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To enable large in silico trials and personalized model predictions on clinical
timescales, it is imperative that models can be constructed quickly and repro-
ducibly. First, we aimed to overcome the challenges of constructing cardiac
models at scale through developing a robust, open-source pipeline for
bilayer and volumetric atrial models. Second, we aimed to investigate the
effects of fibres, fibrosis and model representation on fibrillatory dynamics.
To construct bilayer and volumetric models, we extended our previously
developed coordinate system to incorporate transmurality, atrial regions
and fibres (rule-based or data driven diffusion tensor magnetic resonance
imaging (MRI)). We created a cohort of 1000 biatrial bilayer and volumetric
models derived from computed tomography (CT) data, as well as models
from MRI, and electroanatomical mapping. Fibrillatory dynamics diverged
between bilayer and volumetric simulations across the CT cohort (corre-
lation coefficient for phase singularity maps: left atrial (LA) 0.27 ± 0.19,
right atrial (RA) 0.41 ± 0.14). Adding fibrotic remodelling stabilized
re-entries and reduced the impact of model type (LA: 0.52 ± 0.20, RA:
0.36 ± 0.18). The choice of fibre field has a small effect on paced activation
data (less than 12ms), but a larger effect on fibrillatory dynamics. Overall,
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we developed an open-source user-friendly pipeline for
generating atrial models from imaging or electroanatomi-
cal mapping data enabling in silico clinical trials at scale
(https://github.com/pcmlab/atrialmtk).
publishing.org/journal/rsfs
Interface

Focus
13:20230038
1. Introduction
Therapyapproaches for irregular heart rhythms including atrial
fibrillation (AF) are suboptimal, which is in part because
these therapies are not personalized to the patient. Personalized
computational models may be used to predict individual
patient response to therapy [1], to predict patient outcomes,
to guide individual therapy [2] or for in silico trials [3]. Atrial
models may be constructed from a variety of different data
types, including electroanatomical mapping (EAM) shells or
medical imaging data (magnetic resonance imaging (MRI)
or computed tomography (CT)), which are segmented to
produce a personalized anatomy. The degree ofmodel persona-
lization and the number of cases included in a study typically
depends on the study aims, data availability and applicability
of tools and methodology. Typically model construction pipe-
lines require significant time and expertise from trained users,
significant computation time and may not be reproducible.
As computational medicine moves towards both large in silico
trials and personalized model prediction on clinical timescales,
it is imperative that these limitations in model construction
pipelines are overcome.

We previously presented a reproducible pipeline for con-
structing left atrial (LA) models [4] using a universal atrial
coordinate (UAC) system [5] to map fibres to each model
from an atlas. Recent clinical studies and mechanistic model-
ling studies [6,7] have highlighted the importance of the right
atrium in understanding AF and personalizing treatment
approaches, motivating the extension of atrial modelling to
biatrial modelling. Approaches to constructing personalized
models include Piersanti et al. [8] who developed a Laplace–
Dirichlet rule-based method for assigning fibres to the atria
and ventricles. A further approach is the AugmentA pipeline
developed by Azzolin et al. [9] for generating atrial models
with fibres. They demonstrated AugmentA on 29 LA datasets,
and used a statistical shape model to generate a right atrial
(RA) anatomy for each LA anatomy, with rule-based fibres.

Here, we build on these approaches to overcome the
challenges of constructing biatrial models at scale through
developing a robust, open-source pipeline. The pipeline
incorporates atrial structures in the models, including
crista terminalis, pectinate muscles (PMs), the sinoatrial
node (SAN) and Bachmann’s bundle (BB). Atrial fibres are
included from a choice of atlas fibre distributions, including
rule-based and data driven diffusion tensor MRI datasets.
Models are constructed as either a coupled surface (bilayer)
or volumetric representations. These tools are provided
open-source as a user-friendly workflow. We apply these
methodologies to create a cohort of 1000 biatrial bilayer and
volumetric models from CT-derived statistical shape model
data, and then investigate the effects of model type (bilayer
or volumetric mesh) on AF dynamics and ablation outcome.
We also apply the methodologies to EAM and MRI data, and
investigate the effects of the choice of fibre map on paced and
arrhythmia activation patterns. We use these large simulation
studies to investigate the effect of model choice on in silico
trial and personalized model predictions, and to investigate
the relative impact of model type, fibres and fibrosis on
fibrillatory wavefront patterns.
2. Methods
We first detail the types of data these methodologies could be
applied to and the specific datasets used in this study in §2.1. We
then describe the landmark selection (§2.2); and adaptions of our
algorithms to cases that do not include pulmonary vein or appen-
dage tissue (§2.3). We present scalar mapping methodologies for
including atrial structures and interatrial connections in bilayer
models (§2.4). We then describe techniques for constructing
models as volumetric models (§2.5). We present vector mapping
for including a range of fibre atlases in the models for bilayer
representations (§2.6) and volumetric meshes (§2.7). We then
describe methodologies for incorporating atrial fibrosis in models
(§2.8). Finally, we detail our simulation set-up and post-processing
techniques applied to compare arrhythmia dynamics (§2.9).
Figure 1 provides an overview schematic with the key steps of
the methodology.

2.1. Data sources
We demonstrated the pipeline on CT data, MRI data and EAM
data as follows.

Anatomical LA and RA meshes were extracted from 1000
instances of a CT-derived statistical shape model, which are
available to download on Zenodo (https://zenodo.org/record/
4506930) [10]. These meshes are provided as unstructured
tetrahedral meshes that were generated from four-chamber seg-
mentations using the Computational Geometry Algorithm
Library (CGAL) [11] with an average edge length of 1mm.
We post-processed these tetrahedral meshes by using meshtool
software (https://bitbucket.org/aneic/meshtool) to extract
the LA surfaces, RA surfaces and associated volumes from
the four-chamber meshes [12]. We used the epicardial surfaces
for constructing bilayer models.

Late-gadolinium enhancement MRI (LGE-MRI) and magnetic
resonance angiograms (MRA) from Hopman et al. [7] were used
for magnetic resonance mesh construction. The LA and RA blood
pool were semi-automatically segmented from the MRA images
using CemrgApp software [13] (http://cemrgapp.com/) to pro-
duce LA and RA endocardial surface meshes that were suitable
for constructing bilayer models.

LA and RA surfaces were extracted from the EnsiteX EAM
system (Abbott). For all data types, meshes were stored in vtk
and stl formats.

2.2. Mesh pre-processing and landmark selection
For the MRI and EAM datasets, mesh pre-processing steps were
applied to first open the mesh at the pulmonary veins, vena
cava, coronary sinus, mitral valve and tricuspid valve. This was
applied using a sphere clipping tool available in Paraview software
(https://www.paraview.org/) [14].

To select atrial landmarks, a Python script written using the
PyVista library [15] was used to enable the user to quickly click
on landmark locations, and these locations were written to text
files. For all meshes, general LA landmarks were selected as fol-
lows: right superior pulmonary vein (RSPV), right inferior
pulmonary vein (RIPV), left inferior pulmonary vein (LIPV),
left superior pulmonary vein (LSPV), the tip of the left atrial
appendage (LAA) and the base of the LAA. Specific landmarks
were selected as follows: (i) on the lateral wall, in line with the
LSPV, posterior of the LAA; (ii) on the septal wall, in line with
the RSPV (at the fossa ovalis); (iii) at the junction of the LA
body and LSPV, at the centre of the posterior wall path; (iv) at

https://github.com/pcmlab/atrialmtk
https://zenodo.org/record/4506930
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EAM data

CT or MRI data

EAM analysis
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meshing regions and fibresatrial coordinates
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Figure 1. Methods schematic outlining the steps involved in patient-specific model construction. These include: (a) data inputs (imaging or electroanatomic map-
ping (EAM) data); (b) segmentation and anatomical landmark selection; (c) mesh generation with atrial coordinate calculation, regions and fibres; (d ) model
calibration to fibrosis or electrophysiology (EP) data and (e) finite-element (FE) simulations and post processing.
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the junction of the LA body and RSPV, at the centre of the
posterior wall path.

Correspondingly, general RA landmarks were selected as
follows: inferior vena cava (IVC) path choice, coronary sinus
(CS), roof between superior vena cava (SVC) and IVC, SVC
path choice, the tip of the right atrial appendage (RAA), the
base of the RAA. Specific landmarks were selected as follows:
(i) lowest point at the junction of the RA body and SVC;
(ii) lowest point at the junction of the RA body and IVC; (iii) in
line with the SVC, septal of the RAA; (iv) in line with the IVC;
(v) at the junction of the RA body and SVC, at the level of
the roof and (vi) at the junction of the RA body and IVC,
at the level of the roof. All landmarks are illustrated on the
github examples page.

For MRI and EAM meshes, atrial tissue for each of the
pulmonary veins, appendages, vena cava and coronary sinus
were automatically labelled using a series of Laplace–Dirichlet
solves. For the left atrium, a Laplace–Dirichlet solve was com-
puted using openCARP software [16,17] for each pulmonary
vein, with boundary conditions corresponding to 1 along
the chosen pulmonary vein boundary nodes, and 0 along the
mitral valve boundary nodes. A manually chosen threshold
was selected that approximated the ostia location and applied
to assign all nodes with Laplace–Dirichlet solution greater than
this threshold to a pulmonary vein region. The pulmonary vein
regions were then assigned a specific pulmonary vein label
depending on which landmark the region was closest to. For
the appendage, a Laplace–Dirichlet solve was computed with 1
assigned at the LA appendage tip landmark, and 0 at the
mitral valve. Again, a manually chosen threshold was applied
to label appendage tissue as nodes with solution value greater
than this threshold.

Similarly, for the right atrium, this approach was applied
with boundary nodes at 1 for each of the SVC, IVC and CS in
turn, and 0 at the tricuspid valve. These regions were then
labelled using a threshold for the Laplace–Dirichlet solve follow-
ing the same approach that was developed for the PV labelling.
The RA appendage was labelled using the same methodology
that was applied to the LAA.

Finally, clipped and labelled meshes were re-meshed to a stan-
dard resolution suitable for simulation studies using meshtool
software (e.g. 0.3mm average edge length, https://bitbucket.
org/aneic/meshtool). Mesh labelling and re-meshing were auto-
mated across all cases through the use of bash scripts. Examples
are provided to apply this pipeline.

2.3. Universal atrial coordinate calculation with
or without pulmonary vein tissue

We extended the UAC system to work for cases in which the pul-
monary veins, vena cava and appendages had been clipped and
removed from the mesh; for example, in the CT statistical shape
atlas dataset used in this study. Specifically, we removed bound-
ary conditions previously included at the structure openings. The
boundary conditions along the junction of the atrial body and
PV, LAA and vena cava in the original UAC formulation were
included equivalently at these boundary nodes in the clipped
meshes since these boundaries represent the junctions between
the atrial body and structures. This is shown in figure 2.

2.4. Universal atrial coordinate for atrial structure
assignment and interatrial connections in bilayer
meshes

Biatrial bilayer models were constructed from LA and RA epicar-
dial or endocardial shells as follows. For MRI meshes, shells
represented the LA or RA blood pool segmentation, and so
were assigned as the endocardial surface. For CT-derived statisti-
cal shape models, epicardial surfaces were extracted from the
volumetric meshes for constructing bilayer models to ensure
LA and RA surfaces were close together. These endocardial
(for MRI) and epicardial (for CT-derived statistical shape
models) surfaces were then duplicated and projected 0.1 mm epi-
cardially or endocardially, respectively, to create two layers.
Equivalent nodes on the two LA surfaces were assigned the
same UAC value and connected through line element connec-
tions. The projection distance used here is an arbitrary value
because atrial wall thickness is included in the monodomain
model simulations through the choice of line element coupling
coefficients, following Labarthe et al. [18].

UACswere used tomap atrial structures to themeshes, includ-
ing crista terminalis, PM, BB and the SAN. These were included

https://bitbucket.org/aneic/meshtool
https://bitbucket.org/aneic/meshtool
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Figure 2. Two-dimensional universal atrial coordinates (UAC) for models with or without pulmonary vein tissue. Panels show UAC coordinate 1, UAC coordinate 2,
2D UAC representation of the LA and RA, and meshes with surface regions. The original set-up with pulmonary vein tissue is shown at the top, and the adapted
methodology without pulmonary vein tissue is shown at the bottom. UAC 1 is displayed using the hot colour map and UAC 2 is displayed using the jet colour map,
where both range from 0 to 1.
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in an atlas bilayermesh fromLabarthe et al. [18] together with their
UAC locations. For bilayer models, the mesh at the equivalent
UAC locations in the new LA and RA shells was duplicated and
projected endocardially or epicardially to form these regions.
Nodes on these structures were connected to their equivalent
nodes on the LA or RA epicardial surfaces through linear
connections.

Interatrial connections were mapped to the meshes at BB,
the CS and along the septal wall. At BB this was implemented
through linear connections between a line of nodes on the
LA and RA components of BB. For the CS, this was implemen-
ted through joining nodes on the half of the CS boundary
closest to the LA epicardium to nodes on the LA epicardium
using linear elements. Septal connections were implemented
by joining LA epicardial nodes within a distance threshold
of selected locations to their closest RA epicardial nodes using
line connections.
2.5. Volumetric models: universal atrial coordinate
extension

Volumetric UAC for each of the 1000 CT-derived statistical shape
instances were constructed by three UAC solutions for each LA
and RA volumetric tetrahedral mesh. The first two UAC coordi-
nates were calculated for each of the LA and RA endocardial
and epicardial triangulated surface meshes, as described above.
Then these solutions were used as boundary conditions for the
tetrahedral mesh Laplace–Dirichlet solve as follows. To calculate
the first UAC coordinate on the LA volumetric mesh, the endo
and epicardial LA surface mesh values for UAC coordinate 1
were assigned to the surface nodes of the volumetric mesh.
A Laplace–Dirichlet solve was then computed to calculate UAC
coordinate 1 through the LA volume. The same approach was
used to calculate the second UAC coordinate on the LA volume,
and then an equivalent approach calculated the first two UAC
coordinates for the RA volume.
For volumetric meshes, a third coordinate is required to pro-
vide a measure of transmurality. This was calculated using the
following approach for each of the LA and RA volumetric
meshes in turn. The endocardial nodes on the LA and RA volu-
metric meshes were assigned a value of 0, and the epicardial
nodes on each mesh were assigned a value of 1. Laplace–
Dirichlet solves were computed for the LA and RA volumetric
meshes to calculate the third transmural coordinate. This is
demonstrated in figure 3.

2.6. Including atrial fibres: bilayer models
Atrial fibres were mapped to surfaces from a choice of atlases
using UAC to perform vector field mapping, as previously
described [19]. Atlases were stored as endocardial fibre fields
for each atria, and epicardial fibre fields for each atria. For the
Labarthe et al. [18] atlas, RA fibres for the endocardium corre-
sponded to the RA endocardial structures only, including PM,
crista terminalis, SAN; and a representation was stored for BB
as a separate layer of the model. Fibres were mapped from a
choice of three atlases: the first case of an ex vivo DTMRI dataset
(DTMRI1) [20]; the average fibre atlas from seven ex vivo DTMRI
datasets (DTMRIA) [19]; a rule-based atlas (Labarthe) [18].
These fibre atlases, together with the other DTMRI cases, are
all provided as fibre field options within the pipeline.

For bilayer models, LA endocardial, LA epicardial fibres
and RA epicardial fibres were each mapped from the chosen
distribution. RA endocardial fibres for the PM, crista terminalis
and SAN were mapped from the Labarthe fibre atlas across
models. This was also the case for including BB fibres. This atlas
was chosen because the Labarthe et al. [18] atlas captures preferen-
tial fibre directions described in these structures. Since these
structures were not segmented separately and individually
registered in the DTMRI atlases, the fibre directions in the
DTMRI atlasesmay contain amix of fibres between the specialized
conduction structures and epicardial surfaces. An example of the
mapping is shown in figure 4 with atrial fibres assigned to
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Figure 3. Volumetric atrial coordinates showing three atrial coordinates and transmural fibres. Volumetric fibres are displayed for the PM and crista terminalis
regions of the model in the final panel. UAC 3 has the endocardium in black at a coordinate of 0, and the epicardium in white at a coordinate of 1.

endocardial fibres

epicardial fibres Bachmann’s bundle fibresBachmann’s bundle fibres

endocardial fibres

epicardial fibres

Figure 4. Atrial fibres for endocardial surfaces or associated structures, epicardial surfaces and Bachmann’s bundle. This example is for a case with pulmonary vein
tissue.
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the endocardial surfaces or associated structures; epicardial
surfaces and BB.

For cases in which the PV, LAA, SVC and IVC tissue has been
removed from the mesh, UACs are calculated as described in
§2.3, and fibres are assigned as described above. An example is
shown in figure 5 with atrial fibres assigned to the endocardial
surfaces or associated structures, epicardial surfaces and BB.

2.7. Including atrial fibres: volumetric models
For volumetric models, atrial fibres were assigned using a similar
approach as in bilayer models, using the transmural coordinate
to guide the choice of fibre assignment. Before fibres were
assigned to the mesh, atrial structures were added, using a simi-
lar approach to §2.4. Specifically, for the LA of volumetric
meshes, fibres for a transmural coordinate of less than 0.5 were
assigned as endocardial fibres, while fibres for a transmural
coordinate of greater than 0.5 were assigned as epicardial
fibres. For the RA of volumetric meshes, the tissue was first sep-
arated into endocardial structures including PM and crista
terminalis; BB and epicardial tissue. PM and crista terminalis
were defined where α and β correspond to these regions, and
where the transmural coordinate was less than 0.7. BB was
defined where α and β correspond to this region, and where
the transmural coordinate was greater than 0.7. All other tissue
was defined as epicardial.



endocardial fibres

epicardial fibres Bachmann’s bundle fibres

endocardial fibres

epicardial fibres Bachmann’s bundle fibres

Figure 5. Atrial fibres for endocardial surfaces or associated structures, epicardial surfaces and Bachmann’s bundle. This example is for a case without pulmonary
vein tissue.
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Volumetric fibres were then assigned as the surface fibre corre-
sponding to the α and β values from either the choice of epicardial
atlas for RA body and RAA, or using the Labarthe atlas for the
endocardial structures including crista terminalis and PM,
and interatrial structures including BB. This is demonstrated in
figure 3c.

2.8. Including atrial fibrosis
Scalar mapping approaches use UAC to register scalar datasets
across different anatomies, either from the same or different
patients. This scalar mapping approach was used to assign
atrial fibrosis to 100 of the CT-derived biatrial models using
100 fibrosis distributions from our previously published
study [1]. These image intensity ratio distributions on LA
meshes were mapped using UAC to the LA and RA of the 100
CT-derived biatrial models. Fibrosis was assigned to the RA of
each model using the same image intensity ratio map that was
chosen for the LA since Hopman et al. [7] demonstrated that
the amount of LA fibrosis is highly correlated with the amount
of RA fibrosis.

2.9. Simulations and post-processing
Simulations were run to assess differences in paced wavefront
propagation through calculation of local activation time maps,
and in AF wavefront patterns by calculating phase singularity
maps.

Specifically, simulations were run in openCARP using the
Courtemanche et al. [21] ionic cell model with the monodomain
model for tissue propagation. The ionic conductances of the
Courtemanche et al. cell model were modified to reproduce phys-
iological heterogeneity between regions of the atria, following
our previous publication [22]. Fibrotic remodelling was included
for elements with an image intensity ratio greater than 1.2 as
changes in ionic conductances and conductivity, following our
previous study [1].

Paced local activation time maps were calculated by
stimulating each MRI model at the RSPV boundary nodes, and
identifying the time the transmembrane potential reached −
10 mV at each node. Phase singularity density maps were
calculated from 15 s AF simulations, in which AF was auto-
matically initiated by seeding four spiral wave re-entries [23].
Transmembrane potential signals were post-processed to
calculate phase and phase singularity density maps, as we
previously described [22].
3. Results
3.1. Cohorts of models constructed from MRI data,

electroanatomical mapping data or CT data
Figure 6 shows five biatrial bilayer models constructed
from MRI data, with interatrial connections included at the
septum, BB and the CS. Once the meshes were clipped at
the PV, SVC, IVC, CS and valves, and landmarks were
selected, the process was fully automated.

Figure 7 shows an example bilayer model for a biatrial
anatomy constructed from an EAM.

We also constructed 1000 biatrial bilayer models and
volumetric models from a CT-derived statistical shape
model. This provides a large cohort of biatrial models with
anatomical structures and fibres, available as both bilayer
and volumetric representations incorporating the range of
healthy anatomical variability.
3.2. Choice of fibre field affects simulated activation
patterns and atrial fibrillation dynamics

Local activation time maps varied between anatomies and
between fibre fields, as shown in figure 8. This variation
was bigger between anatomies than between fibre fields,
with the range of total activation times for varying fibre
field and fixed anatomy being less than 12ms, while the



1 2 3

4 5

Figure 6. A cohort of five MRI models with fibres. The final panel shows the locations of line connections (in purple) that couple the different surfaces in the bilayer
model representation.

(a) (b)

(c) (d)

Figure 7. Biatrial bilayer model constructed from an electroanatomical map. (a) Example LA (blue) and RA (grey) meshes extracted from the Abbott system. (b–d ) Atrial
structures and fibres constructed from the anatomy shown in (a) for the following regions: (b) LA epicardial fibres, (c) BB fibres, (d ) crista terminalis and PM regions.
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range of total activation times across anatomies was 45ms
(total activation times for anatomy 1: 172.5–183.7ms, anat-
omy 2: 167.5–172.5ms, anatomy 3: 139.6–142.5 ms, anatomy
4: 129.9–144.2ms, anatomy 5: 142.6–151.3 ms).

AF wavefront dynamics showed a greater sensitivity to the
choice of anatomyand fibre field than the case of pacedactivation,
as quantified through phase singularity density maps for models
without fibrosis, shown in figure 9. The correlation between
phase singularity density maps for DTMRI1 compared to
DTMRIA is higher than between the Labarthe fibre field and
the DTMRI fields (correlation between DTMRI1 and DTMRIA:
0.62 ± 0.21; DTMRI1 versus Labarthe: 0.33 ± 0.08; DTMRIA
versus Labarthe: 0.32 ± 0.12, each listed as mean and standard
deviation).

3.3. Choice of bilayer or volumetric model construction
affects atrial fibrillation dynamics

Typically, AF patterns quickly diverged between bilayer and
volumetric models resulting in visually different activities,
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Figure 8. Local activation time maps across five anatomies (columns) with a choice of three fibre maps (rows).
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Figure 9. Phase singularity density maps across five anatomies (columns) with a choice of three fibre maps (rows). The colour bar is normalized phase singularity
density from 0 in black through red, orange and yellow to 1 in white.
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with different phase singularity density maps. An example is
shown in figure 10a. Phase singularity density maps for 1000
bilayer models were compared to phase singularity density
maps for their equivalent volumetric representation, demon-
strating a low mean correlation coefficient of 0.27 ± 0.19 for
the LA, and a mean correlation coefficient of 0.41 ± 0.14 for
the RA (given as mean ± standard deviation).

Table 1 shows mean and standard deviation correlation
coefficients for single chamber and biatrial simulations
calculated between bilayer and volumetric representations.
These results are displayed as both correlation coefficients
(calculated using corr2 in Matlab) and structural similarity
indices (calculated using ssim in Matlab). The top three
rows show these results for LA only, RA only and biatrial
models, with results presented for LA and RA phase
singularity density maps separately.

3.4. Effect of model type on atrial fibrillation dynamics
is reduced for cases with fibrotic remodelling

Adding fibrotic remodelling to the bilayer and volumetric
models typically stabilized the re-entries, making the wave-
front propagation patterns visually more similar. Examples
are shown in figure 10 for two examples with and without
fibrotic remodelling. In both examples (figure 10a,b), the AF
wavefront patterns for cases with fibrotic remodelling are



bilayer volumetric bilayer volumetric

bilayer volumetric

(a) bilayer volumetric bilayer volumetric

(b)

0.8 1.6

IIR (mV)

–80 0

PS density
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Figure 10. The choice of bilayer or volumetric model construction affects AF dynamics, but this effect is reduced for cases with fibrotic remodelling. (a) An example
in which the bilayer and volumetric phase singularity density maps are different for the baseline model ( first box in green). When fibrotic remodelling is added in
the second box indicated by the blue background panel, the AF wavefront patterns are much more similar between the bilayer and volumetric models, resulting in
similar phase singularity density maps. (b) A second example where the baseline models in the top row (green box) are more similar in the bilayer and volumetric
models. When fibrotic remodelling is added in the bottom row (blue box), the AF wavefront patterns are again similar, with similar phase singularity density maps.
IIR, image intensity ratio; PS, phase singularity.

Table 1. Correlation and structural similarity indices comparing bilayer and volumetric models for different model set-ups. Results are shown as mean ±
standard deviation. The corr2 function in Matlab was used to calculate the correlation coefficient, and ssim was used to calculate the structural similarity index.

model comparison sample size

LA RA

corr2 ssim corr2 ssim

LA bilayer versus vol 100 0.24 ± 0.20 0.52 ± 0.09

RA bilayer versus vol 100 0.17 ± 0.15 0.44 ± 0.09

biatrial bilayer versus vol 1000 0.27 ± 0.19 0.38 ± 0.10 0.41 ± 0.14 0.27 ± 0.06

biatrial bilayer versus vol LGE all 100 0.52 ± 0.20 0.47 ± 0.10 0.36 ± 0.18 0.41 ± 0.13

biatrial bilayer versus vol LGE (Utah1) 9 0.38 ± 0.24 0.40 ± 0.05 0.43 ± 0.12 0.34 ± 0.07

biatrial bilayer versus vol LGE (Utah2) 24 0.53 ± 0.19 0.45 ± 0.10 0.33 ± 0.15 0.31 ± 0.07

biatrial bilayer versus vol LGE (Utah3) 28 0.55 ± 0.17 0.48 ± 0.10 0.36 ± 0.17 0.40 ± 0.10

biatrial bilayer versus vol LGE (Utah4) 39 0.52 ± 0.22 0.49 ± 0.09 0.35 ± 0.22 0.51 ± 0.12

royalsocietypublishing.org/journal/rsfs
Interface

Focus
13:20230038

9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 D

ec
em

be
r 

20
23

 

similar between the bilayer and volumetric models, resulting
in similar phase singularity density maps. For cases with
fibrotic remodelling, the mean correlation coefficient for the
LA was higher 0.52 ± 0.20, with a similar RA mean
correlation coefficient of 0.36 ± 0.18.

Table 1 shows that in the case of fibrotic remodelling,
the mean correlation coefficients for biatrial simulations
calculated between bilayer and volumetric representations is
typically increased compared to cases without any remodel-
ling. To investigate the effects of fibrotic remodelling on
these relationships, correlations and structural similarity
indices were calculated for models with different degrees of
fibrosis quantified by Utah grade as follows: Utah 1 (less
than 10% surface area classified as fibrosis), Utah 2 (10–20%
fibrosis), Utah 3 (20–30% fibrosis) and Utah 4 (greater than
30% fibrosis), thresholding fibrosis at an image intensity
ratio of 1.2 [24]. Breaking down these results by Utah grade
to represent different degrees of fibrotic remodelling (increas-
ing from Utah 1 (less than 10% surface area is fibrosis)
to Utah 4 (greater than 30%)), the correlation is lower for
the LA for Utah 1 (0.38 ± 0.24) than for Utah 2 and above
(e.g. for Utah 2: 0.53 ± 0.19).

The average number of phase singularities in the LA was
similar for the bilayer and volumetric models with and with-
out fibrosis (baseline bilayer: 1.46 ± 0.57, baseline volumetric:
1.81 ± 0.72, fibrosis model bilayer: 1.27 ± 0.52, fibrosis model
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volumetric: 1.08 ± 0.55, averaged across all fibrosis stages). By
contrast, adding fibrotic remodelling decreased the number
of phase singularities in the RA for bilayer and volumetric
models (baseline bilayer: 3.92 ± 0.71, baseline volumetric:
3.39 ± 0.93, fibrosis model bilayer: 1.24 ± 0.46, fibrosis model
volumetric: 1.11 ± 0.54).

LA surface area was in the range 76.1−111.3 cm2 (mean
and standard deviation: 93.4 ± 5.9 cm2), while RA surface
area was in the range 87.4−136.7 cm2 (mean and standard
deviation: 109.4 ± 8.1 cm2). Considering the relationship
between PS number and chamber surface area across 1000
cases, there was a weak positive linear relationship between
RA surface area and mean PS number in the RA for bilayer
models (slope 0.04, R2 0.25). There was no relationship
between RA surface area and mean PS number in the RA
for volumetric models (R2 0.06), or between LA surface
area and mean PS number in the LA for bilayer or volumetric
models (R2 < 0.12).
3:20230038
4. Discussion
4.1. Main findings
We have presented an open-source pipeline for generating
atrial models at scale from imaging or EAM data. The
methodology works for anatomies that include or exclude
atrial structures outside of the atrial body (for example,
pulmonary veins). The pipeline calculates a set of universal
atrial coordinates that are used to add atrial structures
to the mesh, to add connections between the atria, and to
add fibres from a choice of atlas fibre fields. Models can
be constructed in either bilayer or volumetric format. We
applied the multi-modality pipeline to generate 1000 biatrial
bilayer and volumetric models from a CT-derived set
of anatomies, five biatrial bilayer meshes from MRI, and
EAM meshes. We demonstrated that simulated activated pat-
tern during regular pacing depends on anatomy and fibre
field. We simulated fibrillation across the 1000 bilayer and
volumetric models and found that fibrillation dynamics are
sensitive to the choice of model representation. Adding fibro-
tic remodelling to the simulations stabilized the re-entries
and reduced the impact of model choice on fibrillatory
patterns. As such, we have shown that the representation of
thickness appears to be secondary for informing fibrillatory
wavefront patterns. Our methodology enables both patient-
specific mechanistic studies and large in silico trials of
atrial arrhythmia treatment approaches. These tools are avail-
able in an open-source interactive application to provide a
user-friendly workflow.

4.2. Choice of fibre field
The pipeline includes seven different DT MRI fibre fields for
the endocardium and epicardium of the left and right atria,
as well as an average DT MRI fibre field [19], and a rule-
based fibre field from Labarthe et al. [18]. The choice of
fibre field has a small effect on local activation time fields
for paced data, similar to the findings of He et al. [25], but
it has a large effect on fibrillatory dynamics. These findings
extend our previous study in which we performed LA only
or RA only simulations and found small differences in
local activation time maps [19]. In our current study, we
find larger differences in root mean squared error because
differences accumulate in biatrial models. In our previous
study, we found that DTMRI fibre field 1 resulted in the
most similar AF wavefront patterns to the other fibre fields,
motivating our choice in this study to use DTMRI dataset 1
and the average dataset. Similarly, we found PS density
maps for DTMRI1 and DTMRIa were more highly correlated
to each other than to PS density maps with the Labarthe fibre
atlas. In the case that EAM data are available with pacing
from multiple directions, electrical anisotropy may be esti-
mated [26,27] and these directions could be used as the
fibre directions.

Previously presented methodologies for incorporating
fibre directions in anatomical meshes include Piersanti
et al. [8] who use a Laplace–Dirichlet rule-based method for
the atria and ventricles. Azzolin et al. [9] developed the
AugmentA pipeline for generating atrial models with fibres,
which they demonstrated on 29 LA datasets. AugmentA
uses a statistical shape model to generate a RA anatomy for
a LA anatomy input meaning the pipeline has the advantage
that it can produce biatrial models for LA only input meshes.
We build on their approach to test our pipeline across a wide
range of biatrial CT (1000 instances), MRI and EAM ana-
tomies, demonstrating that our methodology is robust to
anatomical variability. Aspects of these pipelines could be
combined to enable in silico trials at scale.
4.3. Choice of model type: volumetric versus bilayer
We demonstrated that fibrillatory dynamics are sensitive to
model representation, including the choice of whether a
bilayer surface model, or volumetric model is used. In general,
fibrillatory dynamics quickly diverged between the two rep-
resentations, leading to different phase singularity maps.
Adding fibrotic remodelling anchored and stabilized re-
entries, and consequently reduced the dependence of
the phase singularity map on model representation (see
figure 10 and table 1). This suggests that once a model has
been personalized to fibrosis information from imaging data,
or electrophysiology measurements, the choice of whether a
volumetric or bilayer representation is used has less of an
effect on model predictions.

Our study also highlights the importance of personalizing
conduction velocity and electrophysiological properties for
informing model predictions. Once heterogeneity in activation
and repolarization properties are incorporated in the model,
the effects of fibres and wall thickness on AF dynamics are
greatly reduced. As such, recent efforts to personalize models
to LGE-MRI data [1] and EAM data [9,28] are imperative.

It should be noted that our simulations are for homo-
geneous thickness, and modelling variations in thickness
may impact activation speed. Hansen et al. [29] used high res-
olution 3D LGE-MRI together with optical mapping to map
intramural re-entry anchored to fibrosis-insulated atrial
bundles in the right atria showing the importance of wall
thickness and fibrosis information in arrhythmia mechan-
isms. Future developments in clinical imaging and mapping
systems may enable these data to be integrated in compu-
tational models. However, currently it is challenging to
determine wall thickness from clinical MRI or EAM data,
and so a bilayer model may be an appropriate model in
this case since it is computationally efficient and allows
modelling of endocardial–epicardial dissociation [18].
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https://www.cardiacatlas.org/atriaseg2018-challenge/
https://www.cardiacatlas.org/atriaseg2018-challenge/
https://www.cardiacatlas.org/atriaseg2018-challenge/
https://www.slicer.org/
https://www.slicer.org/
https://www.paraview.org/
https://www.paraview.org/
https://bitbucket.org/aneic/meshtool/src/master/
https://bitbucket.org/aneic/meshtool/src/master/
https://bitbucket.org/aneic/meshtool/src/master/
https://opencarp.org/
https://opencarp.org/
https://opencarp.org/
https://opencarp.org/
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Finally, the type of mesh used, and the resolution of the
mesh may have an impact as large as true three-dimensional
effects. Future studies should investigate the effects of mesh
resolution [30] and heterogeneous wall thickness on arrhyth-
mia dynamics. In addition, small spatial shifts in PS
locations will decrease the correlation coefficient even if this
shift is not clinically relevant. Alternative metrics could be con-
sidered to measure the difference in the centroid location of
islands of high PS density, comparing this to ablation lesion
size or to perform this analysis on a regional basis.

4.4. Modelling at scale for in silico trials
Our pipeline enables the construction of large virtual patient
cohorts and personalized model prediction on clinical time-
scales by overcoming previous limitations including the
requirements of significant time and expertise from trained
users, significant computation time, and lack of reproducibil-
ity. We have outlined the steps involved in our pipeline, the
software requirements, time taken for the different steps and
areas of future improvement in table 2. As we move towards
an ecosystem for digital twins in healthcare [31], open-source
pipelines become increasingly more important. Rodero et al.
[32] provide a comprehensive review of cardiac in silico trials
highlighting that the number of cases included in current digi-
tal twin trials is typically small, with only a small number of
trials including more than 50 patients. This limits the applica-
bility of in silico trial results to the wider human population.
Providing a pipeline, such as the one presented here, for con-
structing models at scale, and making these models available,
should increase the size and impact of future in silico trials.

4.5. Limitations
This current pipeline starts from a segmentation and is not a
full end-to-end methodology. Our pipeline requires the user
to process anatomical shells to ensure that LA meshes are
open at the PVs and MV, and that RA meshes are open
at the vena cava and TV. An additional manual step is the
selection of landmark points. To assign the boundaries between
the PVs and LA body, the appendages and atrial body, and the
vena cava and atrial body, manually chosen threshold values
were used. A future development to standardize this could
adaptively select this threshold so that a certain percentage
area of the LA tissue forms the PV regions, or to ensure a stan-
dard average PV length. A limitation is that the pipeline
assumes the presence of four PV orifices. The approach could
be generalized to remove PV boundary conditions in the
same way that it was modified to remove the requirement of
PV and appendage tissue in the model. If data are available
in the future, atlases could also be constructed for fibre fields
with different numbers of PV.

4.6. Conclusion
We have presented an open-source pipeline for generating
atrial models at scale from imaging or EAM data. The
methodology enables both patient-specific mechanistic
studies and large in silico trials of atrial arrhythmia treatment
approaches. We used the methodology to demonstrate that
personalization of electrophysiological properties had a
greater impact on model predictions than the impact of
model type (bilayer or volumetric).
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Data accessibility. Codes for constructing biatrial bilayer and volumetric
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