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A B S T R A C T

Considerable evidence in past research shows size distortion in standard tests for zero autocor-
relation or zero cross-correlation when time series are not independent identically distributed
random variables, pointing to the need for more robust procedures. Recent tests for serial
correlation and cross-correlation in Dalla, Giraitis, and Phillips (2022) provide a more robust ap-
proach, allowing for heteroskedasticity and dependence in uncorrelated data under restrictions
that require a smooth, slowly-evolving deterministic heteroskedasticity process. The present
work removes those restrictions and validates the robust testing methodology for a wider class
of innovations and regression residuals allowing for heteroscedastic uncorrelated and non-
stationary data settings. The updated analysis given here enables more extensive use of the
methodology in practical applications. Monte Carlo experiments confirm excellent finite sample
performance of the robust test procedures even for extremely complex white noise processes.
The empirical examples show that use of robust testing methods can materially reduce spurious
evidence of correlations found by standard testing procedures.

1. Introduction

Correlation analysis of linear relationships between random variables of a univariate time series or linkages between variables of
multiple time series is an initial step in many empirical analysis of economic and financial data. The widely used test for correlation
at an individual lag is the standard 𝑡-test developed by (Student, 1908). Ljung and Box (1978) introduced a cumulative version
of the test for non-zero correlation at multiple lags which subsumes test results at individual lags within a broader maintained
hypothesis. Haugh and Box (1977) extended the methodology to test zero cross-correlation at individual and multiple lags.

Cumulative statistic testing for zero correlation is a well-studied problem in the literature when the uncorrelated process
{𝑥𝑡} is stationary with a martingale difference structure or is mixing. Hong (1996), Deo (2000) and Shao (2011) tested for
constancy of the spectral density function and work of Hong and Lee (2005, 2007) allowed for testing martingale difference noise
conditions. Robinson (1991) suggested diagnostics for serial correlation in regression disturbances and Guo and Phillips (2001)
introduced a cumulative test for stationary martingale differences that resembles our own test in this paper. Romano and Thombs
(1996), Lobato et al. (2002) and Horowitz et al. (2006) among others, developed portmanteau tests that involve kernel or bootstrap
estimation. These tests require selection of a bandwidth parameter, impose stationarity and mixing assumptions on the noise, and
are often not straightforward to implement. An additional concern in applications is that these tests may suffer size distortions in
finite samples and they require uncorrelated noise to be stationary.
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Testing for zero cross-correlation is less investigated and dates to Cumby and Huizinga (1992) and Kyriazidou (1998). Their
etting assumes stationarity and excludes unconditional heteroskedasticity. However, it is well documented in the empirical finance
nd macroeconomic literatures that assumptions such as constant conditional homoscedasticity or constant unconditional variance
n uncorrelated noise clashes with the data. Patton (2011), Gonçalves and Kilian (2004) and Cavaliere et al. (2017) provide examples
nd discussion of the limitations of these conditions.

We focus in this paper on testing for the absence of correlation and cross-correlation under general heterogeneity when non-
tationary uncorrelated data can be decomposed as 𝑥𝑡 = 𝜇𝑥 + ℎ𝑡𝜀𝑡. Here, the uncorrelated noise 𝜀𝑡 is a stationary martingale
ifference process which allows for stationary conditional heteroskedasticity and the scale factor ℎ𝑡 allows for the capture of general
eterogeneity and changes in the unconditional variance. We also show that our test procedure can be applied to regression residuals,
hereby providing a general approach to correlation and cross-correlation testing for empirical work.

It is well known that the size of standard tests can be significantly distorted by the presence of heteroskedasticity and data
ependence, more specifically when the data is not a sequence of independent identically distributed (i.i.d.) random variables.
alla, Giraitis, and Phillips (2022) (subsequently, Dalla et al., 2022) demonstrated that violation of the i.i.d. property can lead to

purious detection of correlation. Instead, they provided a robust test for the absence of correlation in heteroskedastic and possibly
ependent time series, allowing for heteroskedasticity (volatility) that takes the form of an evolving deterministic process. While the
obust testing methodology of Dalla et al. (2022) is attractive in its simplicity, the requirement of smooth deterministic evolution in
eteroskedastic behavior is restrictive and can be unrealistic in some empirical settings where volatility is random and/or subject to
tructural breaks. The present paper removes this requirement in testing for zero correlation and zero cross-correlation. Our results
how that the robust testing methodology is valid for a broad class of uncorrelated non-stationary data in models with non-smooth
eterministic and stochastic heteroskedasticity. The assumptions of Dalla et al. (2022) are relaxed to such a degree that verification
f the validity of the limit theory requires significant new theoretical developments in the proofs. Beyond the assumption of a
artingale difference structure in the primitive innovations 𝜀𝑡 only minimal additional conditions are required.

Simulations confirm good finite sample performance of the robust test procedures for complex forms of univariate and bivariate
nnovations that substantially extend earlier findings. These robust tests for correlation and cross-correlation are easy to implement
nd they can be applied for a large class of uncorrelated noise processes. The tests are found to be well-sized and their power is
omparable with the size-corrected power of standard tests. Additional experimental evidence is available on request, corroborating
he limit theory that outliers and missing data do not affect the good performance of the test procedures.

The paper is organized as follows. Sections 2 and 3 outline the framework and assumptions for testing absence of serial correlation
nd cross-correlation, giving the asymptotic properties of the robust test statistics and demonstrating that the tests remain valid when
hey are performed on regression residuals. Section 4 reports simulations that corroborate the limit theory and support finite sample
mplementations; this section also provides the robust testing procedure for Pearson correlation. Section 5 presents several empirical
pplications. Section 6 concludes. Proofs, auxiliary lemmas, further simulation findings, and analyses of residual-based testing, the
mpact of thresholding, heavy tailed data, and missing observations are all provided in the Online Supplement in Sections 7–8. For
urther background information and discussion of the approach readers are referred to Dalla et al. (2022).

An 𝑅 package and an EViews add-in (named testcorr) are available to implement all the testing procedures developed in the
aper.1

. Tests for zero autocorrelation

The autocorrelogram {𝜌𝑘 = corr(𝑥𝑡, 𝑥𝑡−𝑘)}∞𝑘=1 contains key information about temporal dependence in a time series 𝑥𝑡. The
mpirical version of 𝜌𝑘 calculated from observations {𝑥𝑡 ∶ 𝑡 = 1,… , 𝑛} is the sample autocorrelation

𝜌𝑘 =
∑𝑛

𝑡=𝑘+1(𝑥𝑡 − �̄�)(𝑥𝑡−𝑘 − �̄�)
∑𝑛

𝑡=1(𝑥𝑡 − �̄�)2
, �̄� = 1

𝑛

𝑛
∑

𝑡=1
𝑥𝑡, (1)

providing consistent estimation of 𝜌𝑘 under general conditions. Traditional time series modeling makes extensive use of the empirical
correlogram {𝜌𝑘}, an important element of which is confirmation of lack of correlation {𝜌𝑘 = 0} in either the observed time series
or regression residuals. Testing the hypotheses 𝐻0 ∶ 𝜌𝑘 = 0 for multiple values of 𝑘 is a different problem from estimation of the
𝜌𝑘 and does not rest solely on the fitted sample autocorrelations 𝜌𝑘. In fact, robust testing procedures for zero correlation discussed
in Dalla et al. (2022) show the advantages of an approach that is based on tests constructed from 𝑡-type statistics rather than the
commonly used tests based on the sample autocorrelations 𝜌𝑘 alone. These advantages are particularly important when the observed
series 𝑥𝑡 is no longer a simple i.i.d. sequence. In practical work with economic and financial data the i.i.d. condition is strong and
typically unrealistic, even though it has the attractive asymptotic property

√

𝑛𝜌𝑘 →𝐷  (0, 1), for all 𝑘 ≥ 1, (2)

which led to the commonly used tests of 𝐻0 ∶ 𝜌𝑘 = 0 at individual lag 𝑘, starting with (Yule, 1926).

1 The R package is available on CRAN, https://cran.r-project.org/package=testcorr. The EViews add-in is available at https://www.eviews.com/Addins/addins.
2

html.
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Numerous authors have pointed out that the property (2) fails when the component variables 𝑥𝑡 are uncorrelated but not i.i.d. In
response to this concern (Dalla et al., 2022) developed a robust testing methodology within a wider setting for testing 𝐻0 ∶ 𝜌𝑘 = 0
based on a robust self-normalized statistic of the type suggested in Taylor (1984), Guo and Phillips (2001):

�̃�𝑘 =
∑𝑛

𝑡=𝑘+1 𝑒𝑡𝑘
(
∑𝑛

𝑡=𝑘+1 𝑒
2
𝑡𝑘)

1∕2
, 𝑒𝑡𝑘 = (𝑥𝑡 − �̄�)(𝑥𝑡−𝑘 − �̄�). (3)

Under very general conditions the adjusted 𝜌𝑘 statistic

�̃�𝑘 = 𝜌𝑘 𝑐𝑘 →𝐷  (0, 1), 𝑐𝑘 =
�̃�𝑘
𝜌𝑘

(4)

produces a valid confidence band for zero correlation at lag 𝑘. Dalla et al. (2022) explored the advantages of the self-normalized
statistic �̃�𝑘 proving its asymptotic normality in settings where uncorrelated random variables 𝑥𝑡 can be both dependent and
nonstationary. Their proofs of validity made use of strong smoothness restrictions on the scale (or unconditional volatility) factor
implicit in 𝑥𝑡, although they conjectured that those restrictions might be relaxed without affecting the limit theory and robustness
of the testing methodology. The goal of the present paper is to establish this broad robustness.

To fix ideas assume that serially uncorrelated heteroskedastic time series 𝑥𝑡 has the same general structure as in Dalla et al.
(2022):

𝑥𝑡 = 𝜇 + 𝑢𝑡, with 𝑢𝑡 = ℎ𝑡𝜀𝑡, (5)

where 𝜀𝑡 is a zero mean stationary uncorrelated noise, ℎ𝑡 is a scale factor, and {ℎ𝑡} and {𝜀𝑡} are mutually independent. In our setting,
the noise process {𝜀𝑡} allows for ARCH type conditional heteroskedasticity and the scale factor ℎ𝑡 ≥ 0 accounts for heterogeneity.
As shown below, in this general setting, testing for correlation in 𝑥𝑡 reduces to testing for correlation in 𝜀𝑡 and does not exclude
instances when corr(𝑥𝑡, 𝑥𝑡−𝑘) is undefined, for example when 𝐸𝑥2𝑡 = ∞. In that event the limit theory may not be Gaussian unless
ℎ𝑡 satisfies Assumption 2.2. For instance, if ℎ𝑡 is very heavy tailed then the limit theory might be bimodal — see Section 9 in the
Online Supplement.

Next we outline assumptions on the noise 𝜀𝑡 and the scale factor ℎ𝑡 which provide a framework for testing absence of correlation
in a wide class of time series 𝑥𝑡. As in Dalla et al. (2022) we use the following restrictions on the noise process.

Assumption 2.1. {𝜀𝑡} is a stationary martingale difference (m.d.) sequence with respect to some 𝜎-field filtration 𝑡:

E[𝜀𝑡|𝑡−1] = 0, E𝜀4𝑡 < ∞, E𝜀2𝑡 = 1,

where the filtration 𝑡 = 𝜎(𝑒𝑠, 𝑠 ≤ 𝑡) is generated by some suitably broad random process {𝑒𝑠}.

The primary example of 𝑡 is the natural filtration comprising the information set generated by the past history 𝑡 = 𝜎(𝜀𝑠, 𝑠 ≤ 𝑡).
A typical example of 𝜀𝑡 in practical work is the ARCH/GARCH class, so that (5) allows for conditional heteroskedasticity in 𝑥𝑡. It
is useful in some contexts and in some technical arguments to employ a broader filtration than the natural filtration, which is the
reason why Assumption 2.1 allows for 𝑡 to be generated by a more general process than 𝜀𝑡.

The main novelty of the present paper is to widen the class of scale factors ℎ𝑡 in the analysis to include heterogeneous noise
processes 𝑥𝑡 and allow for cases where the correlation corr(𝑥𝑡, 𝑥𝑡−𝑘) of the observed time series itself may not exist. Since the factor
ℎ𝑡 is not observed directly and typically requires strong assumptions to facilitate estimation, test procedures that permit generality
in ℎ𝑡 are desirable in applications. Our approach to testing zero autocorrelation in the noise 𝜀𝑡 process of 𝑥𝑡 in (5) is to allow for
both deterministic and stochastic scale factors ℎ𝑡 that enable considerable generality. Note particularly that

corr(𝑥𝑡, 𝑥𝑡−𝑘) =
𝐸[ℎ𝑡ℎ𝑡−𝑘]

(

var(ℎ𝑡)var(ℎ𝑡−𝑘)
)1∕2

corr(𝜀𝑡, 𝜀𝑡−𝑘),

so that corr(𝜀𝑡, 𝜀𝑡−𝑘) = 0 implies corr(𝑥𝑡, 𝑥𝑡−𝑘) = 0 when corr(𝑥𝑡, 𝑥𝑡−𝑘) is defined. However, our test procedure does not exclude
instances where var(𝑥𝑡) = 0 (ℎ𝑡 = 0), thereby allowing for missing observations, or var(𝑥𝑡) = ∞ (var(ℎ𝑡) = ∞), allowing for observations
with heavy tails.

Dalla et al. (2022) introduced robust tests for zero correlation when ℎ𝑡 is deterministic with the following properties

max
1≤𝑡≤𝑛

ℎ4𝑡 = 𝑜(
𝑛
∑

𝑡=1
ℎ4𝑡 ),

𝑛
∑

𝑡=2
(ℎ𝑡 − ℎ𝑡−1)4 = 𝑜(

𝑛
∑

𝑡=1
ℎ4𝑡 ). (6)

These conditions facilitated the development of tests with a convenient asymptotic theory for practical implementation. But while
the first bound condition is weak, the second condition is restrictive, requiring ℎ𝑡 to have some degree of smoothness, such as a
constant function, a step function, or a smoothly varying function ℎ𝑡 = 𝑔(𝑡∕𝑛), where 𝑔 is a continuous, bounded function with
bounded derivatives. Although the smoothness condition on the increments of ℎ𝑡 in (6) may not seem restrictive for much applied
work, it does exclude certain cases such as alternating sequences of the form {ℎ𝑡 = 2, 1, 2, 1,…} or volatility processes ℎ𝑡 where the
scale factor has frequent jumps as in some financial data.

The main contribution of the present work is to relax assumption (6) and validate the asymptotic theory without imposing
3

smoothness on ℎ𝑡. The new condition involves a modified version of the first bound condition of (6).
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Assumption 2.2. {ℎ𝑡, 𝑡 = 1,… , 𝑛} is a deterministic or stochastic sequence with ℎ𝑡 ≥ 0 which for lag 𝑘 satisfies

max
1≤𝑡≤𝑛

ℎ4𝑡 = 𝑜𝑝
(

𝑛
∑

𝑡=𝑘+1
ℎ2𝑡 ℎ

2
𝑡−𝑘

)

. (7)

Condition (7) clearly holds for deterministic sequences ℎ𝑡 that change abruptly and frequently, such as ℎ𝑡 = 1, 2, 1, 2, 1, 2,….
Different from (6), (7) takes account of the specific lag 𝑘. Thus, if ℎ𝑡 = 1, 0, 1, 0, 1, 0,… then (7) is satisfied for lags 𝑘 = 2, 4, 6,… but
is not satisfied for lags 𝑘 = 1, 3, 5,…. Importantly, condition (7) allows ℎ𝑡 to take on zero values at some 𝑡, and it does not impose
moment restrictions on ℎ𝑡 only a maximal bound condition. An example of a stochastic scale factor satisfying Assumption 2.2 is a
unit root process ℎ𝑡 = |

∑𝑡
𝑗=1 𝜂𝑗 | where 𝜂𝑗 is an i.i.d.  (0, 1) noise.

Formally, Assumption 2.2 does not require existence of finite moments of ℎ𝑡 when the sequence is stochastic. But the validity
of (7) may be affected by heavy tailed distributions of ℎ𝑡. In particular, for very heavy tailed distributions it is well known that
self normalized statistics often have bimodal distributions and these typically lead to conservative tests when standard normal limit
theory is mistakenly used for inference. This phenomenon arises because large outlier observations dominate the self normalized
ratio leading to some concentration around modes, especially at ±1, thereby moving mass from the tails of the distribution towards
these modes. Simulations reported below in Section 4 include an example of an i.i.d. random sequence ℎ𝑡 distributed as Student’s 𝑡2
where this phenomenon occurs and (7) does not hold. Additional analytic and simulation findings given in the Online Supplement
(see Section 9 in the Online Supplement) show bimodality of the limit distribution of the test statistic �̃�𝑘 in such cases. For examples
of related sources of bimodality and some past analyses in the literature, see Logan et al. (1972), Fiorio et al. (2010), and Wang
and Phillips (2022).

In addition to Assumption 2.2, testing at lag 𝑘 requires the following assumption on 𝜀𝑡. Here and elsewhere in the Online
Supplement we use the notation 𝑧𝑡 as a working variable, whose meaning may change according to location.

Assumption 2.3. The sequence 𝑧𝑡 = 𝑧𝑘,𝑡 = 𝜀2𝑡 𝜀
2
𝑡−𝑘 satisfies

𝐸𝑧2𝑡 < ∞, cov(𝑧ℎ, 𝑧0) → 0, ℎ → ∞. (8)

Our main result gives the limit theory of the test statistic �̃�𝑘.

Theorem 2.1. Let {𝑥𝑡} be an uncorrelated noise of the form given in (5), suppose 𝑘 ≥ 1, and let Assumptions 2.1, 2.2 and 2.3 hold.
Then, corr(𝜀𝑡, 𝜀𝑡−𝑘) = 0, and

�̃�𝑘 →𝐷  (0, 1). (9)

Notice that in model (5), corr(𝜀𝑡, 𝜀𝑡−𝑘) = 0 for all lags 𝑘 ≥ 1, which implies overall that {𝑥𝑡} is serially uncorrelated if corr(𝑥𝑡, 𝑥𝑡−𝑘)
s defined. Theorem 2.1 can be obtained from the bivariate case in Theorem 3.1 below by replacing 𝑦𝑡 by 𝑥𝑡 and noting that such
ivariate series {𝑥𝑡, 𝑦𝑡} satisfies the assumptions of Theorem 3.1. All proofs are given in the Online Supplement (see Section 7).

umulative test. The standard cumulative (Ljung and Box, 1978) test is based on the statistic

𝐿𝐵𝑚 = (𝑛 + 2)𝑛
𝑚
∑

𝑘=1

𝜌 2
𝑘

𝑛 − 𝑘
(10)

and widely used for testing the joint null hypothesis 𝐻0 ∶ 𝜌1 = ⋯ = 𝜌𝑚 = 0. Under 𝐻0, it is asymptotically 𝜒2
𝑚 distributed when

𝑥𝑡} is an i.i.d. series but it may suffer severe size distortions when {𝑥𝑡} is not i.i.d. To overcome this limitation, (Dalla et al., 2022)
ntroduced the robust cumulative test statistic 𝑄𝑚 and its version �̃�𝑚 with thresholding defined as:

𝑄𝑚 = �̃� ′ 𝑅−1 �̃�, �̃�𝑚 = �̃� ′ 𝑅∗−1 �̃�. (11)

ere, �̃� = (̃𝑡1,… , �̃�𝑚)′, and 𝑅 = (�̂�𝑗𝑘) is an 𝑚 × 𝑚 matrix where �̂�𝑗𝑘 are a sample cross-correlation of the variables {𝑒𝑡𝑗} and {𝑒𝑡𝑘}:

�̂�𝑗𝑘 =

∑𝑛
𝑡=max(𝑗,𝑘)+1 𝑒𝑡𝑗𝑒𝑡𝑘

(
∑𝑛

𝑡=max(𝑗,𝑘)+1 𝑒
2
𝑡𝑗 )1∕2(

∑𝑛
𝑡=max(𝑗,𝑘)+1 𝑒

2
𝑡𝑘)

1∕2
, 𝑗, 𝑘 = 1,… , 𝑚. (12)

To improve the finite sample performance of the 𝑄𝑚 test, (Dalla et al., 2022) suggested to use a thresholded version 𝑅∗ = (�̂� ∗𝑗𝑘) of
𝑅, where

�̂� ∗𝑗𝑘 = �̂�𝑗𝑘𝐼(|𝜏𝑗𝑘| > 𝜆), (13)

𝜆 > 0 is a thresholding parameter, and 𝜏𝑗𝑘 is a 𝑡-type statistic

𝜏𝑗𝑘 =

∑𝑛
𝑡=max(𝑗,𝑘)+1 𝑒𝑡𝑗𝑒𝑡𝑘

(
∑𝑛

𝑡=max(𝑗,𝑘)+1 𝑒
2
𝑡𝑗𝑒

2
𝑡𝑘)

1∕2
. (14)

Dalla et al., 2022) assumed ℎ𝑡 to be smooth and deterministic, which adds simplicity and transparency to analysis of the cumulative
obust testing procedure. In the next theorem we show that the cumulative testing procedure at lag 𝑚 is valid when scale factors
re non-smooth and stochastic. We make the following additional assumption.
4
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Assumption 2.4. For any 𝑗, 𝑘 = 1,… , 𝑚,
i) the sequence 𝑧𝑡 = 𝑧𝑡,𝑗𝑘 = (𝜀𝑡𝜀𝑡−𝑗 )(𝜀𝑡𝜀𝑡−𝑘), 𝑡 = 1, 2,… satisfies

𝐸𝑧2𝑡 < ∞, cov(𝑧0, 𝑧ℎ) → 0, ℎ → ∞; (15)

(ii) 𝑥𝑡 satisfies Assumptions 2.1 and 2.2.

The following theorem establishes the asymptotic behavior of the robust test statistics 𝑄𝑚 and �̃�𝑚 used to test the cumulative
hypotheses of absence of correlation at lags 𝑘 = 1,… , 𝑚.

Theorem 2.2. Let {𝑥𝑡} be as in (5), 𝑚 ≥ 1, and Assumption 2.4 hold. Then, as 𝑛 → ∞, for any threshold 𝜆 > 0,

𝑄𝑚 →𝐷 𝜒2
𝑚, �̃�𝑚 →𝐷 𝜒2

𝑚. (16)

Our empirical applications and Monte Carlo study use the thresholds 𝜆 = 1.96 and 𝜆 = 2.57 suggested in Dalla et al. (2022) which
ead to well-sized testing procedures in finite samples.

Theorem 2.2 shows that the asymptotic distribution of the cumulative robust test �̃�𝑚 is not affected by the threshold parameter
. It can be selected in advance and does not require data-driven selection, for more details, see Dalla et al. (2022). The purpose of
hresholding is assist in achieving the correct size of the test �̃�𝑚 in finite samples. We recommend using for 𝜆 the 90%, 95% and
9% critical values of the standard normal distribution. Simulations in Section 8.2 of the Online Supplement, show that when the
ample size is small, thresholding is essential. In particular, the values 𝜆 = 1.96, 𝜆 = 2.57 stabilize test size; and, as the sample size
ncreases, thresholding can still help to improve the size of the �̃�𝑚 test, but the choice of the value 𝜆 does not make a significant
ifference.

onsistency. It remains to show that under the alternative the robust test �̃�𝑘 is able detect the presence of correlation corr(𝜀𝑘, 𝜀0) ≠ 0
t the individual lag 𝑘. Recall that the latter implies corr(𝑥𝑡, 𝑥𝑡−𝑘) ≠ 0 if corr(𝑥𝑡, 𝑥𝑡−𝑘) is defined. Under this alternative hypothesis,
he process {𝜀𝑡} is assumed to have short memory, as defined below.

efinition 2.1. A stationary sequence {𝑢𝑡} has short memory if ∑∞
𝑗=−∞ |cov(𝑢𝑗 , 𝑢0)| < ∞.

heorem 2.3. Let 𝑥𝑡 = 𝜇𝑥 + ℎ𝑡𝜀𝑡, where {𝜀𝑡} is a stationary sequence. Let 𝑘 ≥ 0 be such that cov(𝜀𝑘, 𝜀0) ≠ 0. Suppose that {𝜀𝑡} and
𝑧𝑡 = 𝜀𝑡𝜀𝑡−𝑘} are short memory sequences and Assumptions 2.2 and 2.3 are satisfied. Then, as 𝑛 → ∞, �̃�𝑘 →𝑝 ∞.

Simulations show that the choice of the value of 𝜆 does not have a significant impact on the power of the test.

.1. Testing for zero correlation in regression residuals

One practical implementation of the robust test is residual-based testing for the absence of correlation in the noise {𝑢𝑡} process
f a linear regression model such as

𝑓𝑡 = 𝛽′𝑍𝑡 + 𝑢𝑡, 𝑢𝑡 = ℎ𝑡𝜀𝑡, (17)

here 𝛽 is a 𝑝 × 1 vector and 𝑍𝑡 = (𝑍1,𝑡,… , 𝑍𝑝,𝑡) is a stochastic regressor with initial component 𝑍1,𝑡 = 1 to allow for an intercept.
Under some additional conditions we now show that testing can be based on the regression residuals

�̂�𝑡 = (𝛽 − 𝛽)′𝑍𝑡 + 𝑢𝑡, (18)

where 𝛽 is the ordinary least squares (OLS) estimate of 𝛽.
For a general analysis it is convenient to focus on the signal plus noise framework

𝑥𝑡 = 𝛼′𝑛𝑍𝑡 + {𝜇𝑥 + 𝑢𝑡}, 𝑢𝑡 = ℎ𝑡𝜀𝑡, (19)

where the signal 𝑢𝑡 is observed with additive noise 𝛼′𝑛𝑍𝑡. The residuals (18) from the regression model (17) can be written as
𝑥𝑡 = 𝛼′𝑛𝑍𝑡 + 𝑢𝑡 with 𝛼𝑛 = 𝛽 − 𝛽. The following assumption assures the negligibility of a regression-induced additive term such
as 𝛼′𝑛𝑍𝑡 in (19). We suppose that

‖𝛼𝑛‖ = 𝑂𝑝

( (
∑𝑛

𝑡=𝑘+1 ℎ
2
𝑡 ℎ

2
𝑡−𝑘)

1∕4

√

𝑛

)

(20)

for lag 𝑘 ≥ 1 in Theorem 2.1 and lags 𝑘 ∈ {1,… , 𝑚} in Theorem 2.2. This assumption is satisfied in the linear regression (17), as
shown in Lemma A3 of the Online Supplement.

Assumption 2.5. The following assumptions hold on (𝑍𝑡, 𝑢𝑡) in (19).
(i) The elements of {𝑍𝑡𝑍′

𝑡 } are covariance stationary short memory processes.
(ii) For any 𝑘 ≥ 0, the elements of {𝑍𝑡𝜀𝑡−𝑘}, {𝜀𝑡𝑍𝑡−𝑘} are zero mean covariance stationary short memory processes.
5

(iii) {ℎ𝑡} is independent of {𝑍𝑡, 𝜀𝑡}.
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The following theorem provides conditions for residual-based testing of zero correlation. In particular, the linear regression model
17) satisfies condition (20) and allows for such testing using OLS residuals.

heorem 2.4. Theorems 2.1 and 2.2 remain valid if instead of 𝑥𝑡 = 𝜇𝑥+𝑢𝑡 testing is based on data 𝑥𝑡 as in (19), provided Assumption 2.5
is satisfied and condition (20) holds. In particular, OLS residuals from fitting a linear regression model of the form (17) satisfy (20).

2.2. Testing for zero correlation when {ℎ𝑡} and {𝜀𝑡} are dependent

The framework (5) employed for the data assumes that noise can be decomposed as 𝑥𝑡 = 𝜇𝑥 + ℎ𝑡𝜀𝑡, so that the scale factor
ℎ𝑡} and a stationary m.d. noise {𝜀𝑡} are mutually independent. This covers a large variety of uncorrelated noise processes {𝑥𝑡}.
ost ARCH and stochastic volatility models in financial econometrics take the form of a simpler noise process like 𝑥𝑡 = 𝜀𝑡, where

𝑡 = 𝜎𝑡𝑒𝑡 is a stationary m.d. sequence. In these models the conditional heteroskedasticity 𝜎𝑡 term is a part of a stationary process
𝑡, and ℎ𝑡 = 1. Hence, in our setting, stationary conditional heteroskedasticity 𝜎𝑡 is covered by 𝜀𝑡, while the scale factor ℎ𝑡 allows
or modeling heterogeneity effects that may be present in the data.

Clearly a stochastic noise process {𝜀𝑡} is independent of any deterministic scale factor {ℎ𝑡}. It is therefore natural to ask whether
esting results remain valid when {ℎ𝑡} is itself stochastic and dependent on {𝜀𝑡}. The answer appears to be: yes and no. In general,
t is difficult to construct an example of such a stochastic ℎ𝑡 which is 𝑡−1 measurable, so that cov(𝑥𝑡, 𝑥𝑠) = 0 for 𝑡 ≠ 𝑠, but for which
he size of our testing procedures is distorted. In fact, our Monte Carlo simulation findings corroborate the validity of the testing
rocedure for most such ℎ𝑡 scale factors.

In Theorem 2.5 we provide a model and additional conditions which enable application of our testing procedure for zero
orrelation in the above case. The framework gives the scale factor ℎ𝑡 a unit root type structure. The design of this setting is
nspired by the derivation of the limit distribution in Phillips (1987) for general unit root testing, but with the difference that in
ur case asymptotic normality is preserved.

The following assumption permits dependence between {ℎ𝑡} and the noise {𝜀𝑡}.

ssumption 2.6. The scale factor satisfies ℎ𝑡 = |ℎ̃𝑡−1|, 𝑡 = 1,… , 𝑛 where ℎ̃𝑡 is a random walk measurable with respect to the 𝜎-field
𝑡 of Assumption 2.1. We suppose that

ℎ̃𝑡 =
𝑡

∑

𝑠=1
𝜉𝑠 + ℎ̃0, (21)

here {𝜉𝑡} is an m.d. sequence with respect to 𝑡, 𝐸[𝜉8𝑡 ] < ∞, and 𝐸[ℎ̃80] < ∞. Additionally, {𝜉𝑡}, {𝜀𝑡} and {𝜉𝑡𝜀𝑡𝜀𝑡−𝑘}, 𝑘 ≥ 0 are all
tationary ergodic sequences.

Assumptions 2.1 and 2.6 imply that cov(𝑥𝑡, 𝑥𝑡−𝑘) = 0 for any 𝑘 ≥ 1. The validity of Theorems 2.1 and 2.2 is guaranteed by the
bsence of cross-correlation between noise processes {𝜉𝑠, 𝜀𝑡𝜀𝑡−𝑘}, i.e.,

cov(𝜉𝑠, 𝜀𝑡𝜀𝑡−𝑘) = 0, for all 𝑡, 𝑠 ≥ 1 (22)

nd for all lags 𝑘 that are used in the test procedure. It is worth noting that for 𝑡 ≠ 𝑠 (22) is valid because {𝜉𝑡} and {𝜀𝑡} are m.d.
equences with respect to the same 𝜎-field 𝑡. Therefore (22) holds if 𝐸[𝜉𝑡𝜀𝑡𝜀𝑡−𝑘] = 0 for 𝑡 ≥ 1.

heorem 2.5. Let 𝑥𝑡 = 𝜇𝑥 + ℎ𝑡𝜀𝑡 where {ℎ𝑡} and {𝜀𝑡} satisfy Assumptions 2.1 and 2.6.
i) If 𝑘 ≥ 1 satisfies (22), then Theorem 2.1 holds.
ii) If 𝑘 = 𝑚0,… , 𝑚 satisfy (22), then Theorem 2.2 holds.

In the proof of Theorem 2.5, we show that the robust test statistic �̃�𝑘 at lag 𝑘 ≥ 1 has the following limit theory property

�̃�𝑘 →𝐷
∫ 1
0 𝑈2(𝑠)𝑑𝑊 (𝑠)

(

∫ 1
0 𝑈4(𝑠)𝑑𝑠

)1∕2
=𝐷  (0, 1), (23)

here 𝑈 (𝑠) and 𝑊 (𝑠) are two independent Wiener processes. We also verify that ℎ𝑡 in Theorem 2.5 satisfies Assumption 2.2 used
in Section 2.

Our next example shows that Theorem 2.1 may not hold when {ℎ𝑡} and {𝜀𝑡} are mutually dependent. We use a similar model
setting as in Theorem 2.5.

Corollary 2.1. Let 𝑥𝑡 = 𝜇𝑥+ℎ𝑡𝜀𝑡 where {𝜀𝑡} is an i.i.d. zero mean sequence with 𝐸[𝜀4𝑡 ] < ∞. Suppose that ℎ𝑡 is defined as in Assumption 2.6
with 𝜉𝑡 = 𝜀𝑡𝜀𝑡−1 and ℎ0 = 0. Then,

�̃�1 →𝐷
∫ 1
0 𝑊 2(𝑠)𝑑𝑊 (𝑠)

(

∫ 1
0 𝑊 4(𝑠)𝑑𝑠

)1∕2
, (24)

�̃�𝑘 →𝐷  (0, 1) for 𝑘 ≥ 2,

here 𝑊 (𝑠) is a standard Wiener processes.

This example matches the setting of Theorem 2.5 except for condition (22). For 𝑘 = 1, cov(𝜉𝑡, 𝜀𝑡𝜀𝑡−1) = var(𝜉𝑡) > 0 and the
̃ ̃
6

symptotic normality for 𝑡1 does not hold. But for 𝑘 ≥ 2 {𝜉𝑡} satisfies (22) and 𝑡𝑘 is asymptotically normally distributed.
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3. Testing for zero cross-correlation

We next discuss testing for cross-correlation between two time series {𝑥𝑡} and {𝑦𝑡}. Similar to the univariate case, the sample
cross-correlations 𝜌𝑥𝑦,𝑘 at lags 𝑘 = 0, 1, 2,… based on observed data 𝑥1,… , 𝑥𝑛 and 𝑦1,… , 𝑦𝑛 are given by

𝜌𝑥𝑦,𝑘 =
∑𝑛

𝑡=𝑘+1(𝑥𝑡 − �̄�)(𝑦𝑡−𝑘 − �̄�)
√

∑𝑛
𝑡=1(𝑥𝑡 − �̄�)2

∑𝑛
𝑡=1(𝑦𝑡 − �̄�)2

, �̄� = 1
𝑛

𝑛
∑

𝑡=1
𝑥𝑡, �̄� = 1

𝑛

𝑛
∑

𝑡=1
𝑦𝑡, (25)

allowing estimation of 𝜌𝑥𝑦,𝑘 = corr(𝑥𝑡, 𝑦𝑡−𝑘). Again, the standard test for absence of cross-correlation is built on the asymptotic
property

√

𝑛𝜌𝑥𝑦,𝑘 →𝐷  (0, 1), (26)

which is commonly used for testing 𝐻0 ∶ 𝜌𝑥𝑦,𝑘 = 0 at an individual lag 𝑘. However, such tests suffer size distortion when the two
series {𝑥𝑡} and {𝑦𝑡} are either not i.i.d. or not mutually independent. Dalla et al. (2022) developed a robust testing methodology
based on

�̃�𝑥𝑦,𝑘 =
∑𝑛

𝑡=𝑘+1 𝑒𝑥𝑦,𝑡𝑘
(
∑𝑛

𝑡=𝑘+1 𝑒
2
𝑥𝑦,𝑡𝑘)

1∕2
, with 𝑒𝑥𝑦,𝑡𝑘 = (𝑥𝑡 − �̄�)(𝑦𝑡−𝑘 − �̄�). (27)

They showed that the statistic 𝜌𝑥𝑦,𝑘 should be corrected for its variance as in

�̃�𝑥𝑦,𝑘 = 𝜌𝑥𝑦,𝑘 𝑐𝑥𝑦,𝑘 →𝐷  (0, 1), with 𝑐𝑥𝑦,𝑘 =
�̃�𝑥𝑦,𝑘
𝜌𝑥𝑦,𝑘

, (28)

which leads to correct size and confidence bands for zero cross-correlation at lag 𝑘.
In developing this test (Dalla et al., 2022) assumed the scale factors ℎ𝑡, 𝑔𝑡 to be deterministic and smooth. Here, we relinquish

the smoothness assumption and allow the scale factors ℎ𝑡, 𝑔𝑡 to be stochastic. Our model setup is as follows. Two time series are
observed in which

𝑥𝑡 = 𝜇𝑥 + 𝑢𝑡, 𝑢𝑡 = ℎ𝑡𝜀𝑡, and 𝑦𝑡 = 𝜇𝑦 + 𝑣𝑡, 𝑣𝑡 = 𝑔𝑡𝜂𝑡, (29)

where ℎ𝑡 ≥ 0, 𝑔𝑡 ≥ 0 a.s. are (deterministic or stochastic) scale factors, {𝜀𝑡}, {𝜂𝑡} are stationary time series with 𝐸𝜀𝑡 = 0, 𝐸𝜀2𝑡 = 1
nd 𝐸𝜂𝑡 = 0, 𝐸𝜂2𝑡 = 1, and 𝜇𝑥, 𝜇𝑦 are real numbers. We assume that {ℎ𝑡, 𝑔𝑡} are mutually independent of {𝜀𝑡, 𝜂𝑡}. The absence of
ross-correlation between 𝑥𝑡 and 𝑦𝑡−𝑘 is now determined by the absence cross-correlation between 𝜀𝑡 and 𝜂𝑡−𝑘. Indeed,

cov(𝑥𝑡, 𝑦𝑡−𝑘) = 𝐸[ℎ𝑡𝑔𝑡−𝑘]cov(𝜀𝑡, 𝜂𝑡−𝑘) = 0 if cov(𝜀𝑡, 𝜂𝑡−𝑘) = 0. (30)

s in the univariate case, testing for cross-correlation in the setting (29) (with scale factors) reduces to testing for cov(𝜀𝑡, 𝜂𝑡−𝑘) = 0,
hich implies cov(𝑥𝑡, 𝑦𝑡−𝑘) = 0 if cross-covariance exists.

i) Testing at individual lags. We start by outlining conditions on the noise processes {𝜀𝑡, 𝜂𝑡} and scale factors {ℎ𝑡, 𝑔𝑡} that enable
esting for absence of cross-correlation between series {𝑥𝑡} and {𝑦𝑡} at an individual lag 𝑘 ≥ 0. These are stated below for the lag
t which testing is conducted.

ssumption 3.1. {𝑧𝑡 ∶= 𝜀𝑡𝜂𝑡−𝑘} is a stationary m.d. sequence with respect to a filtration 𝑡 for which

𝐸[𝑧𝑡|𝑡−1] = 0, 𝐸𝑧2𝑡 < ∞. (31)

he leading sequence 𝜀𝑡 is assumed to be an m.d. sequence with respect to 𝑡, i.e. 𝐸[𝜀𝑡|𝑡−1] = 0, whereas 𝜂𝑡−𝑘 is an 𝑡−1 measurable
hort memory sequence, i.e. 𝐸[𝜂𝑡−𝑘|𝑡−1] = 𝜂𝑡−𝑘.

This condition implies corr(𝜀𝑡, 𝜂𝑡−𝑘) = 0 and overall corr(𝑥𝑡, 𝑦𝑡−𝑘) = 0 for all 𝑡. The key requirement is (31). The m.d. property is
mposed only on the cross-product 𝑧𝑡 = 𝜀𝑡𝜂𝑡−𝑘 of the noises. In particular, this setting allows testing for cross-correlation when both
he leading sequence {𝑥𝑡} and the lagged sequence {𝑦𝑡} are uncorrelated noises, e.g. regression residuals as in Section 3.1. The lagged
equence may be also a stationary sequence 𝑦𝑡 = 𝐸𝑦𝑡+(𝑦𝑡−𝐸𝑦𝑡), since it may be written as in (29) with 𝜇𝑦 = 𝐸𝑦𝑡, ℎ𝑡 = 1, 𝜂𝑡 = 𝑦𝑡−𝜇𝑦.

The following is an example of a noise 𝑧𝑡 satisfying Assumption 3.1.

Example 3.1. Let {𝜀𝑡} be a stationary m.d. sequence with respect to some 𝜎-field 𝑡, and 𝜂𝑡 = 𝑣(𝜀𝑡−1, 𝜀𝑡−2,…) where 𝑣 is a measurable
unction. Assume that 𝐸𝜀4𝑡 < ∞ and 𝐸𝜂4𝑡 < ∞. Then, for any 𝑘 ≥ 0,

𝐸[𝑧𝑡|𝑡−1] = 𝐸[𝜀𝑡𝜂𝑡−𝑘|𝑡−1] = 𝐸[𝜀𝑡𝑣(𝜀𝑡−1−𝑘, 𝜀𝑡−2−𝑘,…)|𝑡−1]

= 𝑣(𝜀𝑡−1−𝑘, 𝜀𝑡−2−𝑘,…)𝐸[𝜀𝑡|𝑡−1] = 0,

𝑎𝑛𝑑 𝐸𝑧2𝑡 ≤ (𝐸[𝜀4𝑡 ]𝐸[𝜂4𝑡−𝑘])
1∕2 < ∞.

The following condition on the scale factors ℎ𝑡, 𝑔𝑡 is unrestrictive and stated for the lag 𝑘 ≥ 0 at which testing is conducted. It
allows for deterministic and stochastic scale factors, and does not impose the smoothness restrictions that were used in Dalla et al.
7

(2022).
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Assumption 3.2. {ℎ𝑡 ≥ 0, 𝑔𝑡 ≥ 0} have the following property

max
1≤𝑡≤𝑛

ℎ4𝑡 = 𝑜𝑝
(

𝑛
∑

𝑡=𝑘+1
ℎ2𝑡 𝑔

2
𝑡−𝑘

)

, max
1≤𝑡≤𝑛

𝑔4𝑡 = 𝑜𝑝
(

𝑛
∑

𝑡=𝑘+1
ℎ2𝑡 𝑔

2
𝑡−𝑘

)

. (32)

Notably, this assumption does not require the existence of finite moments of ℎ𝑡, 𝑔𝑡.

ssumption 3.3. Sequence {𝜈𝑡 = 𝜀2𝑡 𝜂
2
𝑡−𝑘} is covariance stationary and

cov(𝜈ℎ, 𝜈0) → 0, ℎ → ∞. (33)

The following result gives the limit theory for the test statistic �̃�𝑥𝑦,𝑘 we use to test for zero cross-correlation at lag 𝑘.

Theorem 3.1. Let {𝑥𝑡, 𝑦𝑡} be as in (29). Suppose that 𝑘 ≥ 0, and Assumptions 3.1, 3.2 and 3.3 are satisfied. Then, corr(𝜀𝑡, 𝜂𝑡−𝑘) = 0
nd, as 𝑛 → ∞,

�̃�𝑥𝑦,𝑘 →𝐷  (0, 1). (34)

Under Assumption 3.1, corr(𝜀𝑡, 𝜂𝑡−𝑘) = 0 which implies corr(𝑥𝑡, 𝑦𝑡−𝑘) = 0 for all 𝑡 such that corr(𝑥𝑡, 𝑦𝑡−𝑘) is defined.

ii) Cumulative testing. We next consider testing the cumulative hypotheses

𝐻0 ∶ corr(𝑥𝑡, 𝑦𝑡−𝑘) = 0 for 𝑚0 ≤ 𝑘 ≤ 𝑚 and all 𝑡, (35)

here 0 ≤ 𝑚0 < 𝑚. As pointed out in Dalla et al. (2022), the cumulative (Haugh and Box, 1977) test for cross-correlation that is
ased on

𝐻𝐵𝑥𝑦,𝑚 = 𝑛2
𝑚
∑

𝑘=𝑚0

𝜌 2
𝑥𝑦,𝑘

𝑛 − 𝑘
(36)

assumes mutual independence of the time series {𝑥𝑡} and {𝑦𝑡} which is too restrictive for most applications. Instead, to address this
shortcoming and improve finite sample performance (Dalla et al., 2022) introduced the following robust cumulative test statistics

𝑄𝑥𝑦,𝑚 = �̃� ′𝑥𝑦 𝑅
−1
𝑥𝑦 �̃�𝑥𝑦, �̃�𝑥𝑦,𝑚 = �̃� ′𝑥𝑦 𝑅

∗−1
𝑥𝑦 �̃�𝑥𝑦, (37)

where �̃�𝑥𝑦 = (̃𝑡𝑥𝑦,𝑚0
,… , �̃�𝑥𝑦,𝑚)′ and 𝑅𝑥𝑦 = (�̂�𝑥𝑦,𝑗𝑘)𝑗,𝑘=𝑚0 ,…,𝑚 is a matrix with elements

�̂�𝑥𝑦,𝑗𝑘 =

∑𝑛
𝑡=max(𝑗,𝑘)+1 𝑒𝑥𝑦,𝑡𝑗𝑒𝑥𝑦,𝑡𝑘

(
∑𝑛

𝑡=max(𝑗,𝑘)+1 𝑒
2
𝑥𝑦,𝑡𝑗 )1∕2(

∑𝑛
𝑡=max(𝑗,𝑘)+1 𝑒

2
𝑥𝑦,𝑡𝑘)

1∕2
. (38)

In applications, Dalla et al. (2022) suggested to use �̃�𝑥𝑦,𝑚 with the thresholded version 𝑅∗
𝑥𝑦 = (�̂� ∗𝑥𝑦,𝑗𝑘)𝑗,𝑘=𝑚0 ,…,𝑚 of 𝑅𝑥𝑦, given by

�̂� ∗𝑥𝑦,𝑗𝑘 = �̂�𝑥𝑦,𝑗𝑘𝐼(|𝜏𝑥𝑦,𝑗𝑘| > 𝜆) with (39)

𝜏𝑥𝑦,𝑗𝑘 =

∑𝑛
𝑡=max(𝑗,𝑘)+1 𝑒𝑥𝑦,𝑡𝑗𝑒𝑥𝑦,𝑡𝑘

(
∑𝑛

𝑡=max(𝑗,𝑘)+1 𝑒
2
𝑥𝑦,𝑡𝑗𝑒

2
𝑥𝑦,𝑡𝑘)

1∕2
,

here 𝜆 > 0 is the thresholding parameter, and 𝜏𝑥𝑦,𝑗𝑘 is a 𝑡-statistic, see Dalla et al. (2022) for more details. The asymptotic theory
olds for any threshold values 𝜆 > 0.

For testing the cumulative hypothesis 𝐻0 ∶ corr(𝜀𝑡, 𝜂𝑡−𝑘) = 0 for 𝑘 ∈ [𝑚0, 𝑚], we assume that the variables 𝜀𝑡, 𝜂𝑡 and ℎ𝑡, 𝑔𝑡 satisfy
the following conditions for all lags 𝑘 ∈ [𝑚0, 𝑚].

Assumption 3.4. For any 𝑗, 𝑘 = 𝑚0,… , 𝑚,
(i) The sequence 𝜈𝑡 = (𝜀𝑡𝜂𝑡−𝑗 )(𝜀𝑡𝜂𝑡−𝑘) is covariance stationary and

𝐸𝜈2𝑡 < ∞, cov(𝜈ℎ, 𝜈0) → 0, ℎ → ∞. (40)

(ii) {𝜀𝑡, 𝜂𝑡} satisfy Assumption 3.1. (iii) {ℎ𝑡, 𝑔𝑡} satisfy Assumption 3.2.

Theorem 3.2. Let {𝑥𝑡} and {𝑦𝑡} be as in (29). Suppose that corr(𝜀𝑡, 𝜂𝑡−𝑘) = 0, 𝑘 ∈ [𝑚0, 𝑚] and Assumption 3.4 is satisfied. Then, as
→ ∞, for any 𝜆 > 0,

𝑄𝑥𝑦,𝑚 →𝐷 𝜒2
𝑚−𝑚0+1

, �̃�𝑥𝑦,𝑚 →𝐷 𝜒2
𝑚−𝑚0+1

. (41)

Recall, that under Assumption 3.4, corr(𝜀𝑡, 𝜂𝑡−𝑘) = 0 for 𝑘 ∈ [𝑚0, 𝑚] which implies corr(𝑥𝑡, 𝑦𝑡−𝑘) = 0 for corresponding 𝑡, 𝑘
f corr(𝑥𝑡, 𝑦𝑡−𝑘) is defined. Monte Carlo simulations confirm good finite sample properties of the robust test statistic �̃�𝑥𝑦,𝑚. For
8

pplications, testing for zero cross-correlation between two series of uncorrelated variables {𝑥𝑡} and {𝑦𝑡}, in finite samples we
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recommend using �̃�𝑥𝑦,𝑚 with 𝜆 = 1.96 or 2.57. When the lagged series {𝑦𝑡} is a stationary series of dependent variables, simulations
how that thresholding might be not needed and that evidence confirms that the best choice for 𝜆 is zero.

iii) Test Consistency. Finally, we show that the robust test �̃�𝑥𝑦,𝑘 at individual lag 𝑘 is consistent if corr(𝜀𝑡, 𝜂𝑡−𝑘) ≠ 0. The latter
mplies corr(𝑥𝑡, 𝑦𝑡−𝑘) ≠ 0 if corr(𝑥𝑡, 𝑦𝑡−𝑘) is defined. In such cases, 𝐸[𝜀𝑡𝜂𝑡−𝑘] ≠ 0, and, different from the null hypotheses of the absence
f correlation, we assume that 𝑧𝑡 = 𝜀𝑡𝜂𝑡−𝑘 is a stationary short memory sequence. The following result now holds.

heorem 3.3. Let {𝑥𝑡, 𝑦𝑡} be as in (29) and 𝑘 ≥ 0 be such that corr(𝜀𝑡, 𝜂𝑡−𝑘) ≠ 0. Suppose that {𝜀𝑡}, {𝜂𝑡} and {𝑧𝑡 = 𝜀𝑡𝜂𝑡−𝑘} are short
emory sequences and Assumptions 3.2 and 3.3 are satisfied. Then, as 𝑛 → ∞, �̃�𝑥𝑦,𝑘 →𝑝 ∞.

.1. Residual-based testing for zero cross-correlation

We consider residual-based testing for zero cross-correlation between noise sequences {𝑢𝑡} and {𝑣𝑡} in two regression models

𝑓𝑡 = 𝛽′𝑍𝑡 + 𝑢𝑡, 𝑢𝑡 = ℎ𝑡𝜀𝑡,
𝑠𝑡 = 𝜈′𝑉𝑡 + 𝑣𝑡, 𝑣𝑡 = 𝑔𝑡𝜂𝑡,

(42)

here 𝛽 and 𝜈 are 𝑝×1 and 𝑞×1 vectors, 𝑍𝑡 = (𝑍1,𝑡,… , 𝑍𝑝,𝑡) and 𝑉𝑡 = (𝑉1,𝑡,… , 𝑉𝑞,𝑡) are stochastic regressors, and the noise sequences
𝑡 and 𝑣𝑡 satisfy assumptions of Theorems 3.1 and 3.2. To allow for an intercept, we set 𝑍1,𝑡 = 1, 𝑉1,𝑡 = 1.

Our primary interest is to determine conditions for testing zero cross-correlation between the sequences {𝑢𝑡} and {𝑣𝑡} using
esiduals from the fitted regressions

�̂�𝑡 = 𝑓𝑡 − 𝛽′𝑍𝑡 = (𝛽 − 𝛽)′𝑍𝑡 + 𝑢𝑡,
𝑣𝑡 = 𝑠𝑡 − 𝜈′𝑉𝑡 = (𝜈 − 𝜈)′𝑉𝑡 + 𝑣𝑡,

(43)

here 𝛽 and 𝜈 are OLS estimates of 𝛽 and 𝜈. The following development allows for a slightly more general signal plus noise setting
f the form

𝑥𝑡 = 𝛼′1𝑛𝑍𝑡 + {𝜇𝑥 + 𝑢𝑡}, 𝑢𝑡 = ℎ𝑡𝜀𝑡,
𝑦𝑡 = 𝛼′2𝑛𝑉𝑡 + {𝜇𝑦 + 𝑣𝑡}, 𝑣𝑡 = 𝑔𝑡𝜂𝑡,

(44)

here the signals 𝜇𝑥 + 𝑢𝑡, 𝜇𝑦 + 𝑣𝑡 are observed with the additive noise processes {𝛼′1𝑛𝑍𝑡, 𝛼′2𝑛𝑉𝑡}. The residuals (43) of the fitted
regression can be written as in (44) with

𝛼1𝑛 = 𝛽 − 𝛽, 𝛼2𝑛 = 𝜈 − 𝜈.

onditions of negligibility for the additive noise in (44) are provided by assuming that

‖𝛼𝓁𝑛‖ = 𝑂𝑝

( (
∑𝑛

𝑡=𝑘+1 ℎ
2
𝑡 𝑔

2
𝑡−𝑘)

1∕4

√

𝑛

)

, 𝓁 = 1, 2 (45)

for lag 𝑘 ≥ 1 in Theorem 3.1 and lags 𝑘 ∈ {𝑚0,… , 𝑚} in Theorem 3.2. This condition is satisfied by the residuals of the fitted linear
regression model (42).

Assumption 3.5. We make the following assumptions on 𝑍𝑡, 𝑉𝑡, 𝑢𝑡, 𝑣𝑡 in (44).
(i) The elements of {𝑍𝑡𝑍′

𝑡 } and {𝑉𝑡𝑉 ′
𝑡 } are short memory covariance stationary processes.

(ii) For any 𝑘 ≥ 0, the elements of {𝑍𝑡𝜀𝑡}, {𝑍𝑡𝑣𝑡−𝑘} and {𝑉𝑡𝜂𝑡}, {𝑉𝑡𝜀𝑡−𝑘} are zero mean short memory covariance stationary
rocesses.

(iii) {ℎ𝑡} is independent {𝑍𝑡, 𝑉𝑡, 𝜀𝑡} and {𝑔𝑡} is independent {𝑍𝑡, 𝑉𝑡, 𝜂𝑡}.

The following theorem shows that testing for zero cross-correlation can be conducted using regression residuals.

heorem 3.4. Theorems 3.1 and 3.2 remain valid if, instead of 𝑥𝑡 = 𝜇𝑥 + 𝑢𝑡 and 𝑦𝑡 = 𝜇𝑦 + 𝑣𝑡, testing is based on 𝑥𝑡 and 𝑦𝑡 as in (44),
rovided that (45) holds. In particular, residuals obtained by fitting the linear regression model (42) satisfy (45).

. Monte Carlo study

This section reports the findings from Monte Carlo simulations exploring finite sample size and power performance of our robust
nivariate and bivariate tests for absence of correlation in time series. We focus on models where the volatility scale factor is either
on-smooth, stochastic, or both, and thereby not covered by the findings of Dalla et al. (2022).

.1. Size and power of tests for zero serial correlation

We use the robust and standard test statistics �̃�𝑘 and 𝑡𝑘 to study empirical size of our testing procedures for absence of
̃

9

utocorrelation at individual lag 𝑘, and the robust cumulative test statistic 𝑄𝑚 and the standard Ljung–Box test statistic 𝐿𝐵𝑚 for
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Fig. 1. Empirical size (in %) of the robust tests �̃�𝑘 and �̃�𝑚(red line) and the standard tests 𝑡𝑘 and 𝐿𝐵𝑚 (blue line) at lags 𝑘, 𝑚 = 1,… , 30. Nominal size 𝛼 = 5%.
Model 4.1, 𝜀𝑡 ∼ i.i.d.  (0, 1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

testing at cumulative lag 𝑚. The rejection frequency of the null hypothesis is compared with the nominal significance level 5%. We
conduct 5000 replications and report testing results for the sample size 𝑛 = 300. Results for 𝑛 = 100, 500, 2000 are available upon
request. We perform testing at lags 𝑘, 𝑚 = 1,… , 30, and �̃�𝑚 is computed using the threshold 𝜆 = 1.96.

To examine the properties of our testing procedures, we generate samples from

𝑥𝑡 = 0.2 + ℎ𝑡𝜀𝑡, 𝑡 = 1,… , 𝑛 (46)

using two types of scale factors ℎ𝑡 (non-smooth deterministic, stochastic) and two types of an uncorrelated noise {𝜀𝑡}:

𝜀𝑡 = 𝑒𝑡 i.i.d. model, (47)
𝜀𝑡 = 𝜎𝑡𝑒𝑡, 𝜎2𝑡 = 1 + 0.2𝜀2𝑡−1 + 0.7𝜎2𝑡−1, GARCH(1,1) model,

where {𝑒𝑡} is an i.i.d.  (0, 1) noise. The GARCH(1,1) noises {𝜀𝑡} are uncorrelated but not independent. We use two models for {𝑥𝑡}.

Model 4.1. 𝑥𝑡 is as in (46), ℎ𝑡 =
3
𝑛 ⌊𝑡∕10⌋, and {𝜀𝑡} follows (47).

The floor notation ⌊𝑧⌋ is used to denote the integer part of 𝑧. This model generates a serially uncorrelated time series {𝑥𝑡} with
a deterministic non-smooth scale factor ℎ𝑡. The ratio

𝛤𝑘 =
max1≤𝑡≤𝑛 ℎ2𝑡

(
∑𝑛

𝑡=𝑘+1 ℎ
2
𝑡 ℎ

2
𝑡−𝑘)

1∕2
(48)

was computed for 𝑘 = 1,… , 30 to check Assumption 2.2 on ℎ𝑡 for Model 4.1. The ratio is around 0.12, so the condition is satisfied.
Fig. 1 reports the empirical 5% size of the robust tests �̃�𝑘 and �̃�𝑚 denoted by the solid red line and the empirical 5% size of

standard tests 𝑡𝑘 and 𝐿𝐵𝑚 denoted by the solid blue line for Model 4.1 when 𝜀𝑡 is i.i.d.  (0, 1) noise. The nominal significance level
𝛼 = 5% is denoted by a gray dashed line. The plots reveal a striking difference in performance between the standard and robust tests
arising due to heteroskedasticity (the time-varying scale factor ℎ𝑡). The rejection frequency of the robust tests �̃�𝑘 and �̃�𝑚 is close to
the nominal 5% size, so they allow relatively accurate testing for absence of correlation in {𝑥𝑡}. In contrast, the standard tests 𝑡𝑘
and 𝐿𝐵𝑚 are significantly oversized. Similar results for size were obtained when 𝜀𝑡 is GARCH(1,1) noise.

Fig. 2 reports test results for a single sample of the white noise Model 4.1 generated with GARCH(1,1) noise 𝜀𝑡. The panel on the
left contains the correlogram. The robust 95% and 99% confidence bands (CB) for zero correlation denoted by dashed and dotted
red lines are overall wider than the standard confidence bands denoted by dashed and dotted gray lines. The robust CB’s do not
confirm presence of correlation at the lags 𝑘 = 1,… , 30, detected by the standard CB’s. (The robust CB’s are based on the property
(4) while the standard CB’s on the property (2).) The panel on the right reports the values of the cumulative robust test �̃�𝑚 (red
solid line) and the standard Ljung–Box test 𝐿𝐵𝑚 (blue solid line) at the lags 𝑚 = 1,… , 30. Both tests have the same 5% and 1%
critical values (denoted by the dashed and dotted gray lines). The robust test statistic �̃�𝑚 lays below the 5% critical value line and
does not detect presence of correlation at cumulative lags 𝑚 = 1,… , 30. In contrast, the standard Ljung–Box test detects spurious
correlation in the samples of 𝑥𝑡 generated by the white noise Model 4.1. Similar results were obtained for a single sample of the
Model 4.1 when 𝜀𝑡 is i.i.d.  (0, 1) noise.

We also compared sizes of the robust tests with the (Hong, 1996) and Shao (2011) tests based on Hong’s statistic

𝑇𝑛 =
𝑛
∑

𝑗=1
𝐾2(𝑗∕𝑚𝑛)�̂�2𝑗 . (49)

We used Bartlett, flat, and Gaussian kernels and bandwidth parameters 𝑚𝑛 = {𝑛0.3, 𝑛0.5, 𝑛0.6}. In all cases, Hong’s test statistic produces
distorted size from 20% to 57%. For details see Table 8 in the Online Supplement.
10
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Fig. 2. Left panel: sample autocorrelation 𝜌𝑘, standard 5% and 1% (gray) and robust (red) CB’s for non-significant correlation at lags 𝑘 = 1,… , 30. Right panel:
standard (blue) and robust (red) cumulative tests 𝐿𝐵𝑚 , �̃�𝑚 and their 5% (dashed) and 1% (dotted) critical values at lags 𝑚 = 1,… , 30. Single simulation. Model
4.1, 𝜀𝑡 ∼ GARCH(1,1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Plots of ℎ𝑡 and 𝑥𝑡 = 0.2 + ℎ𝑡𝜀𝑡. Model 4.2, 𝑛 = 300.

To examine test power we used the AR(1) model 𝑥𝑡 = 0.2 + 𝛽𝑥𝑡−1 + ℎ𝑡𝜀𝑡 with 𝛽 = 0.25 and repeated the previous calculations for
𝑛 = 300. Since the standard tests are oversized, we computed size-corrected power for these tests. For lag 1, the power of the robust
test 𝑡1 is 88.84% and the size-corrected power of the standard test 𝑡1 is 86.36%. The power of the robust cumulative test �̃�𝑚 is
comparable with the size-corrected power of the Ljung–Box 𝐿𝐵𝑚 test for 15 lags, see Table 2 and Table 3 in the Online Supplement.
The robust tests show good power properties also for other values of 𝛽 and sample sizes 𝑛 and those simulation results are available
on request.

Model 4.2. 𝑥𝑡 is as in (46), ℎ𝑡 = |

∑𝑡
𝑗=1 𝜂𝑗 |, {𝜀𝑡} follows (47), and 𝜂𝑡 ∼ 𝑖.𝑖.𝑑. (0, 1) noise independent of {𝜀𝑡}.

In this model ℎ𝑡 is the absolute value of a non-stationary stochastic unit root process. Variables 𝑥𝑡 generated by Model 4.2 are
clearly uncorrelated. Fig. 3 shows typical plots of samples of 𝑥𝑡. This kind of data is commonly seen in empirical research, and
robust testing for the absence of correlation requires the investigator to be agnostic about its structure.

In Fig. 4, we report empirical sizes of the tests �̃�𝑘, 𝑡𝑘 and the cumulative tests �̃�𝑚 and 𝐿𝐵𝑚 for absence of correlations in Model
4.2 when 𝜀𝑡 is GARCH(1,1) noise based on 5000 replications. The rejection frequency of the robust tests �̃�𝑘 (at individual lag) and
�̃�𝑚 (at cumulative lags) fluctuates around the gray dashed line of the nominal size 𝛼 = 5% for all lags which confirms our theoretical
results. The size of the standard tests 𝑡𝑘 and 𝐿𝐵𝑚 is significantly distorted by ℎ𝑡 (heteroskedasticity) or dependence in {𝜀𝑡} in 𝑥𝑡.
The cumulative test 𝐿𝐵𝑚 is overwhelmingly oversized and its rejection frequency is increasing with the lag 𝑚. Hence, with high
probability this test will falsely detect correlation in the series 𝑥𝑡 of uncorrelated random variables. The Monte Carlo average values
of 𝛤𝑘 in (48) based on 5000 replications are around 0.18 for all 𝑘, which suggests that ℎ𝑡 satisfies Assumption 2.2. Similar results
for size were obtained when 𝜀𝑡 is i.i.d.  (0, 1) noise.

Fig. 5 reports test results for a single sample of Model 4.2 when 𝜀𝑡 is i.i.d.  (0, 1) noise. The standard test 𝑡𝑘 detects the
autocorrelation at many lags. For example, serial correlation is significant at lags 𝑘 = 1, 7, 14, 21 (significance level 𝛼 = 5%), see
panel 5(a). The cumulative test statistic 𝐿𝐵𝑚 displayed in panel 5(b) also confirms the existence of autocorrelation in {𝑥𝑡}, which
contradicts the fact that {𝑥 } is a white noise. The robust confidence bands for zero correlation in the left panel are wider than those
11
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Fig. 4. Empirical sizes (in %) of the tests �̃�𝑘 , 𝑡𝑘 (left panel) and �̃�𝑚 , 𝐿𝐵𝑚 (right panel). Nominal size 𝛼 = 5%. Model 4.2, 𝜀𝑡 ∼ GARCH(1,1).

Fig. 5. Correlogram (left panel) and standard and robust cumulative test statistics (right panel) at lags 𝑚 = 1,… , 30 for a single simulation.Model 4.2, 𝜀𝑡 ∼ i.i.d.
 (0, 1).

of the standard test, and all correlation coefficients are not significant at level 𝛼 = 5%, i.e. there is not enough evidence to reject
absence of serial correlation in {𝑥𝑡}. The values of the robust cumulative test statistics �̃�𝑚 on the right panel lay below the line of
5% critical level values, and confirm absence of correlation. Similar test results were obtained when 𝜀𝑡 is GARCH(1,1) noise.

These simulation experiments confirm that the robust tests achieve good size performance in testing for absence of correlation
in the white noise settings studied in the present paper. The results show that time variation and randomness in the scale factor ℎ𝑡
as well as latent dependence in the error term 𝜀𝑡 are clear sources of size distortion in the standard tests.

In Model 4.2, the Hong test statistics also produce distorted size from 23% to 54%. Further examination of the power of the tests
for sample size 𝑛 = 300 are made by modifying the white noise Model 4.2 to an AR(1) process 𝑥𝑡 = 0.2 + 𝛽𝑥𝑡−1 + ℎ𝑡𝜀𝑡, 𝛽 = 0.25. The
power of the robust test �̃�1 is 83.52% and the size-corrected power of the standard 𝑡1 test is 82.96%. The power of robust test �̃�𝑘
and the robust cumulative test �̃�𝑚 is comparable to the size-corrected power of the standard test �̃�𝑘 and 𝐿𝐵𝑚 for 15 lags, see Table
4 and Table 5 in the Online Supplement for details.

Our final experiment explores the impact of the violation of Assumption 2.2 on ℎ𝑡 on the size of the robust tests. We use the
model

𝑥𝑡 = 0.2 + ℎ𝑡𝜀𝑡, 𝜀𝑡 ∼ 𝑖.𝑖.𝑑. (0, 1), (50)

where the scale process {ℎ𝑡} is stochastic and independent of {𝜀𝑡} with settings

(𝑖) ℎ𝑡 = |𝜂𝑡| and (𝑖𝑖) ℎ𝑡 =
|

|

|

|

|

|

1
√

𝑛

𝑡
∑

𝑗=1
𝜂𝑗
|

|

|

|

|

|

. (51)

We assume that 𝜂𝑡 are i.i.d. Student 𝑡2 random variables with two degrees of freedom. In both (i) and (ii) ℎ𝑡 has a heavy tailed
distribution. We employ the ratio 𝛤𝑘 in (48) to check the crucial Assumption 2.2 on ℎ𝑡. The Monte Carlo average of 5000 replications
of 𝛤𝑘 is around 12 for (i) and around 0.16 for (ii). Thus, ℎ𝑡 in model (i) does not satisfy Assumption 2.2. Fig. 6 shows that robust
tests become undersized, as may be expected for a bimodal distribution with modes around ±1, so the asymptotic properties of the
12
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Fig. 6. Empirical size (in %) of tests �̃�𝑘 , 𝑡𝑘 (left panel) and �̃�𝑚 , 𝐿𝐵𝑚 (right panel). Nominal size 𝛼 = 5%. Model (50)–(51)(i).

Fig. 7. Empirical size (in %) of tests 𝑡𝑘 , �̃�𝑘 (left panel) and 𝐿𝐵𝑚 , �̃�𝑚 (right panel). Nominal size 𝛼 = 5%. Model (50)–(51)(ii).

robust tests are no longer valid in this case. In contrast, ℎ𝑡 in model (ii) does satisfy Assumption 2.2 and the empirical size of the
robust tests is close to nominal, see Fig. 7.

4.1.1. Size and power of residual-based tests
One of the practical implementations of the robust test for zero correlation is that it can be applied to regression residuals. We

now examine performance of the robust test on the residuals from fitting the linear regression model

Model 4.3. 𝑦𝑡 = 0.5𝑥𝑡 + 𝑢𝑡 where 𝑢𝑡 = ℎ𝑡𝜀𝑡 and 𝑥𝑡 = 0.5𝑥𝑡−1 + 𝑒𝑡.

We assume that {𝜀𝑡} and {𝑒𝑡} are mutually uncorrelated i.i.d.  (0, 1) variables and consider two examples of deterministic ℎ𝑡.
Then the noise process {𝑢𝑡} is uncorrelated.

For 𝑛 = 300, 3,000 arrays of OLS residuals �̂�𝑡 = 𝑦𝑡 − 𝛽𝑥𝑡, 𝑡 = 1,… , 300 were generated and simulations conducted to explore
whether residual-based robust tests for absence of correlation in {𝑢𝑡} achieve the nominal 5% size. Table 1 reports empirical size of
the robust and standard tests for two scale factors. The findings show that for ℎ𝑡 = 1 the rejection rate both for robust and standard
tests is close to 5%. In the presence of heterogeneity, for ℎ𝑡 = 0.5 sin(2𝜋𝑡∕𝑛) + 1, the robust tests �̃�𝑘 and �̃�𝑚 achieve the correct size,
whereas the size of the standard tests 𝑡𝑘 and 𝐿𝐵𝑚 is clearly distorted.

The power of these tests is reported in the Online Supplement. The results in Table 12 show that the residual-based tests have
overall good power properties.

4.1.2. Test size when {ℎ𝑡} and {𝜀𝑡} are dependent
In this section we calculate the size of tests for uncorrelated noise 𝑥𝑡 generated by

Model 4.4. 𝑥𝑡 = ℎ𝑡𝜀𝑡 with ℎ𝑡 = |

∑𝑡−1
𝑗=1 𝜀𝑗 |, where 𝜀𝑡 ∼ 𝑖.𝑖.𝑑. (0, 1).

The variables {ℎ𝑡} and {𝜀𝑡} are dependent and satisfy the assumptions of Theorem 2.5 with 𝜉𝑡 = 𝜀𝑡 for any lag 𝑘 ≥ 1. So the
robust testing procedures are valid whereas standard tests are distorted by the heteroskedasticity factor ℎ .
13
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Table 1
Empirical size (in %) of the residual-based tests for linear regression Model 4.3. Nominal size 𝛼 = 5%.

k ℎ𝑡 = 1 ℎ𝑡 = 0.5 sin(2𝜋𝑡∕𝑛) + 1

�̃�𝑘 𝑡𝑘 �̃�𝑚 𝐿𝐵𝑚 �̃�𝑘 𝑡𝑘 �̃�𝑚 𝐿𝐵𝑚

1 4.93 4.60 4.93 4.63 4.63 9.27 4.63 9.33
2 4.80 4.30 4.40 4.37 5.03 9.70 4.77 11.83
3 5.30 4.97 4.30 4.37 4.33 8.47 4.37 12.63
4 4.17 4.03 4.00 4.47 4.97 9.33 4.00 14.10
5 4.43 4.33 4.13 4.63 4.83 8.90 4.07 15.70
6 4.90 4.47 4.30 4.57 5.03 9.43 4.30 16.23
7 4.80 4.47 4.30 4.63 4.37 8.40 4.07 17.60
8 5.10 4.80 4.33 4.40 4.83 9.40 4.13 18.73
9 4.03 3.60 4.13 4.60 5.07 8.53 3.93 19.37
10 5.10 4.30 4.50 4.50 5.00 9.37 3.80 20.87
11 4.60 3.93 3.97 4.10 4.97 9.47 3.83 21.80
12 4.37 4.17 3.80 4.27 5.13 9.37 4.10 23.07
13 4.60 4.17 4.27 4.63 4.70 8.67 4.07 23.87
14 5.27 4.90 4.00 4.77 4.90 8.97 4.10 25.13
15 4.87 4.37 4.23 4.97 4.67 9.03 4.27 26.20

Fig. 8 plots the size of the robust and standard tests for 𝑛 = 300 computed from 3,000 replications. The results shows that the
obust tests �̃�𝑘 and �̃�𝑚 manifest stable correct size whereas the standard tests are significantly oversized. More details can be found
n Table 13 of the Online Supplement. The same table reports empirical size for the noise process 𝑥𝑡 considered in Corollary 2.1. In
ine with the theory, it confirms size distortions (1.27%) for �̃�1 at lag 1 while �̃�𝑘 remain correctly sized for 𝑘 ≥ 2.

.2. Size and power of tests for zero cross-correlation

The problem of testing for zero cross-correlation between two time series {𝑥𝑡} and {𝑦𝑡} is more complex than testing for
utocorrelation. In this section Monte Carlo experiments are performed to corroborate the validity of the asymptotic theory of
he robust tests �̃�𝑥𝑦,𝑘 and �̃�𝑥𝑦,𝑚 in Section 3, and to compare their finite sample size properties with the standard tests 𝑡𝑥𝑦,𝑘 and
𝐵𝑥𝑦,𝑚. Samples of {𝑥𝑡, 𝑦𝑡, 𝑡 = 1,… , 𝑛} are generated using the model

odel 4.5.

𝑥𝑡 = 0.2 + ℎ𝑡𝜀𝑡, 𝑦𝑡 = 0.2 + 𝑔𝑡𝜂𝑡,

ℎ𝑡 =
3
𝑛
⌊

𝑡
10

⌋, 𝑔𝑡 = |𝑛−1∕2
𝑡

∑

𝑗=1
𝜁𝑗 |,

here {𝜀𝑡}, {𝜂𝑡} and {𝜁𝑡} are mutually independent i.i.d.  (0, 1) noises. This model includes a non-smooth deterministic scale
actor ℎ𝑡 and a stochastic scale factor 𝑔𝑡. Such models were not covered in Dalla et al. (2022). Arrays {𝑥𝑡, 𝑦𝑡, 𝑡 = 1,… , 𝑛} are series

of uncorrelated random variables and they are not cross-correlated.
We use sample size 𝑛 = 300, set the significance level to 𝛼 = 5%, conduct 5000 replications, and employ the threshold 𝜆 = 1.96

in �̃�𝑥𝑦,𝑚. The Monte Carlo average values of

𝛤ℎ𝑔,𝑘 =
max1≤𝑡≤𝑛 ℎ4𝑡
∑𝑛

𝑡=𝑘+1 ℎ
2
𝑡 𝑔

2
𝑡−𝑘

, 𝛤𝑔ℎ,𝑘 =
max1≤𝑡≤𝑛 𝑔4𝑡

∑𝑛
𝑡=𝑘+1 𝑔

2
𝑡 ℎ

2
𝑡−𝑘

are around 0.0044 and 0.5, which confirms that ℎ𝑡, 𝑔𝑡 satisfy Assumption 3.2.
Fig. 9 shows that the robust tests �̃�𝑥𝑦,𝑘 and �̃�𝑥𝑦,𝑚 achieve accurate size (red line), whereas the rejection frequencies of the standard

tests 𝑡𝑥𝑦,𝑘 and 𝐻𝐵𝑥𝑦,𝑚 (blue line) deviate significantly from the 5% level. Notably, the size performance of the cumulative Haugh
and Box’s test 𝐻𝐵𝑥𝑦,𝑚 deteriorates as the lag increases.

The poor performance of the standard tests in these examples warns against application of standard testing methods for
uncorrelated random variables that are not i.i.d. Additional Monte Carlo results for {𝑥𝑡, 𝑦𝑡} with various scale factors and sample
izes are available upon request. They all confirm the good finite sample performance of the robust tests and their ability to detect
bsence of cross-correlation between general white noise series such as those in Model 4.5.

.3. Testing for Pearson correlation

This section introduces a robust testing procedure for zero Pearson correlation between two random variables 𝜀 and 𝜂, which
llows for heteroskedasticity. We assume that the component variables 𝜀 and 𝜂 are not observed directly and testing is based on
ndependent pairs of observations {𝑥𝑖, 𝑦𝑖}, 𝑖 = 1,… , 𝑛, for which
14

𝑥𝑖 = 𝜇𝑥 + ℎ𝑖𝜀𝑖, 𝑦𝑖 = 𝜇𝑦 + 𝑔𝑖𝜂𝑖,
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Fig. 8. Empirical size (in %) of tests �̃�𝑘 , 𝑡𝑘 (left panel) and �̃�𝑚 , 𝐿𝐵𝑚 (right panel). Nominal size 𝛼 = 5%. Model 4.4.

Fig. 9. Empirical sizes (in %) of tests 𝑡𝑥𝑦,𝑘 , �̃�𝑥𝑦,𝑘 (left panel) and 𝐻𝐵𝑥𝑦,𝑚 , �̃�𝑥𝑦,𝑚 (right panel). Nominal size 𝛼 = 5% Model 4.5. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

where 𝜀𝑖 and 𝜂𝑖 are i.i.d. copies of 𝜀 and 𝜂, 𝐸𝜀𝑖 = 𝐸𝜂𝑖 = 0, 𝐸𝜀4𝑖 < ∞, 𝐸𝜂4𝑖 < ∞, the scale factors ℎ𝑖 and 𝑔𝑖 are either deterministic or
independent random variables, satisfy Assumption 3.2 and are mutually independent of {𝜀𝑖, 𝜂𝑖}.

Observe, that 𝑥𝑖, 𝑦𝑖 satisfy assumptions of Theorem 3.1. Thus, to test the hypothesis 𝐻0 ∶ corr(𝜀, 𝜂) = 0, we can use the robust
test statistic for cross-correlation at lag 𝑘 = 0:

�̃�𝑥𝑦,0 =
∑𝑛

𝑖=1 𝑒𝑥𝑦,𝑖0
(
∑𝑛

𝑖=1 𝑒
2
𝑥𝑦,𝑖0)

1∕2
, 𝑒𝑥𝑦,𝑖0 = (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�). (52)

By Theorem 3.1, under 𝐻0, �̃�𝑥𝑦,0 →𝐷  (0, 1).
To compare the size and power performance of the robust Pearson test �̃�𝑥𝑦,0 with the standard Pearson test, 𝑡𝑥𝑦,0 =

√

𝑛𝜌𝑥𝑦,0, we
consider four simple data generating models 𝑋1 −𝑋4 for paired data {𝑥𝑖, 𝑦𝑖}, 𝑖 = 1,… , 300,

Model 𝑋1: 𝑥𝑖 = 𝜀2𝑖 Model 𝑋3: 𝑥𝑖 = ℎ𝑖𝜀𝑖, ℎ𝑖 = (−1)𝑖 + 2

Model 𝑋2: 𝑥𝑖 = |𝜀𝑖| Model 𝑋4: 𝑥𝑖 = ℎ𝑖𝜀𝑖, ℎ𝑖 = |𝜂𝑖| +
1
2

where {𝜀𝑖} and {𝜂𝑖} are mutually independent i.i.d.  (0, 1) noises. Observations {𝑥𝑖, 𝑦𝑖} are independent but not i.i.d. Among these
models, 𝑋1 is correlated with 𝑋2; 𝑋3 is correlated with 𝑋4, but 𝑋1, 𝑋2 and 𝑋3, 𝑋4 are mutually uncorrelated. In the latter case,
𝑡𝑥𝑦,0 →𝐷  (0, 1).

Fig. 10 displays testing results for pairs of models 𝑋𝑗, 𝑋𝑘 based on one sample. The first row of each block reports the sample
correlation coefficient and the second row reports the corresponding 𝑝-value (in parentheses). According to the 𝑝-value, we fill the
grid with different shades of color showing the significance levels of the test. The darker the color, the smaller the 𝑝-value, and
the more significant the Pearson correlation is. Since we already know whether there exists a Pearson correlation between pairs of
models or not, comparing Figs. 10(a) and 10(b), we can see that the standard Pearson testing procedure causes many false detections
of spurious correlations. In contrast, the robust tests for Pearson correlation produce good finite sample performance.
15
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Fig. 10. Pearson correlation and 𝑝-value.

Fig. 11. Testing for cross-correlation in bivariate time series XOM and RDSB.

5. Empirical application

In empirical work the composite structure of the time series data under consideration is typically unknown. Considering the
complexity in the generation of real-world data, similar to that in a synthetic Monte Carlo study, we may expect failure of standard
tests to detect absence of correlation. Below we consider examples of empirical time series that are expected to have positive or no
cross-correlation.

5.1. Example 1: Petroleum stock prices

The share prices of petroleum companies are closely related to the fluctuation of the international oil market. When there are
common factors, such as weak demand or a sudden rise in prices, companies competing in the market will be affected similarly by
the market shocks. Hence, the stock prices of different petroleum companies may be positively correlated during the same period.
In this empirical experiment, 𝑋𝑂𝑀 denotes the log return of the daily closing prices of the stock of Exxon Mobil Corporation, and
𝑅𝐷𝑆𝐵 is the log return of Royal Dutch Shell PLC. The sample range is from 24/05/2017 to 20/05/2021, and it contains 1005
observations. We tested for absence of correlation in 𝑋𝑂𝑀 and 𝑅𝐷𝑆𝐵 returns. Robust and standard tests lead to contradictory
conclusions. The cumulative robust test does not reject the null hypothesis of zero correlation at the 5% significance level whereas
the Ljung–Box test rejects the null as does Hong’s test which produces a 𝑝-value close to 0.00. We also test for cross-correlation in
{𝑋𝑂𝑀,𝑅𝐷𝑆𝐵} and {𝑅𝐷𝑆𝐵,𝑋𝑂𝑀} using both standard and robust testing procedures.
16
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Fig. 12. Plots of log return 𝑟𝑡 and log volume 𝑉𝑡.

Fig. 13. Testing for autocorrelation in log volume 𝑉𝑡 and residuals 𝜁𝑡.

The left panel in Fig. 11 reports standard and robust confidence bands for cross-correlation between 𝑋𝑂𝑀 and 𝑅𝐷𝑆𝐵. Standard
bands indicate presence of cross-correlation at lag 𝑘 = 0, 2, 3, 6, 7, 8, 11, 13, 15, 18, 24, 29 at significance level 𝛼 = 5%. According to
the robust confidence bands, there is no evidence of significant correlation except for lag 𝑘 = 0 at both 𝛼 = 5% and 1% level. It is
natural to expect series 𝑋𝑂𝑀 and 𝑅𝐷𝑆𝐵 to be cross-correlated positively at lag 𝑘 = 0. In the right panel, the robust cumulative
test 𝐻𝐵𝑋𝑂𝑀,𝑅𝐷𝑆𝐵,𝑚 allows us to conclude that 𝑋𝑂𝑀 is uncorrelated with 𝑅𝐷𝑆𝐵 at lags 𝑘 ≥ 1. The standard cumulative test
𝐻𝐵𝑋𝑂𝑀,𝑅𝐷𝑆𝐵,𝑚 still reveals presence of cross-correlation. Similar test results were obtained for {𝑅𝐷𝑆𝐵,𝑋𝑂𝑀} when RDSB is the
leading sequence.

Significant correlations detected by standard tests at lags 𝑘 ≠ 0 for both these series seem to be spurious when evaluated against
the results from robust test procedures. On the basis of this empirical analysis, we therefore conclude that 𝑋𝑂𝑀 and 𝑅𝐷𝑆𝐵 have
positive contemporaneous cross-correlation at lag 𝑘 = 0 and are not cross-correlated at lag 𝑘 ≠ 0.

5.2. Example 2: Log volume and returns in the S&P 500

Next we use the robust and standard approaches to test for cross-correlations between the daily log return 𝑟𝑡 and the log volume
𝑉𝑡 of S&P 500 index from 02/01/2018 to 31/12/2019, sample size 𝑛 = 501. We fit to 𝑉𝑡 a causal stationary AR(2) model

𝑉𝑡 = 9.9593 + 0.4142𝑉𝑡−1 + 0.1328𝑉𝑡−2 + 𝜁𝑡

which can be written as 𝑉𝑡 = 𝑎0 +
∑∞

𝑗=0 𝑎𝑗𝜁𝑡−𝑗 with ∑∞
𝑗=0 𝑎

2
𝑗 < ∞.

Fig. 12 displays plots of 𝑟𝑡 and 𝑉𝑡. These suggest that the mean 𝐸𝑉𝑡 might be time varying. Fig. 13 reports the correlogram of 𝑉𝑡
and the residuals 𝜁𝑡. Some minor correlation in residuals 𝜁𝑡 is evident at lag 5 and 11, and strong correlation (long memory property)
in 𝑉𝑡 which might be spurious due to changes in the mean 𝐸𝑉𝑡.

Fig. 14 reports testing results for zero cross-correlation at lag 𝑘 ≥ 0 between the log return {𝑟𝑡} and the residuals {𝜁𝑡}. The
robust confidence bands (left panel) and the robust cumulative test �̃�𝑟𝜁,𝑚 (right panel) detect some minor cross-correlations at
the significance level 𝛼 = 5%, and no significant cross-correlation at 𝛼 = 1%. On the contrary, the standard confidence bands
17
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Fig. 14. Testing for cross-correlation between log returns 𝑟𝑡 and residuals 𝜁𝑡.

detect presence of significant cross-correlation at lags 𝑘 = 0, 1, 14, 20, 26 with 𝛼 = 5%, and the finding is confirmed by the standard
cumulative test statistic 𝐻𝐵𝑟𝜁,𝑚 (right panel). In addition, we verified that {𝜁𝑡, 𝑟𝑡} are not cross-correlated when the leading sequence
is {𝜁𝑡}.

To sum up, different from the findings based on standard correlation tests, robust testing procedures do not show evidence to
support a conclusion that log returns 𝑟𝑡 and residuals 𝜁𝑡 are cross-correlated. This outcome together with the causal representation
of 𝑉𝑡 = 𝑎0 +

∑∞
𝑗=0 𝑎𝑗𝜁𝑡−𝑗 suggests that log return 𝑟𝑡 and log volume 𝑉𝑡 are not cross-correlated over this time period.

6. Conclusion

In empirical research economic and financial data do not always meet the requirements of modeling and inferential methodol-
ogy. Dalla et al. (2022) demonstrated that standard testing procedures for absence of correlation and cross-correlation have limited
applicability under the heteroskedasticity or dependence that is often present in real data. This paper shows that the robust testing
procedures introduced in Dalla et al. (2022) are applicable in a far wider class of heteroskedastic white noises than those with the
smoothly changing deterministic scale factors that were studied in Dalla et al. (2022) and that these methods apply equally well
in tests on regression residuals. The simulation findings here reported confirm that the robust tests achieve accurate size in models
with very complex heteroskedastic structures, thereby extending their empirical reach. In addition, outliers and missing data are
not found to compromise the good sampling performance of these robust testing procedures. A robust test for Pearson correlation
is also introduced and, as expected, this enables more accurate detection of zero Pearson correlation than the standard test. The
two empirical examples studied show that the robust testing procedures for zero cross-correlation produce meaningful findings that
assist in revealing potentially spurious correlations in financial time series detected by standard testing methods that ignore the
effects of heterogeneity and dependence.
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