
BASS ACCOMPANIMENT GENERATION VIA LATENT DIFFUSION

Marco Pasini 1,2, Maarten Grachten 1, Stefan Lattner 1

Sony Computer Science Laboratories, Paris, France1 Queen Mary University, London, UK2

ABSTRACT

The ability to automatically generate music that appropri-
ately matches an arbitrary input track is a challenging task.
We present a novel controllable system for generating single
stems to accompany musical mixes of arbitrary length. At
the core of our method are audio autoencoders that efficiently
compress audio waveform samples into invertible latent rep-
resentations, and a conditional latent diffusion model that
takes as input the latent encoding of a mix and generates the
latent encoding of a corresponding stem. To provide control
over the timbre of generated samples, we introduce a tech-
nique to ground the latent space to a user-provided reference
style during diffusion sampling. For further improving audio
quality, we adapt classifier-free guidance to avoid distortions
at high guidance strengths when generating an unbounded
latent space. We train our model on a dataset of pairs of
mixes and matching bass stems. Quantitative experiments
demonstrate that, given an input mix, the proposed system
can generate basslines with user-specified timbres. Our con-
trollable conditional audio generation framework represents
a significant step forward in creating generative AI tools to
assist musicians in music production.

Index Terms— music, accompaniment, diffusion, gener-
ation, bass

1. INTRODUCTION

Musical accompaniment is an integral part of music compo-
sition and performance. The ability to automatically generate
an accompaniment that complements and matches the style of
existing instrument parts (stems) in a music track, has the po-
tential to both enhance the creativity of artists–by proposing
novel musical material for them to work with–and to make it
easier and more efficient to realize their artistic visions. In
recent years, deep learning techniques have shown promising
results in the field of music and (to a much lesser extent) ac-
companiment generation. Many approaches use a symbolic
representation of music as the medium [1]–[3], while more
recently a number of models that directly generate waveform
audio have also been proposed [4]–[6]. Diffusion models [7]–
[9] have emerged as a powerful class of generative models ca-
pable of producing high-quality samples, although they usu-
ally require a computationally expensive iterative sampling

procedure. Latent diffusion models [10] have been introduced
to increase model inference speed by generating a latent, low-
dimensional representation of the data from a pretrained au-
toencoder model, usually a Variational AutoEncoder [11].

In this work, we propose a general latent generative model
for the task of accompaniment generation, and apply it to
the generation of basslines. Given an input stem of arbi-
trary length such as a vocal melody or an input mix of arbi-
trary numbers of stems, our model is able to generate a com-
plementary bass stem that musically matches the condition-
ing. Furthermore, we propose controllability features, such
as style conditioning and conditioning guidance control, to
make our system a more useful tool for artists. The key con-
tributions of our work are:

• The design of an efficient audio autoencoder to encode
samples to compressed invertible representations

• The design of a general conditional latent diffusion
model that takes a music mix as input and produces a
coherent track, while being able to handle inputs and
outputs of arbitrary length

• The application of both audio autoencoder and latent
diffusion model to the task of encoding and generating
basslines given an arbitrary input mix

• The use of style conditioning during the diffusion sam-
pling process to force the generation of a user-defined
bass style.

2. RELATED WORK

Accompaniment generation is a type of music generation that
involves an additional input conditioning. In this work we fo-
cus on audio-based music generation. Autoregressive mod-
els such as WaveNet [12], SampleRNN [13], Jukebox [4],
MusicLM [5] and MusicGen [14] can generate high qual-
ity samples but suffer from slow sequential sampling. Non-
autoregressive models based on generative adversarial net-
works (GANs) [15] such as WaveGAN [16] and GANSynth
[17] achieve parallel sampling but are limited to generating
fixed-length audio clips. On the other hand, Musika [18] par-
allelly generates invertible latent representations of audio of



arbitrary length, but the context available to the model is lim-
ited. Relevant to our work, BassNet [19] generates bass tracks
while offering user control via a latent space variable.

More recently, models such as DiffWave [20] and Wave-
Grad [21] introduce diffusion to audio modeling for speech
synthesis applications. For musical audio generation, Riffu-
sion [22] fine-tunes Stable Diffusion [10] on audio spectro-
grams to generate music clips. Moûsai [23] trains a latent
diffusion model on compressed representations and can gen-
erate minute-long coherent music. JEN-1 [24] introduces
a large-scale conditional latent diffusion model that can
generate long-form music both autoregressively and non-
autoregressively. Finally, [6] proposes a multi-source diffu-
sion model trained on single source waveforms that achieves
both generation and separation of individual sources.

3. METHOD

Let x = {x1 , ..., xT} be the waveform of a mix of arbitrary
stems of length T , where xi is the i-th stereo frame, and
let y = {y1 , ..., yT} be the waveform of a single-stem au-
dio sample with the same length. To sample y given x, we
aim to model the conditional distribution p(y|x), but since
the waveforms are typically very high-dimensional (i.e. T
is large), we encode both x and y into latent representations
cx = {cx ,1 , ..., cx ,T/rtime

} and cy = {cy,1 , ..., cy,T/rtime
}

respectively using audio autoencoders, and model p(cy|cx)
instead. Here, rtime is the time compression ratio of the au-
toencoders, and we refer to the dimensionality of vectors cx ,i
and cy,i as dimx and dimy , respectively.

3.1. Audio Autoencoder

Our goal is to design an efficient audio autoencoder that can
reach high compression ratios while reconstructing samples
with reasonable accuracy. To achieve this, we start from
the audio autoencoder architecture proposed in Musika [18],
where a model is used to reconstruct the magnitude and phase
components of a spectrogram s instead of the full waveform,
which results in faster inference. However, instead of using
the original two-stage design and two-phase training process,
we train a single encoder and decoder in a fully end-to-end
fashion. We first use a L1 loss between a log-magnitude
spectrogram s and the magnitude output of the model:

LE,D,rec = Es∼p(s)||D(E(s))mag − s||1

where E and D are the encoder and decoder, and D(E(s))mag

is the magnitude component of the decoder output. We also
use the multi-scale spectral distance [25], [26] between the
original and the reconstructed waveforms:

w̃ = iSTFT(D(E(s)))

LD,mssd = Ew∼p(w)

∑
h∈H

||STFTh(w)
2 − STFTh(w̃)

2 ||1

Fig. 1: Inference of the system. Noise is concatenated to the
latent representation of the conditioning waveform cx, and K
denoising steps are performed to generate ĉy which is then
decoded to waveform. The representation of a user-specified
style sample cstyle can be used to ground the generated output
to a specific style.

where H is a set of pairs of hop size and window length.
The phase component is modelled implicitly by the multi-
scale spectral distance loss and the adversarial loss on the
log-magnitude spectrogram of the reconstructed waveform:

s̃ = log(STFT(w̃)2 + ϵ)

LC = −Es∼p(s) [min(0, −1 + C(s))]

−Es∼p(s) [min(0, −1− C(s̃))]

LE,D,adv = −Es∼p(s) C(s̃)

where C is the critic. The final objective used to jointly train
encoder and decoder is the following:

LE,D = LE,D,adv + λrecLE,D,rec + λmssdLE,D,mssd

Differently from [18], we add a second critic that receives
mel-spectrograms. This addition encourages the autoencoder
to reconstruct spectral information more accurately in the re-
gions where human pitch perception is more precise.

3.2. Latent Diffusion Model

Diffusion models are trained to reverse a sequential corrup-
tion process of samples, and thus are able to retrieve samples
from the data distribution by starting from a known distribu-
tion and iteratively denoising it. We choose to briefly intro-
duce them with their score-based interpretation [27].

Our goal is to model the score of the conditional target
stem latent distribution, given the input mix latent:

Gθ(cy, cx) ≈ ∇cy log p(cy|cx)

where Gθ(cy, cx) is a neural network with parameters θ.
To achieve this, we minimize the Fisher Divergence be-

tween the output of the model and score:

Ep(cy,cx)

[∥∥Gθ(cy, cx)−∇cy log p(cy|cx)
∥∥2
2

]



Finally, we can use Langevin dynamics to iteratively generate
real samples with a sufficiently large number of iterations K.

In practice, we train our model to denoise noisy latent
samples of the target stem zt = αtcy+βtϵ, with ϵ ∼ N (0, I):

LGθ
= Ecy,cx∼p(cy,cx),t∼[0,1]wt||Gθ(zt, t, cx)− cy||22

where αt and βt are the signal and noise rates, c is the latent
representation of the corresponding input mix and wt is the
loss weight at timestep t.

The model is based on a U-Net architecture [28], with
the addition of self-attention [29] in the lower resolution lay-
ers. However, the vanilla self-attention mechanism does not
allow the model to generalize to arbitrarily long inputs and
outputs [30], which is crucial for a flexible real-world use of
the system. To achieve generalization to lengths that are un-
seen during training, we equip the attention layers with Dy-
namic Positional Bias (DPB), a technique introduced for the
task of arbitrarily-sized image classification [31], [32] which
consists in the addition of a learnable Relative Positional Bias
(RPB) matrix B ∈ RL×L where L is the temporal length of
the feature map:

Attention(Q,K,V) = SoftMax
(
QKT

√
d

+B

)
where Q,K,V ∈ RL×d are query, key and value matri-
ces. Each entry Bi,j is learned with a Multi-Layer Perceptron
(MLP) on the relative difference between positions i and j:

Bi,j = MLP(i− j)

3.3. Style Grounding

To maximize its utility as a creative tool for music artists,
our objective is a generation system that is controllable by
the user. To this end, we design a technique that enables the
generation of single-stem samples with user-specified timbre
characteristics and style. Given a reference audio waveform
y provided by the user to indicate their desired style, we first
encode it to a compressed latent representation cstyle with the
corresponding audio autoencoder. Then, we simply average
the latent representation over the timesteps to obtain a sin-
gle dimy dimensional vector µt(cstyle), where µt(·) indicates
the average across all timesteps. Finally, during the diffu-
sion model sampling process, we force the generated latent
samples at each reverse diffusion timestep to have an average
across time that remains close to µt(cstyle). We weigh this
re-centering by the square of the timestep-specific noise rate,
so that the effect is stronger at earlier iterations while keeping
the model free to deviate when generating the lower-level de-
tails of the sample. Given the denoised output of the diffusion
model ĉy,k ∈ RT×dimy at sampling iteration k we calculate:

ĉy,k,ground = ĉy,k−µt(ĉy,k)+β2
kµt(cstyle)+(1−β2

k)µt(ĉy,k)

Fig. 2: Left: FAD evaluation of unconditional samples with
respect to the number of DDIM inference steps. 64 steps
result in the lowest FAD, and we use K = 64 in all sub-
sequent experiments. Right: FAD evaluation of conditional
samples with respect to CFG weights and with varying ϕ.
When higher CFG weights (> 2.5) are used, the latent rescal-
ing technique results in lower FAD.

This technique exploits the semantically rich latent space
produced by the autoencoder to enforce distinct timbre fea-
tures captured in c̄y onto the output of the diffusion model.

3.4. Classifier-Free Guidance

Classifier-Free Guidance (CFG) [33] is a technique that al-
lows a conditional diffusion model to generate samples that
more closely adhere to the provided input:

ĉk,cfg = Gθ(ẑk, k, cx) + λcfg(Gθ(ẑk, k)−Gθ(ẑk, k, cx))

where Gθ(ẑk, k) is an unconditionally-generated sample at
timestep k. However, when high guidance weights λcfg are
used, image generation models are known to generate overly
saturated and exposed images [34]. We experience a similar
issue in our latent audio generation scenario, with highly dis-
torted and saturated samples being generated. Solutions such
as clipping of the guided samples between a defined range of
values or dynamic thresholding [34] are not applicable in our
case, since our latent space is not bounded. We thus use the
technique proposed by [35] for guiding the generation of arbi-
trary spaces, which controls the increase in standard deviation
of the guided samples with an hyperparameter ϕ ∈ [0, 1], and
allows us to reduce artifacts at higher guidance weights.

Grounded Not Grounded
Cosine Distance 0.269 0.644
Euclidean Distance 0.407 0.836

Table 1: Average Euclidean and Cosine distance between em-
beddings of style samples from the test set and embeddings of
generated samples both using the proposed grounding tech-
nique and not using it.



Fig. 3: Soft assignments of 25 random input mixes and cor-
responding generated basslines by a contrastive model (Sec-
tion 5). High diagonal values indicate the generated basslines
best match their respective conditional inputs.

4. IMPLEMENTATION DETAILS

We train the audio autoencoders on random crops of 1.5
seconds to produce representations with dimx = 64 and
dimy = 32, while rtime = 4096 is kept the same for both
models. Input log-magnitude spectrograms for both the au-
toencoder and the critics are calculated using hop len = 256
and win len = 4 · hop len . 128 mel-bins are used for the
second critic. The architecture of both autoencoder and critics
consists of residual convolutional blocks. We choose λrec =
25, λmssd = 0.002, and the multi-scale spectral distance loss
is calculated using hop len ∈ [25, 26, 27, 28, 29, 211, 212].
We always choose win len = 4 · hop len . The autoencoders
consist of 37M parameters and are trained using Adam [36]
with β1 = 0.5 and β2 = 0.9 for 500k iterations at a batch
size of 32. The latent diffusion model is trained on (mix,
stem) pairs, where both samples are ∼23 seconds long and
are first encoded to 256 timesteps-long latent representations.
For a given track, the mix is obtained by mixing a non-empty
random subset of stems from the track. The latent diffu-
sion model consists of residual convolutional blocks, with
self-attention layers at the lower resolution levels. The la-
tent representation of the conditioning mix is concatenated
with the noisy input, while the diffusion timestep informa-
tion is expressed through sinusoidal embeddings [29] which
are concatenated with the feature maps before every block.
15% of input latent representations are zero-ed out to train
the model unconditionally, thus allowing CFG. The latent
diffusion model consists of 42M parameters and is trained
using AdamW [37] with β1 = 0.9 and β2 = 0.999 for 500k
iterations at a batch size of 128. To train the model we use the
v-objective [38] with a cosine schedule, while at inference we
use the DDIM sampler [9].

5. EXPERIMENTS AND RESULTS

We train the proposed accompaniment generation system on
the task of conditional bassline generation, using an internal
dataset of 20 k songs with available stems, among which the
bass guitar. 1,500 of the tracks are used as test set. We first
train the audio autoencoder used to encode the input mixes on
the MTG-Jamendo dataset [39]. The autoencoder used to en-
code the bass samples is trained on bass stems from our inter-
nal dataset and the latent diffusion model is trained on (mix,
bass stem) pairs from the same dataset. We first evaluate the
quality of unconditionally generated samples with respect to
the number of DDIM steps in Fig. 2 (right). We show in Fig. 2
(left) how the CFG rescaling technique can improve the FAD
of generated samples for high CFG weights. To evaluate the
ability of the system to generate samples that musically match
the input mix, we train a contrastive model to assign high
scores to matching (mix, bass stem) pairs and low scores to
non-matching ones using the same internal dataset. In Fig. 3,
we visualize the scores assigned by that model to 25 pairs
of random segments of mixes from the test set, and 25 bass
stems generated conditionally for each of those segments. A
high value on the diagonal means the bass stem generated for
that mix matches that mix better than the bass stems generated
for the other mixes. To quantitatively evaluate the efficacy of
the proposed style grounding technique, we use an off-the-
shelf audio classification model [40] to extract embeddings of
generated samples with and witout style-grounding (using the
same input mix as conditioning), and compare them in Table
1 to embeddings of the target style sample via the Cosine and
Euclidean distance. Readers can listen to samples generated
by our system at: https://sonycslparis.github.io/bass_
accompaniment_demo/

6. CONCLUSION

We have presented a novel controllable system for music ac-
companiment generation using latent diffusion models. When
trained on bass stems, our model is able to generate basslines
that musically match an arbitrary input mix. We propose the
design of an efficient audio autoencoder for producing com-
pressed invertible latent representations, the adaptation of la-
tent diffusion models to handle inputs and outputs of arbitrary
length, and a latent-specific style grounding technique to con-
trol the timbre of generated samples. Experiments demon-
strate that our model can generate basslines that musically
match the input mix and that can be grounded with user-
provided timbres. A limitation of our system is that it does
not offer user control over the exact notes of the generated
accompaniment. Future work involves training the model to
generate other instruments besides bass. We believe our sys-
tem can enhance the creative workflow of music artists, creat-
ing a variety of bass accompaniments to fit their existing ma-
terial, while also offering control over the creation process.
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