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Abstract
Chaotic hyperbolic dynamical systems enjoy a surprising degree of rigidity,
a fact which is well known in the mathematics community but perhaps less
so in theoretical physics circles. Low-dimensional hyperbolic systems are
either conjugate to linear automorphisms, that is, dynamically equivalent to
the Arnold cat map and its variants, or their hyperbolic structure is not smooth.
We illustrate this dichotomy using a family of analytic maps, for which we
show by means of numerical simulations that the corresponding hyperbolic
structure is not smooth, thereby providing an example for a global mechanism
which produces non-smooth phase space structures in an otherwise smooth
dynamical system.
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For decades, nonlinear dynamics has had a significant impact on various applications in many
scientific fields, largely due to the study of seemingly simple model systems that exhibit sur-
prisingly complex and counterintuitive behaviour, often with great relevance for real-world
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phenomena. Evidence of this impact can be found in the now-classic studies of one- and two-
dimensional time-discrete dynamical systems, showing universal transitions from regular to
chaotic dynamical behaviour, via the so-called Feigenbaum and quasiperiodic routes to chaos,
which allow for fairly rigorous underpinnings through renormalisation group treatments [9,
10]. More importantly, the relevance of the mathematical findings have been confirmed in
a variety of experiments (see, for example, [14, 33]). Furthermore, simple low-dimensional
chaotic maps are at the core of the foundations of statistical physics, as they provide a rigor-
ous mechanism for the emergence of irreversibility, the approach to thermodynamic equilib-
rium, and the understanding of transport properties in Hamiltonian time-invariant dynamical
systems, without taking recourse to phenomenological coarse graining [4, 8, 15].

While the case of one-dimensional maps has been studied thoroughly, both empirically and
rigorously, for higher-dimensional invertible maps the situation is somewhat different. Despite
a wealth of available numerical data, rigorous statements are sparse due to the considerable
technical challenges involved. The majority of explicit calculations going beyond numerical
simulations are based on a few paradigmatic systems, such as the Smale horseshoe or the
Arnold cat map and its variants. These studies, as well as most applied investigations, build on
the concept of hyperbolicity, see [21, chapters 6 and 19] for a comprehensive overview.

In order to keep technical details to a minimum we shall focus on maps T mapping the two-
dimensional torus [0,1)2 into itself, that is T(θ) ∈ [0,1)2 with θ = (θ1,θ2) ∈ [0,1)2. Omitting
technical details and looking at the orientation-preserving case only, hyperbolicity amounts to
the existence of two normalised transversal vector fields es(θ) and eu(θ), the so-called stable
and unstable directions, which are invariant under the dynamics in the sense that

DT(θ)eu (θ) = λu (θ)eu (T(θ))

DT(θ)es (θ) = λs (θ)es (T(θ)) . (1)

Here, DT(θ) denotes the Jacobian of the map, and the so-called local contraction and expan-
sion rates obey 0< λs(θ)< 1< λu(θ). A diffeomorphism T exhibiting this property globally
is referred to as an Anosov diffeomorphism. An explicit calculation of this hyperbolic struc-
ture, that is, closed expressions for eu(θ) and es(θ), have been obtained only in very few
cases where the Jacobian does not depend on the phase space coordinates. These cases serve
as textbook examples for hyperbolic dynamics (see, for example, [8]). The hyperbolic struc-
ture is a key mechanism for chaotic dynamics in time-reversible systems, and hence a key
ingredient for irreversibility occurring in otherwise Hamiltonian dynamics. While an explicit
computation of the stable and unstable directions poses considerable challenges, a numerical
calculation is more or less straightforward. This can be achieved through a suitable forward
or backward iteration of the linear variational equations (1), which mimics the simple power
method for computing leading eigenvalues and eigenvectors of matrices. In fact, this empir-
ical numerical scheme is also at the heart of rigorously proving the existence of a hyperbolic
splitting via an invariant cone field using the Alekseev criterion [1].

We now turn to the surprising degree of rigidity enjoyed by hyperbolic systems, a fact well
known in the mathematical dynamics community, but quite counterintuitive and perhaps less
well known in the applied sciences. Naively one would expect that the degree of smoothness of
the dynamical system is reflected by the smoothness of the hyperbolic structure; for example,
one might suspect that analytic hyperbolic dynamical systems also have an analytic hyperbolic
splitting. This turns out to be far from the truth. Anosov showed in [2] that the hyperbolic
splitting of any smooth Anosov diffeomorphism is Cα (that is, α-Hölder continuous) for some

2



Nonlinearity 37 (2024) 045007 O F Bandtlow et al

α ∈ (0,1), but need not beC1 or even Lipschitz4. Here, the regularity of the hyperbolic splitting
refers to that of the stable and unstable subspaces with respect to the phase space point. Higher-
order differentiability is rare, making the Hölder setting natural for hyperbolic structures of
(even smooth) Anosov diffeomorphisms. In the special case of symplectic smooth Anosov
diffeomorphisms on the two-torus [0,1)2, the natural setting typically becomes C1+α with
α ∈ (0,1), see, for example, [17]. If in this case the hyperbolic splitting is of regularity5 C2, the
diffeomorphism is in fact necessarily smoothly conjugated to a linear Anosov diffeomorphism,
that is, it is dynamically equivalent to a variant of the cat map. See [13, 18, 19] for these, and
more nuanced related results.

This obstruction to higher regularity in arbitrarily smooth (nonlinear) hyperbolic systems is
somewhat unexpected at first sight, and shows that in physical dynamical systems non-smooth
behaviour can be produced by a globalmechanism.Although these results arewell-established,
to the best of our knowledge, it is difficult to find explicit examples in the literature where the
lack of smoothness has been demonstrated purely through numerical methods. In this article
we aim to fill this gap by explicitly demonstrating the lack of smoothness of the hyperbolic
splitting for a specific class of systems that are, to a significant extent, amenable to an analytic
treatment.

In order to construct the desired examples we shall resort to a class of analytic maps on
the torus derived from Blaschke maps, for which full spectral information is available. This
means that, in addition to ergodic invariant measures, it is also possible to compute exponen-
tial decay rates of correlation functions for analytic observations in closed form. The case of
one-dimensional Blaschke maps has been studied for decades [23, 26]. However, the complete
analytic treatment of their spectral properties is a more recent development [5, 30], for a pre-
cursor see also [22]. While formal generalisations to two dimensions have been proposed a
while ago [28] the construction of two-dimensional hyperbolic diffeomorphisms with access-
ible spectra is a very recent finding [27, 31, 32].

More specifically, we shall investigate the properties of the hyperbolic splitting for the fol-
lowing two-dimensional mixing analytic map on the torus

T(θ) = (2θ1 + θ2 + f(θ1) ,θ1 + θ2 + f(θ1)) (2)

with

f(θ) =
1
π
arctan

(
µsin(2πθ−α)

1−µcos(2πθ−α)

)
(0⩽ µ < 1,α ∈ [−π,π)) . (3)

This map can be considered as a (strong) perturbation of the Arnold cat map with (3) denoting
the deformation of the map governed by the parameters µ and α. The unique fixed point of the
map is given by

θ∗ =

(
1
π
arctan

(
µsinα

1+µcosα

)
,0

)
(4)

with the Jacobian obeying det(DT(θ∗)) = 1 and

tr(DT(θ∗)) = 1+ 2
1+µcosα
1−µ2

. (5)

4 See [2, p 201] for an example where the splitting is almost nowhere C2/3+ϵ for any ϵ> 0.
5 In fact, in this setting the hyperbolic splitting being C2 implies that it is already C∞ [16].
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Figure 1. Stable (blue) and unstable (bronze) manifold of the fixed point (black filled
circle) of the map T given in (2) and (3) for µ= 0.7 and α= 0.3. Manifolds of finite
length have been computed numerically by forward, respectively backward, iteration
(and an additional adaptive bisection scheme) of initial conditions close to the fixed
point and located on the stable, respectively unstable, direction.

The above formula for the trace implies in particular that for µ> 0 the map T given by (2)
is not smoothly conjugate to the Arnold cat map (which arises from (2) by choosing µ= 0),
since the Jacobians at the unique fixed point of both maps, do not coincide. It turns out that T
is a symplectic map for which Lebesgue measure is invariant and mixing. Moreover, the point
spectrum of the compact Perron–Frobenius operator defined on a suitable anisotropic Hilbert
space is given by {(−µ)|n| exp(inα) : n ∈ Z}, and correlation functions of analytic observables
decay exponentially [31]. Furthermore, the structure of (2) ensures the existence of an invari-
ant cone field, given by the standard quadrants in the tangent space. Hence by the Alekseev
criterion [1], T has a hyperbolic splitting as defined in (1). While the hyperbolic splitting is
hard, if not impossible, to compute by analytic means, it is fairly easy to get some impres-
sion of the hyperbolic structure by computing the stable and unstable manifolds of the fixed
point θ∗ numerically, that is, by a forward and backward iteration of the map, see figure 1 (see
also [7, section 4.3]). The hyperbolic splitting visible in this figure is not twice continuously
differentiable, since the map is not smoothly conjugate to the Arnold cat map. However, this
degree of roughness is difficult to discern visually. Results in [19] provide an upper bound on
the smoothness of the hyperbolic splitting for properly nonlinear maps and suggest that typic-
ally the splitting is, up to logarithmic corrections, almost twice differentiable. We are going to
demonstrate this phenomenon for our map T. In our subsequent numerical calculations we will
use the numerical values µ= 0.7 andα= 0.3 for the parameters of the map. For this setting one
can on the one hand still verify hyperbolicity of the map by an invariant cone condition, while
on the other hand a non-vanishing value for α avoids an additional inversion symmetry, which
would occur if µexp(iα) were real valued. Nevertheless, the following numerical results do
not seem to depend on these considerations6.

Since (1) relates the local expansion and contraction rates with the stable and unstable
directions, the degree of smoothness of the hyperbolic splitting is mirrored by the smoothness
of these rates. Hence, in order to evaluate the degree of smoothness of the hyperbolic structure
it is sufficient to examine the smoothness of the local expansion rate λu(θ).

Using (1) we numerically evaluate the local expansion rate mimicking the power method:
given a phase space point θ we compute a backward orbit of finite length and then use forward

6 The Fortran codes used to produce the numerical results are available at www.math.uni-rostock.de/∼wj/code/.
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Figure 2. Local expansion rates on a 100× 100 square grid of θ-values, computed from
backward orbits of length 200. (a) Local expansion rate λu(θ). (b) First order difference
quotient defined in (6), for h= 10−4. (c) Second order difference quotient defined in (7),
for h= 10−4.

iteration of (1) along this orbit to obtain a numerical approximation of λu(θ) from the norm-
alisation of the image vectors. At quadruple precision a backward orbit of length of about 100
is sufficient to obtain numerically accurate results for λu(θ) up to 30 digits. Results for the
local expansion rate are shown in figure 2(a). In order to evaluate the degree of smoothness
of this graph we consider difference quotients to estimate the derivative. Here we just show
results for the partial difference quotients in the θ2-direction. Results for the symmetric first
order difference quotient

∆λu =
λu (θ1,θ2 + h)−λu (θ1,θ2 − h)

2h
(6)

which estimates the first order partial derivative are shown in figure 2(b), for a fixed value of the
offset h. Again we obtain an apparently smooth function, indicating that the local expansion
ratemay be continuously differentiable. In order to obtain evidence that the hyperbolic splitting
is not twice differentiable we shall now consider the second order difference quotient

∆2λu =
λu (θ1,θ2 + h)+λu (θ1,θ2 − h)− 2λu (θ1,θ2)

h2
. (7)

Figure 2(c) shows a rough surface with large fluctuations, suggesting that the second order dif-
ference quotient does not converge to a well-defined second derivative, as expected. In order
to underpin this observation, namely that the hyperbolic splitting is not C2, we shall now con-
sider the scaling behaviour of the difference quotients (6) and (7) with respect to the offset h
in greater detail.

To begin with, we look at the convergence of the first order difference quotient towards the
limit value, that is, at the dependence of ∆λu given in (6) on the offset h. In order to capture
possible dependencies on the phase space coordinate we perform the numerical evaluation for
θ-values on a regular grid of size 40× 40. Even though one could apply more sophisticated
methods this turns out to be sufficient to estimate the potential limit by computing the dif-
ference quotient for a very small value of the offset. In our case, the value h= 10−16 turns
out to be sufficient. The dependence of the difference between∆λu and the limit value is dis-
played in figure 3(a). Clearly one observes convergence of the difference quotient towards a
limit at a rate of orderO(h). This rate is slower than the rate one would expect for an analytic
function, but it is in line with the fact that the local expansion rate cannot be twice differenti-
able. The picture looks different for the second order difference quotient, see figure 3(b). The
second order difference quotient ∆2λu, given in (7), apparently fails to converge and is even
unbounded as its behaviour is affected by logarithmic or sub-logarithmic corrections. Even
though the precise scaling is difficult to estimate from the numerical data, the results shown in
figure 3(b) suggest that ∆2λu =O(| lnh|). This matches the best known regularity result for
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Figure 3. (a) Log–log plot of the difference between ∆λu and a numerically ‘exact’
estimate for the partial derivative (obtained via the difference quotient at h= 10−16) in
dependence on the offset h. Data are shown for different values of θ on a 40× 40 square
grid (blue), and for five selected θ-values (highlighted, bronze). (b) Semi-log plot of the
dependence of the second order difference quotient ∆2λu on the offset h. The second
order difference quotient is scaled by | lnh|. Data are shown for different values of θ on
a 40× 40 regular grid (blue), and for five selected values (highlighted, bronze).

the hyperbolic splitting in this setting, namely that it is in the Zygmund class, see [19]. Hence
the data provide compelling evidence that the hyperbolic splitting has modulus of continuity
O(s| logs|), implying it is C2−ε for any ε> 0, that is, it is C1 and its derivative is α-Hölder
continuous for all α ∈ (0,1).

In summary, we have presented a numerical illustration of a well-established fact, namely,
that, phrased in colloquial terms, for analytic chaotic maps there occurs a dichotomy between
maps with a non-smooth hyperbolic splitting and maps that are smoothly conjugate to the
cat map or its variants. This observation points to a mechanism creating subtle structures in
dynamical systems, and defies the naive belief that nature prefers smooth structures. Our com-
putations suggest that the local expansion rate λu(θ) is continuously differentiable but the
second order derivatives fail to converge due to logarithmic corrections. Even though the pre-
cise form of the logarithmic corrections is difficult to assess from numerical simulations, the
data shown in figure 3 are in line with rigorous results (see, for example, [19, theorem 3.1,
corollary 3.6]), which may not be as readily accessible to a general audience as they deserve to
be. Furthermore, the logarithmic scaling seems to occur for typical phase space points, at least
in our example. Overall, the numerics suggests that the hyperbolic splitting is C2−ε, that is, it
is almost twice differentiable—as asserted by the theory. These fine details are certainly not
visible in simple illustrations such as figure 1 which superficially indicates analytic behaviour.

We have focussed here on the simplest case of two-dimensional symplectic diffeomorph-
isms of the torus, which allowed for a straightforward formulation of the dichotomy between
conjugacy to linear diffeomorphisms and occurrence of a non-smooth hyperbolic splitting,
and enabled a simple numerical check in terms of a single scalar function like the local expan-
sion rate. It is tempting to look at higher-dimensional cases, where, however, the dichotomy
becomes much more involved. The hyperbolic splitting of a general Anosov diffeomorphism
is a priori only Hölder continuous, regardless of the smoothness of the map, and a numer-
ical check of the properties of the splitting may now require a more laborious and numeric-
ally demanding computation of stable and unstable eigenspaces (see, for instance, [11, 25]).
This makes the numerical detection of any kind of potential logarithmic corrections to scaling
extremely challenging, as it requires scanning quantities over a large range of magnitudes.

We would also like to remark that the lack of higher-order regularity of statistical quantities
pertaining to a smooth dynamical system is also of great import for applications. For example,
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the lack of differentiability of unstable Jacobians has posed an obstacle for the efficient com-
putation of linear response using Ruelle’s formula [29] (see [6, 12, 20, 24] and [3, section 5.3]
for background and a broader overview of linear response). It is worth noting that our choice
of area-preserving Blaschke maps as perturbations is not well-suited to numerically study this
particular problem (due to the perturbations all sharing Lebesgue measure as their relevant
invariant measure, thus giving rise to vanishing derivatives).

While we expect that other area-preserving perturbations of linear toral automorphisms
yield comparable numerical performance, our choice of Blaschke maps was motivated by the
fact that these allow for explicit analytic computation of dynamical properties such as correla-
tion decay and spectra of transfer operators [27, 31, 32]. The explicit calculation of the spectra
of transfer operators in these cases relies on analytic properties of the dynamical system and
the introduction of suitably chosen anisotropic Hilbert spaces on which the transfer operator
is compact and has a spectrum that is accessible by means of a certain composition operator.
There is no obvious relation between these features and topological properties in phase space
such as hyperbolic splittings. In fact, we have not been able to produce a map where a non-
trivial splitting can be obtained in closed form. It is likely that an example of this type would
trigger renewed interest in a striking global dynamical phenomenon that appears to have been
settled from a mathematical perspective.
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[12] Gouëzel S and Liverani C 2006 Banach spaces adapted to Anosov systems Ergod. Theor. Dynam.
Syst. 26 189

[13] Ghys E 1993 Rigidité Différentiable des Groupes Fuchsiens vol 78 (Publications Mathématiques
de l’IHÉS)
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