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Abstract

We generalize the Max Share approach to allow for simultaneous identification of a

multiplicity of shocks in a Structural Vector Autoregression. Our machinery therefore

overcomes the well-known drawbacks that individually identified shocks (i) tend to be cor-

related to each other or (ii) can be separated under orthogonalizations with weak economic

ground. We show that identification corresponds to solving a non-trivial optimization prob-

lem. We provide conditions for non-emptiness of solutions and point-identification, and

Bayesian algorithms for estimation and inference. We use the approach to study the effects

of uncertainty and financial shocks, allowing for the possibility that the former responds

contemporaneously to other shocks, distinguishing macroeconomic from financial uncer-

tainty and credit supply shocks. Using US data we find that financial uncertainty mimics

a demand shock, while the interpretation of macro uncertainty is more mixed. Further-

more, variation in uncertainty partially represents the endogenous response of uncertainty

to other shocks.
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1 Introduction and Related Literature

Since the contribution of Sims (1980), structural vector autoregressions (SVARs) are

the typical toolkit for investigating the dynamic effects caused by macroeconomic shocks.

While early studies employed zero short-run, sign and long-run restrictions on impulse re-

sponse functions (IRFs) for the identification of structural shocks (Sims, 1980; Blanchard

& Quah, 1989; Uhlig, 2005), a most recent device, known as Max Share identification,

constrains the Forecast Error Variance Decomposition (FEVD) of target variables (Uhlig,

2004). For example, this approach identifies technology shocks as those which explain

the most of the FEV decomposition of labor productivity at 10-year period (Francis et

al., 2014). Other applications include DiCecio and Owyang (2010) (technology shocks),

Barsky and Sims (2011) and Kurmann and Sims (2021) (news shocks), Mumtaz et al.

(2018) (credit shocks), Mumtaz and Theodoridis (2023) (inflation target shocks), Caldara

et al. (2016) (uncertainty and credit shocks), Levchenko and Pandalai-Nayar (2020) (sen-

timent shocks) and Angeletos et al. (2020) (a variety of supply and demand shocks).

The Max Share approach is common because its implementation is easy and delivers

less biased impulse responses than standard long run restrictions (Francis et al., 2014).

However, it presents two drawbacks. First, it can identify only one shock at a time. This

makes the identified shock be often correlated with other disturbances; as such it is not

truly structural. For instance, Cascaldi-Garcia and Galvão (2021) find that uncertainty

and news shocks, if singularly identified, are strongly correlated. Thus, literature has

been been adopting a sequential procedure, where Max Share is applied to orthogonalized

shocks. In practice, orthogonalizations rely on arbitrary ordering restrictions, making any

economic interpretation hard (Uhlig, 2004). For example, Caldara et al. (2016) apply the

Max Share identification to sequentially identify uncertainty and financial shocks, finding

that changing the order of identification dramatically affects the results, e.g. uncertainty

can be both expansionary and recessionary. Second, Max Share confounds shocks (Dieppe

et al., 2021; Kurmann & Sims, 2021; Giannone et al., 2019); identified disturbances tend

to be a linear combination of the truly structural shocks.
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In this paper, we generalize the Max Share toolkit to identification of a multiplicity

of shocks. Instead of constraining the FEV to a single shock, we simultaneously restrict

(a function of) the FEV of target variables to more shocks. Researchers have been

increasingly identifying more shocks (Ludvigson et al., 2021; Brianti, 2021; Giacomini,

Kitagawa, & Read, 2022; Cascaldi-Garcia & Galvão, 2021; Piffer & Podstawski, 2018;

Furlanetto et al., 2017; Mertens & Ravn, 2013); while some strategies, such as sign

restrictions and proxy SVARs, allow for identification of a multiplicity of disturbances,

the methodological contribution of this paper is to make the Max Share identification

suitable for more shocks. This addresses the problem of sequential identification implied

by the standard Max Share approach and mitigates the issue of shocks confounding.

Our identification strategy involves the solution of a constrained maximization prob-

lem, where the objective function is an equally weighted linear combination of the FEV

decomposition of the (target) variables of interest and the constraints are the inequality

restrictions on the FEVD, i.e. on the contributions of the shocks to the FEV of different

variables (for instance, in our application, macro uncertainty shocks explain variation of

macro uncertainty proxy more than the fluctuation in credit spreads). Depending on the

application, those restrictions can be replaced by, or combined with, traditional sign re-

strictions. We show that the problem corresponds to a non-convex quadratic optimization

on the columns of the rotation matrix transforming reduced-form residuals into structural

shocks. However, we provide a flexible toolkit and establish mild conditions under which

the solution of the optimization problem exists (non-emptiness of the identified set) and

is unique (point-identification). We develop simple algorithms to perform Bayesian esti-

mation and inference, even though of course the identification result and properties do

hold also in a frequentist setting.

A simulation exercise shows that our approach recovers the impulse response functions

in different Data Generating Processes (DGPs) and mitigates the problem of confounded

shocks.

Turning to the empirical application, we apply the proposed identification scheme to

a SVAR model estimated with US data and identify macro uncertainty, financial uncer-
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tainty and pure financial (credit supply) shocks. Since the influential paper of Bloom

(2009), the business cycle relationship between uncertainty and macroeconomic variables

has received extensive consideration (Bloom (2014) provides an excellent survey). Three

challenges come to the fore. First, the common assumption in empirical works is that un-

certainty is exogenous, i.e. it does not respond contemporaneously to economic variables.

However, the current evidence makes researchers unable to take up a position on the di-

rection of the causality between uncertainty and economic variables. Henceforth, we use

the terms exogenous (endogenous) as shorthand for predetermined (not predetermined)

within the period.

A separate challenge is about the origins of uncertainty. Standard theories claim that

uncertainty originates from macroeconomic fundamentals, e.g. productivity. However, it

has been argued that uncertainty can depress the economy through sources of uncertainty

specific to financial markets (Bollerslev et al., 2009; Ng & Wright, 2013). The current

literature does not disentangle the contributions of macroeconomic versus financial uncer-

tainty to business cycle fluctuations, nor it allows feedback between macroeconomic and

financial uncertainty. Exceptions are the small-scale models in Ludvigson et al. (2021)

and Angelini et al. (2019) and the contribution in Shin and Zhong (2020).

While Furlanetto et al. (2017), Caldara et al. (2016), Caggiano et al. (2021) and Brianti

(2021) extensively discuss the need to identify credit shocks to sharpen identification of

uncertainty shocks accordingly, there is high degree of comovement between indicators of

financial distress and uncertainty proxies (Caldara et al., 2016; Brianti, 2021; Caggiano et

al., 2021); also, uncertainty and financial shocks have theoretically the same qualitative

effects on both prices and quantities. It is therefore difficult to impose plausible zero or

sign restrictions to identify these two disturbances.

Our approach deals with the three issues above. We find that financial uncertainty

shocks act as negative demand shocks, i.e. decrease real activity; increase in macro

uncertainty leads to a recession, but the effect on prices is much more mixed. The

responses to the two shocks are also quantitatively different: macroeconomic uncertainty

has a stronger and more persistent effect on the real activity variables. Our results show
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that uncertainty is endogenous to some extent, in the sense that a non-trivial share of the

variance of measures of uncertainty represents endogenous responses to non-uncertainty

shocks. Finally, increases in credit spreads trigger a recession.

The paper is organized as follows. Section 2 provides the econometrics framework

and the standard Max Share identification; Section 3 introduces our approach and its

properties; Section 4 presents the empirical application; Section 5 concludes. A separate

supplemental Appendix provides full proofs (Appendix A), validation of the identification

approach through fully structural models (Appendix B), additional details about the

simulation exercises (Appendix C), robustness checks (Appendix D), detailed description

of the algorithms (Appendix E), generalization to the frequency domain (Appendix F)

and further extensions (Appendix G and H).

2 Theoretical framework

Consider a SVAR(p) model

A0yt = a+

p∑
j=1

Ajyt−j + εt (2.1)

for t = 1, . . . , T, where yt is an n× 1 vector of endogenous variables, εt an n× 1 vector

white noise process, normally distributed with mean zero and variance-covariance matrix

In, Aj is an n×n matrix of structural coefficient for j = 0, . . . , p. The disturbances εt are

mutually uncorrelated, and are therefore interpretable as structural shocks. The initial

conditions y1, . . . ,yp are given. Let θ = (A0,A+) collect the structural parameters,

where A+ = (a,Aj) for j = 1, . . . , p.

The reduced-form representation is a Vector Autoregression (VAR):

yt = b+

p∑
j=1

Bjyt−j + ut, (2.2)

where b = A−1
0 a is an n × 1 vector of constants, Bj = A−1

0 Aj, ut = A−1
0 εt denotes

the n × 1 vector of reduced-form errors. var(ut) = E(utu
′
t) = Σ = A−1

0 (A−1
0 )′ is the
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n × n variance-covariance matrix of reduced-form errors. Let φ = (B,Σ) ∈ Φ collect

the reduced-form parameters, where B ≡ [b,B1, . . . ,Bp], Φ ⊂ Rn+n2p ×Ξ, and Ξ is the

space of symmetric positive semidefinite matrices.

We define the n× n matrix

IRh = Ch(B)A−1
0 (2.3)

as the impulse response at h-th horizon for h = 0, 1, . . . , where Ch(B) is the h-th co-

efficient matrix of (In −
∑p

h=1BhL
h)−1. Its (i, j)-element denotes the effect on the i-th

variable in yt+h of a unit shock to the j-th element of εt. As is well-known there are

several observationally equivalent A0 matrices, and expression (2.3) actually involves a

set of impulse responses.

To formalize this fact we follow Uhlig (2005) and define the set of all IRFs through an

n×n orthonormal matrix Q ∈ Θ(n), where Θ(n) characterizes the set of all orthonormal

n × n matrices. Uhlig (2005) show that {A0 = Q′Σ−1
tr : Q ∈ Θ(n)} is the set of

observationally equivalentA0’s consistent with reduced-form parameters, where Σ relates

to A0 by Σ = A−1
0 (A−1

0 )′, Σtr denotes the lower triangular Cholesky matrix with non-

negative diagonal coefficients of Σ. The likelihood function depends on φ and does

not contain any information about Q, leading to ambiguity in decomposing Σ. The

identification problem arises because there is a multiplicity of Q’s which deliver A0 given

φ. Specifically, the impulse response of variable i to shock j at horizon h, i.e. (i, j)-

element of IRh, can be expressed as e′iCh(B)ΣtrQej ≡ c′ih(φ)qj, where ei is the i-th

column vector of In, qj is the j-th column of Q and c′ih(φ) represents the i-th row

vector of Ch(B)Σtr. Alternative identification schemes can be achieved by placing a

set of restrictions on Q. For example, imposing Q = In implies a recursive ordering

identification, i.e. the Cholesky decomposition, whereas sign restrictions specify a set of

admissible Q’s.
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2.1 Sign restrictions

Before introducing our identification toolkit, we review the sign restrictions, which are

often combined with the Max Share identification in empirical applications. Assume that

the researcher is interested in imposing some sign restrictions on the impulse response

vector to the j-th structural shock, and let shj denote the number of sign restrictions on

impulse responses at horizon h. In this case, the impulse response is given by the j-th

column vector of IRh = Ch(B)ΣtrQ, and the sign restrictions are

Shj(φ)qj ≥ 0,

where Shj(φ) ≡DhjCh(B)Σtr is a shj×n matrix andDhj is the shj×n selection matrix

that selects the sign-restricted responses from the n×1 response vector Ch(B)Σtrqj. The

nonzero elements ofDhj can be equal to 1 or to -1 depending on the sign of the restriction

on the impulse response of interest. By considering multiple horizons, the whole set of

sign restrictions placed on the j−th shock is

Sj(φ)qj ≥ 0. (2.4)

Specifically, Sj is a
(∑h̄j

h=0 shj

)
× n matrix defined by Sj(φ) =

[
S′0j(φ), . . . ,S′

h̄jj
(φ)
]′
.

Let IS ⊂ {1, 2, . . . , n} be the set of indices such that j ∈ IS if some of the impulse

responses to the j-th structural shock are sign-constrained. Thus, the set of all sign

restrictions is

Sj(φ)qj ≥ 0, for j ∈ IS . (2.5)

2.2 The Forecast Error Variance

Given the available information up to t− 1, FE(h) ≡ yt+h̃−yt+h̃|t−1 is the h̃-step ahead

forecast error. The Forecast Error Variance at h̃ is

FEV (h̃) ≡ E
[
(yt+h̃ − yt+h̃|t−1)(yt+h̃ − yt+h̃|t−1)′

]
=
∑h̃

h=0 IR
hIRh′ . Thus, CFEV i

j (h̃)

denotes the FEV at horizon h̃ of variable i explained by the j-th structural shock -
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expressed with a number in the interval [0, 1] -:

CFEV i
j (h̃) = q′jΥ

i
h̃
(φ)qj, (2.6)

where Υi
h̃
(φ) =

∑h̃
h=0 cih(φ)c′ih(φ)∑h̃
h=0 c

′
ih(φ)cih(φ)

is a n× n positive semidefinite matrix. This is typically

employed to illustrate the sources of variables’ fluctuation at different horizons.

2.3 Standard Max Share Identification

Uhlig (2004) and subsequent literature propose to identify shocks by maximizing the FEV

of a target variable i to the shock of interest j:

qj∗ = arg max
qj
q′jΥ

i
h̃
(φ)qj (2.7)

subject to

Sj(φ)qj ≥ 0, for j ∈ IS (2.8)

and

q′jqj = 1. (2.9)

This is a convex and user-friendly problem; for example, in absence of sign restrictions,

qj∗ is the eigenvector corresponding to the highest eigenvalue of the reduced-form matrix

Υi
h̃
(φ). For instance, Francis et al. (2014) identify a technology shock as the shock with

the maximum contribution to the FEV of labour productivity at the ten-year horizon

(e.g. h̃ = 40 with quarterly data).

However, this approach presents two drawbacks. First, in presence of more than

one shock of interest, Max Share identification is sequentially applied on orthogonalized

shocks. In practice, orthogonalizations rely on arbitrary ordering restrictions. For exam-

ple, in an n-variable system if there are two shocks of interest, the first shock might be

identified as the shock that has the maximum contribution to the FEV of variable 1 over

some horizon. This point-identifies q1. The second shock might then be identified as the

shock that has the maximum contribution to the FEV of variable 2 over some horizon,
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subject to the constraint q′2q1 = 0, i.e. so the two identified shocks are uncorrelated).

Second, Max Share identification tends to confound shocks, i.e. delivers identified shocks

that are a linear combination of the truly structural disturbances. The following bivariate

example analytically illustrates the methodology and its issues.

Example 2.1 Appendix A.2 provides the proof of the results in this example. The struc-

tural framework of the bivariate SVAR(0) is the following (adding some dynamics would

not change the spirit of the findings):

A0

y1t

y2t

 =

ε1t
ε2t

 , A0 =

a11 a12

a21 a22

 , t = 1, . . . , T, (2.10)

where (y1t, y2t) are two endogenous variables, respectively. (ε1t, ε2t) denotes an i.i.d. nor-

mally distributed vector of structural shocks with variance-covariance the identity matrix.

θ = A0 collects the structural parameters, and the contemporaneous impulse responses are

elements of A−1
0 . The reduced-form model is indexed by Σ (the variance-covariance ma-

trix of the endogenous variables), which satisfies Σ = A−1
0 (A−1

0 )′. Let Σtr =

σ11 0

σ21 σ22


denote its lower triangular Cholesky decomposition, where σ11 > 0, σ22 > 0, and σ21 < 0

(the latter for simplicity, without loss of generalization). Thus, φ = (σ11, σ21, σ22) col-

lects the reduced-form parameters. Following the example of Uhlig (2005), A0 can be

parametrized via the Cholesky matrix Σtr and a rotation matrix Q =

cos ρ − sin ρ

sin ρ cos ρ


with spherical coordinate ρ ∈ [0, 2π]. The structural matrix of impact responses can be

written as

IR0 = A−1
0 = ΣtrQ =

 σ11 cos ρ −σ11 sin ρ

σ21 cos ρ+ σ22 sin ρ −σ21 sin ρ+ σ22 cos ρ

 . (2.11)

For simplicity, we assume no sign constraints other than the normalizations: σ11 cos ρ ≥ 0

and −σ21 sin ρ + σ22 cos ρ ≥ 0. Let Qij and IR0
ij denote the ij-th element of the two

matrices.
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We are interested in identifying q1 and q2. Suppose that we apply the Max Share

identification to q1 first, i.e. the first shock is identified as the shock that has the maximum

contribution to the one-step-ahead FEV of the first variable. As a result, q2 is derived as

the orthogonalized vector to q1. In this case, the Appendix shows that ε1t = cos ρε1tDGP −

sin ρε2tDGP , where ε1tDGP and ε2tDGP are the shocks in the DGP. Unless the DGP satisfies

the restriction ρ = 1 (equivalently, IR0
11 = σ11, i.e. the first shock explains 100 per cent

of the one-step-ahead forecast error variance of the first variable), the identified shock is

a linear combination of the true shocks. A similar argument applies when ε2t is identified

via the standard Max Share, where the second shock explains 100 per cent of the one-step-

ahead forecast error variance of the second variable (see the Appendix).

This illustrates that i) order of orthogonalization changes the impulse responses and

ii) Max Share confounds shocks. Given the bivariate setting, identifying one column of Q

mechanically pins down the other one. However, i) and ii) are general to the n-variable

case, e.g. Dieppe et al. (2021).

3 Generalizing the Max Share Identification

Here we illustrate the identification of more shocks by constraining the FEV decom-

position and present the conditions for non-emptiness of the identified set and point-

identification (Section 3.1), its implementation (Section 3.2), the issue of confounding

shocks and Monte-Carlo exercise (Section 3.3), and the relation to alternative identifica-

tion methods (Section 3.4).

3.1 Identification

Our scheme identifies k ≤ n shocks. This pins down qj = Qej, with j ∈ 1, . . . , k, where

q′jqj̃ = 0 for j 6= j̃ is the standard orthogonality condition. Without loss of generality,

suppose that (i) the k shocks of interest are ordered first, i.e. j = 1, 2, . . . , k, k+ 1, . . . , n,

and (ii) the k corresponding target variables are ordered first, i.e. i = 1, 2, . . . , k, k +

1, . . . , n.
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The k shocks jointly maximize a function of the FEV of the target variables (equation

3.1) subject to inequality constraints. Among the latter, we can have inequalities on the

relative strength of the shocks, i.e. contributions of the shocks to the FEV of different

variables (3.2) and standard sign restrictions (3.3), depending on the researcher’s beliefs.

Q∗1:k = arg max
Q1:k

k∑
i=1

q′iΥ
i
h̃
(φ)qi (3.1)

subject to

q′jΥ
j

h̃
(φ)qj ≥ q′jΥi

h̃
(φ)qj for j = 1, . . . , k, ∀i ∈ I−j, (3.2)

Sj(φ)qj ≥ 0, for j ∈ IS ⊆ {1, . . . , k}, (3.3)

and

Q′1:kQ1:k = In. (3.4)

Three remarks are noteworthy: (i) the methodology can be tweaked to be applied over

(as opposed to at) horizon τ by using Q∗1:k = arg maxQ1:k

∑k
i=1

∑τ
h̃=0 q

′
iΥ

i
h̃
(φ)qi in (3.1)

as shown in Appendix G; (ii) while h̃ in (3.1) and (3.2) is set equal across all target

variables, one can use different horizons for different target variables, depending on the

application (see Appendix H for a formal description); (iii) one could alternatively impose

that a particular shock explains more of the variation of a particular target variable than

any other shock, this would be achieved by using q′jΥ
j

h̃
(φ)qj ≥ 1

2
in place of (3.2).

The generalizedMax Share approach proposed here avoids the sequential identification

and mitigates the problem of confounding shocks as orthogonality is imposed on more

shocks; simulations in Section 3.3 and Appendix C provide an illustration.

The identifying assumptions are that, at some horizon h̃, the first k shocks must (i)

maximize the sum of the total variation in the target variables and (ii) satisfy the con-

straint that each shock needs to explain the variation of the corresponding target variable

more than it explains the variation of any other variable (of course, sign restrictions can

be used as well).
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For instance, in our empirical application h̃ = 5, k = 3 and the variables and shocks of

interest relate to macroeconomic uncertainty, financial uncertainty, and credit supply. We

will identify the macroeconomic uncertainty shock as the innovation that maximizes its

contribution to the sum of the FEV of the three target variables subject to the restrictions

(3.2), which establish that the contribution of the macroeconomic uncertainty shock to

the FEV of the macroeconomic uncertainty variable must be higher than the contribution

to the FEV of financial uncertainty variables and credit spreads. Financial uncertainty

and credit supply shocks are identified similarly. The restrictions are instrumental to

separate macroeconomic uncertainty shocks from financial uncertainty and credit supply

shocks.

Importantly, this approach imposes some restrictions on the relative strength of the

shocks but it does not require the researcher to take a stance in regards to the possible

exogeneity or endogeneity of uncertainty. In fact, Section 3.3 shows that our identification

assumptions are consistent with DGPs regardless whether those frameworks consider

endogenous or exogenous uncertainty.

It is worth stressing that the constraints in (3.2) are not automatically satisfied by

maximization in equation (3.1): the latter requires to maximize a sum, while the con-

straints are imposed on the components of the sum. In practice, the degree of relevance

of restrictions in (3.2) depends on the empirical exercise. In our application, we find

that inequality constraints on the FEVD quantitatively (but not qualitatively) affect the

results. This is less likely the case with the single shock Max Share identification (for

instance, see Table 2 in Angeletos et al. (2020)).

There is a trade-off between sharp identification and computation, and this is es-

pecially true when using inequality constraints (Amir-Ahmadi and Drautzburg (2021);

Giacomini and Kitagawa (2021); Giacomini, Kitagawa, and Volpicella (2022); Gafarov et

al. (2018); Granziera et al. (2018); Volpicella (2022); Uhlig (2017)). In fact restrictions

that are too tight can lead to unfeasible or empty regions, i.e. the constraints are so

demanding that they are rejected in the data. Here we provide sufficient conditions for

the existence of a solution to the constrained optimization problem (non-emptiness of the
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identified set). Doing so solves the trade-off by ensuring that an identification scheme can

be found which is both informative and not rejected by data. Without loss of generality,

Proposition 3.1 and 3.2 assume that there are no sign restrictions.

Recall that q∗j for j − 1, . . . , k denotes the j-th column of the identified matrix Q∗1:k.

For j = 1, given the constraints in (3.2)-(3.4), we define the following functions for k = 3:

f1 =
1

2
q′1
[
Υ2
h̃
(φ)−Υ1

h̃
(φ)

]
q1, f2 =

1

2
q′1
[
Υ3
h̃
(φ)−Υ1

h̃
(φ)

]
q1,

f3 =− 1

2
q′1q1 +

1

2
, f4 =

1

2
q′1q1 −

1

2
.

Similar functions can be trivially defined for j = 2, . . . , k and/or when sign restrictions

are imposed. In the case there were sign restrictions only, one could rely on the standard

results in the literature to establish non-emptiness (Giacomini & Kitagawa, 2021; Amir-

Ahmadi & Drautzburg, 2021; Granziera et al., 2018).

We start with establishing a Gordan type alternative theorem, which will be instru-

mental to obtain the non-emptiness result.

Proposition 3.1 Assume j = 1. If @λ ∈ R4
+\{0} such that (∀q1 ∈ Rn)

∑4
i=1 λifi ≥ 0,

q∗1 exists.

The proof is provided in supplemental Appendix A. This proposition rules out that - for

a given shock - linear combinations of inequality constraints can contradict each other.

Note that this proposition alone establishes non-emptiness for problem (3.1)-(3.3), but

ignores the orthogonality conditions (3.4). The satisfaction of orthogonality condition is

essential for identifying simultaneously all of the shocks, avoiding the well-known issue

that shocks identified one-at-a-time can be correlated to each other.

Next we establish the conditions for the non-emptiness to the constrained optimiza-

tion problem (3.1)-(3.4). Let σ denote a permutation of 1, . . . , k among the k! possible

permutations and σ(z) for z = 1, . . . , k denote the z-th element of the permutation σ.

The following proposition holds:

Proposition 3.2 (Non-Emptiness) If there exists a permutation σ such that
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i) for j = σ(1) Proposition 3.1 is satisfied,

ii) conditions in Proposition 3.1 are met for all j = σ(2), . . . ,σ(k) in the Nullspace of

the previous j − 1 columns of Q,

then Q∗1:k exists.

Supplemental Appendix A provides a proof and a technical discussion. The proposition

above is instrumental to find at least one matrix Q∗1:k such that its first k columns

q∗1 , . . . , q
∗
k satisfy Proposition 3.1 and are orthogonal to each other.

In supplemental Appendix E, we provide two algorithms checking for non-emptiness:

an accept-reject sampler and an analytical detection of emptiness. Those algorithms

are interesting per se as extend some contributions in the literature to multiple shocks

identification. In the simulation exercise and empirical application the feasibility region

is always non-empty.

The constrained optimization problem (3.1)-(3.4) is non-convex as we are optimizing

over orthogonal vectors. The proposition below establishes a sufficient condition for Q∗1:k

to be point-identified. Of course, this does not rule out local optima, in which case

numerical optimization could still be challenging.

Proposition 3.3 (Point-Identification) Assume that Q∗1:k exists. If c′ih(φ)qj ≥ 0 for

i = 1, . . . , k, j = 1, . . . , k and h = 0, . . . , h̃, then Q∗1:k is unique.

The formal proof is given in supplemental Appendix A. Here we would like to stress the

intuition. Note that Proposition 3.3 imposes some sign restrictions. In particular, if the

responses of the variables to the shocks in the objective functions (and in constraints 3.2)

are sign-restricted, the optimization problem becomes linear and the feasibility region is

convex (Q∗1:k is selected over a closed convex feasibility region). Then point-identification

follows. Thus, those conditions have an economic interpretation. In our application,

we would need to impose that macro uncertainty proxy, financial uncertainty proxy and

credit spreads increase after macro uncertainty, financial uncertainty and credit supply

shocks. In this paper, the imposition of those conditions is harmless as there is not much
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controversy about the fact that increased uncertainty raises credit spreads and the other

way around. Also, we run a further check by estimating the model without explicitly

imposing the conditions in Proposition 3.3: we find that the targeted variables satisfy

those sign constraints. Of course, depending on the application, Proposition 3.3 may not

be credibly imposed in some instances.

Proposition 3.4 establishes sufficient conditions under which the shocks of interest

fully explain the FEV of the target variables.

Let λi
max,h̃

(φ) = max{λi
1,h̃

(φ), . . . , λi
n,h̃

(φ)} denote the maximal eigenvalue associated to

Υi
h̃
(φ) among its n real eigenvalues λi

1,h̃
(φ), . . . , λi

n,h̃
(φ).

Proposition 3.4 (100 % FEVD) The k shocks fully explain the (sum of the) FEVD of

the k target variables if the following conditions apply:

i) Q∗1:k = [q∗1, . . . , q
∗
k] exists, where Υi

h̃
(φ)q∗i = λi

max,h̃
(φ)q∗i for all i = 1, . . . , k,

ii)
∑k

i=1 λ
i
max,h̃

(φ) = k.

This proposition comes naturally from the quadratic nature of the optimization prob-

lem. While Appendix A provides the formal proof, this proposition requires the orthonor-

mal vectors of solution Q∗1:k to be the eigenvectors associated at the maximal eigenvalues

of Υi
h̃
(φ), with the sum of the latter to be k. The eigenvalues are a function of the

reduced-form, so practical implementation of Proposition 3.4 is straightforward.

3.2 Implementation

The following Algorithm delivers the posterior distribution of the impulse response func-

tions (or any other structural object) of interest.

Algorithm 3.1

1: Draw φ from the posterior distribution of the reduced-form VAR.

2: Check non-emptiness.
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3: ObtainQ∗1:k by solving the optimization problem (3.1)-(3.4) and compute the impulse

response functions via (2.3).

4: Repeat Step 1-3, L times, e.g. L = 1000.

Algorithm 3.1 consists in a step of conventional sampling from the posterior of reduced-

form parameters (Step 1), a step for investigation of feasibility (Step 2, see algorithms in

supplemental Appendix E for its implementation), and a step of numerical optimization

(Step 3). The optimization involves a quadratic objective function, but can be reduced

to a much more tractable problem by using Proposition 3.3.

Algorithm 3.1 is only meaningful under point identification, for which Proposition

3.3 offers a sufficient condition. In absence of point identification one should rely on

alternative algorithms developed in the literature on set identification, e.g. Algorithm in

Giacomini and Kitagawa (2021).

Note that Step 1 uses a posterior distribution, which means it is based on a Bayesian

estimation of the underlying reduced-form VAR. This choice is simply based on the

observation that Bayesian VARs are widely used in empirical macroeconomics. Still,

Step 1 can be easily adapted to a frequentist framework, for example using maximum

likelihood estimates and invoking large sample results or using a bootstrap approach to

produce draws from the VAR coefficients. In either case the entire procedure would still

remain valid, since the remaining steps condition on the reduced-form parameters (φ)

and do not depend on a prior over Q.

3.3 Confounding shocks and Monte Carlo exercise

A well-known problem of standard Max Share identification is the confounding shocks,

i.e. identified shocks tend to be a linear combination of the true structural disturbances

(Kurmann & Sims, 2021; Giannone et al., 2019; Dieppe et al., 2021). Example 2.1 delivers

an analytical representation of the problem. Our approach mitigates the drawback; the

intuition is that we orthogonalize over a set of columns, decreasing the chance to construct

linearly combined shocks.

16



Simulation provides some evidence. Here we comment on the results of the Monte

Carlo exercises, whereas (to save on space) Appendix C provides the corresponding plots.

In the simulations, we set h̃ = 5 by following Caldara et al. (2016); see Section 4.1 for a

discussion about persistence of uncertainty and financial shocks. Also, we checked that

any Data Generating Process (DGP) is consistent with the inequality restrictions (3.2)

and sign restrictions in Proposition 3.3.

We first employ a SVAR with exogenous uncertainty as DGP and generate artificial

data for industrial production (IP), financial uncertainty (uF*), credit spread (CS), price

index (PCEPI), monetary policy rate (FFR), and macroeconomic uncertainty (uM*). In

order to produce exogeneity in uncertainty, data are generated by a recursive scheme

with 1 lag (further lags do not change the results), where macro and financial uncertainty

are ordered before the real variables. In the baseline scenario of Figure C.5, financial

uncertainty is ordered before macroeconomic uncertainty, but the results still hold if we

reverse the order between uncertainty disturbances. Ordering of the other variables do

not affect the findings. In order to parameterize the DGP, we first estimate the recursive

model via maximum likelihood with monthly US data for the period 1962 to 2016; we

then fix the DGP and the reduced-form VAR to those estimates. Once the artificial data

have been generated, we use our approach to estimate the impulse response functions.

Since the reduced-form is fixed to the DGP, any difference between the responses of

the DGP and the estimated ones is wholly driven by identification, i.e. does not reflect

estimation uncertainty. For brevity, here we provide simulated results mostly for financial

uncertainty shocks.

Figure C.5 shows that our identification strategy can successfully identify the un-

certainty shocks in presence of exogeneity. In the figure the gray line denotes the true

responses based on the DGP. In the panels on the first row, we employ our identification

scheme to estimate the impulse responses (black lines). According to panels (a), (b) and

(c), our strategy works very well. For the panels on the second row we apply the stan-

dard Max Share for the financial uncertainty shock, showing that it fails in recovering

the response of industrial production (in the medium-run) and credit spreads. Under
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the standard Max Share, we find that, if individually identified, the correlation between

macro uncertainty, financial uncertainty and credit supply shocks is very high; this is

consistent with the shocks being confounded.

We now explore the effectiveness of our scheme when uncertainty is endogenous. Ac-

cordingly, we consider a DGP where uncertainty is ordered after the other variables. This

experiment is displayed in Figure C.6. Also in this case the simulation study suggests

that our approach outperforms single-shock identification.

In Figure C.6 there remain differences between the identified and true impulse re-

sponses, e.g. response of credit spreads. These differences arise because there are still

a few unidentified shocks in the system that could be confounded with the identified

ones, which means that the differences will disappear if we were to increase the number

of identified shocks. Figure C.7 illustrates this point. While the scenario in Figure C.6

identifies three (macro and financial uncertainty, credit supply) shocks, Figure C.7 also

identifies monetary policy shock, leading to a better identification. This happens because

the higher is the number of orthogonalized shocks, the lower is the probability of getting

linearly dependent (confounding) shocks, and the lower is the bias in the simulation.

As argued by Dieppe et al. (2021), two additional recommendations would help miti-

gate the risk of confounded shocks further. First, employ our toolkit at horizon h̃ rather

than over h̃ (Kurmann & Sims, 2021; Dieppe et al., 2021). Second, use of frequency,

rather than time, domain (Dieppe et al., 2021); Appendix F presents our toolkit in such

a setting.

Finally, we further validate our identification by relying on fully structural models

(see Appendix B).

3.4 Relation to alternative identification methods

The identification approach outlined above allows to avoid strong identification assump-

tions such as recursive orderings, and therefore it lends itself naturally to investigate

questions in which one wants to remain agnostic about the direction of the various causal

effects. The study of the effects of uncertainty and financial shocks is just one example of
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such a situation, as both the theoretical literature and the empirical evidence so far are

inconclusive on whether uncertainty is an exogenous impulse or an endogenous response.

Importantly, our strategy identifies all of the shocks simultaneously, thereby sidestep-

ping the well-known issue that shocks identified one-at-a-time can be correlated to each

other, a problem which is particularly relevant in, but not limited to, uncertainty litera-

ture. For instance, Cascaldi-Garcia and Galvão (2021) show that news and uncertainty

shocks tend to be correlated if identified separately; as such they are not truly structural.

Caldara et al. (2016) use the standard Max Share appraoch and separate uncertainty and

financial shocks by imposing different ordering restrictions, finding that the order hugely

affects the results. Of course, solving this problem comes at a cost. While classical Max

Share identification can be easily solved by noting that the identified shock corresponds

to the eigenvector with the maximal eigenvalue associated to a reduced-form matrix, the

cost of allowing simultaneous identification of a multiplicity of shocks is that the opti-

mization problem can become non-convex. This is a consequence of optimizing a function

over a multiplicity of orthonormal vectors. In Section 3.1 we established mild conditions

under which the problem is tractable and computationally fast.

A common use of the Max Share approach is to reduce the identification uncertainty

implied by sign restrictions, i.e. employing sign restrictions as constraints in the opti-

mization problem. The same applies to our approach. For example, we can disentangle

demand (say, government spending) from supply (say, productivity) shocks by using sign

restrictions as constraints in the maximization problem. A positive demand shock is

expected to increase both quantities and prices, a positive supply shock requires quan-

tities and prices not to co-move. In the maximization, we would use target variables,

e.g. long-run labour productivity and short-run government spending, for supply and

demand shocks, respectively. Our strategy can resolve further situations in which set-

identification schemes are not sufficient to satisfactorily pin down the desired shock.

For example, Kilian and Murphy (2012) show that qualitative information beyond sign

restrictions is necessary to distinguish demand and supply shocks in the oil market. Sim-

ilarly, separation between news and surprise shocks requires to rank the relative effect of
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those disturbances over target variables, see Amir-Ahmadi and Drautzburg (2021) for an

example of such a situation: since their rank restrictions are linear inequalities in Q, they

can be easily nested in (3.3). In order to separate credit and housing shocks Furlanetto

et al. (2017) assume that the former explain variation of total credits to households and

firms more than the contributions to the fluctuations in the real estate value, and the

other way around.

The approach proposed in this paper achieves point-identification, avoiding the draw-

backs of set-identification that affect most of the aforementioned studies (Baumeister &

Hamilton, 2015; Giacomini & Kitagawa, 2021). Our machinery also naturally provides a

new toolkit for researchers concentrating on the idea that a number of shocks can explain

most of the movements in a possibly large set of macroeconomics aggregates. See the

principal component analysis literature and, for a recent contribution, Angeletos et al.

(2020).

4 Empirical application

4.1 Specification and data

We now turn to our empirical application. Evaluating the relationship between economic

variables and uncertainty requires selecting both a concept and metric of uncertainty. In

the baseline model, we employ the Chicago Board Options Exchange S&P 100 Volatility

Index as a measure of financial uncertainty and the measure developed by Jurado et al.

(2015) (JLN hereafter) as a measure of macroeconomic uncertainty. This is an average

of the volatility of the residuals of a set of factor-augmented regressions.

Our baseline reduced form model is a VAR estimated with US monthly data ranging

from from 1962m7 to 2016m12. We assume 7 lags and a diffuse Normal Inverse Wishart

prior: Σ ∼ IW(Ψ, d) and B|Σ ∼ N (0,Σ ⊗ Ω), where Ψ = In is the location ma-

trix, d = n + 1 is a scalar degrees of freedom hyperparameter and Ω = Inp+1 is the

variance-covariance matrix of B. The VAR includes 12 variables taken from the FRED

database: macroeconomic uncertainty (JLN, index), financial uncertainty (VXO, index),
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credit spreads (CS, measured as the difference between the BAA Corporate Bond Yield

and the 10-year Treasury Constant Maturity rate), number of non-farm workers (PAYEM,

100∆ln), industrial production (IP, 100∆ln), weekly hours per worker (HOURS, 100∆ln),

real consumer spending (SPEND, 100∆ln), real manufacturers’ new orders (ORDER,

index/100), real average earnings (EARNI, 100∆ln), PCE price index (PCEPI, 100∆ln),

first difference of federal funds rate (FFR, ∆), S&P 500 (S&P, ∆ln). All the variables

are demeaned prior to estimation. In order to facilitate comparisons with other studies,

the impulse responses are expressed with respect to the variables in levels.

We set h̃ = 5 by assuming a period of heightened uncertainty and credit following

shocks, rather than just a one-off spike. This is consistent with Caldara et al. (2016).

Formally, this corresponds to identify the macroeconomic uncertainty shock as the inno-

vation that maximizes its contribution to the sum of the FEV of JLN, VXO and credit

spread over 6 months, subject to the restrictions that the contribution of the macroe-

conomic uncertainty shock to the FEV of JLN must be higher than the contribution to

the FEV of VXO and credit spreads. Financial uncertainty and credit supply shocks are

identified similarly.

However, there is no theoretical or empirical consensus on the persistence of uncer-

tainty and financial shocks. For example, see the opposite findings in Cerra and Saxena

(2008), showing that financial shocks are more persistent than uncertainty disturbances,

and Berger et al. (2020) and Bonciani and Oh (2022), who find that uncertainty shocks are

very persistent. Carrière-Swallow and Céspedes (2013) find mixed results across countries.

Brianti (2021) argues that uncertainty is more or equally persistent than credit supply

shocks, while Caldara et al. (2016) find similar persistence. Thus, we also estimate the

model for h̃ = 0, . . . , 4, finding no significant differences. Supplemental Appendix D

provides further robustness checks.

4.2 The Effects of uncertainty and financial shocks

Figure 1 and Figure 2 show the impulse responses to macro and financial uncertainty

shocks, respectively. Uncertainty has a strong recessionary effect on employment, indus-
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trial production, hours worked, consumer spending and real manufacturers’ new orders;

the financial conditions also deteriorate, as shown by the response of stock market and

credit spreads. The fall in the federal funds rate is consistent with monetary policy try-

ing to counteract the depressive effects of heightened uncertainty. Notably, shocks to

macroeconomic uncertainty increase financial uncertainty, and vice-versa. Interestingly,

we find some evidence in favor of a negative response of prices (using inflation rate pro-

vides similar results) for financial uncertainty shocks only; on the other hand, macro

uncertainty does not seem to put any significant pressure on prices. This suggests that

financial uncertainty disturbances mimic demand shocks, namely they trigger a recession

and a deflationary pressure on the economy. The interpretation for macro uncertainty is

more mixed.

Among others, Furlanetto et al. (2017), Caldara et al. (2016), Caggiano et al. (2021)

and Brianti (2021) stress the need to identify credit shocks and sharpen the identification

of uncertainty shocks accordingly. Figure 3 shows that an increase in credit spreads

has a depressive and deflationary effect on macroeconomic variables and leads to higher

uncertainty, especially financial uncertainty. The fall of prices and the loose monetary

policy are both more severe than what is induced by uncertainty shocks.

To facilitate comparisons, Figure 4 compares the impulse responses to macro and

financial uncertainty shocks (by normalizing the shocks size to the same amount). The

effects of macroeconomic and financial uncertainty are qualitatively different for prices

(and earnings). Further quantitative differences arise. For example, the recessionary effect

on real activity variables seem more pronounced following macroeconomic uncertainty

shocks, while financial conditions deteriorate more with financial uncertainty shocks.

In order to distinguish identified uncertainty shocks from other shocks, in supplemental

Appendix D we (i) re-estimate the model by controlling for a series of demand and supply

shocks, finding that the results are unchanged and (ii) show that the correlation between

our identified uncertainty shocks and demand and supply shocks are not statistically

significant.

When re-estimating the responses without inequality constraints on the FEVD, we
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Figure 1: Responses to macroeconomic uncertainty shocks. The figure reports the pos-
terior mean (black solid lines), the 68% Bayesian credibility region (black dashed lines),
and the 90% Bayesian credibility region (gray dashed lines). The shock size is set to one
standard deviation.

find that the results are qualitatively unchanged, but quantitative differences can raise

(especially for the responses to the credit shocks and when the horizon of maximization

is other than h̃ = 5).
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Figure 2: Responses to financial uncertainty shocks. The figure reports the posterior
mean (black solid lines), the 68% Bayesian credibility region (black dashed lines), and
the 90% Bayesian credibility region (gray dashed lines). The shock size is set to one
standard deviation.

4.3 Endogenous uncertainty?

Since our scheme allows for a contemporaneous feedback effect from economic and fi-

nancial variables to uncertainty, it provides a natural ground to look into the issue of

endogeneity of uncertainty. In order to tackle this question, we look into the FEV de-

composition. Table 1 presents the FEVD of macroeconomic uncertainty proxy, financial
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Figure 3: Responses to financial (credit supply) shocks. The figure reports the posterior
mean (black solid lines), the 68% Bayesian credibility region (black dashed lines), and the
90% Bayesian credibility region (gray dashed lines). The shock size is set to one standard
deviation.

uncertainty proxy, and credit spreads due to the three shocks of interest. It seems that

uncertainty, especially macro uncertainty, is at least partially endogenous: the contribu-

tion of macro (financial) uncertainty shock to the FEV of JLN (VXO) is below 100%,

suggesting that other shocks affect macro (financial) uncertainty. Considering estima-

tion uncertainty (Bayesian credible intervals) does not change the overall picture, i.e.

uncertainty, even contemporaneously, is never 100% exogenous.
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Figure 4: Comparison between macro and financial uncertainty shocks. The gray and
black line denote the posterior mean of the impulse response functions to macroeconomic
and financial uncertainty shock, respectively. Size of the shocks has been normalized to
1%.

However, such a conclusion is debated in the literature. Ludvigson et al. (2021)

argue that, while financial uncertainty is mainly exogenous, macroeconomic uncertainty

presents some endogeneity. Angelini et al. (2019) find that both macroeconomic and

financial uncertainty are mostly exogenous, and Carriero et al. (2021) point out that

macroeconomic uncertainty displays some endogeneity, though more at quarterly than

monthly frequency.
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Table 1: FEVD (%)

uF ∗ shock h = 0 h = 10 h = 20 h = 40
uF ∗ 91.63 10.64 6.39 4.46
uM∗ 8.46 2.04 1.04 0.61
CS 9.57 3.86 1.90 1.04

uM∗ shock
uF ∗ 1.64 1.60 1.21 0.94
uM∗ 86.81 10.05 5.25 2.95
CS 0.56 1.93 1.42 1.02

CS shock
uF ∗ 28.65 4.03 2.39 1.69
uM∗ 7.48 2.01 0.97 0.62
CS 75.14 8.86 4.41 2.38

Each study above adopts a different identification strategy. Ludvigson et al. (2021)

use a small-scale model and a set-identification approach based on narrative restrictions

requiring the shocks to be consistent with some historical episodes and correlated with

some external instruments. Instead, we use a large-scale model, which reduces the prob-

lems of possible omitted variable bias, and a point-identification approach, which avoids

the problems inherent in set-identification discussed e.g. in Giacomini et al. (2021).

Angelini et al. (2019) also use a small-scale model in which there are no proxies

for financial conditions. They achieve identification by assuming that in the sample

preceding January 2008 financial uncertainty shocks could neither contemporaneously

impact on nor been impacted by macro variables directly. However, an indirect channel

on real variables through the impact from financial uncertainty to macro uncertainty is

allowed since the Great Moderation. Differently from them, we never assume exogeneity

of financial uncertainty, not even in some sub-samples, and we use a large-scale model

which includes financial variables and a credit channel.

Carriero et al. (2021) employ a large model and achieve point-identification exploiting

heteroskedasticity in the error terms of the SVAR. However, their framework does not in-

clude macroeconomic and financial uncertainty in the same unified setting. Furthermore,

their approach requires an ordering restriction on the block of macroeconomic variables

in which pure financial shocks are not explicitly identified. Instead, the approach of this
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paper allows to identify shocks to financial and macroeconomic uncertainty which are

orthogonal by construction, and to disentangle them from pure financial shocks.

5 Conclusions

This paper developed a novel multiple shocks identification scheme for SVARs, based on

generalizing theMax Share to joint identification of a multiplicity of shocks. Our approach

overcomes some drawbacks induced by individually identified shocks, i.e. those shocks (i)

tend to be correlated to each other or (ii) can be separated under orthogonalizations with

weak economic ground. We characterized the properties of this approach, such as non-

emptiness and point-identification, and provided an algorithm for its implementation.

The toolkit developed in this paper can be applied to any SVAR where standard ordering

and sign restrictions are not desirable or sufficient to identify all of the shocks. We

used the approach and US data to investigate the effects of uncertainty (allowing for

the possibility that uncertainty responds endogenously to other variables or shocks) and

financial shocks. We found that financial uncertainty shocks mimic demand disturbances,

while this is not the case for macro uncertainty. On the other hand, our results suggest

that, while contemporaneous variation in uncertainty measures tends to be largely driven

by uncertainty shocks, a non-trivial fraction of the variation in these measures is driven

by other (non-uncertainty) shocks, particularly beyond short horizons.
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