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1 Introduction

Correlation analysis of linear relationships between random variables of a univariate time

series or linkages between variables of multiple time series is an initial step in many empirical

analysis of economic and financial data. The widely used test for correlation at an individual

lag is the standard t-test developed by Gosset (Student (1908)). Ljung and Box (1978)

introduced a cumulative version of the test for non-zero correlation at multiple lags which

subsumes test results at individual lags within a broader maintained hypothesis. Haugh and

Box (1977) extended the methodology to test zero cross-correlation at individual and multiple

lags.

Cumulative statistic testing for zero correlation is a well-studied problem in the literature

when the uncorrelated process {xt} is stationary with a martingale difference structure or is

mixing. Hong (1996), Deo (2000) and Shao (2011) tested for constancy of the spectral density

function and work of Hong and Lee (2005, 2007) allowed for testing martingale difference noise

conditions. Robinson (1991) suggested diagnostics for serial correlation in regression distur-

bances and Guo and Phillips (2001) introduced a cumulative test for stationary martingale

differences that resembles our own test in this paper. Romano and Thombs (1996), Lobato,

Nankervis and Savin (2002) and Horowitz, Lobato and Savin (2006) among others, developed

portmanteau tests that involve kernel or bootstrap estimation. These tests require selection

of a bandwidth parameter, impose stationarity and mixing assumptions on the noise, and are

often not straightforward to implement. An additional concern in applications is that these

tests may suffer size distortions in finite samples and they require uncorrelated noise to be

stationary.

Testing for zero cross-correlation is less investigated and dates to Cumby and Huizinga

(1992) and Kyriazidou (1998). Their setting assumes stationarity and excludes unconditional

heteroskedasticity. However, it is well documented in the empirical finance and macroeco-

nomic literatures that assumptions such as constant conditional homoscedasticity or constant

unconditional variance in uncorrelated noise clashes with the data. Patton (2011), Goncalves

and Kilian (2004) and Cavaliere, Nielsen and Taylor (2017) provide examples and discussion

of the limitations of these conditions.

We focus in this paper on testing for the absence of correlation and cross-correlation

under general heterogeneity when non-stationary uncorrelated data can be decomposed as

xt = µx + htεt. Here, the uncorrelated noise εt is a stationary martingale difference process

which allows for stationary conditional heteroskedasticity and the scale factor ht allows for

the capture of general heterogeneity and changes in the unconditional variance. We also show

that our test procedure can be applied to regression residuals, thereby providing a general

approach to correlation and cross-correlation testing for empirical work.

It is well known that the size of standard tests can be significantly distorted by the

presence of heteroskedasticity and data dependence, more specifically when the data is not
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a sequence of independent identically distributed (i.i.d.) random variables. Dalla, Giraitis,

and Phillips (2022) (subsequently, DGP (2022)) demonstrated that violation of the i.i.d.

property can lead to spurious detection of correlation. Instead, they provided a robust test

for the absence of correlation in heteroskedastic and possibly dependent time series, allowing

for heteroskedasticity (volatility) that takes the form of an evolving deterministic process.

While the robust testing methodology of DGP (2022) is attractive in its simplicity, the

requirement of smooth deterministic evolution in heteroskedastic behavior is restrictive and

can be unrealistic in some empirical settings where volatility is random and/or subject to

structural breaks. The present paper removes this requirement in testing for zero correlation

and zero cross-correlation. Our results show that the robust testing methodology is valid for

a broad class of uncorrelated non-stationary data in models with non-smooth deterministic

and stochastic heteroskedasticity. The assumptions of DGP (2022) are relaxed to such a

degree that verification of the validity of the limit theory requires significant new theoretical

developments in the proofs. Beyond the assumption of a martingale difference structure in

the primitive innovations εt only minimal additional conditions are required.

Simulations confirm good finite sample performance of the robust test procedures for

complex forms of univariate and bivariate innovations that substantially extend earlier find-

ings. These robust tests for correlation and cross-correlation are easy to implement and they

can be applied for a large class of uncorrelated noise processes. The tests are found to be

well-sized and their power is comparable with the size-corrected power of standard tests.

Additional experimental evidence is available on request, corroborating the limit theory that

outliers and missing data do not affect the good performance of the test procedures.

The paper is organized as follows. Sections 2 and 3 outline the framework and assumptions

for testing absence of serial correlation and cross-correlation, giving the asymptotic properties

of the robust test statistics and demonstrating that the tests remain valid when they are

performed on regression residuals. Section 4 reports simulations that corroborate the limit

theory and support finite sample implementations; this section also provides the robust testing

procedure for Pearson correlation. Section 5 presents several empirical applications. Section

6 concludes. Proofs, auxiliary lemmas, further simulation findings, and analyses of residual-

based testing, the impact of thresholding, heavy tailed data, and missing observations are all

provided in the Online Supplement in Sections 7–8. For further background information and

discussion of the approach readers are referred to DGP (2022).

An R package and an EViews add-in (named testcorr) are available to implement all the

testing procedures developed in the paper.1

1The R package is available on CRAN, https://cran.r-project.org/package=testcorr. The EViews add-in
is available at https://www.eviews.com/Addins/addins.shtml.
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2 Tests for zero autocorrelation

The autocorrelogram {ρk = corr(xt, xt−k)}∞k=1 contains key information about temporal

dependence in a time series xt. The empirical version of ρk calculated from observations

{xt : t = 1, ..., n} is the sample autocorrelation

ρ̂k =

∑n
t=k+1(xt − x̄)(xt−k − x̄)∑n

t=1(xt − x̄)2
, x̄ =

1

n

n∑
t=1

xt, (1)

providing consistent estimation of ρk under general conditions. Traditional time series mod-

eling makes extensive use of the empirical correlogram {ρ̂k}, an important element of which

is confirmation of lack of correlation {ρk = 0} in either the observed time series or regression

residuals. Testing the hypotheses H0 : ρk = 0 for multiple values of k is a different problem

from estimation of the ρk and does not rest solely on the fitted sample autocorrelations ρ̂k.

In fact, robust testing procedures for zero correlation discussed in DGP (2022) show the ad-

vantages of an approach that is based on tests constructed from t-type statistics rather than

the commonly used tests based on the sample autocorrelations ρ̂k alone. These advantages

are particularly important when the observed series xt is no longer a simple i.i.d. sequence.

In practical work with economic and financial data the i.i.d. condition is strong and typically

unrealistic, even though it has the attractive asymptotic property

√
nρ̂k →D N (0, 1), for all k ≥ 1, (2)

which led to the commonly used tests of H0 : ρk = 0 at individual lag k, starting with Yule

(1926).

Numerous authors have pointed out that the property (2) fails when the component

variables xt are uncorrelated but not i.i.d. In response to this concern DGP (2022) developed

a robust testing methodology within a wider setting for testing H0 : ρk = 0 based on a robust

self-normalized statistic of the type suggested in Taylor (1984); Guo and Phillips (2001):

t̃k =

∑n
t=k+1 etk

(
∑n

t=k+1 e
2
tk)

1/2
, etk = (xt − x̄)(xt−k − x̄). (3)

Under very general conditions the adjusted ρ̂k statistic

t̃k = ρ̂k ĉk →D N (0, 1), ĉk =
t̃k
ρ̂k

(4)

produces a valid confidence band for zero correlation at lag k. DGP (2022) explored the

advantages of the self-normalized statistic t̃k proving its asymptotic normality in settings

where uncorrelated random variables xt can be both dependent and nonstationary. Their

proofs of validity made use of strong smoothness restrictions on the scale (or unconditional

volatility) factor implicit in xt, although they conjectured that those restrictions might be
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relaxed without affecting the limit theory and robustness of the testing methodology. The

goal of the present paper is to establish this broad robustness.

To fix ideas assume that serially uncorrelated heteroskedastic time series xt has the same

general structure as in DGP (2022):

xt = µ+ ut, with ut = htεt, (5)

where εt is a zero mean stationary uncorrelated noise, ht is a scale factor, and {ht} and

{εt} are mutually independent. In our setting, the noise process {εt} allows for ARCH

type conditional heteroskedasticity and the scale factor ht ≥ 0 accounts for heterogeneity.

As shown below, in this general setting, testing for correlation in xt reduces to testing for

correlation in εt and does not exclude instances when corr(xt, xt−k) is undefined, for example

when Ex2t = ∞. In that event the limit theory may not be Gaussian unless ht satisfies

Assumption 2.2. For instance, if ht is very heavy tailed then the limit theory might be

bimodal – see Section 9 in the Online Supplement.

Next we outline assumptions on the noise εt and the scale factor ht which provide a

framework for testing absence of correlation in a wide class of time series xt. As in DGP

(2022) we use the following restrictions on the noise process.

Assumption 2.1. {εt} is a stationary martingale difference (m.d.) sequence with respect to

some σ-field filtration Ft:

E[εt|Ft−1] = 0, Eε4t <∞, Eε2t = 1,

where the filtration Ft = σ(es, s ≤ t) is generated by some suitably broad random process

{es}.

The primary example of Ft is the natural filtration comprising the information set generated

by the past history Ft = σ(εs, s ≤ t). A typical example of εt in practical work is the

ARCH/GARCH class, so that (5) allows for conditional heteroskedasticity in xt. It is useful

in some contexts and in some technical arguments to employ a broader filtration than the

natural filtration, which is the reason why Assumption 2.1 allows for Ft to be generated by

a more general process than εt.

The main novelty of the present paper is to widen the class of scale factors ht in the

analysis to include heterogeneous noise processes xt and allow for cases where the correla-

tion corr(xt, xt−k) of the observed time series itself may not exist. Since the factor ht is

not observed directly and typically requires strong assumptions to facilitate estimation, test

procedures that permit generality in ht are desirable in applications. Our approach to testing

zero autocorrelation in the noise εt process of xt in (5) is to allow for both deterministic and
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stochastic scale factors ht that enable considerable generality. Note particularly that

corr(xt, xt−k) =
E[htht−k](

var(ht)var(ht−k)
)1/2 corr(εt, εt−k),

so that corr(εt, εt−k) = 0 implies corr(xt, xt−k) = 0 when corr(xt, xt−k) is defined. However,

our test procedure does not exclude instances where var(xt) = 0 (ht = 0), thereby allowing

for missing observations, or var(xt) =∞ (var(ht) =∞), allowing for observations with heavy

tails.

DGP (2022) introduced robust tests for zero correlation when ht is deterministic with the

following properties

max
1≤t≤n

h4t = o(
n∑
t=1

h4t ),
n∑
t=2

(ht − ht−1)4 = o(
n∑
t=1

h4t ). (6)

These conditions facilitated the development of tests with a convenient asymptotic theory for

practical implementation. But while the first bound condition is weak, the second condition

is restrictive, requiring ht to have some degree of smoothness, such as a constant function, a

step function, or a smoothly varying function ht = g(t/n), where g is a continuous, bounded

function with bounded derivatives. Although the smoothness condition on the increments of

ht in (6) may not seem restrictive for much applied work, it does exclude certain cases such

as alternating sequences of the form {ht = 2, 1, 2, 1, ...} or volatility processes ht where the

scale factor has frequent jumps as in some financial data.

The main contribution of the present work is to relax assumption (6) and validate the

asymptotic theory without imposing smoothness on ht. The new condition involves a modified

version of the first bound condition of (6).

Assumption 2.2. {ht, t = 1, ..., n} is a deterministic or stochastic sequence with ht ≥ 0

which for lag k satisfies

max
1≤t≤n

h4t = op

( n∑
t=k+1

h2th
2
t−k

)
. (7)

Condition (7) clearly holds for deterministic sequences ht that change abruptly and fre-

quently, such as ht = 1, 2, 1, 2, 1, 2, .... Different from (6), (7) takes account of the specific

lag k. Thus, if ht = 1, 0, 1, 0, 1, 0, ... then (7) is satisfied for lags k = 2, 4, 6, ... but is not

satisfied for lags k = 1, 3, 5, .... Importantly, condition (7) allows ht to take on zero values

at some t, and it does not impose moment restrictions on ht only a maximal bound condi-

tion. An example of a stochastic scale factor satisfying Assumption 2.2 is a unit root process

ht = |
∑t

j=1 ηj | where ηj is an i.i.d. N (0, 1) noise.

Formally, Assumption 2.2 does not require existence of finite moments of ht when the

sequence is stochastic. But the validity of (7) may be affected by heavy tailed distributions

of ht. In particular, for very heavy tailed distributions it is well known that self normal-
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ized statistics often have bimodal distributions and these typically lead to conservative tests

when standard normal limit theory is mistakenly used for inference. This phenomenon arises

because large outlier observations dominate the self normalized ratio leading to some concen-

tration around modes, especially at ±1, thereby moving mass from the tails of the distribution

towards these modes. Simulations reported below in Section 4 include an example of an i.i.d.

random sequence ht distributed as Student’s t2 where this phenomenon occurs and (7) does

not hold. Additional analytic and simulation findings given in the Online Supplement (see

Section 9 in the Online Supplement) show bimodality of the limit distribution of the test

statistic t̃k in such cases. For examples of related sources of bimodality and some past anal-

yses in the literature, see Logan, Mallows, Rice and Shepp (1972), Fiorio, Hajivassiliou and

Phillips (2010), and Wang and Phillips (2022).

In addition to Assumption 2.2, testing at lag k requires the following assumption on εt.

Here and elsewhere in the Online Supplement we use the notation zt as a working variable,

whose meaning may change according to location.

Assumption 2.3. The sequence zt = zk,t = ε2t ε
2
t−k satisfies

Ez2t <∞, cov(zh, z0)→ 0, h→∞. (8)

Our main result gives the limit theory of the test statistic t̃k.

Theorem 2.1. Let {xt} be an uncorrelated noise of the form given in (5), suppose k ≥ 1,

and let Assumptions 2.1, 2.2 and 2.3 hold. Then, corr(εt, εt−k) = 0, and

t̃k →D N (0, 1). (9)

Notice that in model (5), corr(εt, εt−k) = 0 for all lags k ≥ 1, which implies overall that

{xt} is serially uncorrelated if corr(xt, xt−k) is defined. Theorem 2.1 can be obtained from

the bivariate case in Theorem 3.1 below by replacing yt by xt and noting that such bivariate

series {xt, yt} satisfies the assumptions of Theorem 3.1. All proofs are given in the Online

Supplement (see Section 7).

Cumulative test. The standard cumulative Ljung and Box (1978) test is based on the

statistic

LBm = (n+ 2)n

m∑
k=1

ρ̂ 2
k

n− k
(10)

and widely used for testing the joint null hypothesis H0 : ρ1 = ... = ρm = 0. Under H0,

it is asymptotically χ2
m distributed when {xt} is an i.i.d series but it may suffer severe size

distortions when {xt} is not i.i.d. To overcome this limitation, DGP (2022) introduced the

robust cumulative test statistic Qm and its version Q̃m with thresholding defined as:

Qm = t̃ ′ R̂−1 t̃, Q̃m = t̃ ′ R̂∗−1 t̃. (11)
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Here, t̃ = (t̃1, ..., t̃m)′, and R̂ = (r̂jk) is an m × m matrix where r̂jk are a sample cross-

correlation of the variables {etj} and {etk}:

r̂jk =

∑n
t=max(j,k)+1 etjetk

(
∑n

t=max(j,k)+1 e
2
tj)

1/2(
∑n

t=max(j,k)+1 e
2
tk)

1/2
, j, k = 1, ...,m. (12)

To improve the finite sample performance of the Qm test, DGP (2022) suggested to use a

thresholded version R̂∗ = (r̂ ∗jk) of R̂, where

r̂ ∗jk = r̂jkI(|τjk| > λ), (13)

λ > 0 is a thresholding parameter, and τjk is a t-type statistic

τjk =

∑n
t=max(j,k)+1 etjetk

(
∑n

t=max(j,k)+1 e
2
tje

2
tk)

1/2
. (14)

DGP (2022) assumed ht to be smooth and deterministic, which adds simplicity and trans-

parency to analysis of the cumulative robust testing procedure. In the next theorem we show

that the cumulative testing procedure at lag m is valid when scale factors are non-smooth

and stochastic. We make the following additional assumption.

Assumption 2.4. For any j, k = 1, ...,m,

(i) the sequence zt = zt,jk = (εtεt−j)(εtεt−k), t = 1, 2, ... satisfies

Ez2t <∞, cov(z0, zh)→ 0, h→∞; (15)

(ii) xt satisfies Assumptions 2.1 and 2.2.

The following theorem establishes the asymptotic behavior of the robust test statistics Qm

and Q̃m used to test the cumulative hypotheses of absence of correlation at lags k = 1, ...,m.

Theorem 2.2. Let {xt} be as in (5), m ≥ 1, and Assumption 2.4 hold. Then, as n → ∞,

for any threshold λ > 0,

Qm →D χ2
m, Q̃m →D χ2

m. (16)

Our empirical applications and Monte Carlo study use the thresholds λ = 1.96 and λ = 2.57

suggested in DGP (2022) which lead to well-sized testing procedures in finite samples.

Theorem 2.2 shows that the asymptotic distribution of the cumulative robust test Q̃m is

not affected by the threshold parameter λ. It can be selected in advance and does not require

data-driven selection, for more details, see DGP (2022). The purpose of thresholding is assist

in achieving the correct size of the test Q̃m in finite samples. We recommend using for λ

the 90%, 95% and 99% critical values of the standard normal distribution. Simulations in
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Section 8.2 of the Online Supplement, show that when the sample size is small, thresholding

is essential. In particular, the values λ = 1.96, λ = 2.57 stabilize test size; and, as the sample

size increases, thresholding can still help to improve the size of the Q̃m test, but the choice

of the value λ does not make a significant difference.

Consistency. It remains to show that under the alternative the robust test t̃k is able detect

the presence of correlation corr(εk, ε0) 6= 0 at the individual lag k. Recall that the latter

implies corr(xt, xt−k) 6= 0 if corr(xt, xt−k) is defined. Under this alternative hypothesis, the

process {εt} is assumed to have short memory, as defined below.

Definition 2.1. A stationary sequence {ut} has short memory if
∑∞

j=−∞ |cov(uj , u0)| <∞.

Theorem 2.3. Let xt = µx + htεt, where {εt} is a stationary sequence. Let k ≥ 0 be such

that cov(εk, ε0) 6= 0. Suppose that {εt} and {zt = εtεt−k} are short memory sequences and

Assumptions 2.2 and 2.3 are satisfied. Then, as n→∞, t̃k →p ∞.

Simulations show that the choice of the value of λ does not have a significant impact on the

power of the test.

2.1 Testing for zero correlation in regression residuals

One practical implementation of the robust test is residual-based testing for the absence of

correlation in the noise {ut} process of a linear regression model such as

ft = β′Zt + ut, ut = htεt, (17)

where β is a p×1 vector and Zt = (Z1,t, ..., Zp,t) is a stochastic regressor with initial component

Z1,t = 1 to allow for an intercept. Under some additional conditions we now show that testing

can be based on the regression residuals

ût = (β − β̂)′Zt + ut, (18)

where β̂ is the ordinary least squares (OLS) estimate of β.

For a general analysis it is convenient to focus on the signal plus noise framework

xt = α′nZt + {µx + ut}, ut = htεt, (19)

where the signal ut is observed with additive noise α′nZt. The residuals (18) from the regres-

sion model (17) can be written as xt = α′nZt+ut with αn = β− β̂. The following assumption

assures the negligibility of a regression-induced additive term such as α′nZt in (19). We

suppose that

||αn|| = Op

((
∑n

t=k+1 h
2
th

2
t−k)

1/4

√
n

)
(20)
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for lag k ≥ 1 in Theorem 2.1 and lags k ∈ {1, ...,m} in Theorem 2.2. This assumption is

satisfied in the linear regression (17), as shown in Lemma A3 of the Online Supplement.

Assumption 2.5. The following assumptions hold on (Zt, ut) in (19).

(i) The elements of {ZtZ ′t} are covariance stationary short memory processes.

(ii) For any k ≥ 0, the elements of {Ztεt−k}, {εtZt−k} are zero mean covariance station-

ary short memory processes.

(iii) {ht} is independent of {Zt, εt}.

The following theorem provides conditions for residual-based testing of zero correlation. In

particular, the linear regression model (17) satisfies condition (20) and allows for such testing

using OLS residuals.

Theorem 2.4. Theorems 2.1 and 2.2 remain valid if instead of xt = µx + ut testing is based

on data xt as in (19), provided Assumption 2.5 is satisfied and condition (20) holds. In

particular, OLS residuals from fitting a linear regression model of the form (17) satisfy (20).

2.2 Testing for zero correlation when {ht} and {εt} are dependent

The framework (5) employed for the data assumes that noise can be decomposed as xt =

µx + htεt, so that the scale factor {ht} and a stationary m.d. noise {εt} are mutually

independent. This covers a large variety of uncorrelated noise processes {xt}. Most ARCH

and stochastic volatility models in financial econometrics take the form of a simpler noise

process like xt = εt, where εt = σtet is a stationary m.d. sequence. In these models the

conditional heteroskedasticity σt term is a part of a stationary process εt, and ht = 1. Hence,

in our setting, stationary conditional heteroskedasticity σt is covered by εt, while the scale

factor ht allows for modeling heterogeneity effects that may be present in the data.

Clearly a stochastic noise process {εt} is independent of any deterministic scale factor

{ht}. It is therefore natural to ask whether testing results remain valid when {ht} is itself

stochastic and dependent on {εt}. The answer appears to be: yes and no. In general, it is

difficult to construct an example of such a stochastic ht which is Ft−1 measurable, so that

cov(xt, xs) = 0 for t 6= s, but for which the size of our testing procedures is distorted. In

fact, our Monte Carlo simulation findings corroborate the validity of the testing procedure

for most such ht scale factors.

In Theorem 2.5 we provide a model and additional conditions which enable application

of our testing procedure for zero correlation in the above case. The framework gives the scale

factor ht a unit root type structure. The design of this setting is inspired by the derivation of

the limit distribution in Phillips (1987) for general unit root testing, but with the difference

that in our case asymptotic normality is preserved.

The following assumption permits dependence between {ht} and the noise {εt}.
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Assumption 2.6. The scale factor satisfies ht = |h̃t−1|, t = 1, ..., n where h̃t is a random

walk measurable with respect to the σ-field Ft of Assumption 2.1. We suppose that

h̃t =
t∑

s=1

ξs + h̃0, (21)

where {ξt} is an m.d. sequence with respect to Ft, E[ξ8t ] <∞, and E[h̃80] <∞. Additionally,

{ξt}, {εt} and {ξtεtεt−k}, k ≥ 0 are all stationary ergodic sequences.

Assumptions 2.1 and 2.6 imply that cov(xt, xt−k) = 0 for any k ≥ 1. The validity of The-

orems 2.1 and 2.2 is guaranteed by the absence of cross-correlation between noise processes

{ξs, εtεt−k}, i.e.,

cov(ξs, εtεt−k) = 0, for all t, s ≥ 1 (22)

and for all lags k that are used in the test procedure. It is worth noting that for t 6= s (22) is

valid because {ξt} and {εt} are m.d. sequences with respect to the same σ-field Ft. Therefore

(22) holds if E[ξtεtεt−k] = 0 for t ≥ 1.

Theorem 2.5. Let xt = µx + htεt where {ht} and {εt} satisfy Assumptions 2.1 and 2.6.

(i) If k ≥ 1 satisfies (22), then Theorem 2.1 holds.

(ii) If k = m0, ...,m satisfy (22), then Theorem 2.2 holds.

In the proof of Theorem 2.5, we show that the robust test statistic t̃k at lag k ≥ 1 has the

following limit theory property

t̃k →D

∫ 1
0 U

2(s)dW (s)( ∫ 1
0 U

4(s)ds
)1/2 =D N (0, 1), (23)

where U(s) and W (s) are two independent Wiener processes. We also verify that ht in

Theorem 2.5 satisfies Assumption 2.2 used in Section 2.

Our next example shows that Theorem 2.1 may not hold when {ht} and {εt} are mutually

dependent. We use a similar model setting as in Theorem 2.5.

Corollary 2.1. Let xt = µx+htεt where {εt} is an i.i.d zero mean sequence with E[ε4t ] <∞.

Suppose that ht is defined as in Assumption 2.6 with ξt = εtεt−1 and h0 = 0. Then,

t̃1 →D

∫ 1
0 W

2(s)dW (s)( ∫ 1
0 W

4(s)ds
)1/2 , (24)

t̃k →D N (0, 1) for k ≥ 2,

where W (s) is a standard Wiener processes.
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This example matches the setting of Theorem 2.5 except for condition (22). For k = 1,

cov(ξt, εtεt−1) = var(ξt) > 0 and the asymptotic normality for t̃1 does not hold. But for

k ≥ 2 {ξt} satisfies (22) and t̃k is asymptotically normally distributed.

3 Testing for zero cross-correlation

We next discuss testing for cross-correlation between two time series {xt} and {yt}. Similar

to the univariate case, the sample cross-correlations ρ̂xy,k at lags k = 0, 1, 2, ... based on

observed data x1, ..., xn and y1, ..., yn are given by

ρ̂xy,k =

∑n
t=k+1(xt − x̄)(yt−k − ȳ)√∑n
t=1(xt − x̄)2

∑n
t=1(yt − ȳ)2

, x̄ =
1

n

n∑
t=1

xt, ȳ =
1

n

n∑
t=1

yt, (25)

allowing estimation of ρxy,k = corr(xt, yt−k). Again, the standard test for absence of cross-

correlation is built on the asymptotic property

√
nρ̂xy,k →D N (0, 1), (26)

which is commonly used for testing H0 : ρxy,k = 0 at an individual lag k. However, such tests

suffer size distortion when the two series {xt} and {yt} are either not i.i.d. or not mutually

independent. DGP (2022) developed a robust testing methodology based on

t̃xy,k =

∑n
t=k+1 exy,tk

(
∑n

t=k+1 e
2
xy,tk)

1/2
, with exy,tk = (xt − x̄)(yt−k − ȳ). (27)

They showed that the statistic ρ̂xy,k should be corrected for its variance as in

t̃xy,k = ρ̂xy,k ĉxy,k →D N (0, 1), with ĉxy,k =
t̃xy,k
ρ̂xy,k

, (28)

which leads to correct size and confidence bands for zero cross-correlation at lag k.

In developing this test DGP (2022) assumed the scale factors ht, gt to be deterministic

and smooth. Here, we relinquish the smoothness assumption and allow the scale factors ht, gt

to be stochastic. Our model setup is as follows. Two time series are observed in which

xt = µx + ut, ut = htεt, and yt = µy + vt, vt = gtηt, (29)

where ht ≥ 0, gt ≥ 0 are (deterministic or stochastic) scale factors, {εt}, {ηt} are stationary

time series with Eεt = 0, Eε2t = 1 and Eηt = 0, Eη2t = 1, and µx, µy are real numbers. We

assume that {ht, gt} are mutually independent of {εt, ηt}. The absence of cross-correlation

between xt and yt−k is now determined by the absence cross-correlation between εt and ηt−k.
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Indeed,

cov(xt, yt−k) = E[htgt−k]cov(εt, ηt−k) = 0 if cov(εt, ηt−k) = 0. (30)

As in the univariate case, testing for cross-correlation in the setting (29) (with scale factors)

reduces to testing for cov(εt, ηt−k) = 0, which implies cov(xt, yt−k) = 0 if cross-covariance

exists.

(i) Testing at individual lags. We start by outlining conditions on the noise processes

{εt, ηt} and scale factors {ht, gt} that enable testing for absence of cross-correlation between

series {xt} and {yt} at an individual lag k ≥ 0. These are stated below for the lag at which

testing is conducted.

Assumption 3.1. {zt := εtηt−k} is a stationary m.d. sequence with respect to a filtration

Ft for which

E[zt|Ft−1] = 0, Ez2t <∞. (31)

The leading sequence εt is assumed to be an m.d. sequence with respect to Ft, i.e. E[εt|Ft−1] =

0, whereas ηt−k is an Ft−1 measurable short memory sequence, i.e. E[ηt−k|Ft−1] = ηt−k.

This condition implies corr(εt, ηt−k) = 0 and overall corr(xt, yt−k) = 0 for all t. The key

requirement is (31). The m.d. property is imposed only on the cross-product zt = εtηt−k of

the noises. In particular, this setting allows testing for cross-correlation when both the leading

sequence {xt} and the lagged sequence {yt} are uncorrelated noises, e.g. regression residuals

as in Section 3.1. The lagged sequence may be also a stationary sequence yt = Eyt+(yt−Eyt),
since it may be written as in (29) with µy = Eyt, ht = 1, ηt = yt − µy.

The following is an example of a noise zt satisfying Assumption 3.1.

Example 3.1. Let {εt} be a stationary m.d. sequence with respect to some σ-field Ft, and

ηt = v(εt−1, εt−2, ...) where v is a measurable function. Assume that Eε4t <∞ and Eη4t <∞.

Then, for any k ≥ 0,

E[zt|Ft−1] = E[εtηt−k|Ft−1] = E[εtv(εt−1−k, εt−2−k, ...)|Ft−1]

= v(εt−1−k, εt−2−k, ...)E[εt|Ft−1] = 0,

and Ez2t ≤ (E[ε4t ]E[η4t−k])
1/2 <∞.

The following condition on the scale factors ht, gt is unrestrictive and stated for the lag

k ≥ 0 at which testing is conducted. It allows for deterministic and stochastic scale factors,

and does not impose the smoothness restrictions that were used in DGP (2022).

Assumption 3.2. {ht ≥ 0, gt ≥ 0} have the following property

max
1≤t≤n

h4t = op

( n∑
t=k+1

h2t g
2
t−k

)
, max

1≤t≤n
g4t = op

( n∑
t=k+1

h2t g
2
t−k

)
. (32)
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Notably, this assumption does not require the existence of finite moments of ht, gt.

Assumption 3.3. Sequence {νt = ε2t η
2
t−k} is covariance stationary and

cov(νh, ν0)→ 0, h→∞. (33)

The following result gives the limit theory for the test statistic t̃xy,k we use to test for zero

cross-correlation at lag k.

Theorem 3.1. Let {xt, yt} be as in (29). Suppose that k ≥ 0, and Assumptions 3.1, 3.2 and

3.3 are satisfied. Then, corr(εt, ηt−k) = 0 and, as n→∞,

t̃xy,k →D N (0, 1). (34)

Under Assumption 3.1, corr(εt, ηt−k) = 0 which implies corr(xt, yt−k) = 0 for all t such that

corr(xt, yt−k) is defined.

(ii) Cumulative testing. We next consider testing the cumulative hypotheses

H0 : corr(xt, yt−k) = 0 for m0 ≤ k ≤ m and all t, (35)

where 0 ≤ m0 < m. As pointed out in DGP (2022), the cumulative Haugh and Box (1977)

test for cross-correlation that is based on

HBxy,m = n2
m∑

k=m0

ρ̂ 2
xy,k

n− k
(36)

assumes mutual independence of the time series {xt} and {yt} which is too restrictive for most

applications. Instead, to address this shortcoming and improve finite sample performance

DGP (2022) introduced the following robust cumulative test statistics

Qxy,m = t̃ ′xy R̂
−1
xy t̃xy, Q̃xy,m = t̃ ′xy R̂

∗−1
xy t̃xy, (37)

where t̃xy = (t̃xy,m0 , ..., t̃xy,m)′ and R̂xy = (r̂xy,jk)j,k=m0,...,m is a matrix with elements

r̂xy,jk =

∑n
t=max(j,k)+1 exy,tjexy,tk

(
∑n

t=max(j,k)+1 e
2
xy,tj)

1/2(
∑n

t=max(j,k)+1 e
2
xy,tk)

1/2
. (38)

In applications, DGP (2022) suggested to use Q̃xy,m with the thresholded version R̂∗xy =

(r̂ ∗xy,jk)j,k=m0,...,m of R̂xy, given by

r̂ ∗xy,jk = r̂xy,jkI(|τxy,jk| > λ) with (39)

τxy,jk =

∑n
t=max(j,k)+1 exy,tjexy,tk

(
∑n

t=max(j,k)+1 e
2
xy,tje

2
xy,tk)

1/2
,
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where λ > 0 is the thresholding parameter, and τxy,jk is a t-statistic, see DGP (2022) for

more details. The asymptotic theory holds for any threshold values λ > 0.

For testing the cumulative hypothesis H0 : corr(εt, ηt−k) = 0 for k ∈ [m0,m], we assume

that the variables εt, ηt and ht, gt satisfy the following conditions for all lags k ∈ [m0,m].

Assumption 3.4. For any j, k = m0, ...,m,

(i) The sequence νt = (εtηt−j)(εtηt−k) is covariance stationary and

Eν2t <∞, cov(νh, ν0)→ 0, h→∞. (40)

(ii) {εt, ηt} satisfy Assumption 3.1.

(iii) {ht, gt} satisfy Assumption 3.2.

Theorem 3.2. Let {xt} and {yt} be as in (29). Suppose that corr(εt, ηt−k) = 0, k ∈ [m0,m]

and Assumption 3.4 is satisfied. Then, as n→∞, for any λ > 0,

Qxy,m →D χ2
m−m0+1, Q̃xy,m →D χ2

m−m0+1. (41)

Recall, that under Assumption 3.4, corr(εt, ηt−k) = 0 for k ∈ [m0,m] which implies

corr(xt, yt−k) = 0 for corresponding t, k if corr(xt, yt−k) is defined. Monte Carlo simulations

confirm good finite sample properties of the robust test statistic Q̃xy,m. For applications,

testing for zero cross-correlation between two series of uncorrelated variables {xt} and {yt},
in finite samples we recommend using Q̃xy,m with λ = 1.96 or 2.57. When the lagged series

{yt} is a stationary series of dependent variables, simulations show that thresholding might

be not needed and that evidence confirms that the best choice for λ is zero.

(iii) Test Consistency. Finally, we show that the robust test t̃xy,k at individual lag k

is consistent if corr(εt, ηt−k) 6= 0. The latter implies corr(xt, yt−k) 6= 0 if corr(xt, yt−k) is

defined. In such cases, E[εtηt−k] 6= 0, and, different from the null hypotheses of the absence

of correlation, we assume that zt = εtηt−k is a stationary short memory sequence. The

following result now holds.

Theorem 3.3. Let {xt, yt} be as in (29) and k ≥ 0 be such that corr(εt, ηt−k) 6= 0. Suppose

that {εt}, {ηt} and {zt = εtηt−k} are short memory sequences and Assumptions 3.2 and 3.3

are satisfied. Then, as n→∞, t̃xy,k →p ∞.
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3.1 Residual-based testing for zero cross-correlation

We consider residual-based testing for zero cross-correlation between noise sequences {ut}
and {vt} in two regression models

ft = β′Zt + ut, ut = htεt,

st = ν ′Vt + vt, vt = gtηt,
(42)

where β and ν are p × 1 and q × 1 vectors, Zt = (Z1,t, ..., Zp,t) and Vt = (V1,t, ..., Vq,t) are

stochastic regressors, and the noise sequences ut and vt satisfy assumptions of Theorems 3.1

and 3.2. To allows for an intercept, we set Z1,t = 1, V1,t = 1.

Our primary interest is to determine conditions for testing zero cross-correlation between

the sequences {ut} and {vt} using residuals from the fitted regressions

ût = ft − β̂′Zt = (β − β̂)′Zt + ut,

v̂t = st − ν̂ ′Vt = (ν − ν̂)′Vt + vt,
(43)

where β̂ and ν̂ are OLS estimates of β and ν. The following development allows for a slightly

more general signal plus noise setting of the form

xt = α′1nZt + {µx + ut}, ut = htεt,

yt = α′2nVt + {µy + vt}, vt = gtηt,
(44)

where the signals µx + ut, µy + vt are observed with the additive noise processes {α′1nZt,
α′2nVt}. The residuals (43) of the fitted regression can be written as in (44) with

α1n = β − β̂, α2n = ν − ν̂.

Conditions of negligibility for the additive noise in (44) are provided by assuming that

||α`n|| = Op

((
∑n

t=k+1 h
2
t g

2
t−k)

1/4

√
n

)
, ` = 1, 2 (45)

for lag k ≥ 1 in Theorem 3.1 and lags k ∈ {m0, ...,m} in Theorem 3.2. This condition is

satisfied by the residuals of the fitted linear regression model (42).

Assumption 3.5. We make the following assumptions on Zt, Vt, ut, vt in (44).

(i) The elements of {ZtZ ′t} and {VtV ′t } are short memory covariance stationary processes.

(ii) For any k ≥ 0, the elements of {Ztεt}, {Ztvt−k} and {Vtηt}, {Vtεt−k} are zero mean

short memory covariance stationary processes.

(iii) {ht} is independent {Zt, Vt, εt} and {gt} is independent {Zt, Vt, ηt}.

The following theorem shows that testing for zero cross-correlation can be conducted using

regression residuals.
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Theorem 3.4. Theorems 3.1 and 3.2 remain valid if, instead of xt = µx+ut and yt = µy+vt,

testing is based on xt and yt as in (44), provided that (45) holds. In particular, residuals

obtained by fitting the linear regression model (42) satisfy (45).

4 Monte Carlo study

This section reports the findings from Monte Carlo simulations exploring finite sample size

and power performance of our robust univariate and bivariate tests for absence of correlation

in time series. We focus on models where the volatility scale factor is either non-smooth,

stochastic, or both, and thereby not covered by the findings of DGP (2022).

4.1 Size and power of tests for zero serial correlation

We use the robust and standard test statistics t̃k and tk to study empirical size of our testing

procedures for absence of autocorrelation at individual lag k, and the robust cumulative test

statistic Q̃m and the standard Ljung-Box test statistic LBm for testing at cumulative lag

m. The rejection frequency of the null hypothesis is compared with the nominal significance

level 5%. We conduct 5000 replications and report testing results for the sample size n =

300. Results for n = 100, 500, 2000 are available upon request. We perform testing at lags

k,m = 1, ..., 30, and Q̃m is computed using the threshold λ = 1.96.

To examine the properties of our testing procedures, we generate samples from

xt = 0.2 + htεt, t = 1, ..., n (46)

using two types of scale factors ht (non-smooth deterministic, stochastic) and two types of

an uncorrelated noise {εt}:

εt = et i.i.d. model, (47)

εt = σtet, σ
2
t = 1 + 0.2ε2t−1 + 0.7σ2t−1, GARCH(1,1) model,

where {et} is an i.i.d. N (0, 1) noise. The GARCH(1,1) noises {εt} are uncorrelated but not

independent. We use two models for {xt}.

Model 4.1. xt is as in (46), ht = 3
n bt/10c , and {εt} follows (47).

The floor notation bzc is used to denote the integer part of z. This model generates a serially

uncorrelated time series {xt} with a deterministic non-smooth scale factor ht. The ratio

Γk =
max1≤t≤n h

2
t

(
∑n

t=k+1 h
2
th

2
t−k)

1/2
(48)
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was computed for k = 1, ..., 30 to check Assumption 2.2 on ht for Model 4.1. The ratio is

around 0.12, so the condition is satisfied.

Figure 1 reports the empirical 5% size of the robust tests t̃k and Q̃m denoted by the solid

red line and the empirical 5% size of standard tests tk and LBm denoted by the solid blue

line for Model 4.1 when εt is i.i.d. N (0, 1) noise. The nominal significance level α = 5% is

denoted by a gray dashed line. The plots reveal a striking difference in performance between

the standard and robust tests arising due to heteroskedasticity (the time-varying scale factor

ht). The rejection frequency of the robust tests t̃k and Q̃m is close to the nominal 5% size,

so they allow relatively accurate testing for absence of correlation in {xt}. In contrast, the

standard tests tk and LBm are significantly oversized. Similar results for size were obtained

when εt is GARCH(1,1) noise.

(a) Size of t̃k, tk (b) Size of Q̃m, LBm

Figure 1: Empirical size (in %) of the robust tests t̃k and Q̃m (red line) and the standard
tests tk and LBm (blue line) at lags k,m = 1, ..., 30. Nominal size α = 5%. Model 4.1, εt ∼
i.i.d. N (0, 1).

Figure 2 reports test results for a single sample of the white noise Model 4.1 generated

with GARCH(1,1) noise εt. The panel on the left contains the correlogram. The robust 95%

and 99% confidence bands (CB) for zero correlation denoted by dashed and dotted red lines

are overall wider than the standard confidence bands denoted by dashed and dotted gray lines.

The robust CB’s do not confirm presence of correlation at the lags k = 1, ..., 30, detected by

the standard CB’s. (The robust CB’s are based on the property (4) while the standard CB’s

on the property (2).) The panel on the right reports the values of the cumulative robust

test Q̃m (red solid line) and the standard Ljung-Box test LBm (blue solid line) at the lags

m = 1, ..., 30. Both tests have the same 5% and 1% critical values (denoted by the dashed

and dotted gray lines). The robust test statistic Q̃m lays below the 5% critical value line

and does not detect presence of correlation at cumulative lags m = 1, ..., 30. In contrast, the

standard Ljung-Box test detects spurious correlation in the samples of xt generated by the

white noise Model 4.1. Similar results were obtained for a single sample of the Model 4.1
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(a) Correlogram (b) Cumulative tests

Figure 2: Left panel: sample autocorrelation ρ̂k, standard 5% and 1% (gray) and robust
(red) CB’s for non-significant correlation at lags k = 1, ..., 30. Right panel: standard (blue)
and robust (red) cumulative tests LBm, Q̃m and their 5% (dashed) and 1% (dotted) critical
values at lags m = 1, ..., 30. Single simulation. Model 4.1, εt ∼GARCH(1,1).

when εt is i.i.d. N (0, 1) noise.

We also compared sizes of the robust tests with the Hong (1996) and Shao (2011) tests

based on Hong’s statistic

Tn =

n∑
j=1

K2(j/mn)ρ̂2j . (49)

We used Bartlett, flat, and Gaussian kernels and bandwidth parameters mn = {n0.3, n0.5,
n0.6}. In all cases, Hong’s test statistic produces distorted size from 20% to 57%. For details

see Table 8 in the Online Supplement.

To examine test power we used the AR(1) model xt = 0.2 + βxt−1 + htεt with β = 0.25

and repeated the previous calculations for n = 300. Since the standard tests are oversized,

we computed size-corrected power for these tests. For lag 1, the power of the robust test

t̃1 is 88.84% and the size-corrected power of the standard test t1 is 86.36%. The power of

the robust cumulative test Q̃m is comparable with the size-corrected power of the Ljung-Box

LBm test for 15 lags, see Table 2 and Table 3 in the Online Supplement. The robust tests

show good power properties also for other values of β and sample sizes n and those simulation

results are available on request.

Model 4.2. xt is as in (46), ht = |
∑t

j=1 ηj |, {εt} follows (47), and ηt ∼ i.i.d.N (0, 1) noise

independent of {εt}.

In this model ht is the absolute value of a non-stationary stochastic unit root process. Vari-

ables xt generated by Model 4.2 are clearly uncorrelated. Figure 3 shows typical plots of

samples of xt. This kind of data is commonly seen in empirical research, and robust testing

for the absence of correlation requires the investigator to be agnostic about its structure.
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(a) Plot of xt when εt ∼ i.i.d. (b) Plot of xt when εt ∼ GARCH(1,1)

Figure 3: Plots of ht and xt = 0.2 + htεt. Model 4.2, n = 300.

(a) Size of t̃k, tk (b) Size of Q̃m, LBm

Figure 4: Empirical sizes (in %) of the tests t̃k, tk (left panel) and Q̃m, LBm (right panel).
Nominal size α = 5%. Model 4.2, εt ∼GARCH(1,1).

In Figure 4, we report empirical sizes of the tests t̃k, tk and the cumulative tests Q̃m

and LBm for absence of correlations in Model 4.2 when εt is GARCH(1,1) noise based on

5000 replications. The rejection frequency of the robust tests t̃k (at individual lag) and Q̃m

(at cumulative lags) fluctuates around the gray dashed line of the nominal size α = 5% for

all lags which confirms our theoretical results. The size of the standard tests tk and LBm is

significantly distorted by ht (heteroskedasticity) or dependence in {εt} in xt. The cumulative

test LBm is overwhelmingly oversized and its rejection frequency is increasing with the lag

m. Hence, with high probability this test will falsely detect correlation in the series xt of

uncorrelated random variables. The Monte Carlo average values of Γk in (48) based on 5000

replications are around 0.18 for all k, which suggests that ht satisfies Assumption 2.2. Similar

results for size were obtained when εt is i.i.d. N (0, 1) noise.

Figure 5 reports test results for a single sample of Model 4.2 when εt is i.i.d. N (0, 1) noise.

The standard test tk detects the autocorrelation at many lags. For example, serial correlation
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is significant at lags k = 1, 7, 14, 21 (significance level α = 5%), see panel (a). The cumulative

test statistic LBm displayed in panel (b) also confirms the existence of autocorrelation in {xt},
which contradicts the fact that {xt} is a white noise. The robust confidence bands for zero

correlation in the left panel are wider than those of the standard test, and all correlation

coefficients are not significant at level α = 5%, i.e. there is not enough evidence to reject

absence of serial correlation in {xt}. The values of the robust cumulative test statistics Q̃m

on the right panel lay below the line of 5% critical level values, and confirm absence of

correlation. Similar test results were obtained when εt is GARCH(1,1) noise.

(a) Correlogram (b) Cumulative tests

Figure 5: Correlogram (left panel) and standard and robust cumulative test statistics (right
panel) at lags m = 1, ..., 30 for a single simulation. Model 4.2, εt ∼ i.i.d. N (0, 1).

These simulation experiments confirm that the robust tests achieve good size performance

in testing for absence of correlation in the white noise settings studied in the present paper.

The results show that time variation and randomness in the scale factor ht as well as latent

dependence in the error term εt are clear sources of size distortion in the standard tests.

In Model 4.2, the Hong test statistics also produce distorted size from 23% to 54%.

Further examination of the power of the tests for sample size n = 300 are made by modifying

the white noise Model 4.2 to an AR(1) process xt = 0.2 + βxt−1 + htεt, β = 0.25. The

power of the robust test t̃1 is 83.52% and the size-corrected power of the standard t1 test is

82.96%. The power of robust test t̃k and the robust cumulative test Q̃m is comparable to the

size-corrected power of the standard test t̃k and LBm for 15 lags, see Table 4 and Table 5 in

the Online Supplement for details.

Our final experiment explores the impact of the violation of Assumption 2.2 on ht on the

size of the robust tests. We use the model

xt = 0.2 + htεt, εt ∼ i.i.d.N (0, 1), (50)
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where the scale process {ht} is stochastic and independent of {εt} with settings

(i) ht = |ηt| and (ii) ht =

∣∣∣∣∣∣ 1√
n

t∑
j=1

ηj

∣∣∣∣∣∣ . (51)

We assume that ηt are i.i.d. Student t2 random variables with two degrees of freedom. In

both (i) and (ii) ht has a heavy tailed distribution. We employ the ratio Γk in (48) to check

the crucial Assumption 2.2 on ht. The Monte Carlo average of 5000 replications of Γk is

around 12 for (i) and around 0.16 for (ii). Thus, ht in model (i) does not satisfy Assumption

2.2. Figure 6 shows that robust tests become undersized, as may be expected for a bimodal

distribution with modes around ±1, so the asymptotic properties of the robust tests are no

longer valid in this case. In contrast, ht in model (ii) does satisfy Assumption 2.2 and the

empirical size of the robust tests is close to nominal, see Figure 7.

(a) Size of t̃k, tk (b) Size of Q̃m, LBm

Figure 6: Empirical size (in %) of tests t̃k, tk (left panel) and Q̃m, LBm (right panel). Nominal
size α = 5%. Model (50)-(51)(i).

4.1.1 Size and power of residual-based tests

One of the practical implementations of the robust test for zero correlation is that it can

be applied to regression residuals. We now examine performance of the robust test on the

residuals from fitting the linear regression model

Model 4.3. yt = 0.5xt + ut where ut = htεt and xt = 0.5xt−1 + et.

We assume that {εt} and {et} are mutually uncorrelated i.i.d. N (0, 1) variables and consider

two examples of deterministic ht. Then the noise process {ut} is uncorrelated.

For n = 300, 3, 000 arrays of OLS residuals ût = yt − β̂xt, t = 1, ..., 300 were generated

and simulations conducted to explore whether residual-based robust tests for absence of

correlation in {ut} achieve the nominal 5% size. Table 1 reports empirical size of the robust
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(a) Size of t̃k, tk (b) Size of Q̃m, LBm

Figure 7: Empirical size (in %) of tests tk, t̃k (left panel) and LBm, Q̃m (right panel). Nominal
size α = 5%. Model (50)-(51)(ii).

and standard tests for two scale factors. The findings show that for ht = 1 the rejection

rate both for robust and standard tests is close to 5%. In the presence of heterogeneity, for

ht = 0.5 sin(2πt/n) + 1, the robust tests t̃k and Q̃m achieve the correct size, whereas the size

of the standard tests tk and LBm is clearly distorted.

The power of these tests is reported in the Online Supplement. The results in Table 12

show that the residual-based tests have overall good power properties.

k
ht = 1 ht = 0.5 sin(2πt/n) + 1

t̃k tk Q̃m LBm t̃k tk Q̃m LBm

1 4.93 4.60 4.93 4.63 4.63 9.27 4.63 9.33
2 4.80 4.30 4.40 4.37 5.03 9.70 4.77 11.83
3 5.30 4.97 4.30 4.37 4.33 8.47 4.37 12.63
4 4.17 4.03 4.00 4.47 4.97 9.33 4.00 14.10
5 4.43 4.33 4.13 4.63 4.83 8.90 4.07 15.70
6 4.90 4.47 4.30 4.57 5.03 9.43 4.30 16.23
7 4.80 4.47 4.30 4.63 4.37 8.40 4.07 17.60
8 5.10 4.80 4.33 4.40 4.83 9.40 4.13 18.73
9 4.03 3.60 4.13 4.60 5.07 8.53 3.93 19.37
10 5.10 4.30 4.50 4.50 5.00 9.37 3.80 20.87
11 4.60 3.93 3.97 4.10 4.97 9.47 3.83 21.80
12 4.37 4.17 3.80 4.27 5.13 9.37 4.10 23.07
13 4.60 4.17 4.27 4.63 4.70 8.67 4.07 23.87
14 5.27 4.90 4.00 4.77 4.90 8.97 4.10 25.13
15 4.87 4.37 4.23 4.97 4.67 9.03 4.27 26.20

Table 1: Empirical size (in %) of the residual-based tests for linear regression Model 4.3.
Nominal size α = 5%.
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4.1.2 Test size when {ht} and {εt} are dependent

In this section we calculate the size of tests for uncorrelated noise xt generated by

Model 4.4. xt = htεt with ht = |
t−1∑
j=1

εj |, where εt ∼ i.i.d.N (0, 1).

The variables {ht} and {εt} are dependent and satisfy the assumptions of Theorem 2.5 with

ξt = εt for any lag k ≥ 1. So the robust testing procedures are valid whereas standard tests

are distorted by the heteroskedasticity factor ht. Figure 8 plots the size of the robust and

(a) Size of t̃k, tk (b) Size of Q̃m, LBm

Figure 8: Empirical size (in %) of tests t̃k, tk (left panel) and Q̃m, LBm (right panel). Nominal
size α = 5%. Model 4.4.

standard tests for n = 300 computed from 3, 000 replications. The results shows that the

robust tests t̃k and Q̃m manifest stable correct size whereas the standard tests are significantly

oversized. More details can be found in Table 13 of the Online Supplement. The same table

reports empirical size for the noise process xt considered in Corollary 2.1. In line with the

theory, it confirms size distortions (1.27%) for t̃1 at lag 1 while t̃k remain correctly sized for

k ≥ 2.

4.2 Size and power of tests for zero cross-correlation

The problem of testing for zero cross-correlation between two time series {xt} and {yt} is

more complex than testing for autocorrelation. In this section Monte Carlo experiments are

performed to corroborate the validity of the asymptotic theory of the robust tests t̃xy,k and

Q̃xy,m in Section 3, and to compare their finite sample size properties with the standard tests

txy,k and HBxy,m. Samples of {xt, yt, t = 1, ..., n} are generated using the model

Model 4.5.

xt = 0.2 + htεt, yt = 0.2 + gtηt,

ht =
3

n
b t
10
c, gt = |n−1/2

t∑
j=1

ζj |,
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where {εt}, {ηt} and {ζt} are mutually independent i.i.d. N (0, 1) noises. This model includes

a non-smooth deterministic scale factor ht and a stochastic scale factor gt. Such models were

not covered in DGP (2022). Arrays {xt, yt, t = 1, ..., n} are series of uncorrelated random

variables and they are not cross-correlated.

We use sample size n = 300, set the significance level to α = 5%, conduct 5000 repli-

cations, and employ the threshold λ = 1.96 in Q̃xy,m. The Monte Carlo average values

of

Γhg,k =
max1≤t≤n h

4
t∑n

t=k+1 h
2
t g

2
t−k

, Γgh,k =
max1≤t≤n g

4
t∑n

t=k+1 g
2
t h

2
t−k

are around 0.0044 and 0.5, which confirms that ht, gt satisfy Assumption 3.2.

(a) Size of t̃xy,k, txy,k (b) Size of Q̃xy,m, HBxy,m

Figure 9: Empirical sizes (in %) of tests txy,k, t̃xy,k (left panel) and HBxy,m, Q̃xy,m (right
panel). Nominal size α = 5%. Model 4.5.

Figure 9 shows that the robust tests t̃xy,k and Q̃xy,m achieve accurate size (red line),

whereas the rejection frequencies of the standard tests txy,k and HBxy,m (blue line) deviate

significantly from the 5% level. Notably, the size performance of the cumulative Haugh and

Box’s test HBxy,m deteriorates as the lag increases.

The poor performance of the standard tests in these examples warns against application

of standard testing methods for uncorrelated random variables that are not i.i.d. Additional

Monte Carlo results for {xt, yt} with various scale factors and sample sizes are available upon

request. They all confirm the good finite sample performance of the robust tests and their

ability to detect absence of cross-correlation between general white noise series such as those

in Model 4.5.

4.3 Testing for Pearson correlation

This section introduces a robust testing procedure for zero Pearson correlation between two

random variables ε and η, which allows for heteroskedasticity. We assume that the component

variables ε and η are not observed directly and testing is based on independent pairs of
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observations {xi, yi}, i = 1, ..., n, for which

xi = µx + hiεi, yi = µy + giηi,

where εi and ηi are i.i.d. copies of ε and η, Eεi = Eηi = 0, Eε4i < ∞, Eη4i < ∞, the scale

factors hi and gi are either deterministic or independent random variables, satisfy Assumption

3.2 and are mutually independent of {εi, ηi}.

Observe, that xi, yi satisfy assumptions of Theorem 3.1. Thus, to test the hypothesis

H0 : corr(ε, η) = 0, we can use the robust test statistic for cross-correlation at lag k = 0:

t̃xy,0 =

∑n
i=1 exy,i0

(
∑n

i=1 e
2
xy,i0)

1/2
, exy,i0 = (xi − x̄)(yi − ȳ). (52)

By Theorem 3.1, under H0, t̃xy,0 →D N (0, 1).

To compare the size and power performance of the robust Pearson test t̃xy,0 with the

standard Pearson test, txy,0 =
√
nρ̂xy,0, we consider four simple data generating models

X1−X4 for paired data {xi, yi}, i = 1, ..., 300,

Model X1: xi = ε2i Model X3: xi = hiεi, hi = (−1)i + 2

Model X2: xi = |εi| Model X4: xi = hiεi, hi = |ηi|+ 1
2

where {εi} and {ηi} are mutually independent i.i.d. N (0, 1) noises. Observations {xi, yi} are

independent but not i.i.d. Among these models, X1 is correlated with X2; X3 is correlated

with X4, but X1, X2 and X3, X4 are mutually uncorrelated. In the latter case, t̃xy,0 →D

N (0, 1).

Figure 10 displays testing results for pairs of models Xj, Xk based on one sample. The

first row of each block reports the sample correlation coefficient and the second row reports

the corresponding p-value (in parentheses). According to the p-value, we fill the grid with

different shades of colour showing the significance levels of the test. The darker the colour,

the smaller the p-value, and the more significant the Pearson correlation is. Since we already

know whether there exists a Pearson correlation between pairs of models or not, comparing

Figures 10(a) and 10(b), we can see that the standard Pearson testing procedure causes many

false detections of spurious correlations. In contrast, the robust tests for Pearson correlation

produce good finite sample performance.

5 Empirical application

In empirical work the composite structure of the time series data under consideration is

typically unknown. Considering the complexity in the generation of real-world data, similar

to that in a synthetic Monte Carlo study, we may expect failure of standard tests to detect

26



(a) Robust test (b) Standard test

Figure 10: Pearson correlation and p-value

absence of correlation. Below we consider examples of empirical time series that are expected

to have positive or no cross-correlation.

5.1 Example 1: Petroleum stock prices

The share prices of petroleum companies are closely related to the fluctuation of the interna-

tional oil market. When there are common factors, such as weak demand or a sudden rise in

prices, companies competing in the market will be affected similarly by the market shocks.

Hence, the stock prices of different petroleum companies may be positively correlated during

the same period. In this empirical experiment, XOM denotes the log return of the daily

closing prices of the stock of Exxon Mobil Corporation, and RDSB is the log return of Royal

Dutch Shell PLC. The sample range is from 24/05/2017 to 20/05/2021, and it contains 1005

observations. We tested for absence of correlation in XOM and RDSB returns. Robust and

standard tests lead to contradictory conclusions. The cumulative robust test does not reject

the null hypothesis of zero correlation at the 5% significance level whereas the Ljung-Box test

rejects the null as does Hong’s test which produces a p-value close to 0.00. We also test for

cross-correlation in {XOM,RDSB} and {RDSB,XOM} using both standard and robust

testing procedures.
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(a) Correlogram (b) Cumulative tests

Figure 11: Testing for cross-correlation in bivariate time series XOM and RDSB.

The left panel in Figure 11 reports standard and robust confidence bands for cross-

correlation between XOM and RDSB. Standard bands indicate presence of cross-correlation

at lag k = 0, 2, 3, 6, 7, 8, 11, 13, 15, 18, 24, 29 at significance level α = 5%. According to the

robust confidence bands, there is no evidence of significant correlation except for lag k = 0

at both α = 5% and 1% level. It is natural to expect series XOM and RDSB to be

cross-correlated positively at lag k = 0. In the right panel, the robust cumulative test

HBXOM,RDSB,m allows us to conclude that XOM is uncorrelated with RDSB at lags k ≥
1. The standard cumulative test HBXOM,RDSB,m still reveals presence of cross-correlation.

Similar test results were obtained for {RDSB,XOM} when RDSB is the leading sequence.

Significant correlations detected by standard tests at lags k 6= 0 for both these series

seem to be spurious when evaluated against the results from robust test procedures. On the

basis of this empirical analysis, we therefore conclude that XOM and RDSB have positive

contemporaneous cross-correlation at lag k = 0 and are not cross-correlated at lag k 6= 0.

5.2 Example 2: Log volume and returns in the S&P 500

Next we use the robust and standard approaches to test for cross-correlations between the

daily log return rt and the log volume Vt of S&P 500 index from 02/01/2018 to 31/12/2019,

sample size n = 501. We fit to Vt a causal stationary AR(2) model

Vt = 9.9593 + 0.4142Vt−1 + 0.1328Vt−2 + ζt

which can be written as Vt = a0 +
∑∞

j=0 ajζt−j with
∑∞

j=0 a
2
j <∞.

Figure 12 displays plots of rt and Vt. These suggest that the mean EVt might be time

varying. Figure 13 reports the correlogram of Vt and the residuals ζt. Some minor correlation

in residuals ζt is evident at lag 5 and 11, and strong correlation (long memory property) in
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(a) Log return rt (b) Log volume Vt

Figure 12: Plots of log return rt and log volume Vt

(a) Correlogram of Log volume Vt (b) Correlogram of residuals ζt

Figure 13: Testing for autocorrelation in log volume Vt and residuals ζt

Vt which might be spurious due to changes in the mean EVt.

(a) Correlogram (b) Cumulative tests

Figure 14: Testing for cross-correlation between log returns rt and residuals ζt.
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Figure 14 reports testing results for zero cross-correlation at lag k ≥ 0 between the log

return {rt} and the residuals {ζt}. The robust confidence bands (left panel) and the robust

cumulative test Q̃rζ,m (right panel) detect some minor cross-correlations at the significance

level α = 5%, and no significant cross-correlation at α = 1%. On the contrary, the standard

confidence bands detect presence of significant cross-correlation at lags k = 0, 1, 14, 20, 26

with α = 5%, and the finding is confirmed by the standard cumulative test statistic HBrζ,m

(right panel). In addition, we verified that {ζt, rt} are not cross-correlated when the leading

sequence is {ζt}.

To sum up, different from the findings based on standard correlation tests, robust testing

procedures do not show evidence to support a conclusion that log returns rt and residuals

ζt are cross-correlated. This outcome together with the causal representation of Vt = a0 +∑∞
j=0 ajζt−j suggests that log return rt and log volume Vt are not cross-correlated over this

time period.

6 Conclusion

In empirical research economic and financial data do not always meet the requirements of

modeling and inferential methodology. DGP (2022) demonstrated that standard testing

procedures for absence of correlation and cross-correlation have limited applicability under

the heteroskedasticity or dependence that is often present in real data. This paper shows

that the robust testing procedures introduced in DGP (2022) are applicable in a far wider

class of heteroskedastic white noises than those with the smoothly changing deterministic

scale factors that were studied in DGP (2022) and that these methods apply equally well

in tests on regression residuals. The simulation findings here reported confirm that the

robust tests achieve accurate size in models with very complex heteroskedastic structures,

thereby extending their empirical reach. In addition, outliers and missing data are not

found to compromise the good sampling performance of these robust testing procedures. A

robust test for Pearson correlation is also introduced and, as expected, this enables more

accurate detection of zero Pearson correlation than the standard test. The two empirical

examples studied show that the robust testing procedures for zero cross-correlation produce

meaningful findings that assist in revealing potentially spurious correlations in financial time

series detected by standard testing methods that ignore the effects of heterogeneity and

dependence.
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different contexts.

7 Appendix. Proofs

7.1 Proof of theorems

Theorems 2.1, 2.2, and 2.3 in Section 2 contain results on testing for the absence of serial

autocorrelation in a univariate sequence {xt = µx+htεt}. These test statistics form a special

case of the bivariate tests for the absence of cross-correlation between two series {xt} and

{yt} with {yt = xt}, presented in Section 3. We show first how the results of Section 3 imply

those of Section 2.

Proof of Theorem 2.1. It suffices to verify that under Assumptions 2.1, 2.2 and 2.3 of

Theorem 2.1, the bivariate series {xt, yt} with yt = xt satisfies Assumptions 3.1, 3.2 and 3.3

of Theorem 3.1. Indeed, in the case gt = ht and ηt = εt, Assumptions 3.2 and 3.3 are the

same as Assumptions 2.2 and 2.3. In addition, Assumption 3.1 is also satisfied, since under

Assumption 2.1, for k ≥ 1, zt = εtεt−k is a stationary m.d. sequence of uncorrelated random

variables such that Ez2t <∞ and
∑∞

j=−∞ |cov(εj , ε0)| = var(ε0) <∞. Thus (34) of Theorem

3.1 implies (9) of Theorem 2.1. �

Proof of Theorem 2.2. Under Assumption 2.4 of Theorem 2.2 bivariate series {xt, yt}
with yt = xt satisfy Assumption 3.4 of Theorem 3.2. Indeed, as seen above, in such a case

Assumptions 2.1 and 2.2 imply Assumptions 3.1 and 3.2 and Assumptions 2.4(i) coincides

with Assumption 3.4(i). Thus (41) of Theorem 3.2 implies (16) of Theorem 2.2. �
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Proof of Theorem 2.4. Recall that

xt = µx + α′1nZt + ut, ut = htεt.

Assumptions of Theorem 2.4 imply that bivariate series {xt, yt} with yt = xt satisfy the

assumptions of Theorem 3.4. Hence, Theorem 3.4 implies the claims of Theorem 2.4. �

Next we proceed to the proof of the main results of Section 3 for bivariate tests for the

absence of cross-correlation.

Proof of Theorem 3.1. This proof is based Lemmas A1 and A6.

We need to prove the convergence

t̃xy,k →D N (0, 1). (A.1)

Denote

∆nk = r2nkAk, rnk = (
n∑

t=k+1

h2t g
2
t−k)

1/4, Ak = (E[ε21η
2
1−k])

1/2. (A.2)

Write

t̃xy,k =

∑n
t=k+1 exy,tk(∑n

t=k+1 e
2
xy,tk

)1/2 =
nk

v
1/2
k

, nk =
n∑

t=k+1

exy,tk
∆nk

, vk =
n∑

t=k+1

e2xy,tk
∆2
nk

. (A.3)

Denote

ñk =
n∑

t=k+1

ζtk
∆nk

, ṽk =
n∑

t=k+1

ζ2tk
∆2
nk

, ζtk = utvt−k. (A.4)

We will show that

vk = 1 + op(1), (A.5)

t̃xy,k = ñk + op(1). (A.6)

Notice that (A.6) and (A.9) imply (A.1).

Proof of (A.5). Lemma A6 established that vk = ṽk + op(1). This together with (A.8) of

Lemma A1 proves (A.5).

Proof of (A.6). Lemma A6 shows that nk = ñk + op(1). By (A.9) of Lemma A1, ñk = Op(1).

Since by (A.5), vk = 1 + op(1), this implies (A.6), viz.,

t̃xy,k =
nk

v
1/2
k

=
ñk + op(1)

(1 + op(1))1/2
= ñk + op(1). (A.7)

This concludes the proof of the Theorem 3.1. �
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Lemma A1. Under the assumptions of Theorem 3.1,

ṽk →p 1, (A.8)

ñk →D N (0, 1). (A.9)

Proof of Lemma A1. We start with the proof of (A.8). Notice that ζtk = (htεt)(gt−kηt−k).

Write

ṽk =
n∑

t=k+1

βtzt, βt = r−4nk h
2
t g

2
t−k, zt = A−2k (ε2t η

2
t−k).

By assumption the sequences {βt} and {zt} are mutually independent. Observe that

n∑
t=k+1

βt = 1, δn = max
t=k+1,...,n

βt = op(1). (A.10)

The first claim is obvious, while under Assumption 3.2, as n→∞,

δn =
maxt=k+1,...,n h

2
t g

2
t−k∑n

t=k+1 h
2
t g

2
t−k

≤ maxt=1,...,n h
4
t + maxt=1,...,n g

4
t∑n

t=k+1 h
2
t g

2
t−k

= op(1), (A.11)

which proves the second claim. Moreover, for any γ > 0,

E[δγn] = o(1), n→∞. (A.12)

The claim (A.12) follows from convergence by majorization using the properties δn ≤ 1 and

δn = op(1) of the random variable δn.

Recall that by Assumption 3.3 {zt} is a covariance stationary sequence with Ezt = 1 such

that

cov(zk, z0)→ 0 as k →∞.

Hence, the terms βt and zt in the sum ṽk satisfy the assumptions of Lemma A4, which implies

ṽk = (

n∑
t=k+1

βt)E[zt] + op(1) = 1 + op(1),

proving (A.8).

Proof of (A.9). Write

ñk =
n∑

t=k+1

htgt−kεtηt−k
∆nk

=

n∑
t=k+1

ζ∗tk, (A.13)

ζ∗tk = btkωtk, btk = r−2nk htgt−k, ωtk = A−1k εtηt−k.

By Assumption 3.1, {ωtk} is an m.d. sequence with respect to the σ-field Ft = σ(es, s ≤ t) :

3



E[ωtk|Ft−1] = 0. Denote by F∗t = σ(es, s ≤ t; hj , gj ≤ n).

Then ζ∗tk = btkωtk is an m.d. sequence with respect to the σ-field F∗t . Indeed,

E[ζ∗tk|F∗t−1] = E[btkωtk|F∗t−1] = btkE[ωtk|Ft−1] = 0.

Hence, ñk is the sum of m.d. variables ζ∗tk. Therefore, by Theorem 3.2 of Hall and Heyde

(1980), to prove (A.9), it suffices to show

(a)
n∑

t=k+1

ζ∗ 2tk →p 1, (b) max
t=k+1,...,n

|ζ∗tk| →p 0, (A.14)

(c) E[ max
t=k+1,...,n

ζ∗ 2tk ] = O(1).

Instead of (c), we will prove a slightly stronger claim

(c′) E[ max
t=k+1,...,n

ζ∗ 2tk ] = o(1).

The claim (a) is shown in (A.8). The claim (b) follows from (c′). Indeed, by (c′) for any

ε > 0,

P
(

max
t=k+1,...,n

|ζ∗tk| ≥ ε
)
≤ ε−2E[ max

t=k+1,...,n
ζ∗ 2tk ] = o(1).

Next we prove (c′). Denote rn = maxt=k+1,...,n ζ
∗ 2
tk . We will show that for any ε > 0,

E
[
rnI(rn ≥ ε)

]
→ 0, n→∞.

Then Ern ≤ ε+E
[
rnI(rn ≥ ε)

]
= ε+ o(1) for any arbitrarily small ε, which proves (c′). We

can bound

E
[
rnI(rn ≥ ε)

]
≤ ε−1Er2n ≤ ε−1E

[
max

t=k+1,...,n
|ζ∗tk|4

]
≤ ε−1E

[ n∑
t=k+1

b4tkω
4
tk

]
≤ ε−1

n∑
t=k+1

E[b4tk]E[ω4
tk].

By Assumption 3.3 of theorem, E[ω4
tk] = E[ω4

1k] < ∞. We can bound b4tk ≤ δnbtk. Noting

that
∑n

t=k+1 b
2
tk = 1, we obtain

E
[
rnI(rn ≥ ε)

]
≤ ε−1E[ω4

1k]E
[
δn

n∑
t=k+1

b2tk

]
= ε−1E[ω4

1k]E[δn] = o(1)

by (A.12), which completes the proof of (c′) and (A.9). This completes the proof of the

lemma. �
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Proof of Theorem 3.2. This proof uses Lemmas A1, A2, A6, A7 and A8.

(1) First we show that

Qxy,m →D χ2
m−m0+1. (A.15)

Recall that

Qxy,m = t̃′xyR̂
−1
xy t̃xy = (R̂−1/2xy t̃xy)

′(R̂−1/2xy t̃xy),

where t̃xy = (t̃xy,m0 , ..., t̃xy,m)′, and R̂xy = (r̂xy,jk)j,k=m0,...,m is a matrix with elements as in

(12). Hence, to prove (A.15), it suffices to show that, as n→∞,

R̂−1/2xy t̃xy →D N (0, I), (A.16)

where I is (m−m0 + 1)× (m−m0 + 1) identity matrix.

Denote ñxy = (ñm0 , ..., ñm)′ where ñk =
∑n

t=k+1 btkωtk are defined as in (A.13). For simplicity

of notation, set

gt = 0 for t ≤ 0. (A.17)

Then btjbtk = (htgt−j)(htgt−k) = 0 for t ≤ max(j, k).

Denote by W = (wjk)j,k=m0,...,m a matrix with entries

wjk =

n∑
t=1

btjbtkσjk =

n∑
t=max(j,k)+1

btjbtkσjk, (A.18)

σjk = E[ωtjωtk] = corr(ε1η1−j , ε1η1−k).

In (A.71) of Lemma A8 it is shown that

R̂−1/2xy = W−1/2 + op(1), W−1/2 = Op(1).

By (A.6) and (A.9), we have

t̃xy = ñxy + op(1), ñxy = Op(1). (A.19)

This implies

R̂−1/2xy t̃xy = (W−1/2 + op(1))t̃xy = W−1/2t̃xy + op(1) (A.20)

= W−1/2(ñxy + op(1)) + op(1) = W−1/2ñxy + op(1)

which together with (A.23) of Lemma A2 implies (A.16). This completes the proof of (A.15).

(2) Next we show that

Q̃xy,m →D χ2
m−m0+1, (A.21)
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where Q̃xy,m = t̃′xyR̂
∗−1
xy t̃xy and R̂∗xy = (r̂∗xy,jk)j,k=m0,...,m is a matrix with elements r̂ ∗xy,jk =

r̂xy,jkI(|τxy,jk| > λ) as in (39). In Lemma A8 below we prove that for any λ > 0,

R̂∗xy = W + op(1), R̂xy = W + op(1). (A.22)

Together with (A.15), this implies (A.21):

Q̃xy,m = t̃′xy

(
W + op(1)

)−1
t̃xy = t̃′xyR̂

−1
xy t̃xy + op(1)

= Qxy,m + op(1)→D χ2
m−m0+1,

completing the proof of the theorem. �

Lemma A2. Let assumptions of Theorem 3.2 on {ut, vt} hold. Then

W−1/2ñxy →D N (0, I). (A.23)

Proof of Lemma A2. By the Cramér–Wold device, it suffices to show that for any vector

a = (am0 , .., am)′ of real numbers the following holds:

sn := a′W−1/2ñxy →D N (0, ||a||2), ||a||2 = a2m0
+ ...+ a2m. (A.24)

Denote d ≡ a′W−1/2 = (dm0 , ..., dm). As shown in (A.70) of Lemma A8, the smallest eigen-

value of W is bounded from below by b > 0. Hence, the smallest eigenvalue of W 1/2 is

bounded from below by b1/2.

Therefore, the largest eigenvalue of W−1/2 has the property λmax ≤ 1/b1/2. It is known that

the absolute values of the elements of the matrix W−1/2 do not exceed λmax (or the spectral

norm of W−1/2 ). Therefore,

|dj | ≤ (|am0 |+ ...+ |am|)λmax ≤ c0 = (|am0 |+ ...+ |am|)(1/b1/2). (A.25)

Write, using (A.13),

sn :=

m∑
k=m0

dkñk =
m∑

k=m0

dk

n∑
t=k+1

ζ∗tk

=
n∑

t=m0+1

ξt, ξt =
m∑

k=m0

dkζ
∗
tkI(t ≥ k + 1). (A.26)

Proof of the convergence (A.24) is similar to the proof of (A.9) of Theorem 3.1. Recall that

ζ∗tk is an m.d. sequence with respect to the σ-field F∗t used in the proof of Lemma A1, and

dk is F∗t measurable. Hence, {ξt} is a martingale difference sequence with respect to F∗t .

Therefore, by the same argument as in the proof of (A.9), to verify (A.24) it suffices to show
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that

(a)
n∑

t=m0+1

ξ2t →p ||a||2, (b) max
t=m0+1,...,n

|ξt| →p 0, (A.27)

(c) E[ max
t=m0+1,...,n

ξ2t ] = o(1).

To verify (a), write

n∑
t=m0+1

ξ2t =
m∑

k,j=m0

dkdjñjk, ñjk =
n∑

t=max(j,k)+1

ζ∗tjζ
∗
tk =

n∑
t=1

btjbtkωtjωtk, (A.28)

where the last equality holds because of (A.17). By (A.73) shown below,

ñjk = wjk + op(1).

Together with (A.25) and definition of dj , this implies

n∑
t=m0+1

ξ2t =
m∑

j,k=m0

djdk

(
wjk + op(1)

)
=

m∑
j,k=m0

djwjkdk + op(1)

= a′W−1/2WW−1/2a+ op(1) = ||a||2 + op(1),

which proves (a). Next, notice that (b) follows from (c). To show (c), bound

E[ max
t=m0+1,...,n

ξ2t ] = E[ max
t=m0+1,...,n

{
m∑

k=m0

dkζ
∗
tkI(t ≥ k + 1)}2]

≤ mE[ max
t=m0+1,...,n

{
m∑

k=m0

d2kζ
∗ 2
tk I(t ≥ k + 1)}] ≤ c20m

m∑
k=m0

E[ max
t=k+1,...,n

ζ∗ 2tk ] = o(1)

by (A.25) and (c) of (A.14). This completes the proof of (c) and the lemma. �

Proof of Theorem 3.3. In (A.6) we showed that, under Assumptions 3.2, 3.3 for short

memory sequences {εt} and {ηt}, we have

t̃xy,k = ñk + op(1), (A.29)

where

ñk =

n∑
t=k+1

ζtk
∆nk

=

n∑
t=k+1

btkωtk, with btk =
htgt−k
r2nk

and ωtk =
εtηt−k
Ak

,

is as in (A.4). By assumption, the sequences {btk} and {ωtk} are mutually independent, and

{ωtk} is a covariance stationary sequence such that
∑∞

j=−∞ |cov(ωjk, ω0k)| < ∞. Moreover,
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∑n
t=k+1 b

2
tk = 1. Hence, by Lemma A5,

ñk =

n∑
t=1

btkωtk =
( n∑
t=1

btk

)
Eω1k +Op

(
(

n∑
t=1

b2tk)
1/2
)

= (

n∑
t=1

btk)Eω1k +Op(1). (A.30)

We now show that

qn :=

n∑
t=1

btk =

∑n
t=k+1 htgt−k

(
∑n

t=k+1 h
2
t g

2
t−k)

1/2
→p ∞. (A.31)

Because Eω1k 6= 0, this together (A.29) implies t̃xy,k →p ∞. It remains to show (A.31).

Recall that by assumption, hj ≥ 0, gj ≥ 0. Therefore,

q−4n =
(
∑n

t=k+1 h
2
t g

2
t−k)

2

(
∑n

t=k+1 htgt−k)
4
≤ ( max

j=k+1,...,n
h2jg

2
j−k)

(
∑n

t=k+1 htgt−k)
2

(
∑n

t=k+1 htgt−k)
4

≤
maxj=k+1,...,n h

2
jg

2
j−k

(
∑n

t=k+1 htgt−k)
2
≤

maxj=1,...,n(h4j + g4j )∑n
t=k+1 h

2
t g

2
t−k

→p 0,

by Assumption 3.2. This implies (A.31) and completes the proof of the theorem. �

Proof of Theorem 3.4. Without loss of generality, we focus on the case p = q = 1 of

univariate time series

xt = µx + α′1nZt + ut, ut = htεt,

yt = µy + α′2nVt + vt, vt = gtηt,

given in (44). To verify Theorem 3.1 is suffices to show that these variables satisfy Lemmas

A1 and A6. Clearly Lemma A1 holds and validity of Lemma A6 is shown in Lemma A9.

To verify Theorem 3.2 is suffices to show that Lemmas A1, A2, A6, A7 and A8 are valid.

Clearly Lemmas A1 and A2 hold, while validity of Lemmas A6, A7 and A8 is shown in

Lemma A9.

For a linear regression model (42), property (45) for α1n and α1n follows from Lemma A3

and Assumption 3.2. �

Lemma A3. Suppose that noises {ut} and {vt} in the linear regression model (42) satisfy

the assumptions of Theorem 3.1 or 3.2 and Assumption 3.5 holds. Then,

||β − β̂|| = Op

(
n−1(

∑n
t=k+1 h

2
t )

1/2
)

= Op

(
n−1/2 maxt=1,..,n ht

)
,

||ν − ν̂|| = Op

(
n−1(

∑n
t=k+1 g

2
t )

1/2)
)

= Op

(
n−1/2 maxt=1,..,n gt

)
.

(A.32)
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Proof of Lemma A3. We prove (A.32) for β − β̂. (The proof for ν − ν̂ is similar). Denote

Z = (Z1, ..., Zn), where Zt = (Z1t, ..., Zpt)
′ is p× 1 vector. Then,

β̂ = (ZZ ′)−1
n∑
t=1

ftZt, (A.33)

β − β̂ = (ZZ ′)−1
n∑
t=1

Ztut = (ZZ ′)−1
( n∑
t=1

Z1tut, ... ,

n∑
t=1

Zptut

)
.

Under Assumption 3.5, the elements Z`tZkt of Z ′ are covariance stationary short memory

processes. Therefore, by Lemma A5 it follows that, as n→∞,

(n−1ZZ ′)−1 →p Σ = E[Z1Z
′
1],

where Σ is positive definite matrix. Moreover, under Assumption 3.5, Z`tut is a zero mean

covariance stationary short memory process. Hence, Lemma A5 implies that for each j =

1, ..., p,
n∑
t=1

Z`tut = Op

(
(

n∑
t=k+1

h2t )
1/2
)

which proves (A.32). �

Proof of Theorem 2.5. To prove (i), i.e., the claim of Theorem 2.1 here, we need to show

that

t̃k →D N (0, 1). (A.34)

Denote zkt = εtεt−k, Ak = (E[z2k1])
1/2 = (E[ε21ε

2
1−k])

1/2, Aξ = (E[ξ21 ])1/2. Using the notation

etk = (xt − x̄)(xt−k − x̄), ζtk = utut−k = htht−kzkt, write

t̃k =

∑n
t=k+1 etk(∑n

t=k+1 e
2
tk

)1/2 (A.35)

=

∑n
t=k+1 ζtk +

∑n
t=k+1(etk − ζtk)(∑n

t=k+1 ζ
2
tk +

∑n
t=k+1(e

2
tk − ζ2tk)

)1/2 =
ñk +Rk

(ṽk +Qk)1/2
,

where

ñk = (A2
ξAk)

−1n−3/2
n∑

t=k+1

ζtk, Rk = (A2
ξAk)

−1n−3/2
n∑

t=k+1

(etk − ζtk), (A.36)

ṽk = (A2
ξAk)

−2n−3
n∑

t=k+1

ζ2tk, Qk = (A2
ξAk)

−2n−3
n∑

t=k+1

(e2tk − ζ2tk).
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By Lemma A11,

t̃k =

∫ 1
0 U

2(u)dW (u) + op(1)

(
∫ 1
0 U

4(u)du+ op(1))1/2
(A.37)

→D L =

∫ 1
0 U

2(u)dW (u)

(
∫ 1
0 U

4(u)du)1/2
,

where U(·) and W (·) are two independent Wiener processes. Since

L =D

(∫ 1

0
U4(u)du

)−1/2
N
(

0,

∫ 1

0
U4(u)du

)
= N (0, 1),

this proves (A.34). The validity of (ii), i.e., the claims of Theorem 2.2, can be shown using

similar arguments combined with those used in the proof of Theorems 2.2 and 3.2. �

Proof of Corollary 2.1. Let k ≥ 2. By definition ξt = εtεt−k. Denote zkt = εtεt−k. For

k ≥ 2, assumption (22) is satisfied, i.e. cov(ξs, zkt) = 0 for s 6= t and Theorem 2.5 implies

t̃k →D N (0, 1). On the other hand, for k = 1 we have ξt = z1t. In this case, the proof of

Theorem 2.5 shows that

t̃1 →D

∫ 1
0 W

2(s)dW (s)( ∫ 1
0 W

4(s)ds
)1/2 ,

where W (s) is a standard Wiener processes. �

7.2 Auxiliary lemmas

The auxiliary lemmas given here are used in proving the main results of Subsection 7.1. We

start with Lemmas A4 and A5 which provide useful bounds for sums of weighted random

variables.

Lemma A4. Let Sn =
∑n

t=1 βtzt. Suppose that a triangular array of random variables

βt = βn,t have property

n∑
t=1

|βt| ≤ 1, E[ max
t=1,..,n

|βt|] = o(1) (A.38)

and {zt} is a covariance stationary sequence such that γk = cov(zk, z0) → 0 as k → ∞.

Assume that sequences {βt} and {zt} are mutually independent. Then,

n∑
t=1

βtzt =
( n∑
t=1

βt

)
Ez1 + op(1). (A.39)
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Proof of Lemma A4. Write

Sn =
n∑
t=1

βtEzt +
n∑
t=1

βt(zt − Ezt) = (
n∑
t=1

βt)Ez1 + qn. (A.40)

We show that

qn =

n∑
t=1

βt(zt − Ezt) = op(1), (A.41)

which proves (A.39). Since {βt} and {zt} are mutually independent and |βt| ≤ 1, we have

Eq2n = E
( n∑
t=1

βt(zt − Ezt)
)2

= E
[ n∑
t,s=1

βtβsE[(zt − Ezt)(zs − Ezs)]
]

≤ E
[ n∑
t,s=1

|βtβs| |γt−s|
]
. (A.42)

Let L > 0. Set GL = maxk≥L |γk|, and recall that |γk| ≤ γ0. Using these bounds, we obtain,

Eq2n ≤ E
[ n∑
t,s=1:|t−s|≥L

|βtβs|GL
]

+ E
[ n∑
t,s=1:|t−s|<L

|βtβs| γ0
]

≤ GLE
[ n∑
t,s=1

|βtβs|
]

+ γ0E
[
( max
s=1,...,n

|βs|)
n∑

t,s=1:|t−s|<L

|βt|
]

≤ GLE
[
(
n∑
t=1

|βt|)2
]

+ γ0(2L+ 1)E
[
( max
s=1,...,n

|βs|)
n∑
t=1

|βt|
]
.

Hence, by assumption (A.38), for any fixed L, as n→∞, it holds that

Eq2n ≤ GL + γ0E[ max
s=1,...,n

|βs|](2L+ 1) = GL + o(1),

where GL → 0 as L → ∞ by assumption. Since L can be selected arbitrarily large this

implies Eq2n = o(1), which proves (A.41). �

Lemma A5. Let Sn =
∑n

t=1 βtzt. Assume that sequences {βt} and {zt} are mutually inde-

pendent, and {zt} is a covariance stationary sequence such that

∞∑
k=−∞

|cov(zk, z0)| <∞. (A.43)

Then

n∑
t=1

βtzt =
( n∑
t=1

βt

)
Ez1 +Op

(
(
n∑
t=1

β2t )1/2
)
. (A.44)
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In particular, if Ez1 = 0, and maxt=1,...,n |βt| = op(1), then

n∑
t=1

βtzt = op(n
1/2). (A.45)

Proof of Lemma A5. Denote rn = (
∑n

t=1 β
2
t )1/2. In view of (A.40), to prove (A.44) it

suffices to show that

r−1n qn = Op(1). (A.46)

Then, qn = rn(qn/rn) = Op(rn). Together with (A.40) this implies (A.44). To show (A.46),

notice that by (A.42),

E(qn/rn)2 ≤ E
[ n∑
t,s=1

|(βt/rn)(βs/rn)| |γt−s|
]
≤ 2E

[ n∑
t,s=1

(βt/rn)2 |γt−s|
]

≤ 2E
[ n∑
t=1

(βt/rn)2
∞∑

s=−∞
|γs|
]

= 2
∞∑

s=−∞
|γs| <∞,

noting that
∑n

t=1(βt/rn)2 = 1, and using (A.43). This proves (A.46). Clearly, (A.44) implies

(A.45). �

The following lemmas contain various bounds and approximations used in the proofs of

Subsection 7.1.

Lemma A6. Under the assumptions of Theorem 3.1,

nk = ñk + op(1), (A.47)

vk = ṽk + op(1). (A.48)

with nk, vk as in (A.3) and ñk, ṽk as in (A.4).

Proof of Lemma A6. Proof of (A.47). Recall the notation ∆nk = r2nkAk in (A.2) and

notation ζtk = utvt−k. Set ζxy,tk = (xt − µx)(yt−k − µy). Then

Ak(nk − ñk) = r−2nk

n∑
t=k+1

(exy,tk − ζtk) = jn1 + jn2, where (A.49)

jn1 = r−2nk

n∑
t=k+1

(ζxy,tk − ζtk), jn2 = r−2nk

n∑
t=k+1

(exy,tk − ζxy,tk).

To prove (A.47), it suffices to verify that

jn1 = op(1), (A.50)

jn2 = op(1). (A.51)
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Notice that in Theorem 3.1, ζxy,tk = ζtk and therefore jn1 = 0. We will use the terms jn1, jn2

to prove the results of this lemma under settings of other theorems.

To evaluate jn2, we split the proof of (A.51) into two steps.

First we show that (A.51) holds if the variables

ξt := r−1nk (xt − µx), νt := r−1nk (yt − µy)

satisfy the following properties:

ξ̄ = op(n
−1/2), ν̄ = op(n

−1/2), (A.52)

ξt = op(1), νt = op(1) for any t. (A.53)

Indeed, we can write

r−2nk (exy,tk − ζxy,tk) = r−2nk {(xt − x̄)(yt−k − ȳ)− (xt − µx)(yt−k − µy)}

= (ξt − ξ̄)(νt−k − ν̄)− ξtνt−k (A.54)

= −ξtν̄ − νt−kξ̄ + ξ̄ν̄.

Hence,

jn2 =

n∑
t=k+1

(
(ξt − ξ̄)(νt−k − ν̄)− ξtνt−k

)
= (n− k)ξ̄ν̄ −

n∑
t=k+1

(ν̄ξt + ξ̄νt−k),

where

n∑
t=k+1

ξt = nξ̄ −
k∑
t=1

ξt,

n∑
t=k+1

νt−k = nν̄ −
n∑

t=n−k+1

νt.

So, we obtain

jn2 = (n− k)ξ̄ν̄ − 2nξ̄ν̄ + ν̄

k∑
t=1

ξt + ξ̄

n∑
t=n−k+1

νt = op(1) (A.55)

by (A.52) and (A.53).

Next we show that (A.52) and (A.53) are valid in Theorem 3.1.

Proof of (A.52). We prove the claim for ν̄ (the proof for ξ̄ is similar). Recall that ν̄ =

n−1
∑n

t=1 νt = n−1(
∑n

t=1 βtηt) where βt = r−1nk gt. By Assumption 3.2 we have

max
t=1,...,n

|βt| =
max1≤t≤n |gt|

rnk
=

max1≤t≤n |gt|
(
∑n

t=k+1 h
2
t g

2
t−k)

1/4
(A.56)

=
( max1≤t≤n g

4
t∑n

t=k+1 h
2
t g

2
t−k

)1/4
= op(1).
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By Assumption 3.1 of Theorem 3.1, {ηt} is a covariance stationary sequence with Eηt = 0

and such that
∑∞

k=−∞ |cov(ηk, η0)| <∞. Hence, using (A.45) of Lemma A5 we obtain

n∑
t=1

βtηt = op(n
1/2),

which implies ν̄ = op(n
−1/2) and proves (A.52).

Proof of (A.53). We prove it for ξt (the proof for νt is similar). We have,

|ξt| = |β1,tεt| ≤ ( max
t=1,...,n

|β1,t|)|εt| = op(1),

by (A.56), noting that E|εt| <∞. This completes the proof of (A.53) and (A.47).

Proof of (A.48). Observe that

Ak|vk − ṽk| ≤ r−4nk
n∑

t=k+1

|e2xy,tk − ζ2tk| =: jn3.

It remains to show that

jn3 = op(1). (A.57)

Notice that

e2xy,tk − ζ2tk = (exy,tk − ζtk)2 + (exy,tk − ζtk)2ζtk,

jn3 ≤ r−4nk
n∑

t=k+1

(exy,tk − ζtk)2 + 2r−4nk

n∑
t=k+1

|(exy,tk − ζtk)ζtk|.

By Cauchy inequality,

n∑
t=k+1

|(exy,tk − ζtk)ζtk| ≤
( n∑
t=k+1

(exy,tk − ζtk)2
)1/2( n∑

t=k+1

ζ2tk

)1/2
.

Hence,

|jn3| ≤ Dnk + 2D
1/2
nk s

1/2
nk , where (A.58)

Dnk =

n∑
t=k+1

r−4nk (exy,tk − ζtk)2, snk =

n∑
t=k+1

r−4nk ζ
2
tk.

Next, using

(exy,tk − ζtk)2 = ({exy,tk − ζxy,tk}+ {ζxy,tk − ζtk})2

≤ 2(exy,tk − ζxy,tk)2 + 2(ζxy,tk − ζtk)2,
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we bound

Dnk ≤ 2(Dnk,1 +Dnk,2),

Dnk,1 =

n∑
t=k+1

r−4nk (ζxy,tk − ζtk)2, Dnk,2 =

n∑
t=k+1

r−4nk (exy,tk − ζxy,tk)2.

We will show that

Dnk,1 = op(1), (A.59)

Dnk,2 = op(1), (A.60)

snk = Op(1), (A.61)

which together with (A.58) implies (A.57).

Notice that in Theorem 3.1, ζxy,tk = ζtk and therefore Dnk,1 = 0. We will use the terms

Dnk,1, Dnk,2 to prove the results of this lemma under different setting in this paper.

We split the evaluation of Dnk,2 into two steps. First we show that (A.52) and (A.53) together

with

n∑
t=1

ξ2t = op(n),

n∑
t=1

ν2t = op(n) (A.62)

imply

Dnk,2 = op(1).

Then we show that (A.62) is valid under assumptions of Theorem 3.1.

Proof of (A.60). From the equality (A.54), using (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we obtain

{r−2nk (exy,tk − ζxy,tk)}2 = (ξ̄ν̄ − ν̄ξt − ξ̄νt−k)2 ≤ 3
(
ξ̄2ν̄2 + ν̄2ξ2t + ξ̄2ν2t−k

)
.

Hence,

Dnk,2 ≤ 3
n∑

t=k+1

(
ξ̄2ν̄2 + ν̄2ξ2t + ξ̄2ν2t−k

)
= 3(n− k)ξ̄2ν̄2 + 3ν̄2

n∑
t=k+1

ξ2t + 3ξ̄2
n∑

t=k+1

ν2t−k = op(1)

using (A.62) and noting that by (A.52), ξ̄2 = op(n
−1), ν̄2 = op(n

−1).
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It remains to verify (A.62). We have

n∑
t=1

ξ2t =
n∑
t=1

r−2n,kh
2
t ε

2
t ≤ ( max

1≤t≤n
r−2n,kh

2
t )(

n∑
t=1

ε2t ) = op(1)(
n∑
t=1

ε2t ) = op(n),

by the same argument as in (A.56), noting that E[
∑n

t=1 ε
2
t ] = nE[ε21] implies

∑n
t=1 ε

2
t =

Op(n). The proof of the claim for ν̄ in (A.62) is similar. This completes the proof of (A.60).

Proof of (A.61). Write

snk =
n∑

t=k+1

r−4nk ζ
2
tk =

n∑
t=k+1

βtzt, βt = r−4nk h
2
t g

2
t−k, zt = ε2t η

2
t−k.

Notice that
n∑

t=k+1

βt = r−4nk

n∑
t=k+1

h2t g
2
t−k = 1.

Moreover, by (A.11) and (A.12),

max
t=k+1,...,n

βt = δn = op(1), E[δn] = o(1),

and by Assumption 3.3 of Theorem 3.1, {zt} is covariance stationary sequence such that

cov(zk, z0)→ 0 as k →∞. Hence, by (A.39) of Lemma A4,

snk =
( n∑
t=k+1

βt

)
Ez1 + op(1) = Ez1 + op(1), (A.63)

which proves (A.61). This completes the proof of the lemma. �

To state the next lemma, rewrite the element r̂xy,jk of R̂xy given in (38) as

r̂xy,jk =
njk

(vjkvkj)1/2
, njk =

n∑
t=max(j,k)+1

exy,tjexy,tk
∆nj∆nk

, vjk =
n∑

t=max(j,k)+1

e2xy,tj
∆2
nj

, (A.64)

where ∆nj is defined in (A.2). Set again µx = µy = 0. Recall the notation (A.28):

ñjk =

n∑
t=max(j,k)+1

ζtjζtk
∆nj∆nk

. (A.65)

Lemma A7. Under the assumptions of Theorem 3.2,

njk = ñjk + op(1), vjk = 1 + op(1), (A.66)

with njk, vjk as in (A.64) and ñjk as in (A.65).
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Proof of Lemma A7. We start with the proof of the first claim in (A.66). We have

njk − ñjk =
n∑

t=max(j,k)+1

(exy,tjexy,tk − ζtjζtk)
∆nj∆nk

. (A.67)

Using the equality

(exy,tjexy,tk − ζtjζtk) = (exy,tj − ζtj)(exy,tk − ζtk) + (exy,tj − ζtj)ζtk + (exy,tk − ζtk)ζtj ,

we obtain

n∑
t=max(j,k)+1

(exy,tjexy,tk − ζtjζtk) =
n∑

t=max(j,k)+1

(exy,tj − ζtj)(exy,tk − ζtk)

+

n∑
t=max(j,k)+1

(exy,tj − ζtj)ζtk +

n∑
t=max(j,k)+1

(exy,tk − ζtk)ζtj .

Applying the Cauchy inequality, we can bound

n∑
t=max(j,k)+1

|(exy,tj − ζtj)(exy,tk − ζtk)| ≤ (

n∑
t=j+1

(exy,tj − ζtj)2)1/2(
n∑

t=k+1

(exy,tk − ζtk)2)1/2,

n∑
t=max(j,k)+1

|(exy,tj − ζtj)ζtk| ≤ (
n∑

t=j+1

(exy,tj − ζtj)2)1/2(
n∑

t=k+1

ζ2tk)
1/2.

Recall the notation Dnk and snk, used in (A.58). Then,

jn4 := AjAk|njk − ñjk|

≤ r−2nj r
−2
nk

∣∣ n∑
t=max(j,k)+1

(exy,tjexy,tk − ζtjζtk)
∣∣

≤ D
1/2
nj D

1/2
nk +D

1/2
nj s

1/2
nk +D

1/2
nk s

1/2
nj = op(1)

since by (A.60) and (A.61), Dnj = op(1) and snj = Op(1), which proves the first claim in

(A.66), njk = ñjk + op(1).

To prove the second claim, vjk = 1 + op(1), write

vjk = ∆−2nj

n∑
t=max(j,k)+1

e2xy,tj = vj + qnj ,

vj = ∆−2nj

n∑
t=j+1

e2xy,tj , qnj = ∆−2nj
( n∑
t=max(j,k)+1

−
n∑

t=j+1

)
e2xy,tj .

The sum vj is the same as in (A.3), and we showed in (A.5) that vj = 1 + op(1). It remains
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to show that qnj = op(1). If j ≥ k, then qnj = 0. Let j < k. Then,

qnj = −∆−2nj

k∑
t=j+1

e2xy,tj = −∆−2nj

k∑
t=j+1

(e2xy,tj − ζ2tj) + ∆−2nj

k∑
t=j+1

ζ2tj ,

|qnj | ≤ ∆−2nj

n∑
t=j+1

|e2xy,tj − ζ2tj |+ ∆−2nj

k∑
t=j+1

ζ2tj =: pn,1 + pn,2.

We showed in (A.57) that pn,1 = op(1). On the other hand,

pn,2 = ∆−2nj

k∑
t=j+1

h2t g
2
t−jε

2
t η

2
t−j = op(1)

by (A.53). This completes the proof of the lemma. �

In the following lemma, ñjk and wjk are defined as in (A.65) and (A.18), respectively; and

the matrices Rxy and R∗xy are as in (38) and (39).

Lemma A8. Suppose that assumptions of Theorem 3.2 are satisfied. Then,

R̂xy = W + op(1), (A.68)

R̂∗xy = W + op(1) for any λ > 0. (A.69)

Moreover, there exists b > 0, such that for any a = (am0 , ..., am)′ and n ≥ 1,

a′Wa ≥ b||a||2. (A.70)

Moreover,

R̂−1/2xy = W−1/2 + op(1), W−1/2 = Op(1). (A.71)

Proof of Lemma A8. Proof of (A.68). It suffices to show that

r̂xy,jk = wjk + op(1) for j, k ∈ [m0, ...,m]. (A.72)

By (A.64) and Lemma A7,

r̂xy,jk =
njk

(vjkvkj)1/2
=

ñjk + op(1)

(1 + op(1))2
.

Below we verify that

ñjk = wjk + op(1), wjk = Op(1). (A.73)

This implies

r̂xy,jk =
wjk + op(1)

(1 + op(1))1/2
= wjk + op(1),
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which proves (A.72).

Proof of (A.73). Let bkt and ωtk be defined as in (A.13). Taking into account notation (A.17),

we can write

ñjk =
n∑

t=max(j,k)+1

btjbtkωtjωtk =
n∑
t=1

btjbtkωtjωtk. (A.74)

Then,

ñjk = wjk + w̃jk, where (A.75)

wjk =

n∑
t=1

btjbtkσjk, σjk = E[ωtjωtk] = corr(ε1η1−j , ε1η1−k),

w̃jk =
n∑
t=1

btzt, bt = btjbtk, zt = ωtjωtk − E[ωtjωtk].

Start with the first claim, ñjk = wjk + op(1), of (A.73). By (A.75), it suffices to show that

w̃jk = op(1). (A.76)

To evaluate the sum w̃jk =
∑n

t=1 btzt, we use Lemma A4. By Assumption 3.4(i) of the

theorem, {zt} is a covariance stationary sequence with Ezt = 0 and such that cov(zk, z0)→ 0

as k →∞. On the other hand,

n∑
t=1

bt ≤ (

n∑
t=1

b2tj)
1/2(

n∑
t=1

b2tk)
1/2 = 1,

because
∑n

t=1 b
2
tj =

∑n
t=j+1 b

2
tj = 1, and under Assumption 3.4(iii) of theorem, (A.12) implies

E[ max
t=1,...,n

|bt|] ≤ (E[ max
t=1,...,n

b2tk])
1/2(E[ max

t=1,...,n
b2tj ])

1/2 = o(1). (A.77)

Hence, by (A.39) of Lemma A4, w̃jk = op(1) which proves (A.76).

Finally,

|wjk| ≤ |σjk|
n∑
t=1

bt ≤ |σjk|,

which implies wjk = Op(1) and completes the proof of (A.73).

Proof of (A.69). Recall the element r̂∗xy,jk = r̂xy,jkI(|r̂xy,jk| ≥ λ) of the matrix R̂∗xy given in

(39). To prove (A.69), we need to show that for any λ > 0,

r̂∗xy,jk = wjk + op(1) for j, k ∈ [m0, ...,m]. (A.78)
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Noting that by (A.68), r̂xy,jk = wjk + op(1), to verify (A.78) it suffices to show that

r̂xy,jk − r̂∗xy,jk = op(1). (A.79)

Observe that

r̂xy,jk − r̂∗xy,jk = r̂xy,jk − r̂xy,jkI(|τxy,jk| > λ) = r̂xy,jkI(|τxy,jk| ≤ λ).

Let ε > 0. Then, |r̂xy,jk| ≤ ε+ |r̂xy,jk|I(|r̂xy,jk| > ε). Hence,

|r̂xy,jk − r̂∗xy,jk| ≤ ε+ |r̂xy,jk|I
(
|τxy,jk| ≤ λ, |r̂xy,jk| > ε

)
.

By (A.72) and (A.73), |r̂xy,jk| = wjk +op(1) = Op(1). We will show that for any λ > 0, ε > 0,

it holds

I(|τxy,jk| ≤ λ, |r̂xy,jk| > ε) = op(1). (A.80)

This implies

|r̂xy,jk − r̂∗xy,jk| ≤ ε+Op(1)op(1) = ε+ op(1),

for any arbitrarily small ε, which proves (A.79). Use the bound

I
(
|τxy,jk| ≤ λ, |r̂xy,jk| > ε

)
= I

(
|τxy,jk| ≤ λ, |τxy,jk|

|r̂xy,jk|
|τxy,jk|

> ε
)

≤ I
(
λ
|r̂xy,jk|
|τxy,jk|

> ε
)

= I
( |r̂xy,jk|
|τxy,jk|

≥ ε/λ
)
, (A.81)

and we will show that

|r̂xy,jk|
|τxy,jk|

= op(1), (A.82)

which together with (A.81) implies (A.80). Definitions of r̂xy,jk and τxy,jk given in (38) and

(39) imply that

|r̂xy,jk|
|τxy,jk|

=
( ∑n

t=max(j,k)+1 e
2
xy,tje

2
xy,tk∑n

t=max(j,k)+1 e
2
xy,tj

∑n
t=max(j,k)+1 e

2
xy,tk

)1/2
=
( Vnjk
vjkvkj

)1/2
,

where

Vnjk =

n∑
t=max(j,k)+1

e2xy,tje
2
xy,tk

∆2
nj∆

2
nk

, vjk =

n∑
t=max(j,k)+1

e2xy,tj
∆2
nj

.

By (A.66), vjk = 1 + op(1). So, we obtain

|r̂xy,jk|
|τxy,jk|

=
V

1/2
njk

1 + op(1)
.
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To prove (A.82), it remains to show that

Vnjk = op(1). (A.83)

Write

Vnjk =
n∑

t=max(j,k)+1

e2xy,tj
∆2
nj

e2xy,tk
∆2
nk

= rn,1 + rn,2,

rn,1 =
n∑

t=max(j,k)+1

e2xy,tje
2
xy,tk − ζ2tjζ2tk

∆2
nj∆

2
nk

, rn,2 =
n∑

t=max(j,k)+1

ζ2tjζ
2
tk

∆2
nj∆

2
nk

.

To verify (A.83), it suffices to show that

rn,1 = op(1), rn,2 = op(1). (A.84)

First we evaluate rn,1. Notice that

e2xy,tje
2
xy,tk − ζ2tjζ2tk = (e2xy,tj − ζ2tj)(e2xy,tk − ζ2tk) + ζ2tj(e

2
xy,tk − ζ2tk) + ζ2tk(e

2
xy,tj − ζ2tj).

Set

Qnk = ∆−2nk

n∑
t=k+1

|e2xy,tk − ζ2tk|, ṽk = ∆−2nk

n∑
t=k+1

ζ2tk.

By (A.57), Qnk = op(1), and by (A.8), ṽk = 1 + op(1). Therefore,

|rn,1| ≤ QnjQnk + ṽjQnk + ṽkQnj = op(1).

Next we evaluate rn,2. Recall that ζ2tkζ
2
tj = h4t g

2
t−jg

2
t−kν

2
t where νt = ε2t ηt−jηt−k. By Assump-

tion 3.4(i), {νt} is a covariance stationary sequence, and Eν2t = Eν21 < ∞. By assumption

{νt} is independent of {ht, gt}. Therefore,

Ern,2 = E
[ n∑
t=max(j,k)+1

h4t g
2
t−jg

2
t−k

∆2
nj∆

2
nk

νt

]

= E
[ n∑
t=max(j,k)+1

h4t g
2
t−jg

2
t−k

∆2
nj∆

2
nk

]
E[ν1]

≤ E
[
δn

n∑
t=max(j,k)+1

h2t g
2
t−k

∆2
nk

]
E[ν1],

where δn = ∆−2nj maxt=j+1,...,n h
2
t g

2
t−j . By (A.11), E[δn] = o(1). By definition of ∆nk in

(A.2),
n∑

t=k+1

h2t g
2
t−k

∆2
nk

≤ A−2k <∞.
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Hence,

Ern,2 ≤ E[δn]E[ν21 ] = o(1),

which proves rn,2 = op(1). This completes the proof of (A.69).

Proof of (A.70). Notice, that the matrix Σ = (σjk)j,k=m0,...,m is positive definite. Indeed, by

Assumption 3.4(i), the stationary sequence zj = ε1η1−j has properties Ezi = 0, Ez2j < ∞,

and
∑

k |cov(ηk, η0)| < ∞, so that the sequence {ηt} has a spectral density. In Lemma 3.1

in DGP (2022), it is shown that under these assumptions, the matrix Σ is positive definite

for m0 = 1. The proof of that lemma shows that Σ remains positive definite also for m0 > 1.

Hence, there exists b > 0, such that for any real numbers am0 , ..., am,

m∑
j,k=m0

ajσjkak ≥ b ||a||2, ||a||2 = a2m0
+ ...+ a2m.

Therefore, by the definition of W = (wjk), see (A.75), for a = (am0 , ..., am)′,

a′Wa =
m∑

j,k=m0

ajwjkak =
m∑

j,k=m0

aj{
n∑
t=1

btjbtkσjk}ak

=

n∑
t=1

[ m∑
j,k=m0

(ajbtj)σjk(akbtk)
]
≥ b

n∑
t=1

[ m∑
j=m0

(ajbtj)
2
]

= b
m∑

j=m0

a2j (
n∑
t=1

b2tj) = b
m∑

j=m0

a2j = b||a||2. (A.85)

Hence, (A.70) holds and W is positive definite.

Proof of (A.71). Notice that by (A.68) of Lemma A8, R̂xy = W +op(1). Matrices R̂xy and W

are symmetric and, thus, have real eigenvalues. By (A.70), the eigenvalues of W are positive

and the smallest eigenvalue λW,min of W satisfies λW,min ≥ b for some b > 0. Therefore,

the smallest eigenvalue λmin of the matrix W 1/2 has the property λmin = λ
1/2
W,min ≥ b1/2,

so that W−1/2 is positive definite. In turn, the largest eigenvalue λW,max of W−1 satisfies

λW,max = λ−1W,min ≤ 1/b. This implies that W−1 = Op(1). Similarly, the largest eigenvalue

λmax of W−1/2 satisfies λmax = λ−1min ≤ 1/b1/2. This implies that W−1/2 = Op(1). Hence,

the inverse matrices W−1 and W−1/2 exist and

R̂−1/2xy =
(
W + op(1)

)−1/2
= W−1/2

(
1 +W−1 × op(1)

)−1/2
= W−1/2

(
1 + op(1)

)−1/2
= W−1/2(1 + op(1)) = W−1/2 + op(1).

�
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Lemma A9. Suppose that

xt = µx + αn1z1t + ut, ut = htεt, (A.86)

yt = µy + αn2z2t + vt, vt = gtηt, (A.87)

and that {ut} and {vt} satisfy the assumptions of Theorem 3.1 or 3.2. Then Lemmas A6,

A7 and A8 remain valid under the following conditions:

(i) {z1t} and {z2t} are covariance stationary sequences,

(ii) for any k ≥ 0, {εtz2,t−k} and {z1tηt−k} are zero mean covariance stationary short memory

sequences,

(iii) with rnk = (
∑n

t=k+1 h
2
t g

2
t−k)

1/4,

r−1nkαn1n
1/2 = op(1), r−1nkαn2n

1/2 = op(1). (A.88)

Corollary 7.1. In Lemma A9, to verify Lemmas A6, A7 and A8 it suffices to show that

variables xt, yt, ut, vt satisfy properties (A.50), (A.52), (A.53), (A.59) and (A.62).

Proof of Corollary 7.1. This corollary states the claims that are needed to verify for xt

and yt as in (A.86). �

Proof of Lemma A9. According to Corollary 7.1, it suffices to verify (A.50), (A.52), (A.53),

(A.59), (A.62) and (A.8). First we show that (A.88) implies

r−2nkαn1(
n∑
t=1

g2t )
1/2 = op(1), r−2nkαn2(

n∑
t=1

h2t )
1/2 = op(1). (A.89)

Write

r−2nkαn1(
n∑
t=1

g2t )
1/2 = (r−1nkαn1n

1/2)(r−1nk {n
−1

n∑
t=1

g2t }1/2)

≤ (r−1nkαn1n
1/2)(r−1nk max

t=1,...,n
gt).

By Assumption 3.2 used in Theorems 3.1 and 3.2, r−1nk maxt=1,...,n gt = op(1). This together

with (A.88) implies the first claim in (A.89). The proof of the second claim is similar.

Proof of (A.50). We need to show that jn1 = op(1). We have

ζxy,tk − ζtk = (xt − µx)(yt−k − µy)− utvt−k
= (αn1z1t + ut)(αn2z2,t−k + vt−k)− utvt−k
= utαn2z2,t−k + αn1z1tvt−k + αn1αn2z1tz2,t−k. (A.90)
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Hence

jn1 := r−2nk

n∑
t=k+1

(ζxy,tk − ζtk)

= r−2nkαn2

n∑
t=k+1

utz2,t−k + r−2nkαn1

n∑
t=k+1

vt−kz1,t + r−2nkαn1αn2

n∑
t=k+1

z1,tz2,t−k.

By assumption, {εtz2,t−k} is covariance stationary short memory sequence with E[εtz2,t−k] =

0. Therefore, by Lemma A5,

n∑
t=k+1

utz2,t−k =
n∑

t=k+1

htεtz2,t−k = Op
(
(

n∑
t=k+1

h2t )
1/2
)
.

Similarly, it follows that
∑n

t=k+1 vt−kz1,t = Op
(
(
∑n

t=k+1 g
2
t )

1/2
)
. In addition,∑n

t=k+1 z1,tz2,t−k = Op(n) since

E[n−1
n∑

t=k+1

|z1,tz2,t−k|] ≤ n−1
n∑

t=k+1

2(Ez21,t + Ez22,t−k)

≤ 2(Ez21,1 + Ez22,1−k) <∞.

Using (A.88) and (A.89), this implies

jn1 = Op

(
r−2nkαn2(

n∑
t=k+1

h2t )
1/2 + r−2nkαn1(

n∑
t=k+1

g2t )
1/2

+(r−1nkαn1n
1/2)(r−1nkαn2n

1/2)
)

= op(1).

Proof of (A.52). We need show that

ξ̄ = r−1nk

n∑
t=k+1

(xt − µx) = op(n
−1/2)

and the proof for η̄ is similar and omitted. We have

ξ̄ = r−1nk n
−1

n∑
t=k+1

(αn1z1t + ut)

= r−1nkαn1n
−1

n∑
t=k+1

z1t + r−1nk n
−1

n∑
t=k+1

ut.

In the proof of (A.52) above we showed that

r−1nk n
−1

n∑
t=k+1

ut = op(n
−1/2).
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Clearly, n−1
∑n

t=k+1 z1t = Op(1). By (A.88), r−1nkαn1 = op(n
−1/2). This implies

ξ̄ = r−1nkαn1Op(1) + op(n
−1/2) = op(n

−1/2).

Proof of (A.53). We need to show that ξt = op(1). The proof for νt is similar and omitted.

We have

|ξt| = r−1nk |xt − µx| = r−1nk |αn1z1t + ut|.

In (A.53) above we showed that r−1nk |ut| = op(1). Notice that |z1t| = Op(1) since E|z1t| ≤
(Ez21t)

1/2 = (Ez211)
1/2 <∞. Using (A.88), this implies

|ξt| = r−1nkαn1Op(1) + op(1) = op(1).

Proof of (A.59). We need to show that

Dnk,1 =
n∑

t=k+1

r−4nk (ζxy,tk − ζtk)2 = op(1).

By (A.90),

(ζxy,tk − ζtk)2 = (utαn2z2,t−k + αn1z1tvt−k + αn1αn2z1tz2,t−k)
2

≤ 3u2tα
2
n2z

2
2,t−k + 3α2

n1z
2
1tv

2
t−k + 3α2

n1α
2
n2z

2
1tz

2
2,t−k,

Dnk,1 ≤ 3r−4nkα
2
n2

n∑
t=k+1

h2t ε
2
t z

2
2,t−k + 3r−4nkα

2
n1

n∑
t=k+1

g2t−kz
2
1tη

2
t−k

+3r−4nkα
2
n1α

2
n2

n∑
t=k+1

z21t z
2
2,t−k.

We will show that

n∑
t=k+1

h2t ε
2
t z

2
2,t−k = Op(

n∑
t=1

h2t ),
n∑

t=k+1

g2t−kz
2
1tη

2
t−k = Op(

n∑
t=1

g2t ),
n∑

t=k+1

z21t z
2
2,t−k = Op(n

2).

(A.91)

This together with (A.88) and (A.89) implies

Dnk,1 ≤ r−4nkα
2
n2Op(

n∑
t=1

h2t ) + r−4nkα
2
n1Op(

n∑
t=1

g2t ) + r−4nkα
2
n1α

2
n2n

2 = op(1).

We will show the first claim in (A.91). (The proof of the second claim is similar). Set

βt = h2t /(
∑n

j=k+1 h
2
j ) and note that

∑n
t=k+1 βt = 1. Since {ht} is independent of {εt, zt}, we

obtain:

n∑
t=k+1

h2t ε
2
t z

2
2,t−k = (

n∑
t=k+1

h2t )
n∑

t=k+1

βtε
2
t z

2
2,t−k,

25



E[

n∑
t=k+1

βtε
2
t z

2
2,t−k] =

n∑
t=k+1

E[βt]E[ε2t z
2
2,t−k]

= E[

n∑
t=k+1

βt]E[ε21z
2
2,1−k] = E[ε21z

2
2,1−k].

This implies that

n∑
t=k+1

βtε
2
t z

2
2,t−k = Op(1),

which proves the first claim in (A.91). To prove the third claim, recall that by assumption it

holds E[z21t] = E[z211], E[z22t] = E[z221]. Hence, it follows from

E[n−2
n∑

t=k+1

z21tz
2
2,t−k] ≤ E[n−1

n∑
t=k+1

z21t]E[n−1
n∑

t=k+1

z22,t−k] ≤ E[z211]E[z221] <∞.

Proof of (A.62). We need to show that
∑n

t=1 ξ
2
t = op(n). (The proof of the second claim is

similar.) We have,

n∑
t=1

ξ2t = r−2nk

n∑
t=1

(xt − µx)2 = r−2nk

n∑
t=1

(αn1z1t + ut)
2

≤ 2r−2nkα
2
n1

n∑
t=1

z21t + 2r−2nk

n∑
t=1

u2t .

Notice that

(r−1nkαn1
√
n)2{n−1

n∑
t=1

z21t} = op(1),

since r−1nkα
1
n1

√
n = op(1) by (A.88), and E[n−1

∑n
t=1 z

2
1t] = E[z211] <∞. In (A.62) we showed

that r−2nk
∑n

t=1 u
2
t = op(n). This proves

∑n
t=1 ξ

2
t = op(n).

Proof of (A.8). Under the assumptions of Theorems 3.1 and 3.2, (A.8) holds by Lemma A1.

�

The following Lemmas A10 and A11 are used in the proof of Theorem 2.5.

Define stochastic processes Sz,bnuc, Sξ,bnuc, 0 ≤ u ≤ 1 by setting

Sz,bnuc = A−1k n−1/2
bnuc∑
t=1

zt, Sξ,bnuc = A−1ξ n−1/2
bnuc∑
t=1

ξt. (A.92)

We will denote by Sn(u)→fdd S(u), 0 ≤ u ≤ 1 convergence of finite dimensional distributions

of a process Sn(u) to those of a limit process S(u), 0 ≤ u ≤ 1.
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Lemma A10. Suppose that Assumptions 2.1 and 2.6 hold. Let k ≥ 1 be such that (22) is

satisfied. Then,

(
Sz,bnuc, Sξ,bnuc, 0 ≤ u ≤ 1

)
→fdd

(
U(u),W (u), 0 ≤ u ≤ 1

)
, (A.93)

where U(·) and W (·) are independent standard Wiener processes.

Moreover, ht satisfies Assumption 2.2:

max
1≤t≤n

h4t = op

( n∑
t=k+1

h2th
2
t−k

)
. (A.94)

Proof of Lemma A10. Proof of (A.93). Without loss of generality, assume that Eξ2t = 1

and Ez2t = 1, which implies that Aξ = 1 and Ak = 1. By the Cramér-Wold device, to prove

convergence of the finite dimensional distributions in (A.93), it suffices to show that for any

p ≥ 1, any real numbers aj , bj , j = 1, ..., p and any 0 < u1 < ... < up ≤ 1 the following holds

qn :=

p∑
j=1

(
ajSz,bnujc + bjSξ,bnujc

)
→D q :=

p∑
j=1

(
ajW (uj) + bjU(uj)

)
. (A.95)

We can write

qn =

n∑
t=k+1

rnt, rnt = bξ,ntξt + bz,ntzkt,

bz,nt = n−1/2
p∑
j=1

ajI(t ≤ bnujc), bξ,nt = n−1/2
p∑
j=1

bjI(t ≤ bnujc).

Under Assumptions 2.1 and 2.6, rnt is an m.d. sequence:

E[rnt|Ft−1] = bz,ntE[zkt|Ft−1] + bξ,ntE[ξt|Ft−1] = 0.

Notice that q ∼ N (0, Eq2), where

Eq2 = E
[( p∑

j=1

(ajW (uj) + bjU(uj))
)2]

=
k∑

j,s=1

(ajas + bjbs) min(uj , us). (A.96)

Similarly as in (A.14), by Theorem 3.2 of Hall and Heyde (1980), to prove (A.95), it suffices

to show

(a)

n∑
t=k+1

r2nt →p Eq
2, (b) E[ max

t=k+1,...,n
r2nt] = o(1). (A.97)
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First we prove (a). Write

n∑
t=k+1

r2nt = Pn,1 + Pn,2 + 2Pn,3, Pn,1 =
n∑

t=k+1

b2z,ntz
2
kt,

Pn,2 =
n∑

t=k+1

b2ξ,ntξ
2
t , Pn,3 =

n∑
t=k+1

bz,ntbξ,ntξtzkt.

We will show that

Pn,1 →p

p∑
j,s=1

ajas min(uj , us), (A.98)

Pn,2 →p

p∑
j,s=1

bjbs min(uj , us), Pn,3 →p 0,

which implies (a):

n∑
t=k+1

r2nt →p

p∑
j,s=1

(ajas + bjbs) min(uj , us) = Eq2.

First we verify (A.98) for Pn,1. Observe that,

Pn,1 =

n∑
t=k+1

(
n−1/2

p∑
j=1

ajI(t ≤ bnujc)
)2
z2kt =

p∑
j,s=1

ajasn
−1

min(bnujc,bnusc)∑
t=k+1

z2kt.(A.99)

By assumption, {εt} is a stationary ergodic sequence which implies that z2kt = ε2t ε
2
t−k is a

stationary ergodic sequence with E[z2kt] = E[z2k1] < ∞. Therefore, bnuc−1
∑bnuc

t=k+1 z
2
kt →p

Ez2k1 = 1. Since bnuc/n→ u, this implies (A.98):

Pn,1 →p

p∑
j,s=1

ajas min(uj , us).

The proof for Pn,2 and Pn,3 is similar noting in addition that in case of Pn,3, by assumption

{ξtzkt} is a stationary ergodic sequence, and E[ξtzkt] = 0 by assumption (22). This completes

the proof of (a).

Next we prove (b). Notice that

Rn := max
t=k+1,...,n

r2nt ≤ C max
t=k+1,...,n

n−1(ξ2t + z2kt)

≤ Cn−1/2 + max
t=k+1,...,n

n−1{ξ2t I(ξ2t > n1/2) + z2ktI(z2kt > n1/2)},

E[Rn] ≤ Cn−1/2 + Cn−1
n∑

t=k+1

E[ξ2t I(ξ2t > n1/2) + z2ktI(z2kt > n1/2)]
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= Cn−1/2 + C{E
[
ξ21I(ξ21 > n1/2)

]
+ E

[
z2k1I(z2k1 > n1/2)

]
} = o(1),

because under assumptions of lemma, E
[
ξ21 ] <∞ and E

[
z2k1] <∞. This completes the proof

of (b) and (A.93).

Proof of (A.94). Under Assumption 2.6 it holds that

E[ht|Ft−1] = E
[
h̃t−1|Ft−1

]
≥ |E[h̃t−1|Ft−1]| = |h̃t−2| = ht−1.

Therefore, ht is a discrete-time submartingale, and by the Doob submartingale inequality,

P
(

max
t=1,...,n

ht ≥ c
)
≤ c−1Ehn.

Notice that,

(Ehn)2 ≤ E[h2n] = E[(h0 +

n−1∑
t=1

ξ̃t)
2] ≤ 2Eh20 + 2E[(

n−1∑
t=1

ξ̃t)
2] = 2Eh20 + 2E[

n−1∑
t=1

ξ̃2t ] ≤ Cn.

Hence,

P
(

max
t=1,...,n

ht ≥ c
)
≤ c−1Cn1/2, (A.100)

max
t=1,...,n

ht = Op(n
1/2), max

t=1,...,n
h4t = Op(n

2).

On the other hand, (A.93) together with assumption E|h̃0| <∞ implies that

(
A−1ξ n−1/2hbnuc, 0 ≤ u ≤ 1

)
→D

(
U(u), 0 ≤ u ≤ 1

)
. (A.101)

This yields

A−4ξ n−3
n∑

t=k+1

h2th
2
t−k =

∫ 1

0
(A−1ξ n−1/2hbnuc)

4du+ op(1) =

∫ 1

0
U4(u)du+ op(1). (A.102)

This together with (A.100) proves (A.94) and completes the proof of the lemma. �

Lemma A11. Let ñk, Rk, ṽk and Qk be as in (A.36). Then, under assumptions of Lemma A10,

ñk =

∫ 1

0
U2(u)dW (u) + op(1), (A.103)

ṽk =

∫ 1

0
U4(u)du+ op(1), (A.104)

Rk = op(1), Qk = op(1), (A.105)

where U(.) and W (.) are two independent Wiener processes.
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Proof of Lemma A11. Without restriction of generality assume that Aξ = 1, Ak = 1 and

h̃0 = 0. We start with the proof of (A.103). Let M > 1 be an integer. We split the interval

[0, 1] into a grid 0 = u0 < u1 < ... < uM = 1 where uj = jM−1, j = 0, ...,M . Denote

tj = bnujc, j = 0, ...,M . Write

ñk = n−3/2
n∑

t=k+1

htht−kzkt = n−3/2
M∑
j=1

h2tj−1

tj∑
t=tj−1+1

zkt (A.106)

+n−3/2
M∑
j=1

tj∑
t=tj−1+1

(
htht−k − h2tj−1

)
zkt = ∆Mn1 + ∆Mn2.

We will show that as n,M →∞,

∆Mn1 =

∫ 1

0
U2(u)dW (u) + op(1), (A.107)

∆Mn2 = op(1), (A.108)

which together with (A.106) proves (A.103).

Proof of (A.107). Using notation (A.92), and Lemma A10, we obtain that, as n→∞,

∆Mn1 =
M∑
j=1

S2
ξ,bnuj−1c(Sz,bnujc − Sz,bnuj−1c) =

M∑
j=1

U2(uj−1)
(
W (uj)−W (uj−1)

)
+ op(1)

=

M∑
j=1

U2(uj−1)

∫ uj−1

uj

dW (u) + op(1) (A.109)

=

∫ 1

0
U2(u)dW (u) + op(1) + δMN , δM =

M∑
j=1

∫ uj−1

uj

(
U2(uj−1)− U2(u)

)
dW (u).

Notice that U2(u)−U2(uj−1) = (U(u)−U(uj−1))
2 + 2(U(u)−U(uj−1))U(uj−1). Recall that

U(u)− U(uj−1) ∼ N (0, u− uj−1),

E[(U(u)− U(uj−1))
2] = u− uj−1, E[U(uj−1)

2] = uj−1,

E[(U(u)− U(uj−1))
4] = 3{E[(U(u)− U(uj−1))

2]}2 = 3(u− uj−1)2.

Hence,

E[
(
U2(u)− U2(uj−1)

)2
] ≤ 2E[(U(u)− U(uj−1))

4] + 8E[(U(u)− U(uj−1))
2]E[U(uj−1)

2]

= 6(u− uj−1)2 + 8(u− uj−1)uj−1 = 14(uj − uj−1) ≤ 14M−1.
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Therefore,

E[δ2M ] =

M∑
j=1

∫ uj

uj−1

E[
(
U2(uj−1)− U2(u)

)2
]du (A.110)

≤
M∑
j=1

∫ uj

uj−1

14M−1du = 14M−1 → 0 as M →∞.

Hence, δM = op(1) as M →∞ which together with (A.109) implies (A.107).

Proof of (A.108). It suffices to show that, as n,M →∞,

E[∆2
Mn2]→ 0. (A.111)

Recall that ztks are uncorrelated variables, and by assumption E[z4kt] = E[z4k1] <∞. Then,

E[∆2
Mn2] = n−3

M∑
j=1

tj∑
t=tj−1+1

E[
(
htht−k − h2tj−1

)2
z2kt
]

≤ n−3
M∑
j=1

tj∑
t=tj−1+1

{E[
(
htht−k − h2tj−1

)4
]E[z4kt]}1/2

≤ {E[z4k1]}1/2n−3
M∑
j=1

tj∑
t=tj−1+1

{E[
(
htht−k − h2tj−1

)4
]}1/2.

Next, write

htht−k − h2tj−1
= (ht − htj−1)ht−k + htj−1(ht−k − htj−1), (A.112)

(htht−k − h2tj−1
)4 ≤ 4(ht − htj−1)4h4t−k + 4h4tj−1

(ht−k − htj−1)4,

E[(htht−k − h2tj−1
)4] ≤ 4{E[(ht − htj−1)8]E[h8t−k]}1/2 + 4{E[(ht−k − htj−1)8]E[h8tj−1

]}1/2.

We will show that for 0 ≤ s < t ≤ n,

E[(ht − hs)8] ≤ C(t− s)4, (A.113)

where C does not depend on t, s, n. This bound also implies

E[h8t ] ≤ 8{E[(ht − h0)8] + E[h80]} ≤ Ct4, (A.114)

since E[h80] < ∞ by assumption. We apply these bounds in (A.112) for tj−1 < t ≤ tj . Note

that t− tj−1 ≤ tj − tj−1 ≤ n/M . We obtain:

E[(htht−k − h2tj−1
)4] ≤ C{(t− tj−1)2 + (t− k − tj−1)2}t2 ≤ C(n/M)2n2. (A.115)
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Therefore,

E[∆2
Mn2] ≤ Cn−3

M∑
j=1

tj∑
t=tj−1+1

(n/M)n = CM−1n−1
M∑
j=1

tj∑
t=tj−1+1

1 = CM−1 → 0, M →∞,

which proves (A.108). To verify (A.113), observe that by Assumption 2.6,

|ht − hs|8 =
∣∣|h̃t−1| − |h̃s−1|∣∣8 ≤ ∣∣|h̃t−1 − h̃s−1|∣∣8

= |
t−1∑
i=s

ξi|8.

Lemma 2.5.2 in Giraitis, Koul and Surgailis (2012) implies that if {ξi} is a stationary m.d.

sequence such that E[|ξt|p] <∞ for some p > 2, then

E|
n∑
i=1

ξi|p ≤ Cnp/2(E|ξ1|p)2/p,

where a constant C depends only on p. Applying this bound with p = 8 we obtain (A.113).

This completes the proof of (A.108).

Proof of (A.104). We use a similar approach as that in the proof of (A.103). Write

ṽk = n−3
n∑

t=k+1

ζ2tk = n−3
n∑

t=k+1

h2th
2
t−kz

2
kt = n−3

M∑
j=1

h4tj−1

tj∑
t=tj−1+1

z2kt (A.116)

+n−3
M∑
j=1

tj∑
t=tj−1+1

(
h2th

2
t−k − h4tj−1

)
z2kt = ∆∗Mn1 + ∆∗Mn2.

It remains to show that as n,M →∞,

∆∗Mn1 =

∫ 1

0
U4(u)du+ op(1), (A.117)

∆∗Mn2 = op(1). (A.118)

Together with (A.116) this implies (A.104).

Proof of (A.117). Since ζtk is a stationary ergodic sequence and E[ζ2k1] <∞, then

n−1
tj∑

t=tj−1+1

z2kt = n−1
tj∑

t=tj−1+1

E[z2kt] + op(1)

= n−1(bnujc − bnuj−1c) + op(1)→p uj − uj−1.
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Using (A.92) and Lemma A10, we obtain that, as n→∞,

∆∗Mn1 =
M∑
j=1

S4
ξ,bnuj−1c(uj − uj−1 + op(1)) =

M∑
j=1

U4(uj−1)(uj − uj−1) + op(1)

=
M∑
j=1

U4(uj−1)

∫ uj−1

uj

du+ op(1)

=

∫ 1

0
U4(u)du+ op(1) + δ∗MN , δ∗M =

M∑
j=1

∫ uj−1

uj

(
U4(uj−1)− U4(u)

)
du.

Similarly as in (A.110), it can be shown that E[δ∗ 2M ]→ 0 as M →∞ which implies δ∗M = op(1)

and completes the proof of (A.117).

Proof of (A.118). Denote Hn = maxt=1,...,n ht. Using (A.112) we can bound

|htht−k − h2tj−1
| = |(ht − htj−1)ht−k + htj−1(ht−k − htj−1)|

≤ Hn

(
|ht − htj−1 |+ |ht−k − htj−1 |

)
,

|h2th2t−k − h4tj−1
| = |htht−k − h2tj−1

| |htht−k + h2tj−1
|

≤ 2H3
n

(
|ht − htj−1 |+ |ht−k − htj−1 |

)
.

Hence

|∆∗Mn2| ≤ n−3
M∑
j=1

tj∑
t=tj−1+1

∣∣h2th2t−k − h4tj−1

∣∣z2kt
≤ H3

nn
−3δn3, δn3 :=

M∑
j=1

tj∑
t=tj−1+1

(
|ht − htj−1 |+ |ht−k − htj−1 |

)
z2kt.

By (A.100), Hn = Op(n
1/2). We will show that

δn3 = Op
(
(n/M)1/2n

)
. (A.119)

This implies (A.118):

|∆∗Mn2| = n−3Op
(
n3/2)Op

(
(n/M)1/2n) = Op(M

−1/2)→p 0, M →∞.

To verify (A.119), notice that by Assumption 2.6, for s < t, it holds that

E[(ht − hs)2] ≤ E[(

t−1∑
j=s

ξj)
2] ≤

t−1∑
j=s

E[ξ2j ] ≤ C(t− s).
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Hence, for tj−1 < t ≤ tj , we obtain

E
[
(|ht − htj−1 |+ |ht−k − htj−1 |) z2kt

]
≤ {E

[
(|ht − htj−1 |+ |ht−k − htj−1 |)2

]
}1/2(E[z4kt])

1/2

≤ {2E[(ht − htj−1)2] + 2E[(ht−k − htj−1)2]}1/2(E[z4k1])
1/2

≤ C|tj − tj−1|1/2 ≤ C(n/M)1/2.

Therefore,

E[δn3] ≤ C(n/M)1/2
M∑
j=1

tj∑
t=tj−1+1

1 = C(n/M)1/2n,

which proves (A.119) and completes the proof of (A.104).

Proof of (A.105). We again assume for simplicity of notation that Aξ = 1 and Ak = 1. Set

rnk = n3/4 and rewrite Rn and Qn in (A.36) as

Rk = r−2nk

n∑
t=k+1

(etk − ζtk), Qk = r−4nk

n∑
t=k+1

(e2tk − ζ2tk).

Denote

ξt = r−1nk (xt − µx) = r−1nk htεt, ξ̄ = n−1
n∑
t=1

ξt.

Verification of properties Rk = op(1) and Qk = op(1) is equivalent to the proof of (A.47) and

(A.48) in Lemma A6.

Proof of Rk = op(1). The proof of (A.47) in Lemma A6 shows that it suffices to verify (A.52)

and (A.53), in other words to show that

(a) ξ̄ = op(n
−1/2), (b) ξt = op(1), for any 1 ≤ t ≤ n. (A.120)

The first claim (a) follows noting that ξts are uncorrelated random variables, and therefore

E[ξ̄]2 = E[(n−1
n∑
t=1

ξt)
2] = n−2

n∑
t=1

E[ξ2t ] = n−2r−2nk

n∑
t=1

E[h2t ε
2
t ].

Using by (A.114), it follows

E[h2t ε
2
t ] ≤ (E[h44])

1/2E[ε4t ])
1/2 ≤ (E[h8t ])

1/4(E[ε41])
1/2 ≤ Ct.

Therefore,

E[ξ̄]2 = n−2
n∑
t=1

E[ξ2t ] ≤ Cn−2r−2nk
n∑
t=1

t ≤ Cr−2nk = n−3/2. (A.121)

This implies ξ̄ = Op(n
−3/4) which proves (A.120)(a).
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On the other hand, for 1 ≤ t ≤ n,

E|ξt| = r−1nkE|htεt| ≤ r
−1
nk (E[h2t ])

1/2(E[ε2t ])
1/2

≤ r−1nk (ct1/2)(E[ε21])
1/2 ≤ Cn−3/4n1/2 = o(1),

which implies (A.120)(b).

Proof of Qk = op(1). The proof of (A.48) in Lemma A6 shows that to verify this claim,

besides (A.52) it suffices to verify (A.62) and (A.61), that is

(a)
n∑
t=1

ξ2t = op(n), (b) snk = r−4nk

n∑
t=k+1

ζ2tk = Op(1). (A.122)

The claim (a) follows from (A.121), noting that

E
[ n∑
t=1

ξ2t
]

= n2E[ξ̄]2 ≤ Cn1/2 = o(n).

The claim (b) follows from (A.104).

This completes the proof of (A.105). We showed that the claim (A.34) of Theorem 2.1 remains

valid under assumptions of Theorem 2.5. �

8 Supplementary simulation results

This section contains more details concerning the Monte Carlo simulations.

8.1 Size and power of robust tests

Here we examine the finite sample performance of robust and standard tests for zero cor-

relation and zero cross-correlation. We use Monte Carlo simulations to confirm that the

robust test are correctly sized and their power is comparable with the size-corrected power

of standard tests.

8.1.1 Size and power of robust tests for zero correlation

We study the size of tests for Models 4.1 and 4.2 which take the form xt = 0.2 + htεt, as

given in the main paper. To analyse power performance, we amend these to an AR(1) model

xt = 0.2 + βxt−1 + htεt.
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In addition, we conduct testing on samples from

Model 8.1. xt = 0.2 + htεt, ht =

∣∣∣∣∣ 1√
n

t∑
j=1

ηj

∣∣∣∣∣, εt, ηt ∼ i.i.d.N (0, 1)

of uncorrelated noise as well as using the MA(1) model xt = 0.2 + βht−1εt−1 + htεt of

temporally dependent variables.

We performed simulations with sample sizes n = 100, 300, 500, 1000 and AR(1) or MA(1)

parameters β = 0.15, 0.2, 0.25, 0.3, 0.5. When β and n are very small, both robust and

standard tests have low power, and the power of the robust tests is a bit lower than standard

tests. The power of the robust tests improves as β or n increases and is about the same or

even higher than the size-corrected power of standard tests. We report testing outcomes for

β = 0.25, n = 300.

Tables 2 and 3 report size and power results for Model 4.1 (with ht =
3

n
bt/10c), Tables 4

and 5 for Model 4.2 (with ht = |
∑t

j=1 ηj |) and Tables 6 and 7 for Model 8.1.
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k
Size (β = 0) Power (β = 0.25) Size-corrected
t̃k tk t̃k tk power of tk

1 5.10 14.18 88.84 95.54 86.36
2 4.56 12.36 12.06 24.72 17.36
3 4.54 12.52 6.34 16.20 8.68
4 4.84 13.74 5.90 15.46 6.72
5 4.96 12.80 5.90 15.06 7.26
6 4.62 12.04 6.78 14.86 7.82
7 5.42 13.18 5.38 14.08 5.90
8 4.78 12.22 6.60 14.88 7.66
9 4.38 11.92 6.20 14.36 7.44
10 5.54 13.12 6.64 14.96 6.84
11 5.00 12.48 6.74 14.00 6.52
12 4.78 12.34 5.98 13.66 6.32
13 4.96 11.18 6.48 14.14 7.96
14 4.62 11.26 5.96 12.76 6.50
15 4.44 10.82 5.94 13.46 7.64

Table 2: Empirical size (in %) of the tests t̃k, tk. Nominal size α = 5%. Model 4.1, n = 300.

k
Size (β = 0) Power (β = 0.25) Size-corrected

Q̃m LBm Q̃m LBm power of LBm

1 5.10 14.44 88.84 95.58 86.14
2 4.12 17.00 81.74 93.64 81.64
3 4.18 20.26 75.92 92.54 77.28
4 4.20 23.66 71.04 91.74 73.08
5 4.14 26.30 66.62 91.26 69.96
6 3.76 27.42 62.50 90.70 68.28
7 4.22 30.18 59.20 90.50 65.32
8 4.32 32.24 56.82 90.74 63.50
9 4.32 33.96 54.30 90.64 61.68
10 4.50 36.44 51.84 90.24 58.80
11 4.78 38.92 49.62 90.10 56.18
12 4.98 40.50 47.76 90.40 54.90
13 4.66 41.82 46.34 90.28 53.46
14 4.90 43.06 44.28 90.44 52.38
15 4.98 44.16 42.82 90.38 51.22

Table 3: Empirical size (in %) of the cumulative tests. Nominal size α = 5%. Model 4.1,
n = 300.
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k
Size (β = 0) Power (β = 0.25) Size-corrected
t̃k tk t̃k tk power of tk

1 5.00 15.96 83.52 93.92 82.96
2 5.06 16.46 11.22 26.00 14.54
3 4.38 14.84 6.38 17.66 7.82
4 4.94 16.02 6.36 17.52 6.50
5 4.22 14.66 6.30 16.94 7.28
6 4.86 14.54 6.14 16.50 6.96
7 4.70 14.46 6.00 16.06 6.60
8 4.62 13.96 5.82 15.54 6.58
9 5.18 13.94 5.90 15.40 6.46
10 4.60 12.98 5.54 14.68 6.70
11 5.04 13.40 6.02 14.68 6.28
12 5.34 13.00 6.14 14.52 6.52
13 4.68 11.88 6.24 13.76 6.88
14 4.76 11.30 6.38 14.66 8.36
15 4.88 11.74 6.58 13.52 6.78

Table 4: Empirical size (in %) of the tests t̃k, tk. Nominal size α = 5%. Model 4.2, n = 300.

k
Size (β = 0) Power(β = 0.25) Size-corrected

Q̃m LBm Q̃m LBm power of LBm

1 5.00 16.16 83.52 93.98 82.82
2 4.72 22.68 74.68 92.94 75.26
3 4.56 26.10 69.00 92.22 71.12
4 4.14 30.06 63.48 92.10 67.04
5 4.26 32.98 59.84 91.90 63.92
6 4.52 35.00 56.30 91.58 61.58
7 4.32 37.32 54.06 91.10 58.78
8 4.46 38.98 50.76 91.10 57.12
9 4.50 41.16 48.36 90.90 54.74
10 4.52 42.94 46.24 90.68 52.74
11 4.50 44.80 44.24 90.68 50.88
12 4.84 46.02 42.64 90.52 49.50
13 4.96 46.90 41.36 90.70 48.80
14 5.22 47.54 40.30 90.34 47.80
15 5.32 48.82 39.22 90.32 46.50

Table 5: Empirical size of the cumulative tests. Nominal size α = 5%. Model 4.2, n = 300.
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k
Size (β = 0) Power (β = 0.25) Size-corrected
t̃k tk t̃k tk power of tk

1 4.56 16.80 80.66 93.32 81.52
2 4.64 16.38 4.84 17.12 5.74
3 4.60 15.78 5.70 17.84 7.06
4 4.42 14.78 6.06 17.92 8.14
5 5.04 15.56 6.14 16.48 5.92
6 4.92 14.84 5.70 16.68 6.84
7 4.94 14.04 6.10 16.82 7.78
8 4.64 13.42 5.90 16.00 7.58
9 4.68 13.08 6.46 15.78 7.70
10 4.72 13.22 6.22 15.44 7.22
11 4.84 12.48 6.20 15.44 7.96
12 5.00 11.98 6.20 15.40 8.42
13 4.66 12.12 6.14 13.76 6.64
14 4.20 11.32 6.02 13.70 7.38
15 4.86 12.20 6.20 13.48 6.28

Table 6: Empirical size (in %) of the tests t̃k, tk. Nominal size α = 5%. Model 8.1, n = 300.

k
Size (β = 0) Power (β = 0.25) Size-corrected

Q̃m LBm Q̃m LBm power of LBm

1 4.56 16.98 80.66 93.42 81.44
2 3.76 22.28 70.96 93.04 75.76
3 3.96 26.52 64.42 92.08 70.56
4 3.84 29.86 59.16 91.58 66.72
5 4.26 32.98 54.14 91.14 63.16
6 4.22 35.50 50.60 91.14 60.64
7 4.20 38.02 47.28 90.84 57.82
8 4.40 40.52 45.24 90.54 55.02
9 4.42 41.98 43.08 90.02 53.04
10 4.24 43.12 41.12 90.00 51.88
11 4.42 44.92 39.12 89.84 49.92
12 4.16 45.92 38.08 89.64 48.72
13 4.40 47.34 36.66 89.36 47.02
14 4.52 48.08 35.30 89.52 46.44
15 4.50 49.38 34.72 89.76 45.38

Table 7: Empirical size of the cumulative tests. Nominal size α = 5%. Model 8.1, n = 300.

Table 8 shows the size performance of Hong’s test statistic Tn as in (49) in Model 4.1

and Model 4.2. We used Bartlett, Flat, and Gaussian kernels and bandwidths mn =

{n0.3, n0.5, n0.6}. Evidently Tn suffers substantial size distortion.
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Model 4.1 Model 4.2

Bartlett Flat Gaussian Bartlett Flat Gaussian

mn = n0.3 20.38 26.9 29.32 23.94 31.66 34.8
mn = n0.5 32.72 43.4 47.54 39.66 47.18 50.52
mn = n0.6 41.98 52.76 57.44 48.68 52.12 54.82

Table 8: Size of Hong’s test statistic Tn. Nominal size α = 5%. Model 4.1, Model 4.2,
n = 300.

8.1.2 Size and power of robust tests for zero cross-correlation

We make further comparisons of size and power between robust and standard tests for zero

cross-correlation. In Model 4.5 of the main paper, series {xt} and {yt} are not cross correlated.

To investigate the power of tests, we use two modifications of Model 4.5.

First, we include a term φxt into equation for yt:

Model 8.2.

xt = 0.2 + htεx,t, yt = 0.2 + φxt + gtεy,t, (A.123)

ht =
3

n

⌊
t

10

⌋
, gt =

∣∣∣∣∣∣ 1√
n

t∑
j=1

ηj

∣∣∣∣∣∣ .
Here {εx,t} and {εy,t} are mutually independent i.i.d. N (0, 1) noises.

Second, we use cross-correlated noises:

Model 8.3. {xt, yt} are generated by equation (A.123) of Model 8.2 with φ = 0 and εy,t =

et + φεx,t, where {et} and {εx,t} are mutually independent i.i.d. N (0, 1) noises.

We compare Monte Carlo simulation results for sample sizes n = 100, 300, 500, 1000 and

φ = 0.15, 0.2, 0.25, 0.3, 0.5. When φ and n are very small, both robust and standard tests

have low power. The power of robust and standard tests is about the same and improves, as

β or n increases.

Table 9 reports the size for Model 4.5. Table 10 displays the power of tests for Model 8.2 for

φ = 0.3 and n = 300 and Table 11 for Model 8.3 for φ = 0.25 and n = 300.
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k t̃xy t̃yx txy tyx Q̃xy Q̃yx HBxy HByx

0 5.28 5.28 10.22 10.22 5.28 5.28 10.22 10.22
1 4.62 5.38 9.04 9.74 4.76 5.08 11.48 12.24
2 4.22 5.20 8.58 9.24 4.58 5.30 13.28 14.34
3 4.52 4.64 8.72 8.64 4.56 4.88 14.90 14.96
4 4.72 5.12 8.52 9.24 4.50 5.18 15.98 16.98
5 4.84 5.44 9.12 9.20 4.62 5.44 17.40 18.28
6 5.36 4.70 9.52 8.20 4.54 4.98 18.68 19.08
7 5.16 4.82 9.08 8.58 4.74 4.54 19.62 20.20
8 4.96 4.28 8.30 8.28 4.56 4.84 21.08 21.64
9 4.92 4.96 8.84 7.86 4.60 4.50 22.58 22.10
10 4.26 4.74 8.30 8.26 4.62 4.56 22.96 23.20
11 4.96 5.36 8.76 8.34 4.38 4.46 24.82 23.82
12 4.62 4.70 8.68 8.10 4.38 4.28 25.64 24.48
13 4.26 4.62 7.68 7.08 4.24 4.24 26.36 24.84
14 4.98 4.76 8.92 7.86 4.42 4.38 27.38 25.88
15 4.78 5.28 8.14 7.84 4.54 4.42 27.90 26.82

Table 9: Empirical size of tests for cross-correlation. Nominal size α = 5%. Model 4.5,
n = 300.

k t̃xy t̃yx txy tyx Q̃xy Q̃yx HBxy HByx

0 41.44 41.44 48.20 48.20 41.44 41.44 48.20 48.20
1 4.92 4.74 9.28 9.26 35.06 34.90 44.94 44.46
2 4.90 5.08 9.68 8.78 31.46 32.18 43.06 42.92
3 4.80 4.98 9.06 9.04 29.36 29.10 41.78 42.30
4 4.22 4.96 8.64 8.96 27.38 27.10 41.58 41.00
5 4.70 5.36 9.56 9.56 25.90 25.92 41.68 41.42
6 4.96 4.92 9.56 9.28 24.22 24.72 41.32 41.18
7 5.04 4.78 9.22 8.88 23.20 23.68 41.00 40.78
8 4.78 5.04 8.74 8.10 21.94 22.50 40.98 41.28
9 5.04 5.24 9.04 7.88 21.32 22.00 41.78 41.72
10 4.70 5.12 8.58 8.24 20.68 21.32 41.66 42.06
11 4.34 4.90 7.92 7.96 19.70 20.38 42.32 42.56
12 5.18 4.94 8.98 8.36 19.44 19.94 43.10 42.30
13 4.62 4.42 8.32 7.58 18.54 18.76 42.86 42.32
14 4.78 4.96 8.44 7.56 18.68 18.30 42.96 42.54
15 4.72 4.54 7.78 7.26 17.94 18.00 43.34 42.02

Table 10: Power of tests for cross-correlation. Nominal size α = 5%. Model 8.2, n = 300.
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k t̃xy t̃yx txy tyx Q̃xy Q̃yx HBxy HByx

0 87.40 87.40 91.26 91.26 87.40 87.40 91.26 91.26
1 5.30 4.82 10.00 9.18 79.18 79.64 86.82 86.16
2 4.88 5.00 9.64 9.44 72.92 72.98 83.26 82.40
3 4.72 4.66 8.96 8.84 67.80 67.60 80.94 79.68
4 4.26 4.68 8.44 8.72 62.98 63.46 78.58 77.98
5 4.98 5.12 9.78 9.18 59.52 59.20 76.12 75.64
6 4.78 5.22 9.18 9.20 56.74 56.10 75.20 73.90
7 4.96 5.14 9.06 8.92 53.68 53.02 73.52 72.96
8 5.28 5.18 9.34 8.98 50.16 50.90 71.92 71.78
9 4.24 4.80 8.50 8.72 47.52 48.02 71.46 70.80
10 4.46 4.98 8.18 8.48 45.32 45.98 70.58 69.74
11 4.92 5.18 8.32 7.88 43.24 43.76 69.72 69.22
12 4.98 5.04 8.18 8.10 41.42 42.08 69.40 68.10
13 5.32 5.62 8.82 7.98 39.74 41.06 69.56 67.44
14 4.86 4.80 8.20 7.60 38.70 39.54 68.44 67.00
15 5.22 5.12 8.80 7.78 37.40 37.82 68.78 66.58

Table 11: Power of tests for cross-correlation. Nominal size α = 5%. Model 8.3, n = 300.

8.1.3 Size and power of residual-based tests

Next, we evaluate the power of residual-based tests. We generate data using

Model 8.4. yt = 0.5xt + ut where ut = htεt. Regressor xt = 0.5xt−1 + et.

We assume that εt is an AR(1) process εt = 0.25εt−1 + ξt where {ξt} and {et} are mutually

uncorrelated i.i.d. N (0, 1) noises and the ht are the same as in Model 4.3.

Table 12 reports power of tests based on residuals ût = yt − β̂xt, t = 1, ..., 300. For ht = 1,

robust and standard tests both achieve good power above 98%. When ht = 0.5 sin(2πt/n)+1,

standard tests have slightly higher power than robust tests. Bearing in mind, that standard

tests are oversized, the robust and size-corrected standard tests are expected to have similar

power.

8.1.4 Size of tests when {ht} and {εt} are dependent

Table 13 reports the size results of the tests for Model 4.4 discussed in the main paper. In

this model, {ht} and {εt} are dependent. The simulation results support the asymptotic

theory that the robust tests for zero correlation remain valid for this model.

In addition, we compute the size for the model described in Corollary 2.1:

Model 8.5. xt = htεt. We set ht = |
t−1∑
j=1

εjεj−1|, where εt ∼ i.i.d.N (0, 1).
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k
ht = 1 ht = 0.5 sin(2πt/n) + 1

t̃k tk Q̃m LBm t̃k tk Q̃m LBm

1 98.77 98.63 98.77 98.70 94.13 97.17 94.13 97.17
2 16.00 16.23 96.93 96.97 12.97 20.30 89.27 94.83
3 6.60 6.53 95.03 95.73 6.63 11.70 85.43 93.40
4 6.27 6.20 93.53 94.50 6.27 10.80 80.97 92.13
5 6.57 6.27 91.53 93.20 6.07 11.30 77.87 91.63
6 6.90 6.80 89.43 91.77 6.10 11.33 74.10 90.50
7 6.77 6.30 87.40 89.80 5.93 10.77 71.00 89.97
8 7.10 6.37 85.13 88.23 5.67 10.97 68.03 89.47
9 6.47 6.13 83.60 86.83 6.13 11.07 64.97 89.10
10 6.23 5.70 82.00 85.83 5.90 11.10 62.93 88.33
11 6.40 5.60 80.03 84.80 6.13 10.77 60.37 87.93
12 6.27 5.70 77.97 83.50 5.80 10.40 59.33 87.47
13 6.03 5.47 76.00 82.10 6.03 10.03 57.20 86.90
14 7.17 6.33 74.90 80.97 6.60 10.83 55.77 86.53
15 6.73 5.83 72.97 79.83 5.57 10.10 54.30 86.47

Table 12: Power (in %) of residual-based tests for linear regression Model 4.3.

In this case, recall that the robust test statistic t̃k is normally distributed only for lag k ≥ 2.

Table 13 confirms that t̃k has size distortion at lag k = 1, but achieves correct size at other

lags. It is worth noting that the size of the standard test tk is distorted for all k ≥ 1.

To verify the asymptotic normality of t̃k, we also computed the Q-Q plot, which is shown in

Figure 15, and the p-values of the Jarque Bera test, which are 0.000 and 0.4924 for t̃1 and t̃2

respectively, both of which affirm the above finding.

k
Model 4.4 Model 8.5

t̃k tk Q̃m LBm t̃k tk Q̃m LBm

1 4.93 16.97 4.93 17.03 1.27 12.90 1.27 13.00
2 5.13 17.23 4.97 23.53 5.27 16.80 2.70 19.03
3 4.60 16.30 4.40 27.40 4.60 16.33 3.13 25.13
4 4.67 16.63 4.23 32.23 5.23 17.83 3.33 29.27
5 4.70 15.63 4.00 35.63 4.87 17.63 3.47 33.87
6 4.50 16.17 4.20 38.23 4.60 16.53 3.63 37.43
7 4.43 15.70 4.60 41.07 4.70 17.37 3.90 40.90
8 4.23 15.63 4.27 43.87 4.33 15.50 3.57 42.43
9 4.60 15.40 4.03 46.07 5.23 17.70 3.67 46.53
10 4.57 15.97 4.23 47.70 4.97 15.57 3.73 49.00
11 4.40 15.17 4.37 50.00 4.23 16.20 3.87 50.73
12 4.50 14.77 4.57 51.80 4.90 15.20 4.00 52.57
13 5.20 16.37 4.43 54.03 5.57 16.27 3.73 55.33
14 4.73 15.33 4.40 55.97 4.63 15.67 3.70 56.80
15 5.13 15.10 4.63 57.73 5.43 15.80 3.90 58.30

Table 13: Size performance in tests for serial correlation when {ht} and {εt} are dependent.
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(a) t̃1: non-normal distribution (b) t̃2: normal distribution

Figure 15: Q-Q plot of t̃1 and t̃2 in Model 8.5.

8.2 Impact of the threshold on size of the robust cumulative test

From the limit theory the asymptotic distribution of the cumulative robust test Q̃m is un-

affected by the threshold parameter λ. It can be selected in advance and does not require

data-driven selection. We used Model 8.1 to evaluate the impact of λ on the size of Q̃m

test in finite samples. We calculated the empirical size of the cumulative test Q̃m based on

5, 000 replications computed with threshold λ0 = 0 (no thresholding), λ1 = 1.64, λ2 = 1.96,

λ3 = 2.57 for sample sizes n = 100, 300, 500, reporting the results in Table 14. From this

table it is evident that when the sample size is small, thresholding is essential: in particular,

the values λ2 = 1.96, λ3 = 2.57 allow to stabilize the size of the test. As the sample size

increases, thresholding can still help to improve the size of the Q̃m test, but the choice of the

value of λ does not make a significant difference.

44



k
n = 100 n = 300 n = 500

λ0 λ1 λ2 λ3 λ0 λ1 λ2 λ3 λ0 λ1 λ2 λ3
1 5.04 5.04 5.04 5.04 4.8 4.8 4.8 4.8 4.7 4.7 4.7 4.7
2 4.32 4.62 4.84 4.82 4.8 4.58 4.62 4.68 4.72 4.68 4.68 4.7
3 3.64 4.44 4.86 4.96 4.72 5.02 5 5.14 4.46 4.5 4.56 4.6
4 3.06 4.28 4.86 5.20 3.94 4.42 4.74 4.84 4.48 4.82 4.86 4.88
5 2.56 4.38 4.96 5.36 3.72 4.48 4.74 4.94 4.18 4.58 4.78 4.86
6 2.00 4.16 4.78 5.04 3.68 4.56 4.78 5 3.9 4.62 4.86 5.1
7 1.62 3.96 4.46 4.80 3.34 4.28 4.42 5.14 3.66 4.72 5.1 5.3
8 1.58 4.02 4.96 5.26 3.3 4.14 4.58 5.18 3.7 4.54 5.18 5.26
9 1.50 4.10 4.70 5.20 2.58 4.2 4.64 5.44 3.44 4.4 4.76 5.32
10 1.48 4.60 4.66 5.38 2.58 4.14 4.52 5.5 3.3 4.38 4.8 5.28
11 1.44 4.68 4.92 5.46 2.38 4.16 4.6 5.56 3.02 4.32 4.82 5.3
12 1.08 5.42 4.96 5.84 2.38 4.44 4.54 5.44 3.1 4.6 4.72 5.12
13 1.02 6.08 5.50 6.28 2.24 4.66 4.76 5.68 2.64 4.38 4.66 5.1
14 0.96 6.40 5.70 6.14 2.22 5.06 5.06 5.96 2.68 4.48 4.76 5.28
15 1.06 7.26 6.04 6.60 1.96 5.74 5.42 5.98 2.74 4.6 4.66 5.44
16 1.04 7.88 6.02 6.58 1.92 5.82 5.4 5.88 2.3 4.48 4.94 5.44
17 1.02 8.44 6.20 6.72 1.8 6.06 5.5 6.04 2.34 4.62 4.74 5.6
18 0.96 8.60 6.36 6.88 1.84 6.3 5.38 5.96 2.1 4.64 4.74 5.7
19 1.16 9.38 6.42 6.88 1.64 6.48 5.42 6.18 1.96 4.64 4.6 5.62
20 1.18 9.56 6.48 7.14 1.6 6.94 5.5 6.14 2.06 4.96 4.68 5.68
21 1.38 10.10 6.52 6.76 1.5 7.1 5.22 6.24 1.88 5.1 4.86 5.54
22 1.54 10.68 6.52 6.94 1.4 7.36 5.26 6.14 1.62 5.34 5.2 5.54
23 1.64 11.28 6.88 7.14 1.2 7.66 5.58 6.22 1.68 5.62 5.24 5.7
24 1.68 11.72 7.02 7.14 1.12 8.08 5.72 6.38 1.66 5.84 5.3 5.86
25 1.86 12.18 7.32 7.06 1.04 8.62 5.84 6.7 1.58 6.2 5.48 5.9
26 2.16 12.56 7.48 7.12 1.08 8.98 6.06 6.54 1.64 6.48 5.46 5.98
27 2.36 12.70 7.68 7.30 1.1 9.74 6.42 6.48 1.6 7.02 5.5 6.08
28 2.78 13.20 7.58 7.34 0.84 10.44 6.44 6.46 1.5 7.34 5.48 6.18
29 3.04 13.80 7.76 7.46 0.8 10.5 6.96 6.7 1.4 7.58 5.52 6.32
30 3.46 14.78 7.76 7.20 0.82 11.1 6.76 6.64 1.32 7.82 5.56 6.18

Table 14: Impact of the threshold λ on empirical size of the cumulative test Q̃m. Nominal
size α = 5%. Model 8.1.

8.3 Performance of the tests in the presence of outliers

This section includes additional simulation findings on the performance of both the robust and

standard tests for absence of serial correlation for time series with outliers. We first explore

the finite sample size performance of tests for zero correlation based on 5000 replications of

n = 300 uncorrelated observations from the following model

xt =0.2 + htεt, εt ∼ i.i.d.N (0, 1), (A.124)
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ht =

3, t ∈ [151, 160]

1, otherwise

where outliers in xt are generated by a block of high values of the scale factor ht. The length

of the block is 10. Figure 16 gives illustrative plots of ht and xt from the above model.

(a) Plot of ht with 10 outliers (b) Plot of xt

Figure 16: Plots of ht and xt

Table 15 below reports size of the robust and standard tests at nominal significance level 5%.

The presence of outliers clearly leads to over-rejection by the standard tests tk and LBm,

whereas the robust tests t̃k and Q̃m continue to control size close to nominal.

k t̃k tk Q̃m LBm k t̃k tk Q̃m LBm

1 4.52 15.72 4.52 15.88 16 5.04 4.20 4.60 20.60
2 3.90 14.76 3.46 19.90 17 4.56 3.80 4.74 20.22
3 4.16 13.72 3.70 22.92 18 4.68 3.52 4.94 19.76
4 4.40 11.92 3.86 24.58 19 4.90 3.80 5.06 19.36
5 4.46 11.20 4.02 26.14 20 5.58 4.46 5.08 19.04
6 3.84 8.80 4.24 26.42 21 5.22 4.26 5.08 19.02
7 4.50 8.50 4.20 27.10 22 5.08 4.00 5.04 18.68
8 5.14 7.36 4.32 26.90 23 4.24 3.48 5.14 18.48
9 4.50 5.06 4.56 26.16 24 5.66 4.66 5.20 18.10
10 4.98 4.46 4.48 25.20 25 5.00 3.92 4.94 17.96
11 4.64 4.16 4.62 24.14 26 5.08 3.94 5.10 17.68
12 4.52 4.04 4.56 23.60 27 4.66 3.44 5.10 17.16
13 4.76 4.18 4.58 22.92 28 4.92 3.76 5.04 17.18
14 4.82 3.98 4.68 21.92 29 4.76 3.76 4.94 16.96
15 4.38 3.76 4.74 21.24 30 4.72 3.82 4.84 16.68

Table 15: Empirical size of the residual-based tests for zero serial correlation in the presence
of outliers with data generated by model (A.124), n = 300.

46



8.4 Performance of the tests in the presence of missing data

Missing data is another feature of real-world data that can lead to poor performance in

standard tests for correlation. For example, in the model for xt below, we may set ht = 0

for some values of t and treat the corresponding observation xt as missing. To explore the

finite sample properties of the correlation tests in such missing data cases we generate 5000

replications of samples of 300 uncorrelated observations. In each sample 50 observations are

missing (and set to the average value of the time series). We use the following model:

xt = 0.2 + htεt, (A.125)

εt = σtet, σ
2
t = 1 + 0.2ε2t−1 + 0.7σ2t−1, et ∼ i.i.d.N (0, 1),

ht =


| 1√
n

t∑
j=1

ηj |, ηj ∼ i.i.d.N (0, 1)

0, t chosen randomly.

Here, Γk is 0.2, so Assumption 2.2 still holds. Figure 17 gives illustrative plots of observations

of ht and xt generated by the above model.

(a) Plot of ht (b) Plot of xt

Figure 17: Plots of ht and xt. Model (A.125).

Simulation results are reported in Table 16. The standard test tk seriously over-rejects except

for very large k and the cumulative test LBm seriously over-reject for all m. By contrast

the robust tests are well sized for all k and m and provide reliable control for testing with

missing data at individual and cumulative lags.
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k t̃k tk Q̃m LBm k t̃k tk Q̃m LBm

1 4.68 24.46 4.68 24.82 16 4.26 11.24 4.72 60.12
2 4.46 22.18 4.18 33.44 17 4.48 10.68 4.50 60.98
3 4.60 21.92 4.50 39.90 18 4.60 10.18 4.52 60.96
4 4.76 20.06 4.20 43.78 19 4.64 9.86 4.72 60.50
5 4.96 18.84 4.20 47.36 20 4.72 9.78 4.60 60.76
6 4.44 17.64 3.86 49.82 21 5.18 9.68 4.82 61.08
7 5.08 17.82 3.80 52.00 22 4.44 8.10 4.72 60.20
8 4.56 16.06 4.04 54.14 23 4.78 8.88 4.94 60.18
9 5.36 15.38 4.44 55.56 24 4.36 8.62 5.04 60.54
10 4.60 14.30 4.56 56.86 25 4.64 7.62 5.06 60.42
11 3.94 13.92 4.38 57.40 26 4.70 7.64 5.08 60.46
12 4.78 13.40 4.30 57.96 27 4.08 7.54 5.16 60.62
13 4.50 12.94 4.48 59.00 28 4.84 7.68 5.32 60.68
14 4.24 11.20 4.44 59.70 29 4.58 7.10 5.40 60.48
15 4.30 10.32 4.46 59.88 30 4.80 7.10 5.62 60.36

Table 16: Testing for zero serial correlation in presence of missing data. Model (A.125).

9 Further comments on test assumptions

The analytic and simulation findings of the paper and this supplement show that the robust

test statistic t̃k has good asymptotic and finite sample properties in detecting absence of

correlation at lag k in time series of uncorrelated variables generated by the model

xt = µ+ htεt, (A.126)

satisfying Assumptions 2.1 and 2.2, so that {εt} is a stationary martingale difference sequence

with Eε4t <∞, and the scale factor ht is a sequence of deterministic or random variables with

the property

max
1≤t≤n

h4t = op

( n∑
t=k+1

h2th
2
t−k

)
. (A.127)

Below we provide examples of scale factors ht with Eh2t = ∞ that satisfy condition (A.127)

and therefore allow testing for absence of autocorrelation in {εt}, even though series xt has

infinite variance var(xt) =∞. We also provide examples which show that failure of condition

(A.127) may lead to failure of the test t̃k.

Assume that {εt} in (A.126) is a sequence of i.i.d. N (0, 1) random variables and consider the

following two settings for ht:

(a) ht = |ηt|, (b) ht =
∣∣ 1√
n

t∑
j=1

ηj
∣∣, t = 1, ..., n, (A.128)

where {ηt} is an i.i.d. sequence of random variables. We consider three cases where ηt has (i)
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a standard normal, (ii) a standard Cauchy C(0, 1) or (iii) a standard Student t2 distribution.

Example 9.1. Suppose that ht = ηt where ηt are i.i.d. C(0, 1) random variables. Then Eh2t

is undefined and (A.127) does not hold.

Indeed, Cauchy C(0, 1) random variables ht have probability density p(x) = π−1(1 + x2)−1.

It is well-known that

n−1 max
t=1,...,n

|ht| →D M,

where M has an inverse exponential distribution probability distribution function e−1/πx.

Then

n−4 max
t=1,...,n

h4t →D M4.

In addition, we will show that

n−4
n∑

t=k+1

h2th
2
t−k = op(1), (A.129)

which implies that (A.127) does not hold. Denote by in the left hand side of (A.129). It

suffices to show that for any ε > 0, as n→∞,

P (|in| > ε)→ 0.

Bound

P (|in| > ε) = P (
n∑
t=1

h2th
2
t−k > εn4) ≤

n∑
t=1

P
(
h2th

2
t−k ≥ n3ε

)
= nP

(
|h2th2t−k| ≥ n3ε

)
= nP

(
|htht−k| ≥ n3/2ε1/2

)
.

It is known, that for k ≥ 1, the variable zt = htht−k has probability density

pz(z) =
log z2

π2(z2 − 1)
.

The density of zt is symmetric, has an asymptote at the origin, and has tail behavior of the

form pz(z) ∼ log(z2)
π2z2

as |z| → ∞, giving the density heavier tails than the Cauchy distribution

by virtue of the slowly varying factor log(|z|). The density of zt is shown against the standard

Cauchy density in Figure 18 below.

Therefore, as n→∞,

nP
(
|htht−k| ≥ n3/2ε1/2

)
= 2n

∫ ∞
n3/2ε1/2

pz(z)dz ≤ 2n

∫ ∞
n3/2ε1/2

log z2

z2
dz

≤ 2

∫ ∞
n3/2ε1/2

z2/3
log z2

z2
dz = o(1),
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Figure 18: Density of zt = htht−k (black) and density of the standard Cauchy (green).

using the bound n ≤ z2/3 in the penultimate integral.

So, for ht = |ηt|, ηt ∼ i.i.d.C(0, 1) both (A.127) and Assumption 2.2 fail. The Gaussian limit

theory for the self normalized statistic t̃k also fails and instead the limit theory is bimodal

with modes around ±1. Figure 21(a) shows the estimated probability density for sample

size n = 100 based on 50, 000 replications. The results are nearly identical for sample size

n = 1000 as seen in Figure 22(a). Moreover, the ratio

Γk =
max1≤t≤n h

2
t

(
∑n

t=k+1 h
2
th

2
t−k)

1/2

is reported in Table 17 for several k based on 50, 000 replications. The results show values

of Γk that are much larger than unity for all k and grow as the sample size n increases,

confirming that (A.127) is not satisfied. Similar results hold for ht = |ηt| with t2 distributed

noise (iii), although the divergence rate of Γk as n increases is not as dramatic as in the

Cauchy case. Evidently, the findings in Table 17 and Figures 23(a), 24(a) confirm the failure

of Assumption 2.2 and the Gaussian limit for t̃k.

In contrast to these findings for heavy tailed noise, persistent unit root scale factors ht =

|n−1/2
∑t

j=1 ηj | produce small Γk < 1 ratios that evidently decline towards zero as the sam-

ple size n increases. And in this case with unit root scale factors, the estimated probability

densities shown in Figures 21(b)-22(b) and 23(b)-24(b) confirm that the statistic t̃k is well-

approximated by the standard normal even with Cauchy noise (ii) and t2 noise (iii) innova-

tions. These results corroborate the asymptotic theory of the robust statistic t̃k with data

involving these persistent scale factors in spite of the fact that for the Cauchy noise case Eh2t

is undefined.
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(a) ht = |ηt| (b) ht = | 1√
n

∑n
j=1 ηj |

Figure 19: Probability densities of t̃k with ηt ∼ N (0, 1), n = 100.

(a) ht = |ηt| (b) ht = | 1√
n

∑n
j=1 ηj |

Figure 20: Probability densities of t̃k with ηt ∼ N (0, 1), n = 1000.
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(a) ht = |ηt| (b) ht = | 1√
n

∑n
j=1 ηj |

Figure 21: Probability densities of t̃k with ηt ∼ C(0, 1), n = 100.

(a) ht = |ηt| (b) ht = | 1√
n

∑n
j=1 ηj |

Figure 22: Probability densities of t̃k with ηt ∼ C(0, 1), n = 1000.
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(a) ht = |ηt| (b) ht = | 1√
n

∑n
j=1 ηj |

Figure 23: Probability densities of t̃k with ηt ∼ t2, n = 100.

(a) ht = |ηt| (b) ht = | 1√
n

∑n
j=1 ηj |

Figure 24: Probability densities of t̃k with ηt ∼ t2, n = 1000.
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Sample size n Γ1 Γ2 Γ10

ηt ∼ i.i.d. N (0, 1)

ht = |ηt|
100 0.633 0.603 0.711
1000 0.329 0.320 0.312

ht = | 1√
n

∑t
j=1 ηj |

100 0.167 0.168 0.180
1000 0.036 0.036 0.036

ηt ∼ i.i.d. C(0, 1)

ht = |ηt|
100 13.518 12.647 9.519
1000 103.916 141.472 44.359

ht = | 1√
n

∑t
j=1 ηj |

100 0.459 0.475 0.586
1000 0.072 0.072 0.073

ηt ∼ i.i.d. t2

ht = |ηt|
100 3.963 2.775 6.330
1000 13.274 12.682 7.477

ht = | 1√
n

∑t
j=1 ηj |

100 0.274 0.281 0.319
1000 0.056 0.057 0.057

Table 17: Values of Γk for different innovations ηt and two scale factors ht.
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