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A Data-Driven Analysis of
Robust Automatic Piano Transcription
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Abstract—Algorithms for automatic piano transcription have
improved dramatically in recent years due to new datasets
and modeling techniques. Recent developments have focused
primarily on adapting new neural network architectures, such
as the Transformer and Perceiver, in order to yield more
accurate systems. In this work, we study transcription systems
from the perspective of their training data. By measuring their
performance on out-of-distribution annotated piano data, we
show how these models can severely overfit to acoustic properties
of the training data. We create a new set of audio for the
MAESTRO dataset, captured automatically in a professional
studio recording environment via Yamaha Disklavier playback.
Using various data augmentation techniques when training with
the original and re-performed versions of the MAESTRO dataset,
we achieve state-of-the-art note-onset accuracy of 88.4 F1-score
on the MAPS dataset, without seeing any of its training data.
We subsequently analyze these data augmentation techniques in
a series of ablation studies to better understand their influence
on the resulting models.

Index Terms—piano transcription, data augmentation

I. INTRODUCTION

AUTOMATIC music transcription (AMT) is the signal
processing task of converting an audio recording of a

musical performance into symbolic form. The target output
could be a low-level physical description of each note played
by any instrument in the recording, such as MIDI, or sheet
music with representations of musical features such as meter,
time signature, rhythm, instrumentation, and dynamics.

In this work, we focus on AMT applied to piano, or
automatic piano transcription (APT). APT has improved dra-
matically over the past decade. The two largest relative
improvements in state-of-the-art accuracy were from a new
architecture to jointly predict onsets and frames [1] and from
the release of the MAESTRO dataset [2]. The Onsets and
Frames architecture yielded a more than fifty percent increase
in the note-onset F1-score, when trained and evaluated on
the MAPS dataset [3]. The MAESTRO dataset yielded an
additional five percent relative improvement on MAPS test
evaluation in a zero-shot setting, along with becoming the
de-facto standard in training APT systems. Since then, the
research has largely focused on new model architectures and
adapting these systems for multi-instrument transcription [4],
[5], [6], [7].
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However, most of this research ignores out-of-distribution1

performance of their trained models. The emphasis has been
on state-of-the-art results on held out test sets, despite the well-
documented phenomenon of overfitting to acoustic conditions
shared between test and training sets [8]. This lack of focus
on generalization can lead to models which exhibit shortcut
learning [9], and thus the reported evaluation metrics can
overstate the true performance of these systems. Furthermore,
publications may forgo techniques to make their models more
robust and generalizable, as this has been demonstrated to
slightly hurt their test set results. This is in contrast to com-
puter vision literature where data augmentation has become
standard practice in training deep learning models [10].

In this research, we analyze the robustness of APT with
a data-driven methodology. We demonstrate how existing
systems can overfit to the acoustic conditions of their training
data, which can hamper generalization. We then perform a
series of experiments to analyze the impact of data augmenta-
tion on out-of-distribution transcription performance. Our core
contributions are the following:

• a detailed analysis of data augmentation techniques ap-
plied to the task of APT;

• an automatically re-performed version of all ≈ 200 hours
of the MAESTRO dataset captured in a studio recording
environment via Yamaha Disklavier technology;

• showing how a combination of data augmentation and
increased timbral diversity results in state-of-the-art
(SOTA) performance on the MAPS dataset, and making
the model weights publicly available.

II. RELATED WORK

Deep learning models have become the current SOTA
in AMT. The first end-to-end neural network approach for
piano transcription was by Sigtia et al. [11]. This was soon
improved by Hawthorne et al. [1] by formulating a dual-
objective of predicting both note onsets and frame activity.
Recognizing that their approach was limited by data, the same
authors introduced the MAESTRO dataset [2]: 200 hours of
virtuoso solo piano performances with finely-aligned MIDI
labels. Before MAESTRO, the largest available dataset for
piano transcription was MAPS [3], which has 18 hours of
audio. Soon after the MAESTRO publication, Kong et al. [4]
introduced a novel technique to regress on the onset times,
allowing higher resolution than the spectrogram frame width.
Subsequent attempts have introduced the Transformer [12], [5]

1In the context of this research, “out-of-distribution” refers to solo piano
recordings drawn from a different distribution than the training data, e.g. with
different pianos, recording conditions, pieces and musical styles.
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Fig. 1. Illustration of the data augmentation pipeline employed. The process flows from left to right, starting with a Random 7-Band EQ, where each band’s
gain is randomly adjusted within a range of -10dB to 5dB. Next, random background noise is added, selected from a set of 65 different 10-second clips, with
the signal-to-noise ratio meticulously maintained between 17.5 and 25dB. Then we apply a random pitch shift, varying between -10 and 10 cents, to account
for slight tuning discrepancies in production data. Another Random 7-Band EQ is then applied. The final stage of the pipeline introduces reverb, utilizing
one of 14 unique impulse responses, to simulate different spatial acoustic characteristics. Each component of this pipeline is applied independently with a
probability of 0.5, ensuring a rich and diverse set of augmentations.

and Perceiver [6] architectures for piano and multi-instrument
transcription. The current SOTA is from the recent work of
Toyama et al., which relies upon the self-attention mechanism
of Transformers to capture long-term dependencies in the
frequency and time axes, yielding a note-level transcription
F1 score of 97.4 evaluated on the MAESTRO test set [7].

The main technique we explore for regularizing deep tran-
scription models is data augmentation. There has been much
work on using data augmentation for audio based learning
tasks [13], [14], [2], [15]. Thickstun et al. [16] explore label-
preserving pitch-shift transformations. Simon et al. [17] use
mixtures of monophonic transcription examples to pre-train
their multi-instrument polyphonic transcription transformer.
Lu et al. [6] use cross-dataset mixtures for training, along
with label-preserving pitch shifts. The audiomentations
library2 provides a suite of audio-based data augmentations to
apply on the fly during machine learning training, which we
make use of in this work.

A. Robustness of Piano Transcription Systems

Despite the great progress on this task, nearly all of the
results mentioned above fail to report out-of-distribution eval-
uation metrics. The one exception is the MAESTRO paper [2],
which emphasises the importance of using data augmentation
when evaluating on the MAPS test set. A very promising
direction in robust transcription research comes from Maman
and Bermano [18]: the authors describe a technique to au-
tomatically align scores with live performances. Using only
synthetic data and automatically aligned scores, they achieve
the current SOTA on the MAPS test set and report very
encouraging cross-dataset performance.

Many factors seem to contribute to a more robust piano
transcription system. First, certain data augmentation tech-
niques can improve generalization. For example, models can
overfit to the tuning of pianos in their training data, and small
amounts of random pitch shifting can mitigate this effect. Data
augmentation is the core technique explored in this publication
and is explored in detail in Section IV. Second, timbral and
acoustic diversity seems to improve generalization. This is
likely the explanation for the very robust performance of

2https://github.com/iver56/audiomentations

Maman and Bermano, since they train on MusicNet [19],
which includes audio from a wide variety of sources and
includes multi-instrumental performances. Robustness to noisy
training data is another factor: Kong et al. [4] demonstrate that
their triangulation technique permits learning when note-onset
labels are off by 50ms, while the architecture from Onsets and
Frames is susceptible to much lower accuracy in this regime.

III. STUDIO MAESTRO DATASET

The audio in the MAESTRO dataset contains recordings
from ten years of piano competitions. All pieces are performed
by a human on a Yamaha Disklavier piano in a concert hall
with an audience present. While the instrument used in the
various years may be the same, the tuning will certainly vary
year to year. Furthermore the exact placement of microphones
will not be identical. On one hand, this is desirable: the data is
very realistic and contains useful noise and variations for better
generalization. On the other hand, we may seek to remove
these differences to better understand the influence of data
augmentation and the extent of overfitting that state-of-the-art
transcription models exhibit.

To that end, we create a data collection apparatus to
automate the recording of acoustic piano performances. The
equipment used consists of a Yamaha C6X grand piano
manufactured in 2008 with a Disklavier ENSPIRE PRO
player piano controller unit, two Neumann U87Ai large dual-
diaphragm microphones, two Schoeps MK 6 capsule micro-
phones, an iPhone 12 Pro, a Fireface UFX audio interface, and
a MacBook Pro. A Python tool was developed to playback
MIDI through the Yamaha Disklavier while simultaneously
maintaining an audio input stream. The timing of the MIDI
playback is synchronized to the clock of the audio interface
to prevent drift. The software used for data collection is made
available on GitHub 3. The apparatus was used to re-record
all 200 hours of the MAESTRO dataset, which is released as
part of this publication and is available on Zenodo 4.

IV. TRAINING EXPERIMENTS

All experiments in this paper use Kong et al.’s [4] model
architecture and implementation. They use a deep neural

3https://github.com/almostimplemented/piano-capture
4https://zenodo.org/records/10082144
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network architecture that combines convolutional layers for
feature extraction from input spectrograms with gated recur-
rent units to capture temporal dependencies. Precise onset
and offset time predictions are achieved via regression heads.
However, this choice is somewhat arbitrary: other powerful
transcription models could have been used. Instead of focusing
on modifications to the model architecture, we analyze various
training conditions characterized by the training data.

A. Data Augmentation Experiment

Training with the data collected from the studio recording
setup exhibited severe overfitting. Our initial training experi-
ment used only the studio audio with no data augmentation.
We evaluate on the test split of MAESTRO, first using the
Studio MAESTRO audio and then using the original audio.
On the Studio MAESTRO data, the note-onset metrics [20]
are (Precision = 99.75, Recall = 95.09, F1 = 97.32).
On the original MAESTRO data, the performance falls to
(Precision = 77.08, Recall = 85.69, F1 = 80.77). We be-
lieve the lack of acoustic and timbral variety limits the ability
of the network to generalize to new pianos. To address these
shortcomings, we deploy a novel data augmentation pipeline
and supplement the training data with the original MAESTRO
audio plus six additional audio renderings (varying in timbre)
of the MIDI by Modartt Pianoteq version 7 5.

Figure 1 shows the general scheme of our data augmentation
pipeline, which is implemented with the audiomentations
package and is inspired by the pipeline of Hawthorne et al.
[2] with a few modifications. We apply two random seven
band parametric equalizers, additive background noise with
a variable signal-to-noise (SNR) ratio, random pitch shifting
(between ±0.1 semitones), and reverb. The background noise
is inspired by the pub noise of the Audio Degradation Toolbox
(ADT) [14]: the audio files consist of recordings of noisy
public environments, typically at cafes and bars. We use
restaurant08.wav from ADT plus four recordings avail-
able on freesound.org, cut into 10-second segments to apply
at training time (each training example is also 10 seconds).
The reverb is similarly generated from 14 impulse responses
from echothief.com. For each training example, there is a 50%
chance that each stage of the pipeline will be applied.

The neural network model is taken from Kong et al. [4].
During training we use a batch size of 32, a learning rate of
5×10−4, and run for 200000 steps. Since we have 8 different
sources of audio (original MAESTRO, Studio MAESTRO, and
the six synthesized versions), we apply a sampling scheme
of 1/4, 1/4, 1/12, ..., 1/12 respectively. We forgo training the
pedal predictor and focus on note-onset prediction, which is
independent of the model’s pedal predictions.

B. Results

We present results of evaluation on the MAPS test set
configuration [11]. Note-onset precision, recall, and F1 are
reported in Table I. In all cases, the models were not trained
on the MAPS dataset. Maman and Bermano [18] was the

5https://www.modartt.com/pianoteq overview

TABLE I
OUT-OF-DISTRIBUTION PERFORMANCE OF STATE-OF-THE-ART PIANO

TRANSCRIPTION MODELS EVALUATED ON THE MAPS TEST SET.

Note-level metrics

Model Precision Recall F1

Hawthorne et al. [2] 87.5 85.6 86.4
Kong et al. [4] 78.3 87.2 82.4
Maman and Bermano [18] 88.2 86.5 87.3
Toyama et al. [7] 84.6 85.7 85.1
Ours 89.5 87.4 88.4

existing SOTA on the MAPS test set, which can be attributed
to the diversity of their training data. Toyama et al. [7] hold
the SOTA on the MAESTRO test set (Precision = 99.64,
Recall = 95.44, F1 = 97.44), but their model fails to reach
comparable performance in the out-of-distribution setting on
MAPS. Our model achieves a new SOTA for MAPS, without
ever training on the MAPS train split. The model architecture
is identical to Kong et al. [4], so the 6% improvement
owes exclusively to our data-driven methodology. It is worth
noting that all models (except Maman and Bermano) suffer
a considerable drop in performance when evaluating on the
MAPS test set compared to that of MAESTRO. This motivates
further investigation into regularization techniques of these
models. In the next section, we look at the effect of our chosen
data augmentations in finer detail.

V. DATA AUGMENTATION ANALYSIS

We present several experiments to explore the effect of data
augmentation on training piano transcription systems. The first
experiment (V-A) applies our data augmentations indepen-
dently at test time to demonstrate the sensitivity of a model
trained without augmentation. The second experiment (V-B)
applies each augmentation at training time and measures the
impact on out-of-distribution evaluation. The final experiment
(V-C) is an ablation study, again at training time, that removes
one component of the augmentation pipeline at a time.

TABLE II
Data Degradation Results, SHOWING THE EFFECT OF DATA

AUGMENTATION ON PERFORMANCE. KONG ET AL.’S MODEL IS TRAINED
ONLY ON MAESTRO’S TRAINING DATA. OUR MODEL BENEFITS FROM A

DIVERSIFIED TRAINING SET, INCLUDING ORIGINAL, STUDIO, AND
SYNTHESIZED MAESTRO RECORDINGS, ALL AUGMENTED. EVALUATION
SPANS TEST SPLITS FROM MAESTRO, STUDIO MAESTRO, AND MAPS,

FOCUSING ON THE NOTE-ONSET F1 SCORE.

MAESTRO Studio MAPS

Kong [4] Ours Kong [4] Ours Kong [4] Ours

No Augmentation 96.8 96.6 95.7 97.7 82.4 88.4
Background Noise 93.4 95.4 91.4 97.1 82.6 88.1
EQ 96.6 96.5 95.1 97.7 81.8 88.4
Pitch Shift 85.2 94.1 76.5 96.0 72.4 87.3
Reverb 89.1 95.2 87.0 96.9 72.3 87.1

A. Data Degradation Study

As an initial investigation of the robustness of published
models, we show in Table II how simple augmentations to
test data can cause a dramatic drop in accuracy. We decompose
our data augmentation pipeline and apply each augmentation

https://freesound.org
https://echothief.com
https://www.modartt.com/pianoteq_overview
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in isolation during test set evaluation. We perform this on
three datasets: MAPS, MAESTRO, and Studio MAESTRO.
We evaluate Kong et al.’s and our best model trained with data
augmentation. Kong’s model suffers a significant drop in F1
score across all conditions, as much as 19.2 percentage points.
Our model is mostly invariant to the perturbations, with the
largest drop of only 2.5.

B. Single Augmentations

To better understand the influence of data augmentation
during training, we conduct a series of training experiments
during which we apply only one augmentation. Furthermore,
we look at the influence of selection of training data, using
either the original MAESTRO or the Studio MAESTRO re-
recording. Each augmentation is applied during training time,
again with a 50% probability of being applied per example.
Due to resource constraints, we limit the training to 28,000
steps (roughly 10 epochs over the ground truth labels). All
other training parameters match those described in Section
IV-B. The results are shown in Table III. The importance
of pitch shifting and reverb as data augmentation techniques
is evident, with out-of-distribution improvements in F1 score
of 3.1% and 2.8% respectively. In these experiments, the
additive background noise augmentation seems insignificant
or even detrimental to performance. This is likely due to the
clean recording conditions of the MAPS test set. The EQ
augmentation also does not appear to help. This could indicate
poor parameterization of the equalizer, or perhaps too weak
boosts and cuts.

TABLE III
Single Augmentation Results:

EACH VALUE CORRESPONDS TO THE NOTE-ONSET F1 SCORE WHEN
EVALUATING ON THE MAPS TEST SET. EACH EXPERIMENTAL CONDITION

USED A SINGLE DATA AUGMENTATION AND EITHER THE ORIGINAL
MAESTRO DATA OR THE STUDIO MAESTRO DATA.

Training data

MAESTRO Studio MAESTRO

Augmentation

No Augmentation 82.4 6 75.2
Background 82.7 (+0.3) 73.3 (-1.9)
Pitch Shift 85.5 (+3.1) 78.3 (+3.1)
Reverb 85.2 (+2.8) 76.6 (+1.4)
EQ 82.1 (-0.3) 74.4 (-0.8)

C. Ablation Study

In the next series of experiments, we again run training for
28,000 steps, but this time we remove only one component
from the full data augmentation pipeline. The results are
reported in Table IV, with the first row being the full data
augmentation pipeline. Once again, the strong influence of
pitch shifting and reverb are demonstrated by the relatively
large drop in performance when skipping these augmentations.
Some interaction effects seem to be present between the
various augmentations. In particular, the EQ augmentation
appears inconsequential or even detrimental when applied as

6For this condition, we report the evaluation of the published model.

TABLE IV
Ablation Experiments:

IN THESE EXPERIMENTS, WE TRAIN THE MODEL WITH VERSIONS OF THE
DATA AUGMENTATION PIPELINE WITH ONE AUGMENTATION REMOVED.

NOTE-ONSET F1 SCORE ON THE MAPS TEST SET IS REPORTED.

Training data

MAESTRO Studio MAESTRO

Ablation

Full Augmentation 86.4 79.0
Skip Background 85.4 (-1.0) 78.8 (-0.2)
Skip Pitch Shift 82.9 (-3.5) 75.6 (-3.4)
Skip Reverb 82.8 (-3.6) 77.1 (-1.9)
Skip EQ 86.4 (-0.0) 77.8 (-1.2)

a single augmentation, but removing it from the pipeline in
the ablation study hurts results.

VI. CONCLUSION

This work explored the role of data and data augmentation
techniques in enhancing the robustness of APT systems, partic-
ularly regarding their performance on out-of-distribution data.
Utilizing a new studio recording of the MAESTRO dataset and
simple data augmentation, our research yields a new SOTA on
the MAPS test set and new insights into the influence of data
augmentation on piano transcription models.

Despite the strong performance on the MAPS test set, the
findings underscore the nuanced and occasionally divergent
effects of different data augmentations. Particularly, pitch
shifting and reverb emerged as substantial in improving model
generalization, while others like EQ augmentation did not
yield anticipated benefits. A limitation of our approach is
that the combinatorial nature of exploring mixtures of data
augmentations made an exhaustive study prohibitively expen-
sive. Furthermore, we were unable to conduct precise tests of
significance, which would require running the training task
for every condition multiple times and measuring variance
across runs. Additional evaluation datasets are necessary to
further measure the robustness of our model; in particular, live
performances in a noisy environment would provide a better
indication of whether the background noise augmentation is
useful.

Moving forward, one avenue for future work lies in lever-
aging the advanced physical modeling features of Pianoteq to
synthesize piano audio with diverse tunings and string inhar-
monicities, which could further enrich the timbral diversity of
training data. Additionally, the studio recording of MAESTRO
may present a valuable resource for other research areas,
such as audio style transfer, offering a unique opportunity to
delve into style translations between different recordings. The
gap between performance on MAESTRO test and MAPS test
motivates further research into the differences between these
datasets, to ensure accuracy of their labels and identify any
inconsistencies.

In light of our findings, we advocate for a heightened
emphasis on out-of-distribution evaluation in future music
transcription research, not only to benchmark model per-
formance but also to delve deeper into understanding and
enhancing model robustness and generalization across varied
and potentially challenging acoustic environments.
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