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Hypergraphs capture the higher-order interactions in complex systems and always admit a factor graph
representation, consisting of a bipartite network of nodes and hyperedges. As hypegraphs are ubiquitous,
investigating hypergraph robustness is a problem of major research interest. In the literature the robustness of
hypergraphs so far only has been treated adopting factor-graph percolation, which describes well higher-order
interactions which remain functional even after the removal of one of more of their nodes. This approach,
however, fall short to describe situations in which higher-order interactions fail when any one of their nodes
is removed, this latter scenario applying, for instance, to supply chains, catalytic networks, protein-interaction
networks, networks of chemical reactions, etc. Here we show that in these cases the correct process to investigate
is hypergraph percolation, with is distinct from factor graph percolation. We build a message-passing theory of
hypergraph percolation, and we investigate its critical behavior using generating function formalism supported
by Monte Carlo simulations on random graph and real data. Notably, we show that the node percolation
threshold on hypergraphs exceeds node percolation threshold on factor graphs. Furthermore we show that
differently from what happens in ordinary graphs, on hypergraphs the node percolation threshold and hyperedge
percolation threshold do not coincide, with the node percolation threshold exceeding the hyperedge percolation
threshold. These results demonstrate that any fat-tailed cardinality distribution of hyperedges cannot lead to
the hyper-resilience phenomenon in hypergraphs in contrast to their factor graphs, where the divergent second
moment of a cardinality distribution guarantees zero percolation threshold.
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I. INTRODUCTION

Hypergraphs and simplicial complexes form the important
class of networks—so-called higher-order networks [1–5]—
representing the systems of multinode interactions. Growing
research interest is addressed to both modeling [3,6–8] higher-
order network structure and investigating dynamical processes
on top of them. Many processes and cooperative models on
the higher-order networks significantly differ from those on
ordinary networks in which each edge interconnects a pair
of nodes [3,9,10]. These include opinion dynamics, game
theory, synchronization, etc. Despite a few works having
already addressed problems related to the robustness of hy-
pergraphs [11–16] we still lack a theory for hyperedge and
node percolation on hypergraphs. In this work we focus on the
hypergraphs. The hyperedges of a hypergraph can be treated
as a second type of nodes (factor nodes), and hence the hyper-
graphs are equivalent to the factor graphs which are bipartite
graphs based on the original nodes and the factor nodes. This
representation of hypergraphs provides one with a straightfor-
ward way of treating their structural properties [12,15] and
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models and processes on them, since bipartite networks are
well studied. For example, the giant connected component of
a hypergraph coincides with the giant connected component
of the corresponding factor graph. Similarly, the hyperedge
percolation problem for a hypergraph (removal of hyperedges)
conforms the result of the removal of the factor nodes from the
factor graph. However, there exist problems, nonequivalent on
the hypergraphs and on the factor graphs. The origin of this
difference is the distinct effect of the removal of a node from
a hypergraph and the removal of a node from the factor graph.
Indeed, the deletion of a node in a hypergraph also removes
all the adjacent hyperedges; no hyperedge can change its
cardinality (unless some additional rule for transformation of
hyperedges is implemented). In contrast to this, the deletion of
a node in a factor graph doesn’t lead to the removal of factor
nodes; only the connections of the neighboring factor nodes
to the removed node disappear.

There are two classes of higher-order interactions captured
by two distinct types of hyperedges. In the first class, includ-
ing networks of social interactions, the hyperedges break only
if all but one of their nodes fail. Therefore these hyperedges
can sustain the failure of one and even more of their nodes. For
this class, existing theories and models treating hypergraphs
as their factor graphs [12,14,17] work perfectly. However,
there exists a second important class of hyperedges, which
fail as soon as one of their node is damaged. In particular, this
class includes supply chains and catalytic networks [18,19],
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protein-interaction networks [20], and networks of chemical
reactions [21]. For instance the removal of a raw material
will impede the production of a product, the absence of a
protein will impede the formation of a protein complex, and
the absence of a reactant will impede a chemical reaction
to occur. For these important hypergraphs, existing theories
do not work. In the present paper we develop a percolation
theory for such hypergraphs and show that the difference from
percolation on factor graphs can be dramatic.

To demonstrate the difference between percolation on hy-
pergraphs and on factor graphs, we explore the percolation
problem for hypergraphs and compare it to percolation on
factor graphs. Note that in a separate article published in this
issue we address hypergraph k-core percolation [22].

Here our approach builds on the message-passing theory
for percolation [23–33], which is a special case to message-
passing algorithms widely used also in epidemic spreading,
Ising models and combinatorial optimization [34–40], and
the fundamental statistical mechanics theory of percolation as
a paradigmatic example of critical phenomena [41–48]. We
derive the message-passing equations for percolation on factor
graphs and hypergraphs and apply them to random hyper-
graphs and random multiplex hypergraphs. In the first model,
a random hypergraph is described by two given distributions,
namely, a degree distribution for nodes and a cardinality dis-
tribution for hyperedges. In the second, more detailed model,
a random hypergraph is described by a given joint degree
distribution, where a degree is a list (i.e., a vector), whose
entries are the numbers of hyperedges with each cardinality,
adjacent to a node. For these two kinds of random, locally
treelike hypergraphs we obtain the criterion of the presence
of a percolation cluster (giant connected component) and the
relative size of this cluster. We show that, in contrast to ordi-
nary networks, the node and hyperedge percolation problems
for hypergraphs strongly differ from each other. However we
highlight that the percolation threshold for node percolation
on hypergraph coincides with the percolation threshold of hy-
peredge percolation on the factor graphs provided one chooses
the probability of removing hyperedges of a given cardinality
in a suitable way.

The paper is organized as follows. In Sec. II we define the
mapping between hypergraphs and factor graphs. In Secs. III
and IV we review the key equations for message passing on
factor graphs and the relevant analytical results on random
factor graphs and random multiplex factor graphs. In Sec. V
we derive the equations of the message-passing algorithm
for percolation on hypergraphs. In Sec. VI we apply these
equations to the model of random hypergraphs and random
multiplex hypergraphs with given distributions of node de-
grees and hyperedge cardinalities and obtain the relative size
of the giant connected component and the criterion of its
existence. In Sec. VII we discuss our results and indicate
other problems where results for hypergraphs and their factor
graphs may be distinct.

II. HYPERGRAPHS AND THEIR MAPPING
TO FACTOR GRAPHS

A hypergraph H = (V, EH ) is formed by a set of nodes
V and a set of hyperedges EH where each hyperedge α of

FIG. 1. Schematic representation of a hypergraph (a) and its cor-
responding factor graph (b). The factor graph is a bipartite network
of connections between nodes (filled circles) representing the nodes
of the hypergraph and factor nodes (filled triangles) representing
the hyperedges of the hypergraph with a factor node connected to
a node in the factor graph if and only if this node is incident to the
corresponding hyperedge in the hypergraph.

cardinality mα indicates a set of mα nodes

α = [
v1, v2, . . . vmα

]
. (1)

We indicate with N = |V | the cardinality of the node set and
with M = |EH | the cardinality of the hyperedge set.

A hypergraph H = (V, EH ) can always be represented as
a factor graph (see Fig. 1). The factor graph is a bipartite
network G = (V,U, E ) formed by a set of nodes V , a set
of factor nodes U , and a set of edges each one linking one
node and one factor node. The factor graph G = (V,U, E )
represents the hypergraph H = (V, EH ) when the set of nodes
V of the factor graph coincides with the set of nodes of the
hypergraph and when each factor node α ∈ U represents the
hyperedge α ∈ EH . Therefore we have N = |V | and M = |U |.
In this setting the factor graph G uniquely represents the
hypergraph H if each node i ∈ V is linked to the factor node
α ∈ U if and only if the node i ∈ V belongs to the hyperedge
α ∈ EH in the corresponding hypergraph. It follows that in this
mapping between hypergraphs and factor graphs, a hyperedge
α of cardinality m maps into a factor node of degree m.

Percolation processes characterize the size of the giant con-
nected component when nodes or factor nodes or hyperedges
are randomly removed.

In this work our goal is to highlight the similarity and
differences between percolation on hypergraphs and on their
corresponding factor graphs. These two problems coincide
when the hyperedges of the hypergraph and hence the cor-
responding factor nodes of the factor graph are randomly
removed but differ when nodes are randomly removed.

III. MESSAGE PASSING FOR FACTOR
GRAPH PERCOLATION

Factor graph percolation monitors the size of the giant
connected component, i.e., the fraction of nodes and/or the
fraction of factor nodes in the giant connected component of
the factor graph, when either nodes or factor nodes are ran-
domly removed. Let us define the message-passing algorithm
which implements percolation on the factor graph on locally
treelike factor graphs. In the locally treelike bipartite net-
works, finite cycles virtually vanish as network sizes approach

014306-2



THEORY OF PERCOLATION ON HYPERGRAPHS PHYSICAL REVIEW E 109, 014306 (2024)

infinity, and almost all cycles in these networks are infinite
[43]. In other words, the probability that a node of any kind be-
longs to a finite cycle vanishes in these infinite networks. We
emphasize that this notion doesn’t differ from that for ordinary
networks and hypergraphs. Importantly, the factor graph of a
hypergraph is locally treelike if and only if the hypergraph is
locally treelike. The message-passing algorithms are exact for
all locally treelike networks (including ordinary one-partite
networks, multipartite networks, and hypergraphs), and they
are approximate for networks having a significant fraction of
finite cycles, which is typical for real-world networks. The
message-passing algorithm is formulated on the factor graph
G = (V,U, E ) and consists in updating recursively messages
sent by nodes to factor nodes and messages sent by factor
nodes to nodes. These messages are then used to predict the
probability that each node and each factor node belong to the
giant component.

We distinguish between two types of message-passing al-
gorithms that implement factor graph percolation depending
on the type of information that is available. In particular,
the first algorithm assumes that we exactly know the initial
damage configuration, namely, the set of the removed nodes
and the removed factor nodes (importantly, this array does not
include the additional damage induced by these removals),
while the second algorithm assumes that the initial damage
configuration is unknown and we have access only to the
probabilities that nodes and factor nodes are left intact by the
initial damage.

To this end, in order to define the message-passing algo-
rithm implementing factor graph percolation we first assume
that we know whether each node i is initially damaged, xi = 0,
or it is intact, xi = 1, and whether each factor node α is
initially damaged, yα = 0, or it is intact, yα = 1.

Let us indicate with N (i) the set of factor nodes α that are
the neighbors of node i and with N (α) the set of nodes that are
the neighbors of factor node α.

The message-passing algorithm consists in updating the
messages ŵi→α and v̂α→i going from node i to factor node
α and from factor node α to node i, respectively. The message
ŵi→α is equal to one, i.e., ŵi→α = 1 if

(i) Node i is not initially damaged, i.e., xi = 1
(ii) Node i receives at least one positive message v̂β→i =

1 from at least one of its neighbor factor nodes β different
from α, indicating that β is connected to the giant connected
component of the factor graph.

In all the other cases ŵi→α = 0.
The message v̂α→i is set to one, i.e., v̂α→i = 1 if
(i) The factor node α is not initially damaged, i.e., yα = 1
(ii) At least one of the neighbor nodes j of the factor

node α that is different from node i is connected to the giant
component. This event occurs if the factor node α receives at
least one positive message ŵ j→α = 1 from one of its neighbor
nodes j different from i.

In all the other cases v̂α→i = 0.
Consequently these messages are updated according to the

following rules:

ŵi→α = xi

⎡
⎣1 −

∏
β∈N (i)\α

(1 − v̂β→i )

⎤
⎦,

v̂α→i = yα

⎡
⎣1 −

∏
j∈N (α)\i

(1 − ŵ j→α )

⎤
⎦. (2)

The indicator function r̂i that node i is in the giant con-
nected component is 1 (r̂i = 1) if and only if

(i) Node i is not initially damaged, i.e., xi = 1
(ii) Node i receives at least one positive message v̂α→i = 1

from at least one of its neighbor factor nodes.
In all the other cases r̂i = 0.
The indicator function ŝα that the factor node α is in the

giant component is 1 (ŝα = 1) if and only if
(i) The factor node is not initially damaged, i.e., yα = 1
(ii) At least one of the neighbor nodes i of the factor node

α is connected to the giant component. This event occurs if the
factor node α receives at least one positive message ŵi→α = 1
from one of its neighbor nodes.

In all the other cases ŝα = 0.

We have therefore that r̂i and ŝα are defined in terms of the
messages as

r̂i = xi

⎡
⎣1 −

∏
α∈N (i)

(1 − v̂α→i )

⎤
⎦,

ŝα = yα

⎡
⎣1 −

∏
i∈N (α)

(1 − ŵi→α )

⎤
⎦. (3)

In a number of situations, however, although we might
have access to the real hypergraph structure, we might not
have full knowledge of the initial damage of the nodes. In
particular, we might know only that nodes and factor nodes
of degree m are initially intact (i.e., not damaged) indepen-
dently at random with probability pN and p[m]

H , respectively,
and that the probability of the initial damage configuration
{xi} = {x1, x2, . . . , xN }, {yα} = {uα1 , xα2 , . . . , xM} is

P({xi}, {yα}) =
N∏

i=1

pxi
N (1 − pN )1−xi

×
M∏

α=1

(
p[mα ]

H

)yα
(
1 − p[mα ]

H

)1−yα
. (4)

Consequently in this scenario the message-passing algorithm
needs to predict the fraction of nodes and factor in the giant
component using only the probabilities pN and p[m]

H .
In this case we should consider an alternative message-

passing algorithm in which the messages sent from nodes to
factor nodes are indicated by wi→α and the messages sent
from factor nodes to nodes are indicated with vα→i. The mes-
sage wi→α is obtained by averaging ŵi→α over the probability
distribution P({xi}, {yα}) and similarly vα→i is obtained by av-
eraging v̂α→i over the probability distribution P({xi}, {yα}). In
this way we obtain the following message-passing algorithm:

wi→α = pN

⎡
⎣1 −

∏
β∈N (i)\α

(1 − vβ→i )

⎤
⎦,

vα→i = p[mα ]
H

⎡
⎣1 −

∏
j∈N (α)\i

(1 − w j→α )

⎤
⎦. (5)

014306-3



GINESTRA BIANCONI AND SERGEY N. DOROGOVTSEV PHYSICAL REVIEW E 109, 014306 (2024)

In this framework the probability ri that node i is in the
giant component and the probability sα that factor node α is
in the giant component are given by

ri = pN

⎡
⎣1 −

∏
α∈N (i)

(1 − vα→i )

⎤
⎦,

sα = p[m]
H

⎡
⎣1 −

∏
i∈N (α)

(1 − wi→α )

⎤
⎦, (6)

where these probabilities can be obtained by averaging r̂i and
ŝα over the probability distribution P({xi}, {yα}). Node perco-
lation on a factor graph implies characterizing the fraction
of nodes R and the fraction S of factor nodes in the giant
component,

R = 1

N

N∑
i=1

ri,

S = 1

M

M∑
α=1

sα, (7)

as a function of pN and p[m]
H . In particular, putting p[m]

H = 1 for
all values of m one can characterize node percolation on the
factor graph as a function of pN , while by putting pN = 1 and
p[m]

H = pH for all m we can characterize factor node percola-
tion on the factor graph. Both transitions are continuous and
occur at a percolation threshold that can be determined by lin-
earizing the message-passing algorithm. Indeed for wi→α � 1
and vα→i � 1, Eqs. (5) can be linearized to obtain

wi→α = pN

∑
β∈N (i)\α

vβ→i,

vα→i = p[mα ]
H

∑
j∈N (α)\i

w j→α. (8)

This linearized equation admits a nonzero solution if and only
if

�(pN , pH ) > 1, (9)

where �(pN , pH ) with pH = (p[2]
H , p[3]

H , . . .) is the maximum
eigenvalue of the factor graph nonbacktracking matrix A of
block structure

A =
(

0 BNH

BHN 0

)
(10)

with the nonbacktracking matrices BNH and BHN having ele-
ments given by

BNH
(i→α);(β→ j) = pNδ j,i(1 − δβ,α ),

BHN
(α→i);( j→β ) = p[mα ]

H δα,β (1 − δi, j ), (11)

where δx,y indicates the Kronecker delta. Therefore the transi-
tion occurs for

�(pN , pH ) = 1. (12)

For a uniform damage, i.e., p[mα ]
H = pH independent of mα ,

two percolation thresholds for an arbitrary locally treelike

factor graph coincide, p(factor graph)
cH = p(factor graph)

cN , which can
be obtained from the block matrix A, Eqs. (10) and (11).

IV. ANALYTICAL SOLUTION OF FACTOR GRAPH
PERCOLATION

A. Percolation on a random factor graph

The message-passing algorithms from Sec. III enable us to
obtain the giant connected component for an arbitrary factor
graph as long as its structure is close to a locally treelike
one. However, in a number of cases we do not have access
to the full topology of the factor graph, and we know only
its structural statistical properties. In this case we can get
analytical predictions for factor graph percolation as long
as we assume that the factor graph can be modeled by a
random bipartite network. In particular we assume that the
factor graph is a random sparse bipartite network where the
nodes have a degree distribution P(q) and the factor nodes
have a degree distribution Q(m), where P(q) and Q(m) are
arbitrary, provided the total number of links incident to the
nodes is equal to the total number of links of the factor nodes,
N〈q〉 = M〈m〉. The factor graph G is uniquely determined
by the N × M incidence matrix a of elements aiα , where
aiα = 1 if node i is connected to factor node α and otherwise
aiα = 0. We assume that the factor graph G is drawn from the
distribution

P(G) =
∏
i,α

paiα
iα (1 − piα )1−ai,α , (13)

with piα indicating the probability that in an uncorrelated
factor graph node i is connected to factor node α,

piα = qimα

〈m〉M . (14)

Here the degree sequences {qi} and {mα} of the nodes and of
the factors nodes are drawn from the distribution P(q) and
Q(m). In the limit N → ∞ and M → ∞ with M/N = O(1),
standard percolation describes a critical phenomenon that can
be studied with statistical mechanics approaches.

In particular, factor graph percolation can be captured by
two nonlinear equations: (1) for the probability W , that if we
follow a random edge of a factor node, then we reach a node
in the giant component, and (2) for the probability V , that by
following a random edge of a node we reach a factor node
in the giant component. The probability W can be obtained
by averaging the messages wα→i over P(G), and, similarly,
the probability V can be obtained by averaging the messages
vi→α over the probability P(G). In this way, starting from the
message-passing algorithm Eqs. (5), it is straightforward to
derive the following equations for W and V :

W = pN

∑
m

qP(q)

〈q〉 [1 − (1 − V )q−1],

V =
∑

m

p[m]
H

mQ(m)

〈m〉 [1 − (1 − W )m−1]. (15)

The fractions R and S of, respectively, the nodes and factor
nodes in the giant connected component are expressed in
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terms of the probabilities W and V ,

R = pN

∑
q

P(q)[1 − (1 − V )q],

S =
∑

m

p[m]
H Q(m)[1 − (1 − W )m], (16)

where these equations are obtained by averaging Eqs. (6) and
(7) over P(G). Assuming that both the degree distributions
P(q) and Q(m) have finite second moments, one can linearize
the right-hand sides of Eqs. (15), which leads to the following
criterion of the existence of the giant connected component in
this network:

pN
〈q(q − 1)〉

〈q〉

〈
p[m]

H m(m − 1)
〉

〈m〉 > 1. (17)

In particular if p[m]
H = pH do not depend on m, then we obtain

pN pH
〈q(q − 1)〉

〈q〉
〈m(m − 1)〉

〈m〉 > 1. (18)

One can check that the phase transition occurring when the
left-hand side of Eq. (17) equals 1 is continuous. Setting
pH = 1 in Eq. (18) we obtain the node percolation threshold
p(factor graph)

cN , and setting pN = 1 we obtain the factor node per-
colation threshold p(factor graph)

cH . These two thresholds coincide
similarly to ordinary uncorrelated networks. Hence we have
p(factor graph)

cN = p(factor graph)
cH = p� with p� satisfying

p� 〈q(q − 1)〉
〈q〉

〈m(m − 1)〉
〈m〉 = 1. (19)

This equation and Eq. (17) can be compared with the Molloy-
Reed criterion p〈q(q − 1)〉/〈q〉 > 1 for ordinary networks
[42], which is valid for both the node and edge percolation
problems when 〈q2〉 is finite.

B. Generalized degree distribution

The random bipartite network is not the only possible
ensemble in which factor graph percolation can be solved
analytically. Indeed, it is possible for any nonuniform hy-
pergraph (and corresponding factor graph) to construct a
multiplex hypergraph [12,49] (see Fig. 2) encoding for its
structure, where each layer is formed by a random hypergraph
having hyperdges of fixed cardinality. These leads to a cor-
related hypergraph (and corresponding factor graph) structure
in which each node i is associated a vector of degrees q(i) =
{q2(i), q3(i) . . . qm(i) . . .} where qm(i) indicates the number
of hyperedges of cardinality m to which node i belongs and
each hyperedge α of cardinality mα = m describes one higher-
order interaction in the layer m. The corresponding factor
graph ensemble is a multiplex ensemble of factor graphs
�G = (G[2], G[3], . . . , G[m] . . .), such that in each network G[m]

in layer m the generic node i has degree qm(i) and all the factor
nodes have constant degree m. Let us indicate with the matrix
a(m) the incidence matrix of the factor graph in the m layer of
the multiplex factor graph. The probability of this multiplex
factor graph �G is given by

P( �G) =
∏
m�2

∏
α∈K(m)

∏
i

[
p(m)

iα

]a(m)
iα

(
1 − p(m)

iα

)1−a(m)
iα

, (20)

FIG. 2. A multiplex hypergraph (a) [12,49] is a nonuniform (i.e.,
containing hyperedges with different cardinalities) hypergraph rep-
resented by a multiplex network in which each layer m accounts for
only the hyperedge of cardinality m in the hypergraph. In (a) the
multiplex hypergraph has two layers m = 2 and m = 3. A multiplex
hypergraph can be mapped to a multiplex factor graph (b) in which
each layer is formed by the factor graph corresponding to the hy-
pergraph in corresponding layer of the multiplex hypergraph. When
each layer of the hypergraph is drawn from a random hypergraph
ensemble, the multiplex hypergraph in general will be correlated.
Similarly the corresponding multiplex factor graph will also be
correlated.

where K(m) indicates the set of hyperedges of cardinality m
and where the probability p(m)

iα of observing a link between
node i and factor node α in layer m is given by

p(m)
iα = qm(i)

〈qm〉N , (21)

where 〈qm〉N = mMm. In this ensemble, factor graph perco-
lation is captured by the probability Wm that by following a
random edge of a factor node in layer m we reach a node in the
giant component and by the probability Vm that by following
a random edge of a node in layer m we reach a factor node in
the giant component. These probabilities obey the equations

Wm = pN

∑
q

qmP(q)

〈qm〉

[
1 −

M∏
m′=2

(1 − Vm′ )qm′−δm,m′

]
,

Vm = p[m]
H [1 − (1 − Wm)m−1], (22)

which can be obtained directly by averaging the message-
passing algorithm (5) over the probability P( �G) given by
Eq. (20). Here qmP(q)/〈qm〉 is the degree distribution of an
end node of an edge in layer m. The probabilities R and S that
a node and a factor node are in the giant component of the
multiplex factor graph are given by

R = pN

∑
q

P(q)

[
1 −

M∏
m′=2

(1 − Vm′ )qm′

]
,

S =
∑

m

p[m]
H Q(m)[1 − (1 − Wm)m]. (23)

These equations describe a continuous second-order phase
transition whose critical point is determined by the condition

� = 1, (24)
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where � is the maximum eigenvalue of the matrix G of
elements

Gm,m′ = pN p[m]
H (m − 1)

〈qm(qm − δm′,m)〉
〈qm〉 . (25)

This network has a giant connected component when � > 1.

V. MESSAGE-PASSING ALGORITHM FOR HYPERGRAPH
PERCOLATION

While factor node percolation on a factor graph fully
accounts for hyperedge percolation on the corresponding
hypergraph, node percolation on a factor graph and on an
hypergraph are distinct. In node percolation on a factor graph,
a factor node (hyperedge) is still able to connect its nodes also
if one or more of its nodes are initially damaged, provided that
at least one of its nodes is connected to the giant component.
However, in node percolation on hypergraphs, a hyperedge is
able to connect a node to the giant component only if none
of its other nodes are initially damaged. In other words, the
initial damage of a single node of an hyperedge deactivates
the entire hyperedge.

Here and in the following we formulate the message-
passing algorithms that fully account for this difference.
Interestingly, the message passing for hypergraph percolation
is still conveniently defined on the factor graph representing
the hypergraph, although it fully accounts for the differences
between factor graph and hypergraph percolation. We assume
that we have full information about the hypergraph structure
completely encoded in the corresponding factor graph wiring.

The message-passing algorithm for hypergraph percolation
can be implemented for any real-world hypergraph topology
as long as the factor graph corresponding to the hypergraph is
locally treelike.

As we did for the message-passing algorithms for factor
graph percolation, we will first formulate the message-passing
algorithm under the assumption that we will have full knowl-
edge of the initial damage. Subsequently, we will formulate
the message-passing algorithm that can be applied to the case
in which we have only access to the probability that nodes and
hyperedges are randomly removed.

To start with, let us formulate the message-passing algo-
rithm able to predict hypergraph percolation when we have
full information about the entity of the initial damage. To
this end, let us assume that we know whether each node i is
initially damaged xi = 0 or intact xi = 1 and whether each
hyperedge α is initially damaged yα = 0 or intact yα = 1.
Note that the variable yα does not take into account the dam-
age induced by the removal of nodes. The message-passing
algorithm implementing hypergraph percolation consists in
updating the messages ω̂i→α and v̂α→i going from node i to
factor node α and from factor node α to node i. The message
ω̂i→α is equal to 1, i.e., ω̂i→α = 1, if

(i) Node i is not initially damaged, i.e., xi = 1
(ii) Node i receives at least one positive message v̂β→i = 1

from at least one of its neighbor factor nodes β different from
α, indicating that it is connected to the giant component of the
hypergraph.

In all the other cases ω̂i→α = 0.
The message v̂α→i is equal to 1, i.e., v̂α→i = 1 if

(i) The hyperedge is not initially damaged, i.e., yα = 1
(ii) Each of the nodes j that belong to hyperedge α and

differ from the node i is intact, i.e.,
∏

j∈N (α)\i x j = 1
At least one of the nodes j that belong to hyperedge α and

differ from the node i is connected to the giant component.
This event occurs if the factor node α receives at least one
positive message ω̂ j→α = 1 from one of its neighbor nodes
different from i.

In all the other cases v̂α→i = 0.

Consequently these messages are updated according to the
following rule:

ω̂i→α = xi

⎡
⎣1 −

∏
β∈N (i)\α

(1 − v̂β→i )

⎤
⎦,

v̂α→i = yα

⎛
⎝ ∏

j∈N (α)\i

xi

⎞
⎠

⎡
⎣1 −

∏
j∈N (α)\i

(1 − ω̂ j→α )

⎤
⎦. (26)

These equations can be further simplified by introducing a
message ŵi→α that indicates the message sent by a node i to a
neighbor factor node α, under the assumption that xi = 1,

ŵi→α =
⎡
⎣1 −

∏
β∈N (i)\α

(1 − v̂β→i )

⎤
⎦, (27)

which is related to the previously defined message ω̂i→α by

ω̂i→α = xiŵi→α. (28)

The message v̂α→i can now be expressed directly in terms of
ŵi→α as

v̂α→i = yα

⎛
⎝ ∏

j∈N (α)\i

xi

⎞
⎠

⎡
⎣1 −

∏
j∈N (α)\i

(1 − x jŵ j→α )

⎤
⎦

= yα

⎛
⎝ ∏

j∈N (α)\i

xi

⎞
⎠

⎡
⎣1 −

∏
j∈N (α)\i

(1 − ŵ j→α )

⎤
⎦, (29)

where in this expression we have used the fact that v̂α→i is
nonzero only if x j = 1 for every j ∈ N (α) \ i, hence we can
safely substitute ω̂i→α with ŵi→α . The indicator function r̂i

that node i is in the giant component is 1 (r̂i = 1) if and only
if

(i) Node i is not initially damaged, i.e., xi = 1
(ii) Node i receives at least one positive message (v̂α→i =

1) from at least one of its neighbor factor nodes.
In all the other cases r̂i = 0. The indicator function ŝα that

the factor node α is in the giant component equals 1 (ŝα = 1)
if and only if

(i) The hyperedge α is not initially damaged
(ii) Each of the nodes j that belong to the hyperedge α is

intact, i.e.,
∏

j∈N (α) x j = 1
(iii) At least one of the nodes j that belong to the hyper-

edge α is connected to the giant component. This event occurs
if the factor node α receives at least one positive message
ŵi→α = 1 from one of its neighbor nodes.
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We obtain therefore that the indicator functions ŝα and r̂i

are given by

ŝα = yα

⎛
⎝ ∏

j∈N (α)\i

xi

⎞
⎠

⎡
⎣1 −

∏
i∈N (α)

(1 − ŵi→α )

⎤
⎦, (30)

r̂i = xi

⎡
⎣1 −

∏
α∈N (i)

(1 − v̂α→i )

⎤
⎦. (31)

In a number of situations, although we might have access
to the real hypergraph structure, we might not have full knowl-
edge of the initial damage of the nodes. In particular, we might
know only that nodes and hyperedges of cardinality m are
damaged independently at random with probability pN and
p[m]

H , respectively, which provides the probability distribution
P({xi}, {yα}) given by Eq. (4).

In this scenario we should consider an alternative message-
passing algorithm in which the messages sent from nodes to
factor nodes are indicated by wi→α and the messages sent
from factor nodes to nodes are indicated with vα→i, where
wi→α is obtained by averaging ŵi→α over the probability
distribution P({xi}, {yα}) and, similarly, vα→i is obtained by
averaging v̂α→i over the probability distribution P({xi}, {yα}).
In this way we obtain the following message-passing algo-
rithm:

wi→α =
⎡
⎣1 −

∏
β∈N (i)\α

(1 − vβ→i )

⎤
⎦, (32)

vα→i = p[m]
H pmα−1

N

⎡
⎣1 −

∏
j∈N (α)\i

(1 − w j→α )

⎤
⎦, (33)

where mα indicates the cardinality of hyperedge α (degree
of the corresponding factor node in the bipartite network).
In this framework, the probability ri that node i is in the
giant component and the probability sα that factor node α

(hyperedge) is in the giant component are given by

ri = pN

⎡
⎣1 −

∏
α∈N (i)

(1 − vα→i )

⎤
⎦, (34)

sα = p[m]
H pmα

N

⎡
⎣1 −

∏
i∈N (α)

(1 − wi→α )

⎤
⎦, (35)

where these probabilities can be obtained by averaging r̂i and
ŝα over the probability distribution P({xi}, {yα}). By compar-
ing the message-passing equations for hypergraph percolation
and for factor node percolation, we conclude that the hyper-
graph percolation algorithm reduces to factor node percolation
for pN = 1; however, the two algorithms differ for pN 
= 1.

Both hyperedge and node percolation are continuous and
occur at a percolation threshold that can be determined by lin-
earising the message-passing algorithm. Indeed, for wi→α �
1 and vα→i � 1, Eqs. (33) and (32) can be linearized to obtain

wi→α =
∑

β∈N (i)\α
vβ→i,

vα→i = p[mα ]
H pmα−1

N

∑
j∈N (α)\i

w j→α. (36)

This linearized equation admits a nonzero solution if and
only if

�(pN , pH ) > 1, (37)

where �(pN , pH ) with pH = (p[2]
H , p[3]

H , . . .) is the maximum
eigenvalue of the factor graph nonbacktracking matrix A of
block structure

A =
(

0 BNH

BHN 0

)
(38)

with the nonbacktracking matrices BNH and BHN having ele-
ments given by

BNH
(i→α);(β→ j) = δ j,i(1 − δβ,α ),

BHN
(α→i);( j→β ) = p[mα ]

H pmα−1
N δα,β (1 − δi, j ), (39)

where δx,y indicates the Kronecker delta. Therefore the condi-
tion for the transition is

�(pN , pH ) = 1. (40)

Note that that the hyperedge percolation threshold for a
hypergraph coincides with the factor node percolation thresh-
old for the corresponding factor graph. We observe that node
percolation on a factor graph and on a hypergraph is distinct,
and it can be shown that the percolation threshold on a hy-
pergraph is always strictly larger than for node percolation on
its factor graph provided the hypergraph is not only formed by
hyperedges of cardinality m = 2, i.e., provided the hypergraph
is not a graph. Indeed, the maximum eigenvalue of the non-
negative matrix A obeys the Collatz-Wielandt formula

� = max
x>0

min
γ

(Ax)γ
xγ

. (41)

Now let us compare the entries of the matrices A of hyper-
graphs and factor graphs in the case of p[m]

H = 1, i.e., for the
node percolation problems, Eqs. (39) and (11). Both matrices
have non-negative elements. Furthermore for an arbitrary pN ,
each entry of the matrix A of a hypergraph cannot be larger
than the corresponding entry of the matrix A of the factor
graph. Consequently, for each choice of the vector x > 0
and each value of γ = (i → α) or γ = (α → i) the ratio
(Ax)γ /xγ for the hypergraph node percolation problem is
smaller than or equal to the ratio for the factor node perco-
lation problem. This implies that for a given value of pN the
largest eigenvalue of the nonbacktracking matrix for factor
graph node percolation is larger than or equal to the largest
eigenvalue of the nonbracktracking matrix for hypergraph
node percolation. Thus this argument confirms that the node
percolation threshold on a hypergraph is either equal to or
exceeds the threshold for node percolation on the factor graph.
A closer look at the eigenvalue problem will reveal that the
equality holds only if the hypergraph reduces to a network.

This mathematical results also can be derived by the fol-
lowing physical argument. Let us compare the node and
hyperedge percolation thresholds of a hypergraph. Inspect-
ing the matrix elements in Eq. (39), we see that the node
percolation threshold pcN coincides with the hyperedge per-
colation threshold if the probability that hyperedge α of
cardinality mα is retained with probability p[mα ]

H = pmα−1
cN �

pcN . If we remove hyperedges uniformly (independently of
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FIG. 3. Factor graph node percolation (circles), hypergraph node
percolation (squares), and hyperedge percolation (diamonds) for a
factor graph and the corresponding hypergraph with N = 104 nodes
and M = 104 factor nodes (hyperedges) having the Poisson degree
distribution P(q) with 〈q〉 = 4 for nodes and Q(m) = δ(m, 4) for
factor nodes. The symbols indicate results of the Monte Carlo sim-
ulations of the percolation processes, and the solid lines indicate
results obtained with the corresponding message-passing algorithms.
Hyperedge percolation on a hypergraph coincides with factor node
percolation on the corresponding factor graph. The percolation
threshold for factor graph percolation (and hyperedge percolation)
is pc = 1/12 = 0.0833 . . . [Eq. (18)], while for hypergraph node
percolation, it is pc = 12−1/3 = 0.437 . . . [Eq. (48)].

their cardinalities), then the resulting hyperedge percolation
threshold pcH must be lower than the maximum probabil-
ity p[mα ]

H = pmα−1
cN for the nonuniform removal of edges, i.e.,

pcH < pmmin−1
cN � pcN . Thus this argument also confirms that

node percolation threshold for a treelike hypergraph exceeds
its hyperedge percolation threshold.

Now we recall that for a locally treelike graph, the node and
factor node percolation thresholds coincide, p(factor graph)

cN =
p(factor graph)

cH . Consequently we have as long as the hypergraph
does not reduce to a network,

pcN > pcH = p(factor graph)
cH = p(factor graph)

cN , (42)

and hence indeed the node percolation threshold of a lo-
cally treelike hypergraph exceeds the factor node percolation
threshold for the corresponding factor graph.

This effect is also evident from our numerical comparison
of factor graph percolation and hypergraph percolation on a
random hypergraph of 104 nodes and 104 hyperedges, having
a Poisson degree distribution with 〈q〉 = 4 and all hyperedges
of the same cardinality m = 4 (Fig. 3) and on the real hyper-
graph of U.S. Senate committees [50,51] (see Fig. 4). This
is a hypergraph where nodes are members of the U.S. House
of Representatives and hyperedges correspond to committee
memberships. The hypergraph has 1290 nodes with average
degree 9.2 and 341 hyperedges with the average size of hy-
peredges 〈m〉 = 34.8 and the maximum size of the hyperedges
mmax = 82. These two figures compare the results of numeri-
cal simulations and of the message-passing algorithm for each
of these networks having, notably, rapidly decaying degree

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

R

factor graph node percolation
hypergraph node percolation
hyperedge percolation

FIG. 4. Factor graph node percolation and hypergraph node
percolation and hyperedge percolation for a factor graph and the
corresponding hypergraph on the U.S. Senate Committee hypergraph
[50,51]. The symbols indicate results of the Monte Carlo simulations
for factor graph node percolation (circles), hypergraph node perco-
lation (squares), and hyperedge percolation (diamonds), while the
solid lines indicate results obtained with the corresponding message-
passing algorithms. The data set has N = 1290 nodes and M = 341
hyperedges; the average degree of nodes is 〈q〉 = 9.2, the average
cardinality of the hyperedges is 〈m〉 = 34.8, and their maximum
cardinality is mmax = 82.

and cardinality distributions. The message-passing algorithm
perfectly describes the indicated difference on the random
hypergraph whose corresponding factor graph is treelike, and
this algorithm provides still a good prediction of the perco-
lation process also in the case of the real hypergraph, which
deviates from the pure locally treelike approximation. In both
cases we find confirmation that the percolation threshold for
hypergraph percolation can be significantly higher than the
percolation on the corresponding factor graph. Even for the
synthetic random hypergraph with 〈q〉 = 4 and m = 4, the dif-
ference between these thresholds is surprisingly big, namely,
0.44, vs 0.08, and for the real hypergraph of U.S. Senate
committees, whose factor graph has a very low percolation
threshold; this difference is dramatic (see Fig. 4).

Interestingly, it turns out that by setting p[m]
H = πm−1 in

the factor graph percolation, one finds that the percolation
threshold πc and the node percolation threshold of a hyper-
graph, pcN , coincide, i.e., πc = pcN . That is, the percolation
threshold of node percolation on hypergraph coincides with
the percolation threshold for factor node percolation on the
corresponding factor graph when factor nodes of degree m are
left intact with probability πm−1. Note, however, that the this
mapping does not extent to the fraction of nodes in the giant
connected component.

Let us indicate with R the fraction of nodes in the giant
component of node percolation on the hypergraph (assum-
ing that pN = p ∈ [0, 1] and p[m]

H = 1 for every m), with
R(factor graph) the fraction of nodes in the giant connected com-
ponent for factor graph percolation with p[m]

H = pm−1 and
pN = 1, and let us indicate with Sm and S(factor graph)

m the frac-
tions of, respectively, hyperedges of cardinality m and factor
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nodes of degree m within the giant connected components for
these problems. Then we have

R = pR(factor graph),

Sm = pmS(factor graph)
m . (43)

VI. ANALYTICAL SOLUTION OF HYPERGRAPH
PERCOLATION

A. Percolation for the configuration model
of uncorrelated hypergraphs

We can apply the same configuration model as in Sec. IV to
uncorrelated hypergraphs. In this case a random hypergraph is
described by a given node degree distribution P(q) and a given
hyperedge cardinality distribution Q(m). Similarly to Sec. IV,
we introduce the averages V = 〈vα→i〉 and W = 〈wi→α〉 of
the messages considered in Sec. V over the distribution P(H )
for a random hypergraph, given by the same Eq. (13) as for
a random factor graph. Averaging Eqs. (33) and (32) over
the distribution P(H ), we arrive at the self-consistency equa-
tions for W and V ,

W =
∑

q

qP(q)

〈q〉 [1 − (1 − V )q−1], (44)

V =
M∑

m=2

p[m]
H pm−1

N

mQ(m)

〈m〉 [1 − (1 − W )m−1]. (45)

Averaging Eqs. (34) and (35) over P(H ), we obtain the ex-
pressions for the relative size R = 〈ri〉 of the giant connected
component in the hypergraph and for the probability S = 〈sα〉
that a hyperedge connects two nodes in the giant connected
component,

R = pN

∑
q

P(q)[1 − (1 − V )q], (46)

S =
∑

m

p[m]
H pm

N Q(m)[1 − (1 − W )m]. (47)

Assuming that p[m]
H = pH is independent of m and that 〈q2〉

is finite and linearizing Eqs. (45) and (44), we arrive at the
following criterion of the presence of the giant connected
component in this problem:

pN pH
〈q(q − 1)〉

〈q〉
∑

m

m(m − 1)Q(m)

〈m〉 pm−2
N > 1. (48)

Introducing the generating functions GP(x) ≡ ∑
q Q(q)xq of

the degree distribution P(q) and G1P(x) ≡ G′
P(x)/GP(1), and

GQ(x) ≡ ∑
m Q(m)xm of the cardinality distribution Q(m) and

G1Q(x) ≡ G′
Q(x)/GQ(1), we can rewrite this criterion in the

compact form:

pN pH G′
1P(1)G′

1Q(pN ) > 1. (49)

It is worthwhile to compare the criteria, Eqs. (17) and (48).
The term pm−2

N effectively introduces a cutoff in the cardinality
distribution and makes the sum in Eq. (48) finite even if the
first moment of this distribution diverges. Since

∑
m m(m −

1)Q(m)pm−2
N /〈m〉 < 〈m(m − 1)〉/〈m〉 if pN < 1 and Q(m) 
=

δm,2, the node percolation threshold for this model of an
uncorrelated hypergraph exceeds the hyperedge percolation

threshold in contrast to ordinary uncorrelated networks, as we
have already shown for general locally treelike hypergraphs.

Substituting the degree and cardinality distributions P(Q)
and Q(m) of the synthetic random hypergraph used for simu-
lations in Fig. 3 into Eqs. (18) and (48) [or Eq. (49)], we obtain
the exact values of the percolation thresholds for hyperedge
percolation (and factor graph percolation) and hypergraph
node percolation, 1/12 = 0.0833 . . . and 12−1/3 = 0.437 . . .,
respectively. The percolation thresholds observed in the sim-
ulations agree with these values.

Finally, let us consider Eqs. (45)–(49) in the special case
of Q(m) = δm,2, corresponding to an ordinary network, where
each edge has cardinality 2. In this case, Eqs. (48) and (49)
take the form of the standard Molloy-Reed criterion [42]
(node percolation problem). Equation (45) gives V = pW ,
and the expression for the relative size of the giant connected
component R, Eq. (46), also turns out to be standard for un-
correlated networks. Thus in this case our equations properly
reduce to the known results for node percolation on uncorre-
lated networks.

B. Percolation on multiplex random hypergraphs

On a random multiplex hypergraph we can capture hyper-
graph percolation by introducing the probability Wm that a
node belonging to a random hyperedge in layer m is occurs to
be the root of an infinite tree when this hyperedge is deleted
and the probability Vm that a random hyperedge of a node in
layer m leads to the giant component. These probabilities are
determined by the self-consistency equations:

Wm =
∑

q

qmP(q)

〈qm〉

[
1 −

M∏
m′=2

(1 − Vm′ )qm′ −δm,m′

]
,

Vm = p[m]
H pm−1

N [1 − (1 − Wm)m−1], (50)

which are Eqs. (32) and (33) averaged over the distribution
P( �G) for a random multiplex hypergraph, described by the
same Eq. (20) as for the corresponding random multiplex
factor graph. The probabilities R and S that, respectively, a
node and an hyperedge are in the giant component of the
multiplex hypergraph are given by

R = pN

∑
q

P(q)

[
1 −

M∏
m′=2

(1 − Vm′ )qm′

]
,

S =
∑

m

Q(m)p[m]
H pm

N [1 − (1 − Wm)m], (51)

where for this model of a random hypergraph,

Q(m) = 〈m〉
m

〈qm〉
〈q〉 . (52)

These equations lead to a continuous second-order phase tran-
sition for

�(pN , pH ) = 1, (53)

where �(pN , pH ) is the maximum eigenvalue of the matrix G
of elements

Gm,m′ = p[m]
H pm−1

N (m − 1)
〈qm(qm − δm′,m)〉

〈qm〉 . (54)
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The criterion of the existence of the giant connected compo-
nent is this problem is �(pN , pH ) > 1. Inspecting the matrix
elements in Eq. 54, we see that the node percolation threshold
pcN in this random hypergraph coincides with the hyperedge
percolation threshold if each hyperedge of cardinality m is
retained with probability p[m]

H = pm−1
cN � pcN . If we remove

hyperedges uniformly (independently of their cardinalities),
then the resulting hyperedge percolation threshold pcH must
be lower than the maximum probability p[m]

H = pm−1
cN for

the nonuniform removal of edges, i.e., pcH < pmmin−1
cN � pcN .

Thus the node percolation threshold for this model of an
uncorrelated hypergraph exceeds the hyperedge percolation
threshold, as we have already shown for general locally tree-
like hypergraphs.

VII. DISCUSSION AND CONCLUSION

We have formulated message-passing algorithms to inves-
tigate percolation on hypergraphs, we have studied the critical
behavior of this process on arbitrary topologies and on two
versions of the configuration model of random hypergraphs,
and we have observed a large difference between the node
and hyperedge percolation problems. The difference is par-
ticularly big when a hypergraph contains hyperedges with
large cardinalities. We have shown that the node percola-
tion threshold for a locally treelike hypergraph exceeds the
hyperedge percolation threshold. This qualitative difference
between node and hyperedge percolation on hypergraphs is
in marked contrast to ordinary networks, where these two
types of percolation do not differ much from each other, and

the node and hyperedge percolation thresholds coincide for a
locally treelike network. Moreover, if the second moment of
the degree distribution of nodes in a hypergraph is finite, then
its node percolation threshold is finite for any cardinality dis-
tribution of hyperedges, even with the first moment diverging.
That is, any fat-tailed cardinality distribution cannot lead to
the hyper-resilience phenomenon in hypergraphs in contrast
to their factor graphs, where the divergent second moment of a
cardinality distribution guarantees zero percolation threshold
and the hyper-resilience phenomenon.

The node percolation problem is the basic problem in
which results for bipartite networks cannot be directly applied
to their hypergraph counterparts. We have shown that the node
percolation threshold of a locally treelike hypergraph exceeds
this threshold for the corresponding factor graph. We have
observed this effect also in a sparse real-world hypergraph
whose structure is not treelike. One can indicate a number of
other problems and processes, where such a direct mapping
is impossible. These problems involve the removal of nodes.
This occurs, in particular, during various pruning processes,
including the k-core pruning process, cascading failures in
multilayer interdependent networks, etc., and during disease
spreading in various epidemic models.

Importantly, our equations of the message-passing al-
gorithm do not assume the absence of correlations in
hypergraphs. They allow a numerical treatment of the
problem. The final formulas have been obtained for hy-
pergraphs having no degree-degree correlations between
different nodes. We suggest that an analytical treatment of cor-
related hypergraphs is also possible in the framework of our
approach.
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