence of Ricci-flat metrics on CY manifolds,

a property which makes them a useful building block for compactifications of string

theory. In particular, CY three-folds compactify ten-dimensional superstring theory to

four-dimensional quantum field theories with N = 1 supersymmetry [1].
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In a parallel, and initially seemingly unrelated, vein, lattice polytopes play a central

role in geometry, where a polytope defines a fan of strongly convex rational polyhedra

cones which in turn defines a toric variety. In [5, 6], Batyrev and Borisov showed

how mirror pairs of (n − 1) complex dimensional CY manifolds can be realized from

hypersurfaces in toric varieties constructed from n-dimensional reflexive polytopes.

Threading these two directions of CY compactifications and toric hypersurfaces,

and motivated by their utility for string phenomenology, Kreuzer and Skarke devised

an algorithm to generate all reflexive polytopes in n dimensions [7]. The algorithm

consists of two steps. First, a set S of “maximal” polytopes is constructed such that

any reflexive polytope is a subpolytope of a polytope in S. These maximal polytopes

are defined by a so-called “weight system” or a combination of weight systems. Second,

all subpolyhedra of all polyhedra in S are constructed and checked for reflexivity. The

complete classification of 4319 three-dimensional reflexive polytopes with this algorithm

was accomplished in [8]. From these we obtain K3 surfaces, which is to say, CY two-

folds. Proceeding to dimension three, the 184, 026 weight systems giving rise to four-

dimensional reflexive polytopes were presented in [9], and the resulting 473, 800, 776

four-dimensional reflexive polytopes, leading to CY three-folds, were listed in [10].

In five dimensions the total number of reflexive polytopes is prohibitively large, and

Schöller and Skarke were only able to run the first stage of the algorithm to calculate all

322, 383, 760, 930 weight systems corresponding to maximal polytopes [11]. They found

that 185, 269, 499, 015 of these weight systems give rise to reflexive polytopes directly.

This result constitutes a partial classification, and we will compare our results to this

list later on.1 The CY four-folds obtained from five-dimensional reflexive polytopes

facilitate F-theory model building.

Finding reflexive polytopes is not an easy task. A lattice polytope is reflexive when

it satisfies a set of conditions: it must have only a single interior point (the so-called

IP property), its dual must as well be a lattice polytope (that is, its vertices must lie

on integer lattice points), and the dual must also satisfy the IP property. Alternatively

and equivalently, a polytope is reflexive if and only if it satisfies the IP property and all

bounding hyperplanes of the polytope lie at unit hyperplane distance from the origin.

Constructing polytopes is a well defined problem in Big Data. With multiple criteria,

regression is unlikely to perform well at finding reflexive polytopes. Any loss function

will have local minima, where polytopes satisfy some but not all of the conditions for

reflexivity. We can ask if methods such as reinforcement learning or genetic algorithms,

1All data produced by the Kreuzer–Skarke algorithm for reflexive polytopes in three, four, and five

dimensions can be found at [12].
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which explore an “environment” in order to maximize a fitness or reward function,

might be better suited for such a task. In this paper, we will address this question for

genetic algorithms (GAs) and leave reinforcement learning for future work. Significant

work has already been done on applying machine learning techniques to study objects

in string theory, including polytopes [13–15]. Genetic algorithms in particular have

been successful at scanning for phenomenologically attractive string models [16, 17]

and cosmic inflation models [18], but this is the first time that genetic algorithms have

been used to search for reflexive polytopes. We note that work has been done on

generating reflexive polytopes using sequential models with the added condition that

the polytopes are also regular [19]. However, applying this methodology to reflexive

polytopes without the regularity condition does not yield good results.

The organization of this paper is as follows. In Sections 2.1 and 2.2, we present

some background on reflexive polytopes and briefly review genetic algorithms. In Sec-

tion 3, we describe our methodology for searching for reflexive polytopes with GAs.

Section 4 presents the results of our GA searches for reflexive polytopes in two, three,

and four dimensions and compares the results to the known complete classifications.

Five-dimensional reflexive polytopes are tackled in Section 5. Using GAs, we gener-

ate datasets of five-dimensional reflexive polytopes with the smallest number of points

and vertices. From these we extract the polytopes with h1,1 = 1 and h1,1 = 2 and

compare with the existing partial classification. We conjecture that there are exactly

15 five-dimensional reflexive polytopes that have h1,1 = 1. We also present an exam-

ple of a targeted search where conditions are placed on the Euler number of the CY

manifold. In Section 6, we finish with a discussion and prospectus. Our code, along

with a database of five-dimensional reflexive polytopes we have generated is available

on GitHub [20, 21].

2 Background

In this section we briefly review the necessary background, both on the mathematics

of lattice polytopes and on GAs, while leaving some of the technical details to the

appendices.

2.1 Reflexive polytopes

Due to theorems of Batyrev and Borisov [5, 6] reflexive polytopes provide an efficient

way to construct Calabi–Yau (CY) manifolds. (See Appendix A for a short review.)

This close connection to CY manifolds is the principal reason why physicists are inter-

ested in reflexive polytopes, and it prompted Kreuzer and Skarke to perform a tour de
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force computer classification [7, 8, 10] which produced the largest available databases

of smooth, compact CY manifolds in complex dimensions two and three.

Let us briefly review some of the properties of lattice polytopes relevant to our

work. An n-dimensional lattice polytope ∆ is the convex hull in Rn of a finite number

of lattice points x1, . . . , xm ∈ Zn ⊂ Rn. These points can be conveniently combined

into an n×m matrix X = (x1, . . . , xm) whose columns are the generators. The vertices

v1, . . . , vNv of ∆ are a subset of the lattice points xi, so that Nv = Nv(∆) ≤ m. The

vertices can also be combined into an n × Nv vertex matrix V = (v1, . . . , vNv). Let

H = {x ∈ Rn |u · x = d} be a hyperplane where u ∈ Zn is a primitive lattice point

and d ∈ R. Such a hyperplane is called valid if the polytope ∆ is contained in the

associated negative half-space, that is, if u · x ≤ d for all x ∈ ∆. A face of ∆ is the

intersection of ∆ with a valid hyperplane, and a facet is a face of dimension n− 1. We

denote the set of all facets by F (∆) and for a facet φ ∈ F (∆) with equation u · x = d

(where u is a primitive lattice point) the number d = d∆(φ) is called the lattice distance

of φ from the origin. It is also useful to introduce the notation Np(∆) for the number

of lattice points in ∆.

As explained in Appendix A, a lattice polytope is said to have the IP property if

the origin is its only interior lattice point. Furthermore, ∆ is called reflexive if it has

the IP property and if its dual polytope ∆∗ is also a lattice polytope and has the IP

property. Equivalently, ∆ is reflexive if and only if it has the IP property and if all its

facets have lattice distance one, that is, if d∆(φ) = 1 for all φ ∈ F (∆). It is the latter

characterization of reflexivity which we will use later in our definition of the fitness

function.

We consider two polytopes ∆ and ∆̃ with the same number of vertices, Nv(∆) =

Nv(∆̃) = Nv, as equivalent if their vertices are related by a common integer linear

transformation combined with a permutation. In other words, ∆ and ∆̃ are equivalent

if there exist an Nv × Nv permutation matrix P and a G ∈ GL(n,Z) such that their

vertex matrices V and Ṽ are related by

Ṽ = GV P . (2.1)

The most efficient way to eliminate the redundancy due to this identification is to define

a normal form for the vertex matrix, thereby selecting precisely one representative

per equivalence class. The definition of this normal form and an algorithm for its

computation is reviewed in Appendix B. It is known that the number of reflexive

polytopes, after modding out the identification (2.1), is finite in any given dimension
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n [22]. The connection between reflexive polytopes and CYs is further discussed in

Appendix A.

2.2 Genetic algorithms

Genetic algorithms (GAs) are optimization algorithms which mimic the process of

natural selection [23]. They were first put forward in the 1950s [24, 25] and were later

formalized by Holland [26]. Some more recent reviews are [27–32].

GAs operate on a certain state space which is frequently (and indeed in our appli-

cations) taken to be the set Fnbits
2 which consists of all bit lists with length nbits. The

elements of this set are often referred to as genotypes. Further, we have two given

functions, a fitness function f : Fnbits
2 → R whose value the algorithm is attempting to

optimize and a probability distribution pin : Fnbits
2 → [0, 1], which is used to select the

initial population.

The first step of a GA evolution is to select an initial population P0 which contains

a certain number, npop, of bit strings, each of length nbits, by sampling the set Fnbits
2

with probability pin. The genetic evolution then consists of a sequence

P0 → P1 → · · · · · · → Pngen−1 → Pngen (2.2)

of further ngen populations, each with the same size npop. The basic evolutionary

process, Pk → Pk+1, to obtain population k + 1 from population k is carried out in

three steps, namely, (i) selection, (ii) cross-over, and (iii) mutation. We describe these

three steps in turn.

(i) Selection: A probability distribution pk : Pk → [0, 1], based on the fitness

function, is computed for the kth population. There are several ways to do this

but the method we will employ here is the so-called roulette wheel selection where

pk for an individual s ∈ Pk is defined by

pk(s) =
1

npop

(α− 1)
(
f(s)− f̄

)
+ fmax − f̄

fmax − f̄
, (2.3)

where f̄ and fmax are the average and maximal fitness values on Pk, respectively.

The parameter α, typically chosen in the range α ∈ [2, 5], indicates by which

factor the fittest individual in the population is more likely to be selected than

the average one. Based on this probability pk, npop/2 pairs are selected from the

population Pk.
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(ii) Cross-over: For each pair selected in step (i), a random location l ∈ {1, . . . , nbits}
along the bit string is chosen and the tails of the two strings are swapped. Carry-

ing this out for all pairs leads to npop new bit strings, which form the precursor,

P̃k+1, of the new population.

(iii) Mutation: In the final step, a certain fraction, rmut, of bits in the population

P̃k+1 from step (ii) is flipped and this produces the next generation Pk+1.

A common addition to the above algorithm (which we employ in our applications) is

elitism which means that the fittest individual from population Pk is copied to the

population Pk+1 unchanged. In summary, a GA evolution is subject to the following

hyper-parameter choices: the population size npop, the number of generations ngen, the

parameter α in (2.3) and the mutation rate rmut. For a systematic search, typically

many GA evolutions, each with a new randomly sampled initial population P0, are

carried out. Then, the desirable (or “terminal”) states s, defined as states with f(s) ≥
fterm for a certain critical value fterm, are extracted from all populations which arise in

this way.

3 Methodology

For our applications, we use a lightweight and fast c code [20] which realizes the genetic

algorithm (GA).

In order to set up the environment, we consider lattice polytopes ∆ in n dimensions

which are generated as the convex hull of m vectors xa ∈ Zn, where a = 1, . . . ,m.

These vectors are arranged into an n×m matrix X = (x1, . . . , xm).

Standard methods can be used to calculate the properties of the polytope ∆ asso-

ciated to a matrix X . This includes the set of facets F (∆), the distances d∆(φ) of the

facets φ ∈ F (∆) from the origin, the lists of interior and all lattice points in ∆, and

the vertices V = (v1, . . . , vNv(∆)). If ∆ is reflexive, further interesting properties such

as the Euler number χ(∆) and the Hodge numbers hp,q(∆) of the respective CY family

can be computed. All this is carried out using the package PALP [33].

In practice, we must restrict the entries xi
a of the matrix X to a finite range which

we choose to be xi
a ∈ {xmin, xmin+1, . . . , xmin+2ν − 1}, for certain integers xmin and ν.

Our environment E therefore consists of all n ×m integer matrices X with entries in

this range. The elements of an environment E are also referred to as phenotypes. The

first step in applying GAs to such an environment is to define the phenotype-genotype

map E → Fnbits
2 . Given our choices this is quite straightforward. Each integer xi

a is
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converted into a bit string of length ν and concatenating these leads to a bit string of

length nbits = nmν which describes the entire matrix X . With these conventions the

phenotype-genotype map is, in fact, bijective and the environment E contains a total

of

2nbits = 2nmν (3.1)

states. To orient ourselves let us consider polytopes in dimension n = 5 with the

minimal number, m = 6, of generators and with each integer xi
a represented by ν = 3

bits (so that, choosing for example xmin = −4, the integer range is xi
a ∈ {−4, . . . , 3}).

In this case, the environment consists of 290 ≃ 1027 states, quite a sizeable number and

certainly well beyond systematic search.

Next, we need to define the probability distribution pin and the fitness function f .

Given the bijection between the spaces of genotypes and phenotypes these functions

can be defined on either space and we opt for the latter. For the sampling probability

pin it is usually sufficient to use a flat distribution, that is, every matrix X ∈ E has the

same probability.2 Our basic fitness function is defined as

f(∆) = w1 (IP(∆)− 1)− w2

|F (∆)|
∑

φ∈F (∆)

|d∆(φ)− 1| , (3.2)

where IP(∆) equals 1 if ∆ has the IP property and is 0 otherwise. The numbers

w1, w2 ∈ R>0 are weights which are typically chosen as w1 = w2 = 1. Note that

f(∆) ≤ 0 always and f(∆) = 0 if and only if ∆ is reflexive. Accordingly, we set

fterm = 0 so that the terminal states correspond to reflexive polytopes.

To summarize, the GA setup for polytopes is completely specified by choosing the

following environmental variables: the number of dimensions n, the number of gener-

ators m, the size xmin of the lowest possible matrix entries, the number ν of bits used

per matrix entry and the weights w1, w2 which appear in the fitness function (3.2).

For some of our applications we are interested in a more targeted search for reflexive

polytopes with certain additional properties. For example, we might be interested in

reflexive polytopes ∆ whose number Np(∆) of lattice points equals a certain target

Np,0. Another interesting subclass of reflexive polytopes are those whose number of

vertices Nv(∆) matches a target Nv,0.
3 To facilitate such targeted searches, we can

2For large ranges of the matrix entries it can be advantageous to choose a non-flat pin which favors

the selection of xi
a with smaller |xi

a|.
3Note that the number of vertices can be smaller than the number of generators m that we start

with, since generators can arise with multiplicity greater than one or can be contained in the interior

of faces of ∆.
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modify the fitness function (3.2) to

f̃(∆) = f(∆)− w3 |Np(∆)−Np,0| − w4 |Nv(∆)−Nv,0| , (3.3)

where w3, w4 ∈ R≥0 are two further weights which can be used to switch the additional

requirements on and off. If w3, w4 > 0, then f̃(∆) = 0 and, hence, ∆ is terminal, if and

only if ∆ is reflexive and has the target numbers Np,0 and Nv,0 of lattice points and

vertices.

This environment is realized in c by combining PALP [33] tools for polytope compu-

tation with additional code by the authors [21] which realizes the phenotype-genotype

conversion and the computation of fitness. This environment is then coupled to the

GA code [20].

Once the GA has found a list of reflexive polytopes, possibly with additional prop-

erties, we are not yet finished, since we have to eliminate the redundancies which arise

from the identification (2.1). This is done by computing the normal form of the vertex

matrix, using the algorithm described in Appendix B. For our practical computations,

we use the implementation of this algorithm in PALP [33].

4 Low dimensional results

To showcase the capability of GAs for searching reflexive polytopes, we start with n =

2, 3, 4 dimensions where complete classification already exists.4 As we will see, these

results provide useful guidance for the search in n = 5 dimensions where a complete

classification is lacking.

There are some common hyperparameter choices which we use for all following runs.

In each case, we evolve populations for ngen = 500 generations, we use a mutation rate

of rmut = 0.005, and the parameter α in (2.3) is set to α = 3. Other hyperparameters,

such as the population size npop, and environmental variables will be chosen to optimize

results and their values for each case will be stated below.

4.1 Two and three dimensions

In two dimensions, we use an integer range xi
a ∈ [−3, 4], so that each integer is encoded

by ν = 3 bits, and m = 6 generators. Hence, each matrix X is represented by nbits =

36 bits and the environment consists of 1036 ≃ 1011 states. Using a population size

4The one-dimensional classification consists of a single reflexive polytope formed from two integer

points ±1 adjacent to the origin. Since there is only one polytope of this type, we ignore this dimension.
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of npop = 200, the genetic algorithm finds all 16 reflexive polytopes after only one

evolution, taking only a few seconds on a single CPU. Assuming that the GA never

visits the same state twice, the total number of states visited would be # evolutions×
ngen × npop = 1 × 500 × 200 ≃ 105 which is only a fraction of ∼ 10−6 of the total

environmental states. In reality, the GA is likely to visit states more than once so this

is in fact an upper bound and the true fraction of states visited will be smaller.

In three dimensions, we use the coordinate range xi
a ∈ [−7, 8], with ν = 4 bits per

integer and m = 14 generators. This means each matrix X is described by nbits = 168

bits and the total environment size is 2168 ≃ 1051. With population size set to npop =

450, the genetic algorithm finds all 4319 reflexive polytopes after 117251 evolutions.

Considering the small fraction of reflexive polytopes in this environment this is already

a considerably achievement. The upper bound of states visited by the GA is 117251×
500×450 ≃ 1011, which is a very small fraction of ∼ 10−40 of the environmental states.

4.2 Four dimensions

In four dimensions, the total number of reflexive polytopes is large (473, 800, 776) and,

for our purpose of obtaining baseline performance results to inform the five-dimensional

search later on, it is not necessary to generate the complete set. Instead, we focus our

attention on finding those polytopes ∆ with the lowest number of vertices and points.

In n = 4 dimensions the minimum number of vertices is 5 and therefore the minimum

number of points (assuming reflexive polytopes for which the origin is the single interior

point) is 6. To facilitate such a search we use the modified fitness function (3.3) with

certain targets Nv,0 or Np,0 for the number of vertices or points.

We first perform a search for reflexive polytopes with the lowest number, Nv,0 = 5, of

vertices (and an arbitrary number of points). This means we set w3 > 0 and w4 = 0 in

the modified fitness function (3.3). The integer range is taken to be xi
a ∈ [−15, 16], that

is, we use ν = 5 bits per integer and m = 5 generators. This means the matrices X are

described by bit strings of length nbits = 100 and the environment contains 2100 ≃ 1030

states. The population size is taken to be npop = 200. With these settings we have

performed multiple GA runs and the number of reflexive polytopes as a number of

generations obtained in this way is shown in Figure 1.

Evidently, the number of reflexive polytopes, after removing the redundancy due

to (2.1), saturates quickly and to a value of 1555, just six reflexive polytopes short

of the total of 1561, known from the Kreuzer–Skarke classification. The missing six

polytopes all have Euler number χ = 0 and large vertex coefficients in their normal

form. Applying a few million GL(4,Z) transformations, we are unable to find a single
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equivalent vertex matrix for these six cases which falls into our integer range. This

suggests these cases can only be found by enlarging the integer range xi
a ∈ [−15, 16]. We

will refrain from doing this as the present run has already found 99.6% of all reflexive

polytopes and provides strong evidence that, given appropriate hyperparameter and

environmental choices, GAs can find virtually complete sets of reflexive polytopes. It

is particularly impressive that this has been achieved by visiting only a fraction of

∼ 10−22 of states in the environment.

Figure 1: Log plot of total number of generated four-dimensional reflexive polytopes with

five vertices against number of genetic algorithm evolutions. The total before and after

removing redundancy are shown in orange and blue, respectively.

Next, we are searching for polytopes with a given number, Np,0 of lattice points,

so we set w3 = 0 and w4 > 0 in the fitness function (3.3). Specifically, we will be

focusing on the cases Np,0 ∈ {6, 7, 8, 9, 10}. The vertex coefficients of such polytopes

with a relatively small number of points are likely to be small. Therefore, we reduce

the integer range to xi
a ∈ [−3, 4] and describe every integer by ν = 3 bits. This

leads to a reduction of the environment size and a significant improvement in the

algorithm’s performance, compared to the previous case. If a polytope has Np,0 points,

the maximum number of vertices is Nv = Np,0− 1, where all points are vertices except

the origin. Therefore, in searching for polytopes with Np,0 points we set the number of

generators to m = Np,0 − 1. The results are summarised in Table 1. It is remarkable

that all states are found in all cases after a sufficient number of GA runs.
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# points # states npop # refl. poly. # GA runs states visited

6 ∼ 1019 400 3 5 ∼ 10−13

7 ∼ 1022 300 25 30 ∼ 10−16

8 ∼ 1026 400 168 60 ∼ 10−19

9 ∼ 1029 300 892 9378 ∼ 10−20

10 ∼ 1033 350 3838 9593 ∼ 10−24

Table 1: Results for four-dimensional reflexive polytopes with the a small number of lattice

points, as in the first column. The size of the environment used for the GA is provided in

the second column, the population size in the third column, the fourth column lists the total

number of reflexive polytopes for the given number of points (as taken from the Kreuzer–

Skarke list) and the fifth column gives the number of GA runs required to find this total.

The last column provides an upper bound on the fraction of states visiting during all GA

runs.

5 Five-dimensional results

In the previous section, we have seen that GAs can generate complete or near-complete

lists of reflexive polytopes in two, three, and four dimensions. This is a valuable proof

of principle which demonstrates that GAs can successfully identify reflexive polytopes.

However, the results are of limited practical use, given the complete classifications in

those dimensions. We now turn to reflexive polytopes in five dimensions, the lowest-

dimensional case for which a complete classification is not available. The total number

of (inequivalent) reflexive polytopes in dimensions n = 1, 2, 3, 4 is given by 1, 16, 4319,

473, 800, 776, respectively. This sequence suggests the number of reflexive polytopes

in five dimensions is extremely large and producing a complete catalog is intractable.5

The partial list of Schöller and Skarke of 185, 269, 499, 015 weight systems that give rise

to “maximal” five-dimensional reflexive polytopes [11] is the state of the art. The GA,

however, is not biased towards generating maximal polytopes, and can be configured

to search for polytopes with other properties. In fact, it is likely that the vertices of the

largest polytopes are far from the origin, and the GA would struggle to find such cases.

For this reasons, we focus on generating polytopes with a small number of points and

vertices. In short, while the Schöller–Skarke list consists of maximal polytopes, our GA

runs produce small polytopes.

We can compute the normal forms of the polytopes found by the GA with those

5Extrapolating this trend gives an estimate of 1.15× 1018 five-dimensional reflexive polytopes [11].
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of the polytopes in the existing list, to confirm that we have indeed found new five-

dimensional reflexive polytopes.

5.1 Nv = 6

In analogy with the four-dimensional case, we start by looking at polytopes with the

smallest number of vertices, that is, Nv = 6. We use the integer range {−15, . . . , 16}
so that every integer is represented by ν = 5 bits and the total length of the genotype

is nbits = 150. Hence, the size of the environment is 2150 ≃ 1046. We have performed

210100 GA runs, until no new reflexive polytopes were found for 1000 evolutions, each

run with ngen = 500 generations and a population size npop = 500. This means a

fraction of at most 10−36 of the environment has been visited. The number of reflexive

polytopes against the number of runs found in this way is shown in Figure 2. After re-

moving redundancies, this leads to a total of 77470 five-dimensional reflexive polytopes

with six vertices.

Figure 2: Total number of generated five-dimensional reflexive polytopes with six vertices

against number of genetic algorithm evolutions.

Of course we do not know with certainty which fraction of six-vertex polytopes we

have found in this way. Just as for the five-vertex search in four dimensions, it is likely

some polytopes cannot be found simply because none of their possible vertex matrices

fall into the search box defined by our integer range {−15, . . . , 16}. It is possible to test

how much we are missing for this reason by re-running the search with a larger integer

range, although we have not attempted this. On the other hand, given the apparent
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saturation in Figure 2 and in view of the highly successful five-vertex search in four

dimensions, it seems likely we have found a large fraction of those polytopes.

5.2 Np = 7,8,9,10,11

We have also searched for those five-dimensional reflexive polytopes with the lowest

number of points, that is, Np,0 ∈ {7, 8, 9, 10, 11}. This has been done for the range

integer range {−3, . . . , 4}, so that every integer is represented by ν = 3 bits, leading

the bit strings of length nbits = 15(Np,0 − 1). In each case, we perform as many GA

runs as necessary until no new polytopes are found for 1000 evolutions. The results are

presented in Table 2.

# points # states npop # refl. poly. # GA runs states visited

7 ∼ 1028 350 9 36 ∼ 10−22

8 ∼ 1032 350 115 1278 ∼ 10−24

9 ∼ 1037 450 1385 7520 ∼ 10−28

10 ∼ 1041 750 12661 31857 ∼ 10−31

11 ∼ 1046 650 87907 67382 ∼ 10−36

Table 2: Results for five-dimensional reflexive polytopes with the a small number of lattice

points, as in the first column. The size of the environment used for the GA is provided

in the second column, the population size in the third column, the fourth column lists the

total number of reflexive polytopes found by the GA for the given number of points and

the fifth column gives the number of GA runs at which the total list of reflexive polytopes

saturates and after which no new reflexive polytopes are found for 1000 runs. The last

column provides an upper bound on the fraction of states visiting during all GA runs.

As before, these searches may miss some states, in particular because they fall outside

the search box. However, Table 2 certainly provides lower bounds on the number of

five-dimensional reflexive polytopes with the lowest number of points and, from the

analogous results in the four-dimensional case, we are confident that these bounds are

rather strong.

5.3 h1,1 = 1,2

It is interesting to ask about CY manifolds with small Hodge numbers and here we

focus on cases with small h1,1. The Schöller–Skarke list contains 8 weight systems

corresponding to CY hypersurfaces with h1,1 = 1 and 33 weight systems corresponding

to CY hypersurfaces with h1,1 = 2. The maximum number of points of the reflexive

polytopes in these lists is 11. We have scanned the lists of five-dimensional reflexive
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polytopes obtained from the GA runs described above and have found 15 polytopes

with h1,1 = 1 and 195 polytopes with h1,1 = 2. By comparing normal forms, we have

verrified that these contain all h1,1 = 1, 2 polytopes from the Schöller–Skarke list. In

addition, there are many new examples, even some with Hodge numbers which are not

contained in the Schöller–Skarke list or in the list of four-dimensional CY manifolds

realized as complete intersections in products of projective space (CICYs) [34, 35]. Two

such examples with a new set of Hodge numbers are given below.

Example 1 A new polytope with h1,1 = 1 is given by the vertex matrix:
−2 1 −1 1 1 0

0 0 1 −1 0 0

1 1 −1 0 0 0

0 −1 −2 2 −1 2

−1 2 0 0 0 −1

 . (5.1)

This polytope6 has Hodge numbers h1,2 = 0, h1,3 = 111, h2,2 = 492, and Euler number

χ = 720.

Example 2 A new polytope with h1,1 = 2 is given by the vertex matrix:
−1 1 0 1 0 0 −1
0 −1 −1 1 1 0 0

1 −3 −1 −1 1 1 3

2 −2 0 −1 −2 1 3

−2 2 1 1 0 −1 −2

 . (5.2)

This polytope has Hodge numbers h1,2 = 0, h1,3 = 111, h2,2 = 496, and Euler number

χ = 726.

All 15 polytopes with h1,1 = 1 arise from the datasets with Np = 7, 8 and no such

polytopes are found for 8 < Np ≤ 11. We take this as evidence that the dataset is

complete.

Conjecture 5.1 There are precisely 15 five-dimensional reflexive polytopes that give

rise to four complex dimensional Calabi–Yau hypersurfaces with Hodge number h1,1 = 1.

6In five dimensions, that is for CY four-folds, these topological invariants are not all independent.

We have the two relations h2,2 = 44+ 4h1,1 − 2h1,2 +4h1,3 and χ = 48+ 6h1,1 − 6h1,2 +6h1,3. Mirror

symmetry exchanges h1,1 and h1,3 while leaving h1,2 and h2,2 fixed.
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5.4 Targeted searches

To showcase the capability of our GA at generating CY four-folds with specific criteria,

we present an example of a targeted search inspired by [36]. In that paper, the authors

consider eleven-dimensional supergravity compactified on CY four-folds with 4-form

flux and provide the conditions necessary to break supersymmetry from N = 2 to N =

1. In Appendix A they search for CY four-folds with χ divisible by δ ∈ {24, 224, 504}
which satisfy the N = 1 condition. By searching the Schöller–Skarke list they find

eight examples which they present in their Table 1. To facilitate a GA search for such

cases, we modify our fitness function to

f̃(∆) = f(∆)− w5

∑
δ

χ(∆) mod δ , (5.3)

where w5 is a weight and χ(∆) is the Euler number of ∆. In our search for such

polytopes we set the number of generators to be m = 10 and use the integer coordinate

range [−3, 4], where each integer is represented by a ν = 3 bits. With population size

npop = 550 and after 10 evolutions the GA finds 21 polytopes that satisfy the index

condition and, comparing with [36], it turns out all of these are new. One of these is

given below.

Example 3 A five-dimensional reflexive polytope giving rise to a four-dimensional CY

hypersurface whose Euler number χ is divisible by 24, 224, and 504 is given by the vertex

matrix: 
−1 0 0 −1 −1 0 0

0 1 −3 0 1 −1 0

1 −1 −1 0 −1 1 0

1 −1 1 −1 −1 1 −1
−1 1 0 0 1 0 0

 . (5.4)

This polytope has Hodge numbers h1,1 = 4, h1,2 = 1, h1,3 = 325, h2,2 = 1358, and Euler

number χ = 2016.

This examples illustrates the possibilities of a targeted GA search. By a suitable

modification of the fitness function one can design a dedicated search for CY manifolds

with prescribed properties, for example with certain values of the Euler number as

above, but also with a given pattern of Hodge numbers, with Chern classes and inter-

section form satisfying certain constraints or combinations of all of these. This points

to a different approach for dealing with large classes of geometries in string theory.

Rather than producing complete lists of such geometries (which is not even feasible

for the case at hand, that is, five-dimensional reflexive polytopes) the GA can be used
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to search for geometries with prescribed properties, as required for the intended string

compactification.

6 Discussion

In this paper we have shown that genetic algorithms (GAs) can be efficiently used to

generate reflexive polytopes in two, three, four, and five dimensions. In two dimensions

we have generated the complete set of 16 reflexive polytopes in just one GA evolution.

We have also generated the complete set of reflexive polytopes in three dimensions in

∼ 100000 evolutions. Due to the large number of reflexive polytopes in four dimensions,

we have refrained from generating the complete set in this case. Instead, we have

focused on the polytopes with the smallest number Np,0, of lattice points, that is,

6 ≤ Np,0 ≤ 10. By comparing with the Kreuzer–Skarke classification, we have shown

that the GA can find all such polytopes. These results indicate that complete or near-

complete classifications of reflexive polytopes can be accomplished with GAs, at least

for cases with a small number of lattice points.

This observation is important for the five-dimensional case, where only a partial

classification of reflexive polytopes exists. Performing a GA search for 7 ≤ Np,0 ≤ 11

in five dimensions produces all reflexive polytopes from the partial classification and

indeed many more, previously unknown cases. This includes cases which lead to CY

four-folds with new sets of Hodge numbers. While the numbers of reflexive polytopes

obtained in this way (see Table 2) is unlikely to be the true total there are good

indications that they provide strong lower bounds. From these lists, we have also

extracted all polytopes with h1,1 = 1. We conjecture that the 15 cases found constitute

the complete list of reflexive polytopes which give rise to CY four-folds with h1,1 = 1.

It is perhaps not desirable, or even feasible, to generate the complete list of reflex-

ive polytopes beyond four dimensions. Instead, we propose an alternative approach,

well-suited to the needs of string compactifications, of targeted searches for reflexive

polytopes (and their associated CY manifolds) with certain prescribed properties. We

have demonstrated that GAs can be used for such targeted searches, by looking for

cases with certain prescribed values of the Euler number. This has led to new reflexive

polytopes that satisfy the condition for M-theory compactifications on CY four-folds,

following [36]. We expect the same approach will work for other targets, such as a

certain desirable pattern of Hodge numbers.

The c code underlying the above results and all data sets are available on GitHub [20,

21].
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There are many possible directions for future research. In particular, by fine, star,

regular triangulation of a (dual) reflexive polytope into simplices, we can construct the

CY hypersurface explicitly. This process is also amenable to attack with GAs. Targeted

GA searches are another promising avenue. For example, it might be possible to design

a targeted search for elliptically or K3 fibered CY four-folds. More ambitiously, one

can aim for searches which produce F-theory compactifications with certain desirable

properties. It might also be interesting to apply reinforcement learning to the problem

of searching for reflexive polytopes and compare its performance to that of GAs. We

leave this to future work.
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A Calabi–Yau manifolds from reflexive polytopes

In this section, we briefly review the necessary elements of toric geometry, with the

goal of introducing the construction of mirror pairs of Calabi–Yau (CY) manifolds

from reflexive polytopes.

Definition A.1 Let M ∼= Zn and N = Hom(M,Z) be a dual pair of lattices with the

pairing ⟨·, ·⟩ : N ×M → Z, and let MQ, NQ be their rational extensions.

• A polytope ∆ in MQ is the convex hull of finite number of points in MQ.

• ∆ is called a lattice polytope if all its vertices lie in M .

• The dual or polar polytope of ∆ is defined as

∆∗ = {n ∈ NQ|⟨n,m⟩ ≥ −1 ∀m ∈ ∆} . (A.1)
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• A face θ of ∆ is defined as

θ = {m ∈ ∆|⟨n,m⟩ = r} , (A.2)

for some n ∈ NQ and r ∈ R.

Given an n-dimensional lattice polytope ∆, one can construct a compact toric variety

X∆ of complex dimension n. In short, one constructs the normal fan Σ∆ as follows: for

a face θ of ∆, let σθ ⊂ NR be the dual of the cone:

σ∨
θ := {λ(u− u′)|u ∈ ∆, u′ ∈ θ, λ ≥ 0} ⊂MR . (A.3)

Then the normal fan is given as Σ∆ := {σθ} for all faces θ of ∆. From the normal fan,

the construction of the compact toric varietyX∆ follows the usual procedure [37], where

each cone gives rise to an affine toric variety and one glues these patches together.

Definition A.2 A polytope is said to satisfy the interior point (IP) property when it

contains only one interior point taken to be the origin. Let ∆ ⊂M be a lattice polytope

satisfying the IP property, then ∆ is called reflexive if its dual ∆∗ ⊂ N is also a lattice

polytope satisfying the IP property.

We recall that a CY n-foldM is an n complex dimensional space that is a compact

Kähler manifold and has a vanishing first real Chern class. Calabi conjectured and Yau

proved that such a geometry admits a unique Ricci-flat metric in each Kähler class.

The connection between CY manifolds and reflexive polytopes is the following. Let

∆ ⊂ M be an n-dimensional reflexive polytope and X∆ the corresponding n complex

dimensional toric variety. Then it follows that the zero locus of a generic section of

the anticanonical bundle −KX is a CY variety M of dimension n − 1 which can be

resolved into a CY orbifold with at most terminal singularities. The mirror CY W
is similarly obtained from the polar dual. (Because of the IP property, it turns out

that (∆∗)∗ = ∆.) See [38, 39] for explicit constructions of CY manifolds from reflexive

polytopes.

B Normal form

There are two sources of redundancy when defining a reflexive polytope ∆ in n dimen-

sions by its n × Nv vertex matrix V , whose columns are the Nv vertices. First of all,

one permute the vertices, leading to an SNv symmetry which permutes the columns of

V . Secondly, one can perform a coordinate transformation on the n-dimensional lattice
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by acting on V with a GL(n,Z) matrix from the left. Altogether, this amounts to a

transformation of the vertex matrix as in Eq. (2.1).

In order to remove the redundancy in the list of polytopes, we compare their normal

forms. This is the approach that was used by Kreuzer and Skarke in constructing the

complete classification of three- and four-dimensional reflexive polytopes [8, 10] and

is included in the PALP software package [33]. If two polytopes ∆1 and ∆2 have the

same normal form, then they are equivalent, in the sense that they are isomorphic with

respect to a lattice automorphism. A detailed description of the how one computes the

normal form is given in [40]. We shall give a short description here.

LetM be a n-dimensional lattice and ∆ ⊂MQ a n-dimensional lattice polytope with

Nv vertices, Nf = |F (∆)| facets and vertex matrix V . We also define the supporting

hyperplanes of ∆, associated to the facets φi ∈ F (∆), as the set of all vectors v satisfying

⟨wi, v⟩ = −ci, where (wi, ci) ∈ M∗ × Z. The algorithm to compute the normal form is

then as follows.

1. Compute the Nf ×Nv vertex-facet pairing matrix PM :

PMij := ⟨wi, vj⟩+ ci . (B.1)

2. Order the pairing matrix PM lexicographically to get the maximal matrix PMmax.

3. Further rearrange the columns of PMmax to get M by the following:

M ← PMmax

for i = 1 to Nv do

k ← i

for j = i+ 1 to Nv do

if cM(j) < cM(k) ∨ (cM(j) = cM(k) ∧ sM(j) < sM(k)) then

k ← j

end if

end for

M ← SwapColumn(M, i, k)

end for

where cM(j) := max(Mij|1 ≤ i ≤ Nf) and sM(j) :=
∑Nf

i=1Mij, where 1 ≤ j ≤ Nv.
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4. Let σmax denote the associated element of SNf
× SNv that transforms PM into

M . Order the columns of V according to the restriction of σmax to SNv to get the

maximal vertex matrix V max. This removes the permutation degeneracy.

5. Compute the row style Hermite normal form of V max to obtain the normal form

NF . This step removes the GL(n,Z) degeneracy.

Example 4 To illustrate the above algorithm, we present an example in three dimen-

sions. Let ∆ be a lattice polytope defined by the vertex matrix:

V =

 3 1 4 0 2 3 3 −3 1 −3 0 −3
−3 2 0 −1 1 2 1 2 2 −2 −3 2

−3 4 1 4 4 −1 −2 −1 −3 2 0 2

 . (B.2)

Computing the vertex-facet pairing matrix we get

PM =



2 2 0 0 0 5 5 11 9 4 2 8

7 0 3 0 0 5 6 5 7 2 4 2

0 70 51 59 73 30 18 0 0 22 15 30

3 7 3 11 7 0 0 6 0 13 9 9

0 56 21 67 53 6 0 36 0 68 39 60

5 0 2 3 1 0 1 0 0 4 5 0

0 10 8 6 10 7 5 1 3 0 0 4

3 6 5 0 4 11 10 11 13 0 0 8

0 5 1 0 2 8 7 14 12 3 0 11

6 4 7 3 5 6 6 0 4 0 3 0

27 2 17 0 4 21 24 9 23 0 12 0

53 0 29 0 4 36 43 18 42 4 26 0



. (B.3)
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Ordering PM lexicographically we get the following maximal matrix:

PMmax =



217 212 173 138 135 96 72 44 3 0 0 0

73 70 51 30 59 18 30 0 15 22 0 0

53 56 21 6 67 0 60 0 39 69 36 0

37 49 0 3 65 0 93 21 51 97 81 0

12 44 0 73 0 65 118 121 6 42 151 0

10 13 0 0 20 0 27 6 18 31 24 3

10 10 8 7 6 5 4 3 0 0 1 0

7 7 3 0 11 0 9 0 9 13 6 3

5 4 7 6 3 6 0 4 3 0 0 6

4 6 5 11 0 10 8 13 0 0 11 3

4 2 17 21 0 24 0 23 12 0 9 27

4 0 29 36 0 43 0 42 26 4 18 53



, (B.4)

corresponding to the row and column permutations (12, 2, 4, 14, 17, 13, 6, 3, 9, 7, 10, 11)

and (4, 1, 2, 5, 3, 6, 11, 8, 10, 9, 7, 0) respectively. Further ordering the columns by the

procedure described in Step 3 above we get

M =



217 0 72 0 0 3 138 96 44 173 212 135

73 0 30 22 0 15 30 18 0 51 70 59

53 36 60 69 0 39 6 0 0 21 56 67

37 81 93 97 0 51 3 0 21 0 49 65

12 151 118 42 0 6 73 65 121 0 44 0

10 24 27 31 3 18 0 0 6 0 13 20

10 1 4 0 0 0 7 5 3 8 10 6

7 6 9 13 3 9 0 0 0 3 7 11

5 0 0 0 6 3 6 6 4 7 4 3

4 11 8 0 3 0 11 10 13 5 6 0

4 9 0 0 27 12 21 24 23 17 2 0

4 18 0 4 53 26 36 43 42 29 0 0



, (B.5)

corresponding to the column permutation (0, 10, 6, 9, 11, 8, 3, 5, 7, 2, 1, 4). Ordering the

columns in V correspondingly we get

V max =

 3 0 3 −3 −3 1 0 3 −3 4 1 2

−3 −3 1 −2 2 2 −1 2 2 0 2 1

−3 0 −2 2 2 −3 4 −1 1 1 4 4

 . (B.6)
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Finally, computing the row style Hermite normal form of V max we arrive at the following

normal form:

NF =

 3 0 0 0 0 7 −12 −3 9 −11 −14 −16
0 3 0 1 −3 −11 17 3 −15 16 17 21

0 0 1 −1 −1 −2 4 2 −4 5 5 6

 . (B.7)
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