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Abstract. Chaotic hyperbolic dynamical systems enjoy a surprising degree of rigidity, a
fact which is well known in the mathematics community but perhaps less so in theoretical
physics circles. Low-dimensional hyperbolic systems are either conjugate to linear automor-
phisms, that is, dynamically equivalent to the Arnold cat map and its variants, or their
hyperbolic structure is not smooth. We illustrate this dichotomy using a family of analytic
maps, for which we show by means of numerical simulations that the corresponding hyper-
bolic structure is not smooth, thereby providing an example for a global mechanism which
produces non-smooth phase space structures in an otherwise smooth dynamical system.

For decades, nonlinear dynamics has had a significant impact on various applications in
many scientific fields, largely due to the study of seemingly simple model systems that exhibit
surprisingly complex and counterintuitive behaviour, often with great relevance for real-world
phenomena. Evidence of this impact can be found in the now-classic studies of one- and
two-dimensional time-discrete dynamical systems, showing universal transitions from regular
to chaotic dynamical behaviour, via the so-called Feigenbaum and quasiperiodic routes to
chaos, which allow for fairly rigorous underpinnings through renormalisation group treatments
[10, 11]. More importantly, the relevance of the mathematical findings have been confirmed in
a variety of experiments (see, for example, [15, 33]). Furthermore, simple low-dimensional
chaotic maps are at the core of the foundations of statistical physics, as they provide a
rigorous mechanism for the emergence of irreversibility, the approach to thermodynamic
equilibrium, and the understanding of transport properties in Hamiltonian time-invariant
dynamical systems, without taking recourse to phenomenological coarse graining [16, 4, 9].

While the case of one-dimensional maps has been studied thoroughly, both empirically and
rigorously, for higher-dimensional invertible maps the situation is somewhat different. Despite
a wealth of available numerical data, rigorous statements are sparse due to the considerable
technical challenges involved. The majority of explicit calculations going beyond numerical
simulations are based on a few paradigmatic systems, such as the Smale horseshoe or the
Arnold cat map and its variants. These studies, as well as most applied investigations, build
on the concept of hyperbolicity, see [22, Ch. 6 and 19] for a comprehensive overview.

In order to keep technical details to a minimum we shall focus on maps T mapping the
two-dimensional torus [0, 1)2 into itself, that is T (θ) ∈ [0, 1)2 with θ = (θ1, θ2) ∈ [0, 1)2.
Omitting technical details and looking at the orientation-preserving case only, hyperbolicity
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amounts to the existence of two normalised transversal vector fields es(θ) and eu(θ), the
so-called stable and unstable directions, which are invariant under the dynamics in the sense
that

DT (θ)eu(θ) = λu(θ)eu(T (θ))

DT (θ)es(θ) = λs(θ)es(T (θ)) .
(1)

Here, DT (θ) denotes the Jacobian of the map, and the so-called local contraction and ex-
pansion rates obey 0 < λs(θ) < 1 < λu(θ). A diffeomorphism T exhibiting this property
globally is referred to as an Anosov diffeomorphism. An explicit calculation of this hyperbolic
structure, that is, closed expressions for eu(θ) and es(θ), have been obtained only in very
few cases where the Jacobian does not depend on the phase space coordinates. These cases
serve as textbook examples for hyperbolic dynamics (see, for example, [9]). The hyperbolic
structure is a key mechanism for chaotic dynamics in time-reversible systems, and hence a key
ingredient for irreversibility occurring in otherwise Hamiltonian dynamics. While an explicit
computation of the stable and unstable directions poses considerable challenges, a numerical
calculation is more or less straightforward. This can be achieved through a suitable forward
or backward iteration of the linear variational equations (1), which mimics the simple power
method for computing leading eigenvalues and eigenvectors of matrices. In fact, this empiri-
cal numerical scheme is also at the heart of rigorously proving the existence of a hyperbolic
splitting via an invariant cone field using the Alekseev criterion [1].

We now turn to the surprising degree of rigidity enjoyed by hyperbolic systems, a fact
well known in the mathematical dynamics community, but quite counterintuitive and per-
haps less well known in the applied sciences. Naively one would expect that the degree of
smoothness of the dynamical system is reflected by the smoothness of the hyperbolic struc-
ture; for example, one might suspect that analytic hyperbolic dynamical systems also have an
analytic hyperbolic splitting. This turns out to be far from the truth. Anosov showed in [2]
that the hyperbolic splitting of any smooth Anosov diffeomorphism is Cα (that is, α-Hölder
continuous) for some α ∈ (0, 1), but need not be C1 or even Lipschitz1. Here, the regularity
of the hyperbolic splitting refers to that of the stable and unstable subspaces with respect to
the phase space point. Higher-order differentiability is rare, making the Hölder setting nat-
ural for hyperbolic structures of (even smooth) Anosov diffeomorphisms. In the special case
of symplectic smooth Anosov diffeomorphisms on the two-torus [0, 1)2, the natural setting
typically becomes C1+α with α ∈ (0, 1), see, for example, [18]. If in this case the hyperbolic
splitting is of regularity2 C2, the diffeomorphism is in fact necessarily smoothly conjugated
to a linear Anosov diffeomorphism, that is, it is dynamically equivalent to a variant of the
cat map. See [21, 14, 19] for these, and more nuanced related results.

This obstruction to higher regularity in arbitrarily smooth (nonlinear) hyperbolic systems
is somewhat unexpected at first sight, and shows that in physical dynamical systems non-
smooth behaviour can be produced by a global mechanism. Although these results are well-
established, to the best of our knowledge, it is difficult to find explicit examples in the
literature where the lack of smoothness has been demonstrated purely through numerical
methods. In this article we aim to fill this gap by explicitly demonstrating the lack of
smoothness of the hyperbolic splitting for a specific class of systems that are, to a significant
extent, amenable to an analytic treatment.

1See [2, p.201] for an example where the splitting is almost nowhere C2/3+ε for any ε > 0.
2In fact, in this setting the hyperbolic splitting being C2 implies that it is already C∞ [17].
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In order to construct the desired examples we shall resort to a class of analytic maps
on the torus derived from Blaschke maps, for which full spectral information is available.
This means that, in addition to ergodic invariant measures, it is also possible to compute
exponential decay rates of correlation functions for analytic observations in closed form. The
case of one-dimensional Blaschke maps has been studied for decades [24, 7]. However, the
complete analytic treatment of their spectral properties is a more recent development [30, 5],
for a precursor see also [23]. While formal generalisations to two dimensions have been
proposed a while ago [28] the construction of two-dimensional hyperbolic diffeomorphisms
with accessible spectra is a very recent finding [31, 27, 32].

More specifically, we shall investigate the properties of the hyperbolic splitting for the
following two-dimensional mixing analytic map on the torus

T (θ) = (2θ1 + θ2 + f(θ1), θ1 + θ2 + f(θ1)) (2)

with

f(θ) =
1

π
arctan

(
µ sin(2πθ − α)

1− µ cos(2πθ − α)

)
(0 ≤ µ < 1, α ∈ [−π, π)) .

(3)

This map can be considered as a (strong) perturbation of the Arnold cat map with (3)
denoting the deformation of the map governed by the parameters µ and α. The unique fixed
point of the map is given by

θ∗ =

(
1

π
arctan

(
µ sinα

1 + µ cosα

)
, 0

)
(4)

with the Jacobian obeying det(DT (θ∗)) = 1 and

tr(DT (θ∗)) = 1 + 2
1 + µ cosα

1− µ2
. (5)

The above formula for the trace implies in particular that for µ > 0 the map T given by
(2) is not smoothly conjugate to the Arnold cat map (which arises from (2) by choosing
µ = 0), since the Jacobians at the unique fixed point of both maps, do not coincide. It
turns out that T is a symplectic map for which Lebesgue measure is invariant and mixing.
Moreover, the point spectrum of the compact Perron–Frobenius operator defined on a suitable
anisotropic Hilbert space is given by {(−µ)|n| exp(inα) : n ∈ Z}, and correlation functions
of analytic observables decay exponentially [31]. Furthermore, the structure of (2) ensures
the existence of an invariant cone field, given by the standard quadrants in the tangent
space. Hence by the Alekseev criterion [1], T has a hyperbolic splitting as defined in (1).
While the hyperbolic splitting is hard, if not impossible, to compute by analytic means, it is
fairly easy to get some impression of the hyperbolic structure by computing the stable and
unstable manifolds of the fixed point θ∗ numerically, that is, by a forward and backward
iteration of the map, see Figure 1 (see also [8, §4.3]). The hyperbolic splitting visible in this
figure is not twice continuously differentiable, since the map is not smoothly conjugate to the
Arnold cat map. However, this degree of roughness is difficult to discern visually. Results
in [21] provide an upper bound on the smoothness of the hyperbolic splitting for properly
nonlinear maps and suggest that typically the splitting is, up to logarithmic corrections,
almost twice differentiable. We are going to demonstrate this phenomenon for our map T . In
our subsequent numerical calculations we will use the numerical values µ = 0.7 and α = 0.3 for
the parameters of the map. For this setting one can on the one hand still verify hyperbolicity
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of the map by an invariant cone condition, while on the other hand a non-vanishing value for
α avoids an additional inversion symmetry, which would occur if µ exp(iα) were real valued.
Nevertheless, the following numerical results do not seem to depend on these considerations3.
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Figure 1. Stable (blue) and unstable (bronze) manifold of the fixed point
(black filled circle) of the map T given in (2) and (3) for µ = 0.7 and α = 0.3.
Manifolds of finite length have been computed numerically by forward, re-
spectively backward, iteration (and an additional adaptive bisection scheme)
of initial conditions close to the fixed point and located on the stable, respec-
tively unstable, direction.

Since (1) relates the local expansion and contraction rates with the stable and unstable
directions, the degree of smoothness of the hyperbolic splitting is mirrored by the smoothness
of these rates. Hence, in order to evaluate the degree of smoothness of the hyperbolic structure
it is sufficient to examine the smoothness of the local expansion rate λu(θ).

Using (1) we numerically evaluate the local expansion rate mimicking the power method:
given a phase space point θ we compute a backward orbit of finite length and then use
forward iteration of (1) along this orbit to obtain a numerical approximation of λu(θ) from
the normalisation of the image vectors. At quadruple precision a backward orbit of length
of about 100 is sufficient to obtain numerically accurate results for λu(θ) up to 30 digits.
Results for the local expansion rate are shown in Figure 2(a). In order to evaluate the degree
of smoothness of this graph we consider difference quotients to estimate the derivative. Here
we just show results for the partial difference quotients in the θ2-direction. Results for the
symmetric first order difference quotient

∆λu =
λu(θ1, θ2 + h)− λu(θ1, θ2 − h)

2h
(6)

which estimates the first order partial derivative are shown in Figure 2(b), for a fixed value
of the offset h. Again we obtain an apparently smooth function, indicating that the local
expansion rate may be continuously differentiable. In order to obtain evidence that the
hyperbolic splitting is not twice differentiable we shall now consider the second order difference
quotient

∆2λu =
λu(θ1, θ2 + h) + λu(θ1, θ2 − h)− 2λu(θ1, θ2)

h2
. (7)

3The Fortran codes used to produce the numerical results are available at https://www.math.uni-
rostock.de/˜wj/code/.
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Figure 2(c) shows a rough surface with large fluctuations, suggesting that the second order
difference quotient does not converge to a well-defined second derivative, as expected. In
order to underpin this observation, namely that the hyperbolic splitting is not C2, we shall
now consider the scaling behaviour of the difference quotients (6) and (7) with respect to the
offset h in greater detail.
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Figure 2. Local expansion rates on a 100 × 100 square grid of θ-values,
computed from backward orbits of length 200. (a) Local expansion rate λu(θ).
(b) First order difference quotient defined in (6), for h = 10−4. (c) Second
order difference quotient defined in (7), for h = 10−4.

To begin with, we look at the convergence of the first order difference quotient towards the
limit value, that is, at the dependence of ∆λu given in (6) on the offset h. In order to capture
possible dependencies on the phase space coordinate we perform the numerical evaluation for
θ-values on a regular grid of size 40 × 40. Even though one could apply more sophisticated
methods this turns out to be sufficient to estimate the potential limit by computing the
difference quotient for a very small value of the offset. In our case, the value h = 10−16

turns out to be sufficient. The dependence of the difference between ∆λu and the limit
value is displayed in Figure 3(a). Clearly one observes convergence of the difference quotient
towards a limit at a rate of order O(h). This rate is slower than the rate one would expect
for an analytic function, but it is in line with the fact that the local expansion rate cannot
be twice differentiable. The picture looks different for the second order difference quotient,
see Figure 3(b). The second order difference quotient ∆2λu, given in (7), apparently fails to
converge and is even unbounded as its behaviour is affected by logarithmic or sub-logarithmic
corrections. Even though the precise scaling is difficult to estimate from the numerical data,
the results shown in Figure 3(b) suggest that ∆2λu = O(| lnh|). This matches the best known
regularity result for the hyperbolic splitting in this setting, namely that it is in the Zygmund
class, see [21]. Hence the data provide compelling evidence that the hyperbolic splitting has
modulus of continuity O(s| log s|), implying it is C2−ε for any ε > 0, that is, it is C1 and its
derivative is α-Hölder continuous for all α ∈ (0, 1).

In summary, we have presented a numerical illustration of a well-established fact, namely,
that, phrased in colloquial terms, for analytic chaotic maps there occurs a dichotomy between
maps with a non-smooth hyperbolic splitting and maps that are smoothly conjugate to the
cat map or its variants. This observation points to a mechanism creating subtle structures
in dynamical systems, and defies the naive belief that nature prefers smooth structures. Our
computations suggest that the local expansion rate λu(θ) is continuously differentiable but
the second order derivatives fail to converge due to logarithmic corrections. Even though the
precise form of the logarithmic corrections is difficult to assess from numerical simulations,
the data shown in Figure 3 are in line with rigorous results (see, for example, [21, Thm 3.1,
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Figure 3. (a) Log-log plot of the difference between ∆λu and a numerically
“exact” estimate for the partial derivative (obtained via the difference quotient
at h = 10−16) in dependence on the offset h. Data are shown for different
values of θ on a 40 × 40 square grid (blue), and for five selected θ-values
(highlighted, bronze). (b) Semi-log plot of the dependence of the second order
difference quotient ∆2λu on the offset h. The second order difference quotient
is scaled by | lnh|. Data are shown for different values of θ on a 40×40 regular
grid (blue), and for five selected values (highlighted, bronze).

Cor 3.6]), which may not be as readily accessible to a general audience as they deserve to be.
Furthermore, the logarithmic scaling seems to occur for typical phase space points, at least in
our example. Overall, the numerics suggests that the hyperbolic splitting is C2−ε, that is, it
is almost twice differentiable - as asserted by the theory. These fine details are certainly not
visible in simple illustrations such as Figure 1 which superficially indicates analytic behaviour.

We have focussed here on the simplest case of two-dimensional symplectic diffeomorphisms
of the torus, which allowed for a straightforward formulation of the dichotomy between con-
jugacy to linear diffeomorphisms and occurrence of a non-smooth hyperbolic splitting, and
enabled a simple numerical check in terms of a single scalar function like the local expansion
rate. It is tempting to look at higher-dimensional cases, where, however, the dichotomy be-
comes much more involved. The hyperbolic splitting of a general Anosov diffeomorphism is
a priori only Hölder continuous, regardless of the smoothness of the map, and a numerical
check of the properties of the splitting may now require a more laborious and numerically
demanding computation of stable and unstable eigenspaces (see, for instance, [12, 26]). This
makes the numerical detection of any kind of potential logarithmic corrections to scaling
extremely challenging, as it requires scanning quantities over a large range of magnitudes.

We would also like to remark that the lack of higher-order regularity of statistical quan-
tities pertaining to a smooth dynamical system is also of great import for applications. For
example, the lack of differentiability of unstable Jacobians has posed an obstacle for the effi-
cient computation of linear response using Ruelle’s formula [29] (see [13, 20, 6, 25] and [3,
§5.3] for background and a broader overview of linear response). It is worth noting that our
choice of area-preserving Blaschke maps as perturbations is not well-suited to numerically
study this particular problem (due to the perturbations all sharing Lebesgue measure as their
relevant invariant measure, thus giving rise to vanishing derivatives).

While we expect that other area-preserving perturbations of linear toral automorphisms
yield comparable numerical performance, our choice of Blaschke maps was motivated by the
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fact that these allow for explicit analytic computation of dynamical properties such as cor-
relation decay and spectra of transfer operators [31, 27, 32]. The explicit calculation of the
spectra of transfer operators in these cases relies on analytic properties of the dynamical sys-
tem and the introduction of suitably chosen anisotropic Hilbert spaces on which the transfer
operator is compact and has a spectrum that is accessible by means of a certain composition
operator. There is no obvious relation between these features and topological properties in
phase space such as hyperbolic splittings. In fact, we have not been able to produce a map
where a non-trivial splitting can be obtained in closed form. It is likely that an example
of this type would trigger renewed interest in a striking global dynamical phenomenon that
appears to have been settled from a mathematical perspective.
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