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We describe how simple machine learning methods successfully predict geometric properties from
Hilbert series (HS). Regressors predict embedding weights in projective space to ∼1 mean absolute
error, whilst classifiers predict dimension and Gorenstein index to > 90% accuracy with ∼0.5%
standard error. Binary random forest classifiers managed to distinguish whether the underlying HS
describes a complete intersection with high accuracies exceeding 95%. Neural networks (NNs)
exhibited success identifying HS from a Gorenstein ring to the same order of accuracy, whilst
generation of “fake” HS proved trivial for NNs to distinguish from those associated to the three-
dimensional Fano varieties considered.

I. INTRODUCTION AND SUMMARY

The Hilbert series (HS) is an important invariant in
the study of modern geometry. In physics, HS have
recently become a powerful tool in high energy the-
ory, appearing, for example, in the study of: Bogo-
mol’nyi–Prasad–Sommerfield (BPS) operators of super-
symmetric gauge theories [1, 2]; supersymmetric quantum
chromodynamics (SQCDs) [3–6] and instanton moduli
spaces [7–9]; invariants of the standard model [10, 11];
polytopes which arise in string compactifications [12]; and
explicit constructions of effective Lagrangians [13–18].

In parallel, a programme to use machine learning (ML)
techniques to study mathematical structures has recently
been proposed [19–21]. The initial studies were inspired
by timely and independent works [19, 22–25]. In these,
the effectiveness of ML regressor and classifier techniques
in various branches of mathematics and mathematical
physics has been investigated. Applications of ML include:
finding bundle cohomology on varieties [24, 26, 27]; distin-
guishing elliptic fibrations [28] and invariants of Calabi–
Yau threefolds [29]; the Donaldson algorithm for numeri-
cal Calabi–Yau metrics [30]; the algebraic structures of
groups and rings [31]; arithmetic geometry and number
theory [32–34]; quiver gauge theories and cluster alge-
bras [35]; patterns in particle masses [36]; statistical pre-
dictions and model-building in string theory [37–39]; and
classifying combinatorial properties of finite graphs [40].
Here we apply ML techniques to the plethystic programme
of using Hilbert series to understand structures of quan-
tum field theory. The physical motivation for this work
has two primary applications. First, when considering a
generic supersymmetric quantum field theory the number
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of BPS operators at each order is given by the initial
terms in the Hilbert series. Computing these operator
frequencies requires significant computational power, par-
ticularly for higher order terms (for the multi-trace case
the growth is exponential). In this work the goal for the
machine learning techniques implemented is to return
information about the full series’ closed form, which can
then directly provide the higher order information, hence
bypassing the need for order-by-order computation. Sec-
ond, from a string perspective the geometry of the moduli
space has an array of physical applications and if these
techniques can return the underlying variety’s geometric
properties directly the vacuum can be analysed without
need for complete information about the theory.

We examined databases of HS arising in geometry –
see [41, 42] and the Graded Ring Database (GRDB) [43]
– and “fake” HS generated to imitate the “real” geomet-
ric HS. Simple ML methods were able to successfully
predict several geometric quantities associated to the HS,
and were able to accurately distinguish real from fake HS.

Depending on the form of the HS, simple regression
neural networks (NNs) managed to learn the embed-
ding weights in projective space to mean absolute er-
ror (MAE) ∼1; whilst classification NNs predicted the
dimension and Gorenstein index with both accuracy and
Matthews correlation coefficient (MCC) in excess of 0.9.

Motivated by the question of whether ML can detect
when a HS comes from a Gorenstein ring, we found that
binary classifiers identified whether a fake HS had a palin-
dromic numerator to accuracy and MCC greater than 0.9.
Binary classifiers were easily able to distinguish the fake
generated data from the dataset of HS associated to three-
dimensional Fano varieties obtained from [43, 44].

A random forest classifier correctly predicted whether
the HS described a complete intersection (CI): this was
achieved with accuracy 0.9 and MCC 0.8 when the nu-
merator (padded with 0’s) of the HS was used as input;
and with accuracy 0.95 and MCC greater than 0.9 when
the Taylor series (to order 100) of the HS was used.

Code scripts for these investigations, along with the
datasets generated and analysed, are available from:
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https://github.com/edhirst/HilbertSeriesML.git

II. HILBERT SERIES AND PHYSICS

The HS is an important quantity that encodes numeri-
cal properties of a projective algebraic variety. It is not
a topological invariant in that it depends on the embed-
ding under consideration [45, Example 13.4]. We work
throughout with varieties defined over C.

Given a complex projective variety X and ample divi-
sor D there exists a natural embedding in a weighted pro-
jective space (w.p.s.) PC(p0, . . . , pk). We denote its homo-
geneous coordinate ring by R, i.e. R = C[X0, . . . , Xk]/I
where the variables Xi have weights pi, and I is the ho-
mogeneous ideal generated by the polynomials defining X.
We write PC(pq00 , . . . , p

qs
s ) as shorthand to indicate that

the weight pi appears qi times. The embedding of X into
the w.p.s. induces a grading on R =

⊕
i≥0Ri. We refer

to [46] for details.
The HS is the generating function for the dimensions

of the graded pieces of R:

H(t;X) =

∞∑
i=0

(dimCRi)t
i

where dimCRi, the dimension of the i-th graded piece
of the ring R, can be thought of as the number of in-
dependent degree i polynomials on the variety X. The
map i 7→ dimCRi is called the Hilbert function.

By the Hilbert–Serre Theorem (see for example [47,
Theorem 11.1]) there exists P ∈ Z[t] such that

H(t;X) =
P (t)

s∏
i=0

(1− tpi)qi
. (1)

Let j be the smallest positive multiple such that jD is
very ample. We call j the Gorenstein index, and can
rewrite (1) in the form:

H(t;X) =
P̃ (t)

(1− tj)dim+1
(2)

Here dim is the dimension of X, and P̃ ∈ Z[t]. If R is
a Gorenstein graded ring then the numerator is a palin-
dromic polynomial (by Serre duality). Recall that a poly-

nomial
∑d

i=1 ait
i is called palindromic if ai = ad−i [48].

For example, consider the complex line M = C (re-
garded as the affine cone over a point) parameterised by a
single complex variable x. Then the i-th graded piece Ri is
generated by the single monomial xi. Thus, dimCRi = 1
for all i ∈ Z≥0 so that the HS becomes H(t;C) = (1−t)−1.
In general, we have that H(t;Cn) = (1− t)−n.

The Plethystic Programme. In supersymmetric
gauge theories, when the vevs of scalars in different super-
multiplets are turned on, the (vacuum) moduli spaces are

non-trivial algebraic varieties [49–51] such as hyperkähler
cones and (closures of) symplectic leaves. In this case HS
are a powerful tool to enumerate gauge invariant opera-
tors (GIOs) at different orders.

A particularly useful application of HS to theoretical
physics is the plethystic programme, which reveals more
information of the moduli spaces. We leave a detailed
summary of the key formulae to Appendix A.

The multi-graded HS, i.e. the multi-variate series

H(t1, . . . , tk;X) =

∞∑
~i=0

dimC(X~i)t
i1
1 . . . t

ik
k

obtained by considering multi-graded rings with pieces X~i

for ~i = (i1, . . . , ik), could fully determine how the GIOs
transform under symmetry groups of gauge theories.

Duality and Moduli Spaces. HS have been well-
studied in the context of quiver gauge theories. For Higgs
branches in low dimensions, HS obtained from the Molien–
Weyl integral enable us to systematically study the geome-
try of SQCDs [3]. Such methods can also be used to study
the instanton moduli spaces [7, 8, 52]. As the spaces of
dressed monopole operators, i.e. the Coulomb branches,
receive quantum corrections, monopole formula [53] and
Hall–Littlewood formula [54] are used to obtain the HS.
This not only unveils the geometry of moduli spaces,
but also provides tools and evidences to study three-
dimensional mirror symmetry and duality including theo-
ries in higher dimensions.

Standard Model. Phenomenologically, HS have been
applied to lepton and quark flavour invariants for the
Standard Model in [10] as well as to the minimal super-
symmetric Standard Model in [55, 56].

III. MACHINE LEARNING

In this section we describe our approaches to ML prop-
erties of the rational representations (1) and (2) by feed-
ing in coefficients of the corresponding HS. Keras with
the TensorFlow backend [57] was used for the investiga-
tions. In §III A, “real” HS associated to certain three-
dimensional Fano varieties are introduced and analysed.
In §III B, “fake” HS, i.e. rational functions of the form (1)
and (2), were generated and properties of them were
machine-learnt. In §III C and §III D, binary classifiers
were used to determine whether fake HS of the form (2)
had palindromic numerator, and to determine fake HS
from real HS, all with great success. Finally, in §III E we
use ML to determine if a HS is associated to a complete
intersection.

A. Acquiring HS

Example HS associated to algebraic varieties were re-
trieved from the GRDB [43, 44]. We use a database of can-

https://github.com/edhirst/HilbertSeriesML.git
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didate HS conjecturally associated to three-dimensional Q-
Fano varieties with Fano index one, as constructed
in [41, 42]. Such varieties come with a natural choice
of ample divisor D = −K, the anti-canonical divisor.
We call these HS “real”. See Appendix B for the dis-
tributions of the parameters d, {ai}, s, {p`}, {q`} for this
set of data. Here we are using notation as in (1), and

write P (t) = 1 +
∑d

i=1 ait
i for the numerator polynomial.

Example 1 Consider the three-dimensional Q-Fano vari-
ety X ⊂ P(13, 22, 32) (number 11122 in the GRDB). This
is of codimension 3, with B = { 12 (1, 1, 1), 2 × 1

3 (1, 1, 2)}
isolated orbifold points, and hence has Gorenstein in-
dex j = 6. Writing the HS in the form (1) gives:

H(t;X) =
P (t)

(1− t)3(1− t2)2(1− t3)2

where P (t) = 1− 2t4 − 2t5+2t7 + 2t8 − t12.

Rewriting this in the form (2) gives:

H(t;X) =
P̃ (t)

(1− t6)4

where P̃ (t) = 1+3t+ 8t2 + . . .+ 8t21 + 3t22 + t23.

For the HS of this dataset, there are two competing
phenomena that contribute to its coefficients: the initial
part Pini that coincides with the HS in small degrees
and the “correction terms” Porb(Q) for each isolated orb-
ifold point Q = 1

r (b1, . . . , bdim) of X. More precisely, we
have [58]

H(t;X) = Pini +
∑
Q∈B

Porb(Q)

where the sum is taken over the set B of isolated orb-
ifold points of X. Pini and Porb(Q) (Q = 1

r (b1, . . . , bdim))
satisfy

Pini =
A(t)

(1− t)dim+1
, Porb(Q) =

BQ(t)

(1− t)dim(1− tr)

where A(t), BQ(t) are integral palindromic polynomials
with degrees related via degBQ(t) − degA(t) = r − 1.
The coefficients (called plurigenera) of the HS of H coin-
cide with Pini in degrees ≤ bdegA(t)/2c, whilst in higher
degrees the orbifold points start to contribute to the pluri-
genera. Because of this phenomenon, extra care must
be taken when computing parameters for the represen-
tations (1) and (2) from a finite set of coefficients of
the HS. Our investigations show that ML can cope with
this behaviour.

B. Generating and ML Fake HS

The “fake” HS generated take the forms (1) and (2),

with numerators of the form 1 +
∑d

i=1 ait
i. The numer-

ator P̃ (t) of (2) is required to be palindromic (and, as

a consequence, ad = 1). Coefficient sets consisting of
the parameters d, {ai}, s, {p`}, {q`}, where 1 ≤ i ≤ d
and 1 ≤ ` ≤ s, were randomly generated and the Taylor
expansions of the resulting fake HS were computed to or-
der ∼1000. If the parameters did not satisfy

∑
` p`q` > d,

if there were negative coefficients in the resulting Taylor
expansion, or if they matched a real Hilbert series then
the parameters were discarded.

The resulting data were fed into a NN to learn the
desired properties of the fake HS. The input was a vector of
Taylor expansion coefficients: either a vector of coefficients
for low-order terms 0 to 100; or for high-orders terms 1000
to 1009. Although coefficients of low-order terms are
easier to calculate, predictions based on those inputs are
more error-prone as contributions from orbifold points
take effect only for high-order terms (see §III A).

Fewer coefficients were required when learning from
coefficients deeper in the Taylor expansion; geometric
data are more readily extracted from larger plurigen-
era. We found the following analogy from toric geom-
etry insightful. When counting the number of lattice
points cm =

∣∣m∆ ∩ Zdim
∣∣ in the m-th dilation of a poly-

tope ∆ then, for m� 0, cm ∼ Vol(m∆) = mdimVol(∆).
(This is a toric rephrasing of the HS, with ∆ the polytope
associated with an ample divisor D and cm = h0(mD).)

The first investigation used supervised regressor NNs
to learn {p`} for fake HS in the form (1). Supervised clas-
sifier NNs were trained to predict the Gorenstein index j
and the dimension dim of fake HS in the form (2). Classi-
fiers were used since the NN outputs were single numbers
and hence associated well to classifier data structures.

We conclude with a comparison of the collected fake HS
data with the real HS data from the GRDB. We use
the unsupervised method of principal component analy-
sis (PCA) to project the classes onto the highest variance
linear component (see Figure 1). The PCA was performed
on the vectors of the first 100 coefficients, with prior scalar
transformation. The explained variance ratios give the
normalised eigenvalues for the covariance matrix, sorted
into a decreasing order. For the fake to real HS compari-
son the first eigenvalue (0.78) was significantly larger than
the second (0.16) and subsequent 98 eigenvalues (< 0.04).
This indicates that one principal component is sufficient
for description of the data distribution, and this principal
component pays linearly progressively more attention to
coefficients throughout the input HS vector up to the
24th where it then considers equal contributions from the
remaining coefficients.

The projection shows a separation between the classes,
indicating that there is linear structure in the data. De-
spite great efforts we were unable to break this separa-
tion. This raises the following question, to which we do
not currently know the answer: what additional prop-
erties do fake HS need to satisfy to better approximate
the GRDB HS data?

HS Regressor Investigations. For this investiga-
tion ∼10 000 fake HS of the form (1) were uniformly
drawn from a sample space given by d = 3, s = 3, |ai| ≤
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FIG. 1. PCA for HS Taylor expansion coefficients coming
from the GRDB, ‘Real’, or those randomly generated, ‘Fake’.

Orders of Input MAE

0 to 100 1.94± 0.11
1000 to 1009 1.04± 0.12

TABLE I. Averaged MAE, with standard error, of the 5-
fold cross-validation of the NN learning the weights p` (with
multiplicity) of the form (1) of the HS from input vectors
of HS coefficients to the specified orders.

10, p` ≤ 10. This space was chosen to provide a suffi-
ciently large range of fake HS whilst ensuring that its size
was still feasible for ML training. The goal was to predict
the values {p`} and {q`} of the form (1) from a given
(finite) range of HS coefficients. This information was
encoded into a single vector where each p` was repeated q`
times, and the entries were given in increasing order.

A 5-fold cross-validation (in the sense of [59]) was per-
formed for a feed-forward regressor NN with 4 hidden
dense layers of 1024 neurons each, using LeakyReLU acti-
vation (with α = 0.01), in batches of 32 for 20 epochs over
the full dataset. The NN had a final dense layer with as
many neurons as p`’s (counting multiplicities). Dropout
layers between the dense layers reduced the risk of over-
fitting (dropout factor 0.05). The NN was trained with
the Adam optimiser [60] using a log(cosh) loss function
and the training performance was measured via MAE.
log(cosh) is a continuous version of MAE used as the
loss function such that training performance would be
improved for gradient descent near the MAE discontinu-
ity, however MAE provides a more interpretable metric
of learning performance so is used as the metric on the
independent test data.

Table I summarises the averaged MAE, with standard
error, over the 5-fold cross validation for two ranges of HS
coefficients: the first 101 coefficients; and the coefficients
of order 1000 to 1009. In both cases the MAE is below 2,
i.e. the true denominator of the form (1) of the underly-
ing HS could be extracted with reasonably good accuracy
from the HS coefficients alone.

HS Classification Investigations. In this investiga-
tion a 5-fold cross-validation for a feed-forward classi-

Parameter Orders Performance Measures
Learnt of Input Accuracy MCC

j
0 to 100 0.934± 0.008 0.916± 0.010

1000 to 1009 0.780± 0.018 0.727± 0.022

dim
0 to 100 0.995± 0.005 0.993± 0.006

1000 to 1009 0.865± 0.024 0.822± 0.031

TABLE II. Averaged accuracy and MCC, with standard error,
of the 5-fold cross-validation of the NN learning the Goren-
stein index j, the dimension dim, and the form (2) with HS
coefficients in the specified ranges of degrees as input.

fier NN with the same layer structure as before was trained.
We again used an Adam optimiser, but now with sparse
categorical cross entropy loss to reflect the classification
question. Training performance was measured with accu-
racy and MCC. The final dense layer now had as many
neurons as classes in the investigation (5 in both cases),
with softmax activation, and neurons representing the
values the learnt parameters could take.

This time ∼10 000 HS of the form (2) were uniformly
drawn from a sample space given by d = 5, |ai| ≤ 50, j ≤
5, dim ≤ 5. The goal this time was to train an NN to
predict the Gorenstein index j, the dimension dim, and
the form (2) from the HS coefficients in the same orders
of degrees.

Note if coefficients in larger degrees were used as input,
the larger values caused problems with the loss function.
This issue was mitigated by log-normalising the HS coef-
ficients, i.e. by taking the natural logarithm input values
were scaled down to ranges the loss function and optimiser
could handle. However some fake HS contained 0 coeffi-
cients and were therefore omitted, hence resulting in a full
dataset of 8711 HS for the training with HS coefficients of
larger degree. Note also that log-normalisation was only
used in this case and in no other investigations.

Table II summarises the averaged accuracies and MCCs,
with standard error, over the 5-fold cross-validation of
the NN. These results show almost perfect classification
of both the Gorenstein index, j, and the dimension, dim,
from HS coefficients in low degrees. Interestingly the
performance is worse when using terms deeper in the HS,
presumably due to the required log-normalisation of the
coefficients removing the finer structure of the coefficients
required to determine the exact parameter value being
learnt.

C. Identifying the Gorenstein Property

In this section we investigate the effectiveness of binary
classifiers to detect if the numerator of form (2) of an HS
is palindromic. Recall from Section II that the numerator
is palindromic if the ring R is Gorenstein (by Serre dual-
ity). Then the numerator of form (1) is palindromic too
(possibly up to a sign); see Example 1 for an illustration.
The goal was to use a NN to distinguish whether a HS is
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Orders Performance Measures
of Input Accuracy MCC

0 to 100 0.844± 0.087 0.717± 0.155
1000 to 1009 0.954± 0.043 0.919± 0.073

TABLE III. Averaged accuracy and MCC, with standard error,
of the 5-fold cross-validation of a NN learning whether the HS
has palindromic numerator in form (2) from HS coefficients
to the specified orders as input.

coming from a Gorenstein ring, i.e. the numerator polyno-
mial of form (2) is palindromic. As before the NN’s input
were HS coefficients from the same ranges of degrees.

For the investigation two equally sized sets of fake HS,
one with and the other without palindromic numera-
tors, were uniformly drawn from a sample space given
by d = 9, |ai| ≤ 50, j = 5, dim +1 = 6. The same rea-
sons as before apply for this choice of space. The HS
in each of the two sets were then labelled and together
comprised the full dataset for a 5-fold cross-validation
to be performed using a feed-forward classifier NN with
the same layer structure as in the previous investigation.
Also the same Adam optimiser was used for training, but
now with binary cross-entropy loss to reflect the classifica-
tion question. Training performance was measured with
accuracy and MCC. The final dense layer of the NN now
had 2 neurons corresponding to whether the HS comes
from a Gorenstein ring or not.

Table III summarises the averaged accuracies
and MCCs, with standard error, over the 5-fold cross-
validation of the NN. The results show good success in
detecting if a HS comes from a Gorenstein ring using HS
coefficients alone. The classifier performed better on coef-
ficients in larger degrees indicating that the palindromicity
property is more readily evident from plurigenera deeper
in the HS (possibly because of the bigger variation).

In addition, PCA was also applied to the data in this
binary classification problem, as seen in Figure 2, with
similar behaviour for both low and high orders of input.
This figure (for the low order inputs) highlights a lack
of linear structure which the architecture could take ad-
vantage of. The PCA explained variance ratios for the
101 low order inputs show equal importance of the first
two principal components (0.29, 0.27), lower importance
for the next three components (0.19, 0.11, 0.10), minimal
importance of the next four components (∼ 0.01), then
negligible contribution from the remaining 92 (<∼ 10−30).
Equivalently for the high order inputs the first two com-
ponents are dominant (0.30,0.26), with the next three
less important (0.20,0.12,0.10), and the remaining five
negligible (<∼ 10−10). In both cases the two dominant
principal components have a mix of contributions from
components with no discernible pattern across the HS
vector of coefficients. The full outputs can be observed in
this paper’s respective GitHub scripts.

15 10 5 0 5 10 15

15

10

5

0

5

10

15
Gorenstein
Non-Gorenstein

FIG. 2. The PCA for HS Taylor expansion coefficients
corresponding to HS defined over Gorenstein rings or non-
Gorenstein rings.

D. Differentiating Real and Fake HS

This investigation examined the success of a binary
classifier in distinguishing whether a HS, represented by a
finite set of HS coefficients, corresponds to a real HS from
the GRDB, or a randomly generated fake HS. The dataset
consisted of HS candidates conjecturally associated to 3-
dimensional Fano polytopes from the GRDB, amounting
to ∼29 000 HS, along with as many fake HS with the same
structure which were randomly generated.

A 5-fold cross-validation for a feed-forward classifier NN
with the same layer structure as in the previous investi-
gations was performed. For training an Adam optimiser
with a binary cross-entropy loss with the same parameters
as before was used. Training performance was measured
with accuracy and MCC. The final dense layer had 2
neurons corresponding to whether the inputted HS coeffi-
cients were associated to a real or fake HS.

The ∼29 000 fake HS were generated randomly using
form (1) parameters drawn from probability distributions
reflecting the real HS data as given in Appendix B. An
equal number of real HS were taken from the GRDB to
produce the full dataset, and as before HS coefficients to
the same order of degrees were used as NN inputs.

In this investigation the averaged accuracies and MCCs
exceeded 0.99 for both ranges of degrees of HS coefficients.
Further analysis of the data showed that coefficients of
fake HS were orders of magnitudes different to the real
case which possibly made this classification far easier. Re-
sampling such that the coefficients were more comparable,
although improving this investigations complexity, would
make the fake data less representative with respect to
the underlying variety’s properties. Hence we chose to
use the same data throughout all investigations despite
this binary classification becoming more trivial; as cor-
roborated by the 1d PCA separation in Figure 1. This
also highlights the uniqueness of real HS which come
with a wealth of further impactful structure, e.g. on the
parameters of the corresponding forms (1) and (2).
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E. Detecting Complete Intersection

An important application of the plethystic logarithm
(see Appendix A for details and references) is that it de-
tects whether the underlying variety is a complete intersec-
tion (CI), i.e. the defining ideal (the ideal of polynomials
vanishing on the variety) is generated by exactly codimen-
sion many polynomials. Such optimal intersection has
been widely used in the physics literature, e.g. in string
model-building [61, 62]. As can be seen from the defini-
tion, the PE−1 involves the number-theoretic µ-function,
making the computation non-trivial. A natural ques-
tion arises as to whether a trained classifier can identify
whether X is CI, i.e. when PE−1 terminates as a Taylor
series, by only “looking” at the the shape of the HS.

Suppose X = {f1 = 0, . . . , fc = 0} defines a complete
intersection in Pk

C where each fi is a homogeneous poly-
nomial of degree mi in a standard graded polynomial
ring Rk+1 = C[X0, . . . , Xk], such that each variable Xi

has degree 1. Then the HS of X takes the form

(1− tm1) . . . (1− tmc)

(1− t)n
=

1 + a1t+ · · ·+ adt
d

(1− t)n
. (3)

This follows by induction on the fi using the additivity
of HS and the the exact sequences

0→ R
[mi]
k

·fi−−→ Rk → Rk+1 → 0

where R
[mi]
k denotes a standard graded polynomial ring

with degrees shifted by mi so that the first map becomes a
morphism of graded rings. Notice X is a projective variety
of codimension c in Pk

C, i.e. has dimension dim = k − c.
This time 10 000 fake HS of the form (3) represent-

ing CIs were uniformly drawn from a sample space given
by c = 1, . . . , 10, mi = 2, . . . , 10 and 1 ≤ n−

∑
imi ≤ 11.

The fake HS representing non-CI were generated by draw-
ing fake CI HS f from the sample space above and then
adding or subtracting a binomial to the numerator pre-
venting the result to factor as in (3). More precisely, the
fake non-CI HS were computed by

f + (−1)ε · t
k0 + (−1)c · td−k0

(1− t)n

where ε = 0, 1 and k0 = 1, . . . , d−1 was randomly chosen.
This procedure ensured that learning is non-trivial, be-
cause the resulting fake non-CI HS have a similar shape
to the form (3), but do not correspond to fake HS of CI.
The full dataset was comprised by 10 000 fake CI HS
and 10 000 fake non-CI HS, i.e. a total of 20 000 samples.

We use quotients of successive coefficients in the Taylor
expansion of the fake HS as input to see if the machine
could identify complete intersections, i.e. we use

{hi/hi+1 | i = 0, . . . , n}

where hi denotes the i-th coefficient in the Taylor expan-
sion of the fake HS and n is the number of coefficients

ML Orders Performance Measures
algorithm of Input Accuracy MCC

PCA+NN
0 to 100 0.762± 0.010 0.544± 0.030
0 to 300 0.951± 0.005 0.902± 0.010

PCA+RF
0 to 100 0.806± 0.016 0.615± 0.031
0 to 300 0.965± 0.003 0.930± 0.005

TABLE IV. Averaged accuracy and MCC, with standard
error, of the 10-fold cross-validation of the PCA+random
forest (resp. of the PCA+NN) learning complete intersections
in the form (3) with fake HS coefficients in the specified ranges
of degrees as input.

used. We use PCA to reduce the dimension followed by a
random forest classifier or a NN. Table IV summarises the
averaged accuracies and MCCs, with standard error, over
10-fold cross-validations (training performed on the 10%
chunks).

If we truncate the Taylor series at order 100 and
train on 10% of the data, the accuracy is ∼0.80
with MCC ∼0.61. However, including higher and higher
orders of coefficients results into more and more improved
results (where the increase in improvement stagnates for
sufficiently high orders). For example, if we use Tay-
lor expansions to order 300 and train on 10% of the
data, the PCA+random forest model could give over 0.95
accuracy and over 0.9 MCC. More precisely, a 10-fold
cross validation (with training performed on the 10%
chunks) would give 0.965(±0.002) accuracy (with 95%
confidence interval). We can reproduce these results by
using PCA and a feed-forward NN with 4 hidden dense
layers of 32 neurons each, dropout layers between the
dense layers (dropout factor 0.05), LeakyReLU activa-
tion (with α = 0.01), binary cross-entropy loss function
and Adam optimiser. A 10-fold cross validation with
the same input (training performed on the 10% chunks)
yields 0.951(±0.004) accuracy (with 95% confidence in-
terval).

PCA shows a clear separation of CIs and non-CIs (see
Figure 3). The explained variance ratios show one domi-
nant component with eigenvalue 0.98, where this compo-
nent has roughly equal contributions from all the series co-
efficients. This raises the question if this implies that PCA
can efficiently separate CI from non-CI (real) HS or if
this is an artefact of our data generation. With 20000
samples of CIs and real non-CIs, we find that a random
forest could give ∼ 0.8 accuracy and ∼ 0.6 MCC for a
10-fold cross validation. Although this is a decent result,
it would be natural to investigate in future whether there
could be better techniques/algorithms to improve such
performance. Further study is also necessary to confirm
that PCA is an effective discriminator between CI and
non-CI in this case.
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Appendix A: The Plethystic Programme

For a function f(t) =
∞∑

n=0
ant

n, we can define

the plethystic exponential (sometimes known as the Euler
transform) as

PE[f(t)] := exp

( ∞∑
n=1

f(tn)− f(0)

n

)
=

∞∏
n=1

(1− tn)−an .

For instance, the mesonic BPS operators fall into two cate-
gories: single- and multi-trace. Then the HS is the generat-
ing function for counting the basic single-trace invariants.
Moreover, the HS of the N -th symmetric product is given
by gN (t;M) = f(t; symN (X)), symN (X) := MN/SN ,
where the “grand-canonical” partition function is given by
the fugacity-inserted plethystic exponential of the Hilbert

series: PEν[f(t)] :=
∞∏

n=0
(1− ν tn)−an =

∞∑
N=0

gN (t)νN . In

gauge theory, this is considered to be at finite N and

the expansion gN (t) =
∞∑

n=0
bnt

n gives the number bn of

operators of charge n.
There is also an analytic inverse function to PE, which

is the plethystic logarithm, given by

PE−1[g(t)] =

∞∑
k=1

µ(k)

k
log(g(tk)),

where µ(k) is the Möbius function. The first positive terms
in the Taylor expansion of PE−1 encodes generators at
different degrees, and the first negative terms give the
relations among them. Higher order terms are known as
the syzygies. In particular, if X is a complete intersection,
then PE−1[H(t)] is a polynomial of t (i.e. terminates at
a finite order).

Appendix B: Real HS parameter distributions

The dataset of real HS associated to 3-dimensional
Fano varieties considered in this paper [43] that was anal-
ysed to produce distributions of the HS function form
parameters d, {ai}, s, {p`}, {q`} as shown in Figures 4-8.
These distributions, and their respective fittings were used
to make fake HS generation more representative of the
real HS data.

Fittings used sums of Gaussian distributions, reflecting
a Central Limit Theorem motivation in analysis of this
large dataset of ∼54 000 HS. In all cases the sum of 2
independent Gaussian distributions sufficed in making a
visually accurate fit. Thus, using these distribution in
fake HS generation would ideally produce HS of the same
form. Interestingly, the fake HS still had quite different
coefficient growth rates to the real HS, stabilising deeper in
the series. This phenomena is further discussed in §III D.
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FIG. 4. Histogram of distribution of real HS numerator de-
grees d, with Gaussian fitting.
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FIG. 5. Histogram of distribution of real HS numerator coeffi-
cient values ai, with Gaussian fitting.
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FIG. 6. Histogram of distribution of real HS number of de-
nominator factors s, with Gaussian fitting.
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FIG. 7. Histogram of distribution of real HS denominator
internal powers (i.e. denominator weights) p`, with Gaussian
fitting.
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FIG. 8. Histogram of distribution of real HS denominator
external powers (i.e. number of repetitions of each denominator
weight) q`, with Gaussian fitting.
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