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Abstract: We consider the complete set of six trivalent Grothendieck dessins d’enfants

with 4 punctures on the sphere, interpret their algebraic curves as Seiberg-Witten

curves, then use the mirror map and the AGT map to obtain the corresponding 4d

N = 2 supersymmetric instanton partition functions and 2d Virasoro conformal blocks.

We find that the parametrizations obtained from a dessin should be related by certain

duality as gauge theories. As the parametrizations are discrete, it is also natural to

conjecture that they correspond to the spectra of minimal models. In particular, the

parametrizations become continuous when c = 1, just like the spectra of minimal

models in the limit c→ 1.
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1 Introduction

Consider a 4-point conformal block (CB) in a 2d conformal field theory (CFT) based on

W2×H, where W2 is the Virasoro algebra and H is the Heisenberg algebra. Using the

Alday-Gaiotto-Tachikawa (AGT) correspondence [1], this is identified with an instanton

partition function in an N = 2 supersymmetric Yang-Mills (SYM) theory, with an

SU(2) gauge group and four fundamental hypers.
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The low energy physics of this gauge theory is described in terms of a Seiberg-

Witten (SW) curve and the SW differential on it [2, 3]. Then in [4], a method of

instanton counting was introduced to find these low energy solutions to SW theories.

Later, the S-duality for N = 2 supersymmetric systems was studied in [5]. In recent

works [6–12], connections between Grothendieck’s dessins d’enfants on the one hand

and 4d N = 2 SYM on the other were studied. In this note, we further explore these

connections and extend them to 2d conformal field theory. We focus on the set of six

trivalent dessins with 4 punctures on the sphere, which, as we will see, are related to

a simple and important class of 4d N = 2 SYM theories and conformal blocks in 2d

conformal field theory.

From these dessins, we obtain algebraic curves that we interpret as SW curves of 4d

SU(2) N = 2 Nf = 4, SYM theories. These curves are given in terms of six parameters,

four mass parameters (µ1, µ2, µ3, µ4), a parameter ζ and a modulus U . We write these

curves in the form that appears in [13], and use their mirror map to translate the

above six parameters to the six parameters that characterize the 4d instanton partition

function of a 4d N = 2 SYM theory. In particular, we map the modulus U to the

Coulomb parameter a. Following that, we use the AGT dictionary to interpret the

result in 2d CFT terms.

Let us take a closer look at the six parameters for the SU(2) gauge theory. With

Nf = 4, the theory has an SO(8) = SU(2)4 flavour symmetry. Then µi’s denote the

mass parameters for the four fundamental hypers. These parameters would be inden-

tified as the momenta of the primaries in Liouville theory under AGT correspondence.

As usual, we would arrange the poles of the SW curves at z = 0, 1,∞ and ζ. This ζ is

nothing but the UV gauge coupling τ via ζ = exp(2πiτ). For each dessin, we find that

ζ could have several different values but these values enjoy certain triality.

Recall that the the Coulomb parameter a denotes the vev of the adjoint scalar

φ, or equivalently, a could be obtained by integrating the SW differential along the

so-called A-cycle on SW curve. Such supersymmetric vacua can be gauge invariantly

parametrized by u = 〈trφ2〉/2 = a2 up to quantum corrections (and hence the name

u-plane). Following [14], the parameter U , which will appear in the parametrization of

the curve, is linear in the Coulomb moduli u. In fact, as we will see, each dessin gives a

family of solutions for a’s and U ’s, and indeed, we would have the same corresponding

dessin under the change a→ ka, U → k2U for some real k. This is consistent with our

relation a2 ∼ u ∼ U .

The paper is outlined as follows. In §2, we start from the CFT side and review the

AGT correspondence to get the corresponding partition functions. Then from A-model

topological strings, we obtain the SW curve for SU(2) with 4 flavours and thence

the dessins. In §3, we reverse the discussion and six particular dessins would yield
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specific parametrizations for SW curves, which following our dictionary immediately

provides the parametrizations for the conformal blocks. In the appendices, we give

some background on brane systems as well as elliptic curves.

2 From Conformal Blocks to Dessins d’Enfants

Before we derive the results in 2d CFT from the 6 dessins with 4 punctures on the

sphere, we give a brief review of different subjects including CBs, partition functions,

SW curves and dessins, following a route map from CBs to dessins.

2.1 From 2d Conformal Blocks to 4d Instanton Partition Functions

It is conjectured that there is a connection between 2d Liouville CFTs and SU(2)

supersymmetric gauge theories in 4d with N = 2. The free parameters of the two areas

are naturally mapped to each other under AGT correspondence. We first start with

the CFT side.

Conformal Blocks Conformal blocks form a basis of the vertex operator (VO) al-

gebra, used when performing a particular operator product expansion (OPE) of a cor-

relation function. They are a key ingredient in the conformal bootstrap approach to

calculating these correlators in 2d CFTs. Global conformal Ward identities of the

CFT allow 2-point functions to be completely determined, whilst 3-point functions to

have fixed results up to their respective structure constants. Thus when calculating

an N ≥ 4-point function the recursion of applying OPEs allows expression of the cor-

relator in terms of these simpler 3-point function structure constants, and conformal

blocks.

More specifically, an OPE amounts to summation over all representations of the

vertex operator algebra. In the common case where this algebra factorises into two

Virasoro algebras the sum includes all combinations of the left and right Virasoro

algebras’ representations for the CFT. Each term in the sum has a product of two

conformal blocks, one in each of the term’s left and right representations respectively.

Conformal blocks in general are sums over the states in their representation, they’re

functions of the fields’ positions & conformal dimensions, the conformal dimension of

the basis expansion, and the central charge of the algebra. Blocks over primary fields

have simpler properties, whilst those including descendent fields can be determined

with use of local Ward identities. If the correlator in question includes a degenerate

field then BPZ equations need to be enforced, which can simplify conformal block

computations [15].
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In the classic example of 4-point functions, the Global Ward identities allow Möbius

transformation, mapping 3 of the 4 complex coordinates to {0, ζ, 1,∞}, leaving a single

‘cross-ratio’ coordinate ζ for the conformal blocks to be a function of. Explicitly

〈
4∏
i=1

Vi(ζ, ζ)〉 =
∑
R,R

C12RC34RFR
(
{∆i}, ζ

)
FR
(
{∆i}, ζ

)
(2.1)

for Virasoro operators Vi, of conformal dimension
(
∆i,∆i

)
, as functions of holomor-

phic and anti-holomorphic coordinates
(
ζ, ζ
)

respectively. The sum is over the fields’

representations in the left and right Virasoro algebras, denoted R,R; with the sum

including structure constants, Cijk, and conformal blocks, F . These highest-weight

representations of the Virasoro algebra are described in terms of Verma modules. They

are generated by primary states and are irreducible in the absence of degenerate fields

(which are both primary and descendent due to their null vector).

Since fields in a correlator can be permuted without change to the result, this trans-

lates into allowing different OPEs of the same correlator as different conformal block

bases are used for expansion. The equivalence of these OPEs leads to ’crossing symme-

try’ and introduces additional consistency constraints which allow structure constants

and block dimensions to be calculated. This is the conformal bootstrap methodol-

ogy, and leaves calculation of conformal blocks as the final ingredient for computing

correlators [16].

Conformal blocks are traditionally computed via Zamolodchikov recursion meth-

ods, however in the cases of degenerate fields in the correlators the BPZ equations

provide a shortcut to finding them. In special cases these blocks can be expressed

simply - for example a 4-point function on the sphere with one degenerate field (with

a 2nd order null vector) can be expressed in terms of hypergeometric functions.

The AGT correspondence then makes a connection between the conformal dimen-

sions of the fields in the correlator, and the coordinate ζ, with parameters arising in

Nekrasov instanton partition functions, as subsequently described. With the help of

this correspondence we then compute the conformal blocks associated to the 6 dessins

considered in this study.

The Nekrasov Partition Function If we choose some dynamical energy scale Λ,

for generic vev a, the genenral N = 2 low energy effective action reads

Leff =
1

4π

∫
d2θd2θ̃F (Ψ)(+c.c.), (2.2)
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where Ψ is the N = 2 V-plet, and the holomorphic function F is known as the

prepotential. Then we can write the path integral∫
[DX]ei

∫
d4xLeff (2.3)

for the light fields X in the V-plet. First conjectured in [4] and then proven in [17], the

prepotential can be solved by

F = lim
ε1,2→0

ε1ε2 logZNek, (2.4)

where εi’s are known as the deformation parameters, and ZNek is the Nekrasov partition

function. The Nekrasov partition function has two factors:

ZNek = ZpertZinst, (2.5)

where Zpert is the perturbative partition function and Zinst denotes the contribution

from instantons. Due to non-renormalization theorem, Zpert only has tree level and

1-loop level factors: Zpert = ZclZ1-loop. Then

lim
ε1,2→0

ε1ε2 log(ZclZ1-loopZinst) = Fcl + F1-loop + Finst. (2.6)

We will now focus on the instanton partition function Zinst. For SU(2) quiver

theories, the Coulomb branches are parametrized by the Coulomb moduli ~a = (a1, a2) =

(a,−a). Each Coulomb modulus is associated with a Young tableau Y , in which every

box is labelled by a pair s = (i, j) to denote its position. Hence, the instanton partition

function depends on ~Y = (Y1, Y2), the vev a, and possibly the mass m of matter in the

theory. Let us define [13]

E(a, Y1, Y2, s) := a− ε1LY2(s) + ε2(AY1(s) + 1) (2.7)

with

LY2(s) = ki − j, AY1(s) = k′j − i, (2.8)

where ki is the length of ith row of Y2, and k′j is the height of jth column of Y2. Let I, J

label the gauge nodes. Then

zbifund(aI , ~Y I ; aJ , ~Y J ;m)

=
2∏

i,j=1

∏
s∈Y Ii

(E(aIi − aJj , Y I
i , Y

J
j , s)−m)

∏
s∈Y Jj

(ε− E(aJj − aIi , Y J
j , Y

I
i , s)−m)

 ,

(2.9)
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where ε = ε1 + ε2. For (anti-)fundamentals,

zfund(~a, ~Y ,m) =
2∏
i=1

∏
s∈Yi

(φ(ai, s)−m+ ε), zantifund(~a, ~Y ,m) = zfund(~a, ~Y , ε−m), (2.10)

where φ(ai, s) = ai + ε1(i− 1) + ε2(j − 1). When we take one gauge group coupled to

a bifundamental to zero (or weak) coupling, one may check from above that

zbifund(~a, ~Y I ;~a′, ∅;m) = zfund(~a, ~Y ,m+ a′)zfund(~a, ~Y ,m− a′);
zbifund(~a′, ∅;~a, ~Y I ;m) = zantifund(~a, ~Y ,m+ a′)zantifund(~a, ~Y ,m− a′). (2.11)

For adjoint chiral and vector multiplets,

zadj(~a, ~Y ,m) = zbifund(~a, ~Y ;~a, ~Y ;m), zvec(~a, ~Y ) =
1

zadj(~a, ~Y , 0)
. (2.12)

The AGT correspondence First introduced in [18], Liouville theory has the La-

grangian description:

S =
1

4π

∫
d2ξ
√
g
(
gad∂aφ∂dφ+QRφ+ 4πµe2bφ

)
, (2.13)

where the first term is just the kinetic term of the free scalar φ. The second term is

the curvature coupling with coupling constant Q and Ricci scalar R. The third term

is the Liouville potential. Since the key elements we will discuss below is independent

of the value of the scalar [19], we can always choose a state with φ� 0 such that the

exponetial potential is suppressed. Hence, let us first ignore this last term.

Under the conformal transformation

φ(z′, z̄′) = φ(z, z̄)− Q

2
log

∣∣∣∣∂z′∂z
∣∣∣∣2 , (2.14)

we find that classically the primary fields are of form Vα ≡ e2αφ, which transform as

e2αφ(z′,z̄′) =

(
∂z′

∂z

)−αQ(
∂z̄′

∂z̄

)−αQ
e2αφ(z,z̄). (2.15)

Thus, the conformal dimensions are (∆, ∆̄) = (αQ, αQ). Quantum mechanically, we

can write the VO Vα =: e2αφ : (where : · · · : denotes the normal ordering as usual).

Computing the OPE between the stress tensor1 T (z) and the VO yields

T (z)Vα(z′) =
−α(α−Q)

(z − z′)2
Vα(z′) + . . . (2.16)

1The stress tensor can be calculated by the usual steps of varying the action with respect to the

metric, which gives Tzz = T (z) = −(∂φ)2 + Q∂2φ and a similar expression for Tz̄z̄ = T̄ (z̄), with Tzz̄
vanishing.
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Therefore the quantum conformal dimension reads ∆ = α(Q − α). Likewise, we can

calculate the OPE:

T (z)T (z′) =
(1 + 6Q2)/2

(z − z′)4
+ . . . (2.17)

Hence, the central charge is c = 1 + 6Q2.

Under translation φ 7→ φ + δ, the correlation function 〈e2α1φ . . . e2αnφ〉 will collect

an extra phase exp

(∑
i

αi

)
. For an invariant action, we would want

∑
i

αi = 0. On

the other hand, the variation of curvature coupling term yields an extra 2Qδ term. To

compensate this, we modify the momentum conservation condition to
∑
i

αi = Q.

If we turn on the Liouville potential, then the exponetial needs to be a marginal

deformation to keep the theory being conformal [20]. This means that it should have

conformal dimensions (∆, ∆̄) = (1, 1). As a result, we need b(Q−b) = 1, or equivalently,

Q = b+ 1/b.

Now we are ready to bridge the CBs and instanton partition functions [1]. We

can fix the scale by setting ε1 = b, ε2 = 1/b, such that Q = ε1 + ε2 = ε. Consider a

quiver consisting of an SU(2) gauge group with 2 SU(2) antifundamentals and 2 SU(2)

fundamentals with mass parameters µ1,2 and µ3,4 respectively. Then the instanton

partition function reads

Zinst =
∑
Y1,2

e2πiτ(|Y1|+|Y2|)

(1− e2πiτ )
1
2

(µ1+µ2)(2ε−(µ3+µ4))
zvec(~a, ~Y )zmatter, (2.18)

where the denominator correpsonds to the decoupling of a U(1) factor, and

zmatter = zantifund(~a, ~Y , µ1)zantifund(~a, ~Y , µ2)zfund(~a, ~Y , µ3)zfund(~a, ~Y , µ4). (2.19)

The instanton number |Yi| is the number of boxes in Yi. Then under the following AGT

dictionary2,

µ1 = α1 + α2 −
Q

2
, µ2 = α1 − α2 +

Q

2
, µ3 = α3 + α4 −

Q

2
, µ4 = α3 − α4 +

Q

2
,

a = αint −
Q

2
, e2πiτ = ζ, (2.20)

2Strictly speaking, we have abused the notation here for simplicity. First, the left hand sides,

which will be obtained from the SW theory, have mass dimension 1 while the right hand sides are

dimensionless. Therefore, to make them match, there is an implicit factor 1√
ε1ε2

on the left, where ε1,2
also have mass dimension 1. Similarly, for b and Q, we should have Q = b+1/b = ε1/

√
ε1ε2 +ε2/

√
ε1ε2.

Moreover, this dictionary is built upon the usual ε1,2 → 0 limit. However, to incorporate the finite

deformation parameters as discussed in Appendix A, there should be a shift of the mass parameters

obtained from the Nekrasov expansion. We will recover these two modifications in §3.
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the instanton partition function is equal to Bαint
(αi|ζ), where the conformal block from

〈Vα1Vα2Vα3Vα4〉 as in (2.1) can be written as F = ζ∆αint−∆α1−∆α2Bαint
(αi|ζ) and “int”

stands for (the primary in) the internal channel. One may check this perturbatively,

and at level |Y |max, Bαint
and Zinst should agree up to O

(
ζ |Y |max+1

)
[1, 21]. Notice that

when we have c = 1 CBs, viz, Q = 0, the AGT relation is simplified to

µ1 = α1 + α2, µ2 = α1 − α2, µ3 = α3 + α4, µ4 = α3 − α4, a = αint, e2πiτ = ζ. (2.21)

2.2 From 4d to 5d Instanton Partition Functions and A-Model Topological

String Partition Functions

For type II string/M-theory (whose brane configurations are discussed in Appendix B)

compactified on a Calabi-Yau 3-fold, the amplitudes at genus g correspond to the A-

model string amplitudes of the CY3 which enumerates the holomorphic functions from

genus g Riemann surfaces to the CY3 [22, 23]. The topological amplitudes for toric CY

threefolds can be computed by topological vertices introduced in [24]. A topological

vertex is a trivalent vertex as the (black) dual graph of the (grey) toric diagram:

CY1Y2Y0
Y1

Y2

Y0

, (2.22)

where Yi’s are the Young tableaux associated to the legs, and CY1Y2Y0(q) is the factor

associated to the vertex, which can be expressed in terms of Schur and skew-Schur

functions [24]. Albeit not labelled explicitly, each leg also has a direction such that

the three legs attached to the same vertex all have outcoming or incoming directions.

Then each leg is assigned a vector vi = (vi1, vi2) in that direction, such that the sum of

the three vectors vanishes due to charge conservation and det(vi,vi+1) = ±1 (i ∈ Z3).

Now two topological vertices

Y1

Y2

Y ′
1

Y ′
2

Y2

Q

(2.23)

can be glued as ∑
Y0

CY1Y2Y0(q)(−1)(n+1)|Y0|q−nκ(Y0)/2Q
|Y0|
0 CY ′

1Y
′
2Y

T
0
, (2.24)
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where κ is related to quadratic Casimir of the representation corresponding to |Y0|,
namely, κ(Y0) =

∑
i

yi(yi − 2i + 1) with yi being the number of boxes in the ith row.

The framing number n equals det(vin,vout), where the two vectors are chosen such

that vin · vout > 0. For instance, we can choose either vin = v1,vout = v′1 or vin =

v2,vout = v′2. The parameter Q0 is the (exponentiated) Kähler parameter for the

2-cycle corresponding to the line in the dual toric diagram.

In [25], the above is extended to refined topological vertex as

CY1Y2Y0(q, t) =
(q

t

)(||Y2||2+||Y0||2)/2

tκ(Y2)/2PY T
0

(
t−ρ; q, t

)
×
∑
η

(q

t

)(|η|+|Y1|−|Y2|)/2
sY T

1 /η

(
t−ρq−Y0

)
sY2/η

(
tY

T
0 q−ρ

)
, (2.25)

where PY T
0

(t−ρ; q, t) is the Macdonald function and sα/β’s are the skew-Schur functions.

The squared double slash denotes the quadratic sum of the number of boxes in each

row of the Young tableau. Notice that the three Young tableaux are not cyclically

symmetric and Y0 corresponds to the preferred leg for gluing. One may check that

when the Ω-background parameters satisfy q = t, we would recover the unrefined

topological vertex.

Define the framing factors,

fY (q, t) = (−1)|Y |q||Y
T||2/2t−||Y ||

2/2, f̃Y (q, t) = (−1)|Y |q(||Y T||2+|Y |)/2t−(||Y ||2+|Y |)/2,

(2.26)

and the edge factor, (−Q0)|Y0|× [framing factor]. Then the topological string partition

function takes the sum over all the Young tableaux of internal legs3 as [26]

Ztopo =
∑
Yi

∏
edges

[edge factor]
∏

vertices

[vertex factor]. (2.27)

Again, let us contemplate the SU(2) gauge theory with 4 flavours. The dual toric

3The Young tableaux of external legs would be ∅.
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diagram is

QB

QF

Q4 Q2

QB

QF

Q3Q1

. (2.28)

Following the gluing process, the partition function reads

Ztopo =
∑
λρν

(−QF )|λ1|f̃λ1(q, t)(−QF )|λ2|f̃λ2(t, q)(−QB)|ρ1|fρT
1
(q, t)(−QB)|ρ2|fρT

2
(t, q)

×(−Q1)|ν1|(−Q2)|ν2|(−Q3)|ν3|(−Q4)|ν4|CλT
1 ν

T
3 ρ

T
1
(q, t)Cν4λ1ρ2(q, t)

×CλT
2 ν

T
2 ρ

T
2
(t, q)Cν1λ2ρ1(t, q)CνT

1 ∅∅(q, t)C∅ν2∅(q, t)CνT
4 ∅∅(t, q)C∅ν3∅(t, q). (2.29)

Recall the 4d instanton partition function (2.18), which can be lifted to 5d as [27]

Zinst,5d =
∑
Y1,2

R4(|Y1|+|Y2|)e2πiτ(|Y1|+|Y2|)

(1− e2πiτ )
1
2

(µ1+µ2)(2ε−(µ3+µ4))
zvec(~a, ~Y )zmatter

=
∑
Y1,2

(RΛ)4(|Y1|+|Y2|)

(1− e2πiτ )
1
2

(µ1+µ2)(2ε−(µ3+µ4))
zvec(~a, ~Y )zmatter, (2.30)

where R is the radius of the compactified dimension S1. It is discussed in [27–29] that

under the parameter identification

q = e−Rε1 , t = eRε2 , Qi = e−R(µi−a), QB = (RΛ)4, QF = e2Ra, (2.31)

we would get Ztopo = Zinst,5d. Notice that when ε1 = −ε2, i.e., Q = ε = ε1 + ε2 = 0, we

have the unrefinement q = t.

2.3 From Topological String Partition Functions to Seiberg-Witten Curves

Given the SW curve Σ in hyperelliptic form, it is possible to translate into the form

λ2 = q(z), where λ is the Seiberg-Witten differential, and q(z) is the meromorphic

quadratic differential on the Gaiotto curve C. In this subsection, we demonstrate how

– 10 –



this translation runs for the theory with a single SU(2) factor and Nf = 4. This theory

will constitute our running example throughout the paper.

To begin, following §9.1 of [30], Σ for the SU(2) with Nf = 4 theory in hyperelliptic

form is
f

z̃
(x̃− µ̃1)(x̃− µ̃2) + (f ′z̃)(x̃− µ̃3)(x̃− µ̃4) = x̃2 − u, (2.32)

where f and f ′ are complex numbers and u parametrizes the space of supersymmetric

vacua, viz, the u-plane. The parameter µ̃i is a mixing of the bare masses of hypers and

the dynamical scale Λ. The tildes on the auxiliary variables x and z are due to the

rescaling of them below. We first choose the coordinate of z̃ so that f ′ = 1. Completing

a square in x̃ by defining

x = x̃+
ζ
z̃
(µ̃1 + µ̃2) + z̃(µ̃3 + µ̃4)

2
(
1− z̃ − ζ

z̃

) , (2.33)

we obtain x2 = g(z̃) where g has double poles at c1,2(f). Now rescale z = z̃/c1(f) so

that the poles are at z = 1, ζ, and we get

x2 =
P (z)

z2(z − 1)2(z − ζ)2
(2.34)

for some quartic polynomial P (z) determined by µ̃i, ζ and u.

Construction of SW Curves from Toric Diagrams For 5d gauge theories, the

5-brane web diagrams can be used to construct SW curves. In fact, such web diagram is

exactly the same as the dual toric diagram in the geometric engineering in §2.2 [31, 32].

The standard algorithm of constructing SW curves from toric diagrams are studied in

[33]. Here, we will still focus on SU(2) with 4 flavours, where the web/dual diagram is

reproduced in Figure 2.1, along with its toric diagram.

For each vertex (i, j) in the toric diagram, we assign a non-zero number cij. There

are four boundaries, so the boundary conditions according to the toric diagram now

are

|w| � 1, c02w
2 + c12tw

2 + c22t
2w2 = c22w

2(t− t1)(t− t3),

|w−1| � 1, c20t
2 + c10t+ c00 = c20(t− t2)(t− t4),

|t| � 1, c20t
2 + c21t

2w + c22t
2w2 = c22t

2(w − m̃1)(w − m̃2),

|t−1| � 1, c02w
2 + c01w + c00 = c02(w − m̃3)(w − m̃4), (2.35)

where t and w can be thought of as the horizontal and vertical coordinates of the

diagram respectively. For consitency, we further need the compatibility condition which

reads

m̃1t
−1
1 m̃2t2 = m̃3t3m̃4t

−1
4 . (2.36)
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c12

c10

c01

c02

c00

c22

c20

c21
c11

m̃3

m̃4

t3

t4

m̃1

m̃2

t1

t2

Figure 2.1: The toric diagram and its dual diagram for SU(2) with 4 flavours.

Since SW curves are invariant under the rescaling of the coefficients, with the choice

c01 = c21 = 1, c10 = c12 (2.37)

we can determine all the coefficients living on the boundary, which leads to

t1 + t3
t2 + t4

= m̃1m̃2, t1t3 =
m̃1 + m̃2

m̃3 + m̃4

. (2.38)

Hence, the curve is

0 =
∑
i,j

cijt
iwj

= − 1

m̃3 + m̃4

(w − m̃3)(w − m̃4) + t

(
t1

m̃1 + m̃2

+
1

t1(m̃3 + m̃4)

)
(w2 + Uw + 1)

−t2 1

m̃1 + m̃2

(w − m̃1)(w − m̃2), (2.39)

where U = c11 is the only undetermined coefficient, which is interpreted as the Coulomb

moduli parameter (see [33]). The gauge coupling is the geometric average of ti, which

is

q−1 ≡
(
t1t2
t3t4

) 1
2

. (2.40)

Defining a parameter S ≡ m̃1m̃2m̃3m̃4, we have

t1 =

(
m̃1 + m̃2

m̃3 + m̃4

) 1
2

(
q−1S

1
2 − 1

1− qS 1
2

) 1
2

. (2.41)
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Notice here the masses are all bare masses, which are related to the physical masses by

m̃i
′ ≡ Tm̃i, T =

(
q − S 1

2

qS − S 1
2

) 1
2

, (2.42)

and a rescaling of t:

t→ t

√
qS−

1
2T 2m̃2

1m̃2
2

(
m̃3 + m̃4

m̃1 + m̃2

)
. (2.43)

We now have a compact form of t1,

t1 =

(
m̃1 + m̃2

m̃3 + m̃4

) 1
2

(
q−1S

1
2 − 1

1− qS 1
2

) 1
2

=

(
m̃′1 + m̃′2
m̃′3 + m̃′4

) 1
2

TqS−
1
2 . (2.44)

Defining a new S ′ ≡ m̃′1m̃
′
2m̃
′
3m̃
′
4, the 5d Nf = 4 curve now is

t2 (w − m̃′1) (w − m̃′2)− t
(
w2m̃′1m̃

′
2

(
1 + q (S ′)

− 1
2

)
+ wU ′ + m̃′1m̃

′
2

(
1 + q (S ′)

− 1
2

))
+q (S ′)

− 1
2 (m̃′1m̃

′
2)

2
(w − m̃′3) (w − m̃′4) = 0, (2.45)

where U ′ = Um̃′1m̃
′
2

(
1 + qS ′−

1
2

)
.

The 4d limit curve Till now, the SW curve is a 5d curve, its 4d SW curve can be

obtained by taking the vanishing limit of size of compactification circle R → 0, where

we have

w = e−Rv, m̃′i = e−Rµi . (2.46)

In topological string theory, the 5d Coulomb parameter U ′ is an exponential

U ′ = e−Ru
′
. (2.47)

For the Nf = 4 curve, we then have the 4d limit

t2 (v − µ1) (v − µ2) + q (v − µ3) (v − µ4) +

t

(
−(1 + q)v2 + v(µ1 + µ2) +

1

2
qv (µ1 + µ2 − µ3 − µ4)− vu′ + (1 + q)µ1µ2

)
= 0.

(2.48)

Redefining

u′ = −
(

1 +
1

2
q

)
(µ1 + µ2) +

3

2
q(µ3 + µ4) + u (2.49)

yields the curve

t2 (v − µ1) (v − µ2) + q (v − µ3) (v − µ4)

+t

(
−(1 + q)v2 + qv

4∑
i=1

µi + (1 + q)µ1µ2 − vu′

)
= 0. (2.50)
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Reparametrization Let us rescale (2.50) as following

µi →
µi√
1 + q

, v→ v√
1 + q

, u′ → u′√
1 + q

, (2.51)

so the curve now is

t (v − µ1) (v − µ2)− v2 +

qv
4∑
i=1

µi − vu′

(1 + q)
+ µ1µ2 +

q

t
(v − µ3) (v − µ4) = 0. (2.52)

Redefining

f/z̃ = t, f ′z̃ = q/t, x̃ ≡ v +

q
4∑
i=1

µi − u′

2
√

1 + q
, µ̃i = µi +

q
4∑
i=1

µi − u′

2
√

1 + q
,

u = µ1µ2 −
q

4∑
i=1

µi − u′

2
√

1 + q
(µ1 + µ2) +

1

2

(
q

4∑
i=1

µi − u′
)2

1 + q
(2.53)

recovers the curve of form (2.32), which is reproduced here:

f

z̃
(x̃− µ̃1)(x̃− µ̃2) + (f ′z̃)(x̃− µ̃3)(x̃− µ̃4) = x̃2 − u. (2.54)

2.4 From Seiberg-Witten Curves to Dessins d’Enfants

We begin with a fresher on some preliminary definitions and key results [34, 35].

Definition 2.1. A dessin d’enfant, or child’s drawing, is an ordered pair (X,D), where

X is an oriented compact topological surface and D ⊂ X is a finite graph, such that

1. D is a connected bipartite graph, and

2. X\D is the union of finitely many topological discs that are the faces of D.

There is a bijection between the dessins and Belyi maps known as the Grothendieck

correspondence [36], where

Definition 2.2. A Belyi map β is a holomorphic map from the Riemann surface X to

P1 ramified at only 3 points, which can be taken to be {0, 1,∞} ∈ P1.

Recall that ramification means that the only points x̃ ∈ X where d
dx
β(x)

∣∣
x̃

= 0 are

such that β(x̃) = 0, 1 or ∞. In other words, the local Taylor expansion of β(x) about

the pre-images x̃ of {0, 1,∞} have (at least) vanishing linear term.
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From Belyi maps to dessins We can associate β(x) to a dessin via its ramification

indices : the order of vanishing of the Taylor series for β(x) at x̃ is the ramification

index rβ(x̃)∈{0,1,∞}(i) at that ith point. By convention, we mark one white node for

the ith pre-image of 0 with r0(i) edges emanating therefrom. Similarly, we mark one

black node for the jth pre-image of 1 with r1(j) edges. We then connect the nodes with

the edges, joining only black with white, such that each face is a polygon with 2r∞(k)

sides. In other words, there is one pre-image of ∞ corresponding to each polygon of

D. Moreover, there is a cyclic ordering arising from local monodromy winding around

vertices, i.e., around local covering sheets that contain a common point.

The power of dessins comes from Belyi’s remarkable theorem.

Theorem 2.1. There exists an algebraic model of X (as a Riemann surface) defined

over Q̄ iff there exists a Belyi map on X.

Thus, the existence of a dessin on X is equivalent to X admitting an algebraic

equation over the algebraic numbers. Moreover, the Galois group Gal(Q̄ : Q) acts

faithfully on the space of dessins.

Quadratic Differentials A (holomorphic) quadratic differential q on a Riemann

surface X is a holomorphic section of the symmetric square of the contangent bundle.

In terms of local coordinates z, q = f(z)dz ⊗ dz, for some holomorphic function f(z).

A curve γ(t) ⊂ X can be classified by q as

• Horizontal trajectory: f(γ(t))γ̇(t)2 > 0;

• Vertical trajectory: f(γ(t))γ̇(t)2 < 0.

Locally, one can find coordinates so that horizontal tracjectories look like concentric

circles while vertical trajectories look like rays emanating from a single point.

Then we can define the Strebel differential :

Definition 2.3. For a Riemann surface X of genus g ≥ 0 with n ≥ 1 marked points

{p1, . . . , pn} such that 2 − 2g < n, and a given n-tuple ai=1,...,n ∈ R+, a Strebel differ-

ential q = f(z)dz2 is a quadratic differential such that

• f is holomorphic on X\{p1, . . . , pn};

• f has a second-order pole at each pi;

• the union of all non-compact horizontal trajectories of q is a closed subset of X

of measure 0;
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• every compact horizontal of q is a simple loop A centered at pi such that ai =∮
Ai

√
q. (Here the branch of the square root is chosen so that the integral has a

positive value with respect to the positive orientation of Ai that is determined by

the complex structure of X.)

The upshot is that [37]

Theorem 2.2. The Strebel differential is the pull-back, by a Belyi map β : X → P1, of

a quadratic differential on P1 with 3 punctures,

q = β∗
(

dζ2

4π2ζ(1− ζ)

)
=

(dβ)2

4π2β(1− β)
=

(β′)2

4π2β(1− β)
dz2, (2.55)

where z and ζ are coordinates on X and P1 respectively.

Recall the definition of the SW differential [30]

λ = x
dz

z
. (2.56)

Then

q = λ2 = x2 dz2

z2
=: φ(z)dz2 (2.57)

is the quadratic differential on C. For our purposes, the important point to note is

that the SW curve (2.34) can be written in the form (2.57) [30]. This construction will

prove essential in what follows.

SW curves and Dessins As mentioned above, the SW curve Σ is related to the

quadratic differential q. Moving in the moduli space of the theory in question will alter

the parameters in the SW curve, thereby altering the parameters in q [9]. Following

[37], it was found in [9] that at certain isolated points in the Coulomb branch Ug,n,

where g is the genus of the Gaiotto curve C with n marked points, q is completely fixed

and becomes a Strebel differential q = φ(t)dt2 = dβ2

4π2β(t)(1−β(t))
.

For SU(2) with Nf = 4, there exists 6 such Strebel points in Ug,n × Rn, for which

the Belyi maps are presented in Table 2.1. Here, the astute readers will recognise

the striking fact that these six Belyi maps are those found in [7, 38] to be associated

to the six genus zero, torsion-free, congruence subgroups of the modular group Γ =

PSL(2,Z) ∼= Z2 ∗ Z3, where ∗ denotes the free product4.

From the Belyi maps in Table 2.1, we can compute the associated dessins as dis-

played in Figure 2.2. The dessins d’enfants associated to each Strebel point of the

4For the background on the congruence subgroups of Γ, see Appendix C. It remains an open

question whether dessins associated to other subgroups of the modular group, perhaps of higher

index, arise for other N = 2 generalised quiver theories in a parallel manner.
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Graph β(t) Ramification Strebel q

Γ(3) t3(t+6)3(t2−6t+36)3

1728(t−3)3(t2+3t+9)3 [34|26|34] − 9t(t3+216)
4π2(t3−27)2

Γ0(4) ∩ Γ(2) (t4+224t2+256)3

1728t2(t−4)4(t+4)4 [34|26|42, 22] −4t4+896t2+1024
4π2t2(t2−16)2

Γ1(5) (t4+248t3+4064t2+22312t+40336)3

1728(t+5)(t3−t−31)5 [34|26|52, 12] − t4+248t3+4064t2+22312t+40336
4π2(t+5)2(t2−t−31)2

Γ0(6) (t+7)3(t3+237t2+1443t+2287)3

1728(t+3)2(t+4)3(t−5)6 [34|26|6, 3, 2, 1] − (t+7)(t3+237t2+1443t+2287)
4π2(t+5)2(t+3)2(t+4)2

Γ0(8) (t4+240t3+2144t2+3840t+256)3

1728t(t+4)2(t−4)8 [34|26|8, 2, 12] − t4+240t3+2144t2+3840t+256
4π2t2(t2−16)2

Γ0(9) (t+6)3(t3+234t2+756t+2160)3

1728(t2+3t+9)(t−3)9 [34|26|9, 13] − (t+6)(t3+234t2+756t+2160)
4π2(t3−27)2

Table 2.1: The list of the six genus-zero, torsion-free, congruence subgroups of the modular group Γ,

of index 12. The corresponding Belyi maps β(t) and their ramification indices, as well as the Strebel

differentials are also shown. Note that the ramification indices for all 6 are such that there are 4

pre-images of 0 of order 3 and 6 pre-images of 1 of order 2. The pre-images of∞ (aka the cusp widths)

all add to 12, as do the ramification indices for 0 and 1. This is required by the fact that all the

subgroups are of index 12 within Γ.

fig/New_3-3-3-3.pdf

Γ(3)

fig/4-4-2-2.pdf

Γ0(4) ∩ Γ(2)

fig/5-5-1-1.pdf

Γ1(5)
fig/6-3-2-1.pdfΓ0(6) fig/8-2-1-1.pdf

Γ0(8)

fig/New_9-1-1-1.pdf

Γ0(9)

Figure 2.2: The dessins d’enfants associated to the six Strebel points of the SU(2), Nf = 4 theory.

generalised quiver theory in question turn out to have an interpretation as so-called

ribbon graphs on the Gaiotto curve C. For details, the readers are referred to [9, 37].

3 From Dessins to Conformal Blocks

Let us now complete the cycle of the route map above by considering what gauge theory

and CFT data we can obtain starting from the 6 dessins.

3.1 The SU(2) with 4 Flavours

Given that all our graphs in Figure 2.2 are drawn on the Riemann surface (genus zero)

with 4 marked points (one for each face), we can naturally interpret these as Gaiotto

curves [6, 9], and thence N = 2 gauge theories.

To begin, the Seiberg-Witten curve Σ for the SU(2) Nf = 4 theory in algebraic

form is standard [30]. For future convenience, we start with the SW curve of form
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(2.50) and write the SW differential as [13]

λSW =

√
P4(z)

z(z − 1)(z − ζ)
dz, P4(z) = m2

0

4∏
i=1

(z − λi) = m2
0

4∑
i=0

z4−iSi, (3.1)

under the substitution

λSW = v/z, t = z, q = ζ,

µ1 = m1 +m3, µ2 = m1 −m3, µ3 = m2 +m0, µ4 = m2 −m0, (3.2)

where U is proportional to the moduli parameter u with coefficient only depending on

the UV gauge coupling q = ζ [14]. The parameters Si are given in terms of the flavour

mass and coupling parameters m0,1,2,3, ζ, U ∈ C so that S0 = 1 for the top coefficient

and

m2
0S1 = −

(
m2

0 +m2
2(ζ − 1) +m2

0ζ + 2m2m3ζ + (1 + ζ)U
)
,

m2
0S2 = (m2

0 +m2
1 −m2

3 + 2m2m3)ζ +m2
2(ζ − 1)ζ + 2m2m3ζ

2 +m2
3ζ

2 + (1 + ζ)2U,

m2
0S3 = −

(
(m2

1 −m2
3)ζ + (m2

1 + 2m2m3 +m2
3)ζ2 + ζ(1 + ζ)U

)
,

m2
0S4 = m2

1ζ
2 . (3.3)

On the other hand, the S-parameters can be written in terms of the λi as standard

symmetric polynomials,

Sk =
∑

1≤j1≤...≤jk≤4

λj1 . . . λjk . (3.4)

The periods can be obtained by prepotential methods with which [13] nicely determined,

da(U)

dU
= − 1

πi

1 + ζ

m0

√
(λ2 − λ3)(λ1 − λ4)

K(r2), (3.5)

where

r2 =
(λ1 − λ2)(λ3 − λ4)

(λ1 − λ3)(λ2 − λ4)
, (3.6)

and

K(x) :=

∫ π/2

0

dθ√
1− x2 sin2 θ

(3.7)

is the elliptic integral of the first kind. The right hand side of (3.5) implicitly depends

on U , through λi and thence Si, thus we only need to integrate (indefinitely) it to

obtain a(U) as a function of U , which could be a daunting task analytically.

Let us nevertheless attempt at some simplifications. First, we see that the right

hand side depends only on the three cross-terms in the four λi, which we will denote as
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λ(23)(14), λ(12)(34) and λ(13)(24), with r2 being a cross-ratio in the second and the third.

Combining with (3.4), let us see whether these can be directly expressed in terms of

Si, and thence, in terms of U . This is a standard algebraic elimination problem and

we readily find the following:

Lemma 3.1. Consider the monic cubic polynomial C(x),

x3 +
(
−2S2

2 + 6S1S3 − 24S4

)
x2 +

(
S4

2 − 6S1S3S
2
2 + 24S4S

2
2 + 9S2

1S
2
3 + 144S2

4 − 72S1S3S4

)
x

+27S2
4S

4
1 + 4S3

3S
3
1 − 18S2S3S4S

3
1 − 144S2S

2
4S

2
1 + 4S3

2S4S
2
1 + 6S2

3S4S
2
1 − 18S2S

3
3S1 + 192S3S

2
4S1

+80S2
2S3S4S1 + 27S4

3 − 256S3
4 + 4S3

2S
2
3 − S2

1S
2
2S

2
3 + 128S2

2S
2
4 − 16S4

2S4 − 144S2S
2
3S4. (3.8)

The squares of the 3 cross-products

x1 = λ2
(12)(34), x2 = λ2

(23)(14), x3 = λ2
(13)(24) ; λ(ij)(mn) := (λi − λj) (λm − λn) (3.9)

are the three roots of C(x).

Of course, we can substitute the Si parameters in terms of the mi, ζ, U parameters

from (3.1), though the expression become too long to present here. Each of x1, x2

and x3 can be solved from the cubic C(x), which then places each as a function of U

explicitly by substituting the expressions of Si in (3.3). Then, we have a(U) as the

anti-derivative

a(U) = −1 + ζ

m0πi

∫ U

0

dU0

4
√
x̃2(U0)

K

(√
x̃1(U0)√
x̃3(U0)

)
, (3.10)

where we have marked x̃i explicitly as U -dependent, in addition to depending on the

parameters ζ and mi. As a ∼
√
u and U ∼ u, we should have a(0) = 0. Here x̃

indicates that the above is sketchy since there could be (at most) six distinct solutions

as in Table 3.1.
√
x̃1

√
x̃2

√
x̃3√

x1
√
x2

√
x3

−√x1
√
x3

√
x2√

x3 −√x2
√
x1

−√x3
√
x1 −√x2√

x2 −√x3 −√x1

−√x2 −√x1 −√x3

Table 3.1: The possible combinations of xi’s in a(U).

Recall the definition of the Seiberg-Witten differential from (2.57), we have that

λ2
SW = φSW(z)dz2 (3.11)
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is a quadratic differential. This is the above mentioned meromorphic quadratic dif-

ferential on C. Moving in the moduli space of the theory in question will alter the

parameters in the Seiberg-Witten curve, thereby altering the parameters in q (cf. [9]).

Following [37], it was found in [9] that at certain isolated points in the Coulomb branch

of the moduli space Ug,n of the gauge theory in question, where g is the genus of the

Gaiotto curve C with n marked points, q is completely fixed, which becomes a Strebel

differential.

We therefore have two forms of the Strebel differentials, φβ(t) coming from the

dessin and φSW(z) coming from the physics. Now, because dessins are rigid, they have

no parameters. The insight of Belyi and Grothendieck is precisely that the map β have

parameters fixed at very special algebraic points in moduli space. Thus, φβ(t) is of a

particular form, as a rational function in t and fixed algebraic coefficients.

On the other hand φSW(z) from the gauge theory has parameters which we saw

earlier, corresponding to masses, couplings etc. Therefore, up to redefinition of the

variables (t, z) and identifying φSW(z) and φβ(t) it is natural to ask how the special

values of the parameters from the dessin perspective fix the physical parameters in the

gauge theory.

We have now introduced all the necessary dramatis personae of our tale and our

strategy is thus clear. There are also some further details that we should be careful

about in the calculations. We will work through an example in detail to illustrate them

in the following subsection.

3.2 Example: Γ(3)

Let us take the dessin for Γ(3), whose Belyi map is

β(t) =
t3(t+ 6)3(t2 − 6t+ 36)3

1728(t− 3)3(t2 + 3t+ 9)3
. (3.12)
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We can readily get the pre-images of 0, 1 and ∞:

Pre-image Ramification

β−1(0) −6 3

0 3

3− 3i
√

3 3

3 + 3i
√

3 3

β−1(1) 3(1−
√

3) 2

3(1 +
√

3) 2(
3
2

+ 3i
2

) (√
3 + (−2− i)

)
2(

−3
2
− 3i

2

) (√
3 + (2 + i)

)
2

1
2

(
(−3 + 9i)− (3− 3i)

√
3
)

2
1
2

(
(−3 + 9i) + (3− 3i)

√
3
)

2

β−1(∞) ∞ 3

3 3

−3
2
i
(√

3− i
)

3
3
2
i
(√

3 + i
)

3

. (3.13)

We can construct the corresponding dessin as in Figure 2.2. Subsequently, using (2.55),

we see that the Strebel differential is q = φβ(t)dt2, where

φβ(t) = − 9t(t3 + 216)

4π2(t3 − 27)2
. (3.14)

We have marked φ with a subscript β to emphasize its dessin origin. On the other side,

we have the Seiberg-Witten curve and quadratic differential for SU(2) with Nf = 4

from (3.1) and (3.11), to be

φSW(z) =
P4(z)

(z(z − 1)(z − ζ))2 , where

P4(z) = z4m2
0 − z3

(
m2

0 +m2
2(ζ − 1) +m2

0ζ + 2m2m3ζ + (1 + ζ)U
)

+ z2
(
(m2

0 +m2
1 −m2

3 + 2m2m3)ζ +m2
2(ζ − 1)ζ + 2m2m3ζ

2 +m2
3ζ

2 + (1 + ζ)2U
)

− z
(
(m2

1 −m2
3)ζ + (m2

1 + 2m2m3 +m2
3)ζ2 + ζ(1 + ζ)U

)
+m2

1ζ
2. (3.15)

Here, likewise we have marked φ with a subscript “SW” to emphasize its Seiberg-

Witten origin. We have also explicitly written the differential coming from the Seiberg-

Witten side in terms of the parameters m0,1,2,3, ζ, U .

We need to match (3.14) with (3.15), up to an PGL(2,C) transformation on the

complex variable z. The reason for this is that we are dealing in this example with
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a quadratic differential on the sphere. For curves of higher genus, such PGL(2,C)

transformations are generically not permitted, as they will not preserve the structure

of the poles and zeroes of the quadratic differential.

We can therefore write5

z =
at+ b

ct+ d
, a, b, c, d ∈ C (3.16)

and solve for complex coefficients a, b, c, d as well as the parameters m0,1,2,3, ζ, U so that

we have identically for all t that

φβ(t) = φSW

(
at+ b

ct+ d

)
. (3.17)

There are actually continuous families of 2 × 2 matrices solving this equation for a

given dessin. As the elliptic curve is the same up to an overall factor, it turns out

that each continuous family would simply scale the SW differential by φSW → k2φSW

with k ∈ R. Obviously, equating the numerators of φβ and φSW as well as equating

their denominators would give a solution. For future convenience, such solution will be

referred to as the “basic” values of the parametrization. Then other parametrizations

would simply follow

φSW = ±k2φSW,basic. (3.18)

There are two points we should pay attention to:

• Here, we simply insist on CFTs that can be formulated on the torus, that is, their

partition functions on the torus are modular invariant. Then we can only allow

primary states with pure imaginary charges. Recall the AGT relation (2.20),

which in terms of mi is

m′0 +Q = α4, m
′
1 = α1, m

′
2 = α3, m

′
3 +Q = α2, m

′
i =

mi − (ε1 + ε2)/2
√
ε1ε2

a
√
ε1ε2

+
Q

2
= αint, e2πiτ = ζ,

−
∑
i

mi + 2(ε1 + ε2)

√
ε1ε2

=
∑
i

αi = Q, (3.19)

where we have included the factor 1/
√
ε1ε2 and the shift of (ε1 +ε2)/2 as discussed

in Appendix A. In fact, ε1,2 are not completely free since Q = (ε1 + ε2)/
√
ε1ε2.

Therefore, ∑
i

mi = ε1 + ε2. (3.20)

5Some algebra shows that the transformation should always satisfy z = (at + b)/d, i.e., a linear

transformation.
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Hence, we also have
1
√
ε1ε2

∑
i

mi = Q. (3.21)

In other words, only real or pure imaginary mi’s, based on the sign of ε1ε2, are

allowed. Hence, there is a “±” on the right hand side. Furthermore, we find

that Q does not see the shift except a sign change (compared to no shifts). In

particular, Q is not affected by the shift when it is zero, i.e., ε1 = −ε2.

• There is also a coefficient k2 on the right hand side, where k being real follows

the same reasoning as the ± sign. One may easily check that an SW differen-

tial/elliptic curve would have the same j-invariant under φ → k2φ. As a result,

the parameters, by looking at P4(z) and a(U), would follow

ζ → ζ, mi → kmi, a→ ka, U → k2U ;

αi,int → kαi,int, Q→ kQ. (3.22)

Therefore, rather than discrete parameters, we would have families of differen-

tials. Importantly, we can see that the coupling ζ is invariant (and so is Q when

we have c = 1 CBs).

Now expanding the above and setting all the coefficients of t to vanish identically

gives a complicated polynomial system in (a, b, c, d,m0,1,2,3, ζ, U) for which one can find

many solutions. For example, the following constitutes a solution (with k = 1),

m0 = −m1 = m2 = −m3 =
1

2
√

3π
, ζ =

1

2
+

i
√

3

2
, U =

1

9π2
(3.23)

with (a, b, c, d) =
(

1+i√
233/4 , i

(
4√3

2
√

2
− 33/4

2
√

2

)
+

4√3
2
√

2
+ 33/4

2
√

2
, 0, (1−i)33/4

√
2

)
, which are not so

important. With the parameters (3.23) as fixed, the numerator of the SW differential

takes the form

P4(z) = −
6z4 − 4i

(√
3− 3i

)
z3 +

(
6 + 6i

√
3
)
z2 − 8i

√
3z + 3i

√
3− 3

72π2
. (3.24)

We now need the roots λi of P4(z) as given in (3.1):

z4 +

(
−2− 2i√

3

)
z3 +

(
1 + i
√

3
)
z2 − 4i√

3
z +

1

2
i
(√

3 + i
)

=
4∏
i=1

(z − λi). (3.25)
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The SW curve itself is genus 1 and is in fact an elliptic curve. We can recast (3.15)

into hyper-elliptic form as

y2 = z4m2
0 − z3

(
m2

0 +m2
2(ζ − 1) +m2

0ζ + 2m2m3ζ + (1 + ζ)U
)

+ z2
(
(m2

0 +m2
1 −m2

3 + 2m2m3)ζ +m2
2(ζ − 1)ζ + 2m2m3ζ

2 +m2
3ζ

2 + (1 + ζ)2U
)

− z
(
(m2

1 −m2
3)ζ + (m2

1 + 2m2m3 +m2
3)ζ2 + ζ(1 + ζ)U

)
+m2

1ζ
2, (3.26)

where the redefinition y2 = (z(z − 1)(z − ζ))2φSW(z) = P4(z) is used. Following

Appendix D, as one may check, the j-invariant we get from the parameterization (3.23)

agrees with the one directly from the Strebel differential (3.14):

j = 0. (3.27)

Indeed, j = 0 corresponds to a special elliptic curve with Z/3Z-symmetry, much like

the dessin for Γ(3) itself.

In this case, we can integrate (3.10) numerically to obtain

a(U) = ±0.19055 + 0.287317i, ± 0.00292968 + 0.00493721i, − 0.0171. (3.28)

Now we can use the AGT relation (3.19) to get the parametrizations for CBs. Recall

that the α’s should have vanishing real parts. Therefore, we would only keep the pure

imaginary value for a. Together with
∑
i

αi = Q, we have

Q = 0, α1 = α2 = −α3 = −α4 =
i

2
√

3π
, αint = 0.0171i, e2πiτ =

1

2
+

i
√

3

2
, (3.29)

where we have taken ε1 = −ε2 = 1 for simplicity as ε1 + ε2 = 0 here.

Since the mass parameters and the deformation parameters should always be both

real or pure imaginary such that the CFT parameters would be pure imaginary, we can

also have pure imaginary mi’s and a for the above example, viz,

m0 = −m1 = m2 = −m3 =
i

2
√

3π
, ζ =

1

2
+

i
√

3

2
, U = − 1

9π2
, a = −0.171i. (3.30)

Then we can still get the same CFT parameters as in (3.29) with the choice6 ε1 =

−ε2 = i.

In general, ±k2φSW,basic with a fixed k would give two types of solutions with one

real and the other imaginary as the corresponding CFT parameters should be pure

6It should still be allowed to have imaginary deformation parameters as in terms of the B-model,

s = (ε1 + ε2)2 and gs = (ε1ε2)2 would still be real (where physically the power of s in the holomorphic

anomaly equation counts the number of insertions of an operator [39]).

– 24 –



imaginary. Both of them give the same CFT data. These two types of solutions are

simply related by7

mi,imaginary = imi,real, aimaginary = iareal, ζimaginary = ζreal, Uimaginary = −Ureal, (3.31)

where the subscripts for ζ and U are only used to indicate whether their corresponding

mi and a are real or pure imaginary (rather than themselves).

3.3 Matching Parameters

Here, we report all parameters from the six dessins in Table 3.2∼3.7. Notice that we

are only giving solutions coming from (±)φSW,basic. There is actually a family for each

parametrization following (3.22). In particular, we are only giving the pure imaginary

mi’s and a, and there should be a similar set of (real) solutions in terms of (3.31).

ζ = e2πiτ m0 m1 m2 m3 U
√
ε1ε2Q a = αint√

ε1ε2
+ Q

2

− i
2
√

3π
− i

2
√

3π
i

2
√

3π
− i

2
√

3π
− 1

9π2 − i√
3π

−0.0171i
1
2
(1− i

√
3) − i

2
√

3π
i

2
√

3π
− i

2
√

3π
i

2
√

3π
− 1

9π2 0 −0.0171i
i

2
√

3π
− i

2
√

3π
i

2
√

3π
− i

2
√

3π
− 1

9π2 0 0.0171i
i

2
√

3π
i

2
√

3π
− i

2
√

3π
i

2
√

3π
− 1

9π2
i√
3π

0.0171i

− i
2
√

3π
− i

2
√

3π
i

2
√

3π
− i

2
√

3π
− 1

9π2 − i√
3π

0.0171i
1
2
(1 + i

√
3) − i

2
√

3π
i

2
√

3π
− i

2
√

3π
i

2
√

3π
− 1

9π2 0 0.0171i
i

2
√

3π
− i

2
√

3π
i

2
√

3π
− i

2
√

3π
− 1

9π2 0 −0.0171i
i

2
√

3π
i

2
√

3π
− i

2
√

3π
i

2
√

3π
− 1

9π2
i√
3π

−0.0171i

Table 3.2: The parameters obtained from Γ(3). Using (3.19), we can get the values for αi’s.

ζ = e2πiτ m0 m1 m2 m3 U
√
ε1ε2Q a

− i
8π
− i

4π
− i

4π
− i

8π
− 1

192π2 − 3i
4π

−0.0046i

−0.0061i
i

8π
− i

4π
− i

4π
− i

8π
− 1

192π2 − i
2π

0.0046i

0.0061i
7For those discarded a’s which are not real/pure imaginary, they actually satisfy this relation as

well.
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− i
8π
− i

4π
− i

4π
i

8π
− 3

64π2 − i
2π

−0.0409i

−0.0478i

− i
8π

i
4π

− i
4π
− i

8π
− 1

192π2 − i
4π

−0.0046i

−0.0061i
i

8π
− i

4π
− i

4π
i

8π
− 3

64π2 − i
4π

0.0409i

0.0478i

− i
8π
− i

4π
i

4π
− i

8π
− 3

64π2 − i
4π

−0.0409i

−0.0478i
i

8π
i

4π
− i

4π
− i

8π
− 1

192π2 0 0.0046i
1
2

0.0061i

− i
8π

i
4π

− i
4π

i
8π

− 3
64π2 0 −0.0409i

−0.0478i
i

8π
− i

4π
i

4π
− i

8π
− 3

64π2 0 0.0409i

0.0478i

− i
8π
− i

4π
i

4π
i

8π
− 1

192π2 0 −0.0046i

−0.0061i
i

8π
i

4π
− i

4π
i

8π
− 3

64π2
i

4π
0.0409i

0.0478i

− i
8π

i
4π

i
4π

− i
8π

− 3
64π2

i
4π

−0.0409i

−0.0478i
i

8π
− i

4π
i

4π
i

8π
− 1

192π2
i

4π
0.0046i

0.0061i
i

8π
i

4π
i

4π
− i

8π
− 3

64π2
i

2π
0.0409i

0.0478i

− i
8π

i
4π

i
4π

i
8π

− 1
192π2

i
2π

−0.0046i

−0.0061i
i

8π
i

4π
i

4π
i

8π
− 1

192π2
3i
4π

0.0046i

0.0061i

− i
4π
− i

2π
− i

4π
− i

2π
1

6π2 − 3i
2π

0.0731i

0.0868i
i

4π
− i

2π
− i

4π
− i

2π
1

6π2 − i
π

−0.0731i
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−0.0868i

− i
4π
− i

2π
i

4π
− i

2π
− 1

6π2 − i
π

−0.0731i

−0.0868i
i

4π
− i

2π
i

4π
− i

2π
− 1

6π2 − i
2π

0.0731i

0.0868i

− i
4π
− i

2π
− i

4π
i

2π
− 1

6π2 − i
2π

−0.0731i

−0.0868i

− i
4π

i
2π

− i
4π
− i

2π
1

6π2 − i
2π

0.0731i

0.0868i
i

4π
i

2π
− i

4π
− i

2π
1

6π2 0 −0.0731i

−0.0868i

− i
4π

i
2π

i
4π

− i
2π

− 1
6π2 0 −0.0731i

2 −0.0868i
i

4π
− i

2π
− i

4π
i

2π
− 1

6π2 0 0.0731i

0.0868i

− i
4π
− i

2π
i

4π
i

2π
1

6π2 0 0.0731i

0.0868i
i

4π
− i

2π
i

4π
i

2π
1

6π2
i

2π
−0.0731i

−0.0868i
i

4π
i

2π
i

4π
− i

2π
− 1

6π2
i

2π
0.0731i

0.0868i

− i
4π

i
2π

− i
4π

i
2π

− 1
6π2

i
2π

−0.0731i

−0.0868i
i

4π
i

2π
− i

4π
i

2π
− 1

6π2
i
π

0.0731i

0.0868i

− i
4π

i
2π

i
4π

i
2π

1
6π2

i
π

0.0731i

0.0868i
i

4π
i

2π
i

4π
i

2π
1

6π2
3i
2π

−0.0731i

−0.0868i

− i
4π
− i

4π
− i

2π
i

2π
− i

2π

− i
4π
− i

4π
i

2π
− i

2π
− i

2π
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i
4π

− i
4π
− i

2π
i

2π
0

−1 i
4π

− i
4π

i
2π

− i
2π

Any 0 0

− i
4π

i
4π

− i
2π

i
2π

value8 0

− i
4π

i
4π

i
2π

− i
2π

0
i

4π
i

4π
− i

2π
i

2π
i

2π

i
4π

i
4π

i
2π

− i
2π

i
2π

Table 3.3: The parameters obtained from Γ0(4) ∩ Γ(2). Using (3.19), we can get the values for αi’s.

As the size of the table increases, we will give a simplified version for the remaining

cases below. For each ζ, there are usually 24 = 16 possibilities for pure imaginary mi’s

(and hence 32 possibilities plus the real ones). For a, as the sign of a only depends on

the sign of m0, “±” in a means that a has the same sign as m0 while “∓” in a indicates

that m0 and a have opposite signs9.

ζ = e2πiτ m0 m1 m2 m3 U a

±0.014235i ±0.071176i 0.071176i 0.014235i −0.000673 ±0.0103i

0.008065 −0.071176i −0.014235i ±0.0139i

±0.014235i ±0.071176i 0.071176i −0.014235i −0.000706 ±0.0107i

−0.071176i 0.014235i ∓0.0148i

±0.014235i ±0.071176i 0.071176i 0.014235i −0.001287 ±0.0285i

0.991935 0.071176i −0.014235i ∓0.0295i

±0.014235i ±0.071176i 0.071176i −0.014235i −0.003305 ±0.0566i

−0.071176i 0.014235i ±0.0576i

±1.765055i ±8.825277i 1.765055i 8.825277i 100.010534 ±4.3371i

123.991869 −1.765055i −8.825277i ∓4.7490i

±1.765055i ±8.825277i 1.765055i −8.825277i 38.200625 ∓7.00202i

8Here, any complex number can be a basic value for U since all the terms of U in P4(z) contain

(1 + ζ) as well.
9Notice that in each row, so as not to be confused with the boxes of m2,3, there are no solid line

between the two lines in the box of a, meaning that there are two possible values for a out of four for

each parametrization. For instance, when ζ = 0.008065 and U = −0.000673, if sign(m0,m1,m2,m3) =

(±,±,+,+), then a can be 0.01025i or 0.01391.
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−1.765055i 8.825277i ∓7.12050i

±0.014351i ±0.014351i 0.071755i 0.071755i −0.000843 ±0.0045i

−0.008131 −0.071755i −0.071755i ∓0.0124i

±0.014351i ±0.014351i 0.071755i −0.071755i −0.000674 ±0.0100i

−0.071755i 0.071755i ±0.0134i

±0.014351i ±0.071755i 0.014351i 0.071755i −0.001278 ±0.0001i

1.008131 −0.014351i −0.071755i ∓0.0010i

±0.014351i ±0.071755i 0.014351i −0.071755i −0.003346 ±0.0569i

−0.014351i 0.071755i ±0.0579i

±1.765055i ±1.765055i 8.825277i 8.825277i 303.899917 ±7.5278i

−122.991869 −8.825277i −8.825277i ∓6.8862i

±1.765055i ±1.765055i 8.825277i −8.825277i −10.195921 ∓1.2234i

−8.825277i 8.825277i ∓1.6438i

Table 3.4: The parameters obtained from Γ1(5). Using (3.19) and
∑
i

mi =
√
ε1ε2Q, we can get the

values for αi’s and Q.

ζ = e2πiτ m0 m1 m2 m3 U a

± i
4π
± i
√

109
2π

2i
π

27i
4π

595
48π2 No

1
2

−2i
π

−27i
4π

Pure

± i
4π
± i
√

109
2π

2i
π

−27i
4π

− 269
48π2 Imaginary

−2i
π

27i
4π

Solution

± i
4π

±2i
π

i
√

109
2π

27i
4π

−665+108
√

109
48π2 No

1
2

− i
√

109
2π

−2i
π

Pure

± i
4π

±2i
π

i
√

109
2π

−27i
4π

−665−108
√

109
48π2 Imaginary

− i
√

109
2π

27i
4π

Solution

± i
2π
± i
√

109
π

27i
2π

4i
π

455
3π2 No

2 −27i
2π

−4i
π

Pure

± i
2π
± i
√

109
π

27i
2π

−4i
π

23
3π2 Imaginary

−27i
2π

4i
π

Solution

– 29 –



± i
2π

±4i
π

27i
2π

i
√

109
π

125+54
√

109
3π2 No

2 −27i
2π

− i
√

109
π

Pure

± i
2π

±4i
π

27i
2π

− i
√

109
π

125−54
√

109
3π2 Imaginary

−27i
2π

i
√

109
π

Solution

−1 ∅ ∅ ∅ ∅ ∅ ∅

Table 3.5: The parameters obtained from Γ0(6). Using (3.19) and
√
ε1ε2Q, we can get the values for

αi’s and Q.

ζ = e2πiτ m0 m1 m2 m3 U a

± i
16π

± i
8π

i
2π

i
16π

11
768π2 ∓0.0126i

1
2

− i
2π
− i

16π
∓0.0130i

± i
16π

± i
8π

i
2π

− i
16π

− 7
256π2 ±0.0236i

− i
2π

i
16π

±0.0242i
i

8π
− i

2π
∓0.0619i

2 ± i
8π

± i
4π

7
48π2 ∓0.0631i

− i
8π

i
2π

∓0.1457i

Table 3.6: The parameters obtained from Γ0(8). Using (3.19) and
√
ε1ε2Q, we can get the values for

αi’s and Q.

ζ = e2πiτ m0 m1 m2 m3 U a

± i
6
√

3π
± i

6
√

3π
i

6
√

3π
i
√

3
2π

− i(33i+25
√

3)
162π2 No

1−i
√

3
2

− i
6
√

3π
− i
√

3
2π

Pure

± i
6
√

3π
± i

6
√

3π
i

6
√

3π
− i
√

3
2π

− i(3i+8
√

3)
81π2 Imaginary

− i
6
√

3π
i
√

3
2π

Solution

± i
6
√

3π
± i

6
√

3π
i

6
√

3π
i
√

3
2π

i(−33i+25
√

3)
162π2 No

1+i
√

3
2

− i
6
√

3π
− i
√

3
2π

Pure

± i
6
√

3π
± i

6
√

3π
i

6
√

3π
− i
√

3
2π

i(−3i+8
√

3)
81π2 Imaginary

– 30 –



− i
6
√

3π
i
√

3
2π

Solution

Table 3.7: The parameters obtained from Γ0(9). Using (3.19) and
√
ε1ε2Q, we can get the values for

αi’s and Q.

Based on the above calculations, there are some remarks we can make:

• One may check that the elliptic curves parametrized by these mi ∈ iR and ζ, U ∈
C have the same j-invariants as in Table 3.8 for the six Belyi maps.

Γ(3) 0

Γ0(4) ∩ Γ(2) 35152
9

Γ1(5) 131072
9

Γ0(6) −3072

Γ0(8) 21952
9

Γ0(9) 0

Table 3.8: The j-invariants that correspond to the six index-12 Belyi maps.

• Recall that under φ → kφ, a → ka and U → k2U . This is consistent with the

fact that a ∼
√
u ∼
√
U .

• For Γ0(6) and Γ0(9), there are no parametrizations whose CFT can be formulated

on the torus. Hence, we simply list all the possible solutions to ζ (and mi and U

if there exists) in Table 3.5 and 3.7.

• For Γ0(8), ζ could also be −1, but there would be no solution for mi and U , just

like the case for ζ = −1 in Γ0(6).

• It is obvious that for each dessin, the parametrizations for different ζ’s are related

by triality10

ζ ↔ ζ ′ =
1

ζ
↔ ζ ′′ = 1− ζ. (3.32)

This is explicitly listed in Table 3.9. In particular, the two rows for Γ1(5) are also

10Since it is not really in the strong or weak coupling regime for some cases, we may refer to this

as “S-like-duality”.
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Dessin ζ ζ ′ ζ ′′

Γ(3) 1
2
(1± i

√
3) 1

2
(1∓ i

√
3) 1

2
(1∓ i

√
3)

Γ0(4) ∩ Γ(2) 2 1
2

−1

Γ1(5) 0.008065 123.991869 0.991935

−0.008131 −122.991869 1.008131

Γ0(6) 2 1
2

−1

Γ0(8) 2 1
2

−1

Γ0(9) 1
2
(1± i

√
3) 1

2
(1∓ i

√
3) 1

2
(1∓ i

√
3)

Table 3.9: The parametrizations for each case are S-like-duals.

related by triality: 1−123.991869 = −122.991869. Moreover, there are two cases

with |ζ| = |(1 ± i
√

3)/2| = 1, which are exactly the dessins whose Belyi maps

have j-invariant 0.

Conformal Blocks Using the data obtained above and the AGT correspondence,

we can therefore compute the corresponding CBs. Recall that B ≡ Bα(αi|ζ) could be

computed perturbatively in terms of the instanton numbers. As the analytic result is

tedious even for the perturbative expansion, we give the expression to linear order here:

B = 1 +
1

8ε1ε2 ((ε1 + ε2)2 − 4a2)

(
−4a2 + 4m′23 − 4m′21 + 4(m′3 +m′1)(ε1 + ε2) + (ε1 + ε2)2

)
×
(
−4a2 + 4m′20 − 4m′22 + 4(m′0 +m′2)(ε1 + ε2) + (ε1 + ε2)2

)
ζ +O

(
ζ2
)
. (3.33)

For Γ1(5), we have the weak coupling regime with ζ = 0.008065,−0.008131, and there-

fore we can apply the perturbative expansion for the CB. Moreover, as an example, let

us focus on the case with ε1 = −ε2, i.e., c = 1 CBs. This is a nice and interesting case as

only F (0,g) would contribute to the holomorphic anomaly equation in Appendix A, and

hence recovers the usual genus expansion of topological strings. As discussed in [40],

the F (n,g) expansion gives refined information of the cohomology of the moduli space

of the BPS states, and in particular, the ε1 + ε2 = 0 slice gives the complex structure

invariant indices. Moreover, there would be no extra shift for the masses when mapping

to CFT parameters. In such case, the above expansion for B reduces to

B = 1 +
1

32a2ε21

(
−4a2 + 4m′20 − 4m′22

) (
−4a2 + 4m′23 − 4m′21

)
ζ +O(ζ2). (3.34)

Using the data in Table 3.4, we consider the parametrizations given by ±φSW,basic.

When mi and a are pure imaginary (namely φSW,basic in this case), we simply take
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ε1 = −ε2 = i. When mi and a are real (namely −φSW,basic in this case), we simply take

ε1 = −ε2 = 1. For instance, with m0 = m3 = 0.01423i and m1 = m2 = 0.07116i, we

have a = 0.0103i. Therefore,

B = 1 + 0.116284ζ − 0.0587214ζ2 + 0.039343ζ3 + 0.0297279ζ4 +O
(
ζ5
)
. (3.35)

As ζ = 0.008065, we get B = 1.00094. Likewise, for ζ = −0.008131, if we con-

sider m0 = m1 = 0.014351, m2 = m3 = −0.071755 and a = 0.0124, we have

B = 1.00064. In general, for parametrizations following (3.31), it is straightforward

to see that mi,imaginary and mi,real would give the same result for B.

Minimal models When Q 6= 0, we have discrete parametrizations originated from

the dessins. Therefore, it is natural to conjecture that each parametrization corresponds

to the spectrum of certain c < 1 minimal models as Q is always pure imaginary.

Furthermore, when Q = 0 which becomes invariant under the scaling factor k, we have

continuous parametrizations for c = 1 CBs. In particular, the limit c→ 1 for minimal

models gives rise to the Runkel-Watts theory, whose well-definedness was discussed in

[41]. Indeed, the spectrum also becomes continuous for minimal models as c→ 1.

4 Conclusions and Outlook

We have seen that each dessin gives specific parametrizations for the gauge theories and

hence for the CFTs. However, it is still not known whether/how these values would give

any special physical interpretations. It could be possible that these parametrizations

have correspondence to the spectra of minimal models.

We could also study the gravity solutions for the corresponding holographic duals

of Liouville CFTs. For instance, it is immediate to get the AdS radius and certain

information for black holes or thermal gas in AdS from the central charge. Recently,

(super) Liouville theory in AdS2 also entered the study of AdS2/CFT1 [42]. Moreover,

for 3d dS space, it was also shown in [43] that the spectrum of conical defects has a one-

to-one correspondence with the spectrum in Liouville theory. It would be interesting

to explore these topics in future.
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A The B-model and Omega Deformations

When mapping gauge theory/SW geometry parameters to CFT parameters, we need

to include a factor of 1√
ε1ε2

, which would lead to divergence under the flat space limit

ε1,2 → 0. Here, we discuss a way in terms of topological B-model so that the SW

geometry is still physically meaningful when ε1,2 are non-zero.

Recall that we have related N = 2 gauge theories to A-model topological strings.

The mirror in B-model is defined by the equation

vw + f(x, y) = 0, (A.1)

which is a CY3 that can be considered as fibration of uv = const over the Riemann

surface f(x, y). In particular, f(x, y) = 0 can be identified as the SW curve Σ. Denote

the multiplicity of a BPS state in this 5d theory as Nβ, where β is essentially the

charge of the BPS state11. Mathematically, the BPS configuration can be defined by a

(complex) one-dimensional sheaf F (plus certain section in H0(F)) such that

β = ch2(F), n = χ(F), (A.2)

where β ∈ H2(M,Z) and n ∈ Z.

The topological string amplitude then has the expansion

F (ε1, ε2, t) = log(Z) =
∞∑

n,g=0

(ε1 + ε2)2n(ε1ε2)g−1F (n,g)(t), (A.3)

where Z is known as the (refined) Pandharipande-Thomas (PT) partition function, and

g stands for the genus while t denotes the Kähler parameter measuring the volume of

a curve in β, which can be identified as the Coulomb parameter a as we are focusing

on SU(2) gauge group in this paper [39, 40, 44]. In particular, when n = g = 0, F (0,0)

is the prepotential F . In the limit ε1,2 → 0, the PT partition function is naturally

identified as the Nekrasov partition function at leading order:

log(Z) = (ε1ε2)−1F (0,0). (A.4)

Moreover, F (0,1) and F (1,0) can also be determined using the metric on M and the

discriminant of Σ as in Equation (3.22) and (3.23) in [39]. Then F (n,g) with higher

(g+n) can be deduced from the (generalized) holomorphic anomaly equation [39, 40, 44]

∂̄īF
(n,g) =

1

2
C̄jk
ī

(
DjDkF

(n,g−1) +
∑
m,h

′
DjF

(m,h)DkF
(n−m,g−h)

)
, g + n > 1, (A.5)

11More precisely, we should also include the indices denoting the SU(2)L × SU(2)R spin represen-

tations, but for our purpose here, it suffices to label it with the topological data β only. For more

details, see for example [44].
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where the three-point coupling C̄jk
ī

is given in [39, 40], and Di is the covariant derivative.

The prime in the sum indicates the omission of (m,h) = (0, 0), (n, g). We also require

the first term on the right hand side to vanish if g = 0.

Therefore, the non-zero ε1,2 would also make sense for the SW theory physically

as the prepotential generates the topological string amplitudes. Hence, we could avoid

the divergence when mapping the gauge theory parameters to CFT parameters as in

§3.

Shift of Parameters Notice that we only have even 2n in the string amplitude

expansion. However, there could be odd terms in the Nekrasov expansion especially

for theories with massive flavours. It was argued in [39] that the odd terms can be

eliminated by a shift/redefinition of the mass parameters:

m′i = mi −
ε1 + ε2

2
, (A.6)

where mi is the mass in the Nekrasov partition function and m′i is the physical mass

in the AGT correspondence12.

B Brane Configurations

B.1 The Type IIA Brane Configuration

A type IIA configuration of parallel NS/D5-branes joined by D4-branes can be repre-

sented in M theory as a single M5-brane with a more complicated world history.

Before we write the rule for finding the Seiberg-Witten curve, we need to find out

whether we have a U(N) or an SU(N) gauge theory. This is discussed in [47], and goes

as follows.

First, consider D5-branes and D4-branes in type IIA superstring theory. The world-

volume of a D5-brane is described as follows. D5-branes are located at x7 = x8 = x9 = 0

and, in a semi-classical approximation, at fixed values of x6. The world-volume of

D5-branes are parameterised by values of x0, x1, · · · , x5. In addition, D4-branes are

parameterised by x0, x1, x2, x3 and x6. D4-branes have their x6-coordinate finite so that

they terminate on D5-branes. We need to introduce a complex variable v = x4 + ix5.

Classically, every D4-brane is located at a definite value of v. Since a D4-brane ending

on a D5-brane creates a dimple in the D5-brane, the value x6 is the value measured at

12An alternative holomorphic anomaly equation known as the extended holomorphic anomaly equa-

tion was introduced in [45]. It involves the odd terms and reproduces the Nekrasov expansion. How-

ever, there could be some issue with holomorphicity and modularity as discussed in [39, 46], so we

would still adopt the recipe with only even terms.
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v =∞, far from the disturbance created by the D4-brane. By minimizing the volume

of the D5-brane, at large v, we obtain

x6 = kln|v|+ const. (B.1)

This is not well-defined for large v. Nevertheless, with D4-branes attached to the left

and to the right of the D5-brane, we have

x6 = k

qL∑
i=1

ln|v − ai| − k
qR∑
j=1

ln|v − bj|+ const, (B.2)

where ai and bj are the v-values, or x6-coordinates of D4-branes ending on the left and

right respectively. Now x6 is well-defined for large v if and only if qL = qR, that is, if

the forces on both sides are balanced. For infrared divergence, we need to consider the

motion of the D4-branes, whose movement causes the D5-brane to move. The motion

of a D5-brane contributes to the kinetic energy of the D4-brane. The D5-brane kinetic

energy is given by
∫

d4xd2v
3∑

µ=0

∂µx
6∂µx6. Therefore, with x6 in (B.2), we have

k2

∫
d4xd2v

∣∣∣∣∣Re

(∑
i

∂µai
v − ai

−
∑
j

∂µbj
v − bj

)∣∣∣∣∣
2

. (B.3)

This integral converges if and only if

∂µ

(∑
i

ai −
∑
j

bj

)
= 0, (B.4)

so that ∑
i

ai −
∑
j

bj = qα, (B.5)

where qα is characteristic of α-th plane. From the D4-brane point of view, (B.5) means

the U(1) part of U(k) for k D4-branes between two D5-branes are frozen. This is

because
∑
i

ai is the scalar part of U(1) vector multiplet in one factor U(kα) and
∑
j

bj

is the scalar part of the U(1) vector multiplet in the factor U(kα+1). Since, following

(B.5), the difference is fixed by supersymmetry, the entire U(1) vector multiplet is

missing, and we have SU(N).

B.2 The M-theory Brane Configuration

The world-volume of the M5-brane is such that,
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1. It has arbitrary values in the first M4 coordinates x0, · · · , x3, and is located at

x7 = x8 = x9 = 0;

2. In the remaining four coordinates, which parametrize a 4-manifold Q ∼= R3× S1,

D5-brane worldvolume spans a 2d surface Σ;

3. The N = 2 supersymmetry means we give Q the complex structure in which

v = x4 + ix5 and s = x6 + ix10 are holomorphic, then Σ is a complex Riemann

surface in Q. This makes M4×Σ a supersymmetric cycle in the sense of [48] and

so it ensures spacetime supersymmetry.

When projected to type IIA brane diagrams, Σ has different components described

locally by saying that s is constant (the D5-branes) or that v is constant (the D4-

branes). In type IIA, different components can meet and singularity appears in there.

However, in going to M theory, singularities disappear. Hence, for generic values of

parameters, Σ will be a smooth Riemann surface in Q.

C Congruence Subgroups of the Modular Group

In this appendix, we very briefly recall some essential details regarding the modular

group Γ ≡ Γ (1) = PSL (2,Z) = SL (2,Z) / {±I}, the group of linear fractional trans-

formations Z 3 z → az+b
cz+d

, with a, b, c, d ∈ Z and ad − bc = 1. It is generated by the

transformations T and S defined by

T (z) = z + 1 , S(z) = −1/z . (C.1)

The presentation of Γ is
〈
S, T |S2 = (ST )3 = I

〉
.

The most important subgroups of Γ are the congruence subgroups, defined by

having the the entries in the generating matrices S and T obeying some modular

arithmetic. Of particular note are the following:

• Principal congruence subgroups:

Γ (m) := {A ∈ SL(2;Z) ; Aij ≡ ±Iij mod m} / {±I} ;

• Congruence subgroups of level m: subgroups of Γ containing Γ (m) but not any

Γ (n) for n < m;

• Unipotent matrices:

Γ1 (m) :=

{
A ∈ SL(2;Z) ; Aij ≡ ±

(
1 b

0 1

)
ij

mod m

}
/ {±I} ;
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• Upper triangular matrices:

Γ0 (m) :=

{(
a b

c d

)
∈ Γ ; c ≡ 0 mod m

}
/ {±I} .

In [6, 38], attention is drawn to the conjugacy classes of a particular family of subgroups

of Γ: the so-called genus zero, torsion-free congruence subgroups:

• Torsion-free means that the subgroup contains no element of finite order other

than the identity.

• To explain genus zero, first recall that the modular group acts on the upper half-

plane H := {τ ∈ C , Im (τ) > 0} by linear fractional transformations z → az+b
cz+d

.

Then H gives rise to a compactification H∗ when adjoining cusps, which are

points on R t ∞ fixed under some parabolic element (i.e. an element A ∈ Γ

not equal to the identity and for which Tr (A) = 2). The quotient H∗/Γ is a

compact Riemann surface of genus 0, i.e. a sphere. It turns out that with the

addition of appropriate cusp points, the extended upper half plane H∗ factored

by various congruence subgroups will also be compact Riemann surfaces, possibly

of higher genus. Such a Riemann surface, as a complex algebraic variety, is called

a modular curve. The genus of a subgroup of the modular group is the genus of

the modular curve produced in this way.

The conjugacy classes of the genus zero torsion-free congruence subgroups of the modu-

lar group are very rare: there are only 33 of them, with index I ∈ {6, 12, 24, 36, 48, 60},
as detailed in [38].

D Elliptic Curves and j-Invariants

Given the Weierstrass function ℘

℘ (z| ω1, ω2) =
1

z2
+

∑
n2+m2 6=0

(
1

(z +mω1 + nω2)2 −
1

(mω1 + nω2)2

)
, (D.1)

where ω1 and ω2 are complex-valued vectors that span the lattice Λ = {mω1 + nω2 :

m,n ∈ Z}, and we can write ℘ (z| ω1, ω2) = ℘ (z| Λ). The embedding of a torus, as an

elliptic curve over C in the complex projective plane, follows from

(℘′(z))
2

= 4 (℘(z))3 − g2℘(z)− g3, (D.2)
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where ℘′(z) is the derivative of ℘(z) with respect to z. Naturally defined on a torus

C/Λ, ℘ is doubly-periodic with respect to lattice Λ. This torus can be embedded in

the complex projective plane by z 7→ [1 : ℘(z) : ℘′(z)]. Close to the origin, ℘(z) can be

expanded as

℘ (z| Λ) =
1

z2
+ g2

z2

20
+ g3

z4

28
+O

(
z6
)
, (D.3)

where

g2 = 60
∑

(m,n)6=(0,0)

(
1

mω1 + nω2

)4

,

g3 = 140
∑

(m,n)6=(0,0)

(
1

mω1 + nω2

)6

. (D.4)

The summed terms in g2 and g3 are the first two Eisenstein series respectively. The

Eisenstein series G2k with weight 2k are modular forms of weight 2k, that is, they

transform as G2k(τ) 7→ (cτ + d)2kG2k(τ) under SL(2,Z) with τ = ω1/ω2 in upper half-

plane H. If two lattices are related by a multiplication by a non-zero complex number

c, then the corresponding curves are isomorphic. The j-invariants are defined as

j(τ) = 1728
g3

2

g3
2 − 27g2

3

. (D.5)

This definition shows that j-invariant is a weight-zero modular form. From the above

discussion, we can see that each isomorphism class of elliptic curves over C has the

same j-invariant.

As the SW curves and Strebel differentials we have are of quartic form, y2 =

az4 + bz3 + cz2 + dz + q2, we can make the substitution (for q 6= 0)

z =
2q(X + c)− d2/(2q)

Y
, y = −q+

1

2q

2q(X + c)− d2/(2q)

Y

(
2q(X + c)− d2/2q

Y
− d
)

(D.6)

so that the elliptic curve can be expressed in the standard Weierstrass form

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, (D.7)

where

a1 =
d

q
, a2 = c− d2

4q2
, a3 = 2bq, a4 = −4aq2, a6 = ad2 − 4acq2. (D.8)

Using SAGE [49], we can compute its j-invariant

j = −
((a2

1 + 4a2)2 − 24a1a3 − 48a4)3

(a2a2
3 − a1a3a4 + a2

1a6 − a42 + 4a2a6)(a2
1 + 4a2)2 + 8(a1a3 + 2a4)3 − 9(a2

1 + 4a2)(a1a3 + 2a4)(a2
3 + 4a6) + 27(a2

3 + 4a6)2
.

(D.9)

If q = 0 such as the Strebel differential for Γ(3), we can replace z and y with 1/z and

y/z2 respectively to obtain a quartic form with a non-vanishing constant term [50].
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