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Neointimal hyperplasia (NIH) is a pathological process occurring in the

blood vessel wall during atherosclerosis and in-stent restenosis (ISR). Due

to the abundance of vascular smooth muscle cells (VSMCs) within neointi-

mal lesions, VSMCs have long been considered as a key cellular target in

preventing NIH. Noncoding RNA molecules such as microRNA (miR-

NAs), long noncoding RNA (lncRNAs) and circular RNAs (circRNAs)

expressed in VSMCs offer unique therapeutic targets for tackling VSMC

phenotype switching, proliferation, migration and apoptosis processes

responsible for promoting NIH. In this review, we provide an extensive

overview of VSMC RNA biology, highlighting the most recent discoveries

in the field of lncRNAs and circRNAs, with the aim of identifying key

molecular players that could be harnessed for future therapeutic interven-

tions, in our quest to halt NIH in vascular disease.
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Introduction

Neointimal hyperplasia (NIH) is a process that

describes the rapid proliferation and migration of vas-

cular smooth muscle cells (VSMCs) into the neointima,

the inner layer of diseased or injured arteries. NIH

often occurs following vascular procedures to prevent

or treat heart attacks, such as percutaneous coronary

intervention (PCI) or coronary artery bypass grafting

(CABG) [1,2]. Although similar to the physiological

process of ‘intimal hyperplasia’, which occurs in new-

borns during closure of the ductus arteriosus in the

heart [3,4], NIH leads to increased deposition of extra-

cellular matrix (ECM) proteins, resulting in ‘neointi-

mal thickening’ of the vessel wall [5]. Following a

CABG procedure, greater arterial pressures across the

wall of grafted veins further exacerbate NIH, leading

to greater neointimal thickening and therefore greater

arterial narrowing [6,7].

During the advanced stages of atherosclerosis, a dis-

ease whereby the inner layers of arteries accumulate

lipid deposits, immune cells and ECM proteins, the

migration and proliferation of VSMCs into these

areas, otherwise known as atherosclerotic plaques, are

largely considered to have beneficial and protective

roles. Clinical evidence from patients with coronary

arteries disease (CAD) has revealed an inverse correla-

tion between VSMC content in the outer layers of the

plaque, also known as the fibrous cap, and the likeli-

hood of plaque rupture. This adverse vascular event

can lead to blockage of the artery feeding the heart

muscle, and result in a myocardial infarction (MI),

also known as a heart attack [8]. Unfortunately, the

protective benefit of VSMC proliferation and migra-

tion into the neointima during atherosclerosis is hin-

dered by VSMC senescence and apoptosis (i.e.

programmed cell death) [9]. Importantly, NIH is also

a key determinant of in-stent restenosis (ISR), a phe-

nomenon of arterial re-narrowing by ≥ 50% of a pre-

viously blocked coronary artery. ISR occurs in 20–
40% of heart attack patients within 6–12 months of

undergoing PCI [10,11], a nonsurgical procedure

involving the insertion of a stent to restore blood flow

in a blocked coronary artery. The extent of ISR is

assessed by angiographic imaging or intravascular

ultrasonography [12] and results in a severe reduction

of blood flow to downstream cardiac tissues, leading

to the onset of cell death in the heart muscle wall, also

known as myocardial ischaemia [13] and often pre-

sents as progressive recurrent angina [12]. Chronic

inflammation in the vessel wall, brought about by

endothelial dysfunction and/or sudden vascular injury,

provides an abundant source of growth factors [14,15],

pro-inflammatory cytokines [16-18] and chemoattrac-

tant proteins [19,20] capable of further promoting

VSMC proliferation and migration [21], as well as

inducing VSMC phenotype switching [22-24]. More-

over, since the discovery of distinct stem/progenitor

cell populations resident in the vascular wall [25], cap-

able of contributing to the VSMC pool in vascular

disease, more research has been carried out to assess

the therapeutic benefit of targeting these alternative

cell types during NIH [26-28]. Therapies aimed at

modulating VSMC functions such as proliferation,

migration and apoptosis during NIH as well as uncov-

ering VSMC-specific molecular pathways responsible

for phenotype switching and (de)differentiation will

prove vital in preventing ISR in vulnerable patients

with heart disease.

Currently, several mechanical and pharmacological

techniques are used to prevent ISR in patients who

have undergone PCI (Fig. 1). Dual antiplatelet thera-

pies and other anti-coagulant drugs are prescribed to

patients after PCI to reduce the risk of blood clot for-

mation within the stents, also known as ‘stent throm-

bosis’ [29]. Several drugs have also been trialled for

preventing ISR due to their anti-inflammatory proper-

ties including corticosteroids [30], statins [31], antioxi-

dants [32], and nitric oxide [33]. However, local

delivery of drugs using drug-eluting stents (DES) is

considered the most successful innovation for reducing

rates of ISR and the need for repeated revascularisa-

tion in PCI [34]. Following revascularisation of the

blocked coronary artery, insertion of a stent that

releases antiproliferative drugs, which prevent rapid

cell proliferation, has shown dramatic improvements

in clinical outcomes for patients. The antiproliferative

drug, sirolimus, has been successful in reducing the

incidence of ISR by preventing NIH, in single primary

lesions and complex coronary lesions [35,36], whereas

other antiproliferative drugs have been less successful,

with some studies revealing higher rates of ISR and

major cardiac events occurring with actinomycin [37],

and increased stent thrombosis with 7-hexanoyltaxol

[38]. A recent innovation in stent mechanics involving

the use of bioresorbable vascular scaffolds, which

gradually become resorbed leaving the vessel free of

foreign and thrombogenic material, has been shown to

lower the incidence of restenosis or occlusion [39]. The

BIOSTEMI trial demonstrated an improvement in tar-

get lesion failure rates after 1 year, in patients with

acute MI who had received biodegradable polymer sir-

olimus-eluting stents versus durable polymer everoli-

mus-eluting stents [40]. Unfortunately, rates of

restenosis are still high [41-43] with the most recent

clinical trial, NORSTENT, showing that repeat
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revascularisation is still required for 16.5% of PCI

patients who received a DES compared to 19.8%

receiving bare-metal stent [34]. Additionally, the wide-

spread antiproliferative effect of these drugs on the

vascular wall delays re-endothelisation, which pro-

motes clot formation and neo-atherosclerosis, and ulti-

mately increases the likelihood of another adverse

cardiovascular event [44,45]. Therefore, a cell-specific

method of targeting NIH is needed to address VSMC-

mediated NIH in the vascular wall. As such, noncod-

ing RNA (ncRNA)-based therapy may offer an alter-

native approach to targeting VSMC and preventing

NIH or ISR [46,47].

General introduction to noncoding
RNAs

Noncoding RNAs (ncRNAs) are a class of RNA

molecules that are transcribed from the genome but do

not code for a protein. Similar to protein-coding

mRNA, which only constitutes 2–3% of the tran-

scribed genome [48], they can travel into the cytoplasm

and interact with other organelles and proteins [49].

Although long considered a ‘by-product’ of mRNA

biosynthesis, ncRNAs can interact with numerous sig-

nalling pathways and alter cell function and cell fate

[50].

Fig. 1. Current pharmacological methods of ISR prevention. Multiple drugs can be used to target different pathophysiological processes

responsible for promoting ISR. Dual antiplatelet therapies (DAPT) and other anti-coagulant drugs prevent platelet aggregation, thereby

reducing the risk of stent thrombosis. Drugs with anti-inflammatory properties (corticosteroids, statins, antioxidants and nitric oxide) reduce

the influx of immune cells responsible for promoting NIH in the artery wall. Antiproliferative drugs (sirolimus, actinomycin, 7-hexanoyltaxol)

inhibit NIH by preventing VSMCs proliferation and re-endothelialisation, increasing the likelihood of stent thrombosis. Black (dashed) arrows

indicate cellular proliferation and migration. Red (closed) arrows indicate inhibition of process. ISR, in-stent restenosis; NIH, neointimal

hyperplasia; VSMC, vascular smooth muscle cell; EC, endothelial cell. This diagram was created with Biorender.com.
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Several important ncRNA classes have been

described in cardiovascular diseases (CVDs), namely

microRNAs (miRs) [51,52], long noncoding (lncRNAs)

[53] and circular RNAs (circRNAs) with important

molecular functions (Fig. 2) [54]. miRs are defined as

20–22 nucleotides long, single strand of RNA, capable

of preventing messenger RNA (mRNA) translation by

binding to the 3’ untranslated region (UTR), and in

some cases the 5’ UTR, of its target mRNA [55-57].

They are transcribed in the nucleus by RNA poly-

merase II or III enzymes, and cleaved using a protein

complex comprised of an RNAse III endonuclease,

called Drosha, and a double-stranded RNA binding

protein, called Di George syndrome critical region

gene 8. This precursor to miR is then exported to the

cytoplasm for further cleavage in an enzyme complex.

Following this, the double-stranded miR is loaded

onto the RNA-induced silencing complex ready to

capture and initiate degradation of the target mRNA

[58]. LncRNA molecules are typically defined as ≥ 200

nucleotides in length. They exhibit more specific

expression profiles than mRNA and alter expression

profiles depending cell-type and disease state [59]. They

are transcribed by RNA polymerase II and III and

undergo extensive post-transcriptional modifications

such as 50-capping, splicing, polyadenylation and, in

some cases, alternative splicing [60]. The field of

lncRNA biology has been rapidly expanding with new

transcripts identified as capable of regulating epige-

netic events [61,62], gene transcription in both cis [63]

and trans [64], protein translation [65], RNA [66], pro-

tein ‘sponging’ [67] and nuclear/cytoplasmic ‘shuttling’

[68]. Finally, circRNAs are a nonlinear lncRNAs, with

a unique circular structure formed through backsplic-

ing of pre-mRNA, which in the absence of a 5’cap and

a poly A tail confers resistance to miR-induced dead-

enylation and decay [69-71].

All three classes of ncRNAs have members involved

in cardiovascular development (e.g. miR-145/143 [72],

lncRNA Braveheart [73], circRNA cZNF292 [74]) as

well as members, which could serve as circulating

biomarkers for CVDs, such as CAD (e.g. miRNA-765

[75], lncRNA OTTHUMT00000387022 [76] and circu-

lar RNA Hsa_circ_0004104 [77]). Several key miRs

Fig. 2. Noncoding RNAs molecular

functions within the cell. All three major

NcRNAs (miRs, lncRNAs and circRNAs) are

all transcribed at the nucleus and can

migrate to different parts of the cell to carry

out their molecular functions. MiRs migrate

into the cytoplasm to prevent translation of

mRNA. LncRNA and circRNA can operate in

the nucleus to modulate gene transcription

and RNA splicing or migrate into the

cytoplasm to sponge miRs or regulate

mRNA translational processes. LncRNA can

also regulate nuclear shuttling. NcRNA,

noncoding RNA; miR, microRNA; lncRNA,

long noncoding RNA; circRNA, circular RNA.

This diagram was created with

Biorender.com.
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have been identified as important players in neointimal

formation, including miR-22, which can reduce VSMC

proliferation and limit neointima formation in a mouse

model of ISR, by promoting degradation of target

genes: ecotropic virus integration site 1 protein homo-

log (EVI1) and methyl-CpG binding protein 2

(MECP2). Reduced expression of miR-22, as well as

increased expression of EVI1 and MECP2 in diseased

human femoral arteries, confirmed its regulatory role

in VSMC proliferation and thus presents a new

VSMC-specific target for preventing NIH and there-

fore neointimal formation [78]. Another miRNA, miR-

34a, has been identified as a useful ncRNA target not

only by preventing VSMC proliferation and migration

in the neointima [79] but also promoting VSMC differ-

entiation from stem cells [80]. Moreover, regulation of

miR-34a by platelet-derived growth factor (PDGF-BB)

and transforming growth factor b1 (TGFb1), two

growth factors involved in regulating VSMC pheno-

type switching, was found to regulate miR-34a expres-

sion in a p53-dependent manner [79]. Cancer studies

have established miR-34a as an important tumour sup-

pressor and governed by the transcription factor and

oncogene activator, p53 [81], and previous studies have

confirmed a similar role in VSMCs, where elevated

levels of miR-34a lead to enhanced apoptosis and

senescence [82,83]. With a single miR exhibiting several

roles in VSMC phenotype and function, it stands to

reason that many more ncRNA molecules exist that

may present greater potential for modulating spe-

cialised functions, which in turn may be advantageous

in preventing neointimal formation.

A number of Reviews have discussed the role of

miRs in VSMC phenotype switching, proliferation and

migration, in the context of NIH, and these molecules

are summarised briefly in Table 1. We also refer the

reader to the following Reviews for a more in-depth

study [84-90]. This Review will seek to examine the

more recent discoveries in lncRNA and circRNA func-

tions in VSMC biology, with particular emphasis on

their shared signalling pathways with previously

uncovered miRs to map out new gene regulatory

mechanisms, which may aid in the future to manipu-

late VSMC behaviour during neointimal formation.

NcRNAs in VSMC phenotypic
switching

Contractile versus synthetic VSMC phenotype

Previously, a binary model of VSMC phenotype

switching was established whereby TGFb stimulation

promoted a quiescent ‘contractile’ VSMC phenotype

with upregulated expression of contractile SMC mark-

ers [smooth muscle-a-actin (SMaA), smooth muscle-

22a (SM22a), smooth muscle myosin heavy chain

(SMMHC)], whereas PDGF-BB stimulation triggered

a drop in SMC gene expression and an increase in

extracellular matrix (ECM) protein secretion, leading

to the adoption of a pro-migratory, hyperproliferative

‘synthetic’ VSMC phenotype, which contributed to

neointimal formation in vascular disease [22,91,92].

Using this model, several lncRNAs have been found

to interact with promoter regions of SMC genes

including growth arrest specific 5 (GAS5), which was

shown to prevent TGFb-induced SMC differentiation

of VSMCs by blocking Smad3 activity via RNA

Smad-binding elements [93]. The lncRNA, nuclear

paraspeckle assembly transcript 1 (NEAT1), was

found to prevent serum response factor binding to

SMC gene promoters, by sequestering the chromatin

‘activator’ WD repeat domain 5 (WDR5) under

PDGF-BB stimulation. In addition, knockdown of

NEAT1 could prevent phenotype switching of VSMCs

towards a ‘synthetic’ state, as well as reduce VSMC

proliferation and migration resulting in attenuated

NIH after carotid artery ligation in mice [94]. Con-

versely, lncRNA MRAK048635_P1 was able to pre-

vent proliferation, migration and phenotypic

switching, as well as promote apoptosis of VSMCs iso-

lated from spontaneously hypertensive rats [95].

Another ‘pro-contractile’ ncRNA was found to indi-

rectly increase SMaA protein expression by sponging a

miR, miR-548f-5p. Under TGFb stimulation, circRNA

Acta2 (circActa2) is activated, leading to the inhibition

of miR-548f-5p-mediated translational repression of

SMaA mRNA. Further studies are needed to investi-

gate whether enforced expression of circActa2 could

prevent phenotype switching of VSMCs during neoin-

timal formation [96,97]. Finally, the VSMC-specific

MYOcardin-induced Smooth muscle LncRNA, Indu-

cer of Differentiation (MYOSLID) was identified as a

product of myocardin/serum response factor activation

essential for the downstream phosphorylation of

Smad2 and actin stress fibre formation following

TGFB stimulation [98]. Taken together, a large num-

ber of new ncRNA molecules have emerged as crucial

modulators of SMC gene and protein expression and

thus present new opportunities to promote a quiescent

‘contractile’ phenotype in vascular disease.

VSMC alternative phenotypes

An increasing number of studies have shown that

VSMCs can also adopt alternative phenotypes in

response to changes in their environment. For
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Table 1. Known miRs required for VSMC phenotype switching, proliferation and migration, and their molecular targets. ND, not determine;

‘↑’ and ‘↓’ indicate up- and downregulation, respectively; ‘+’ and ‘�’ represent ‘promoting’ and ‘inhibiting’, respectively.

miRNAs

Expression

levels in

neointimal

hyperplasia

Role in VSMC quiescent vs.

synthetic phenotype Proliferation Migration Target Ref

let-7a ↓ ND – (PDGF-BB) – c-Myc, K-ras [143]

miR-21 ↑ Promotes PDGF-induced synthetic

phenotype

+ ND PTEN

Bcl2

[143,177-179]

miR-22 ↓ Promotes TGFb-induced contractile

phenotype and prevents PDGF-

induced synthetic phenotype

– – EVI-1, MECP2, HDAC4 [78]

miR-24 ↓ Promotes PDGF-induced synthetic

phenotype

+ (PDGF)

– (under

adenoviral miR-24

overexpression

in vivo)

ND Tribbles-like protein 3

Wnt4/Dvl-1/b-catenin

signalling pathway

[143]

[180]

[181]

miR-26a ↓ Promotes PDGF-induced synthetic

phenotype

+ (PDGF)

– (with miR-26a

agomir)

+ Smad1, 4

Mitogen-activated

protein kinase 6

[182],[183]

[184]

miR-29b ND Promotes PDGF-induced synthetic

phenotype

ND ND SIRT1

NF-jB

[185]

miR-31 ↑ ND + ND Large tumour

suppressor homolog 2

[186]

miR-34a ↓ ND – – Notch1 [79]

miR-124 ↓ ND – – IQGAP1 [187]

miR-133 ↑ Prevents PDGF-induced synthetic

phenotype in vitro and in vivo

– (10% FBS &

PDGF-BB)

– (10%

FBS)

Sp-1

Moesin

SRF

KLF4

[188]

miR-137 ND ND – (PDGF-BB) – IGFBP-5 [189]

miR143/

145

↓ Prevents PDGF-induced synthetic

phenotype in vitro and in vivo

– (PDGF-BB) ND CamkII-d, KLF4, Elk-1,

serum response factor,

myocardin, Nkx2.5

[72,128-130,143,

190,191]

miR-

146a

↑ ND + (control

conditions and

PDGF)

ND Kr€uppel-like factor 4 [143,192,193]

miR-195 ↓ ND – (ox-LDL) – (ox-

LDL)

Cdc42, cyclin D1,

fibroblast growth factor

[194]

miR-204 ↑ ND + (PDGF-BB, high

glucose)

ND Calveolin-1 [143,195]

miR-208 ND ND + (insulin) ND p21 [196]

miR-214 ↓ ND – – NCKAP1 [197]

miR-

221/

222

↑ ND + (PDGF-BB) ND p27, p57 [143,198]

mir-424/

322

↓ Promotes contractile phenotype � (PDGF-BB) �
(PDGF-

BB)

STIM1, calumenin,

cyclin D1

[199]

miRNA-

503

↑ ND � (PDGF-BB) �
(PDGF-

BB)

insulin receptor [199,200]

miR-541 ND ND + ND Interferon regulatory

factor

[201]

miR-599 ND ND – – TGFb2 [202]

miR-633 ↓ Promotes contractile phenotype – (PDGF-BB) – (PDGF-

BB)

JunB [203]

miR-688 ND Promotes contractile phenotype – (PDGF-BB) – (PDGF-

BB)

NOR1/cyclin D [204]
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instance, a ‘pro-inflammatory’ VSMC phenotype can

be generated under TNFa stimulation [99], a ‘foam

cell-like’ VSMC phenotype can be generated following

ox-LDL exposure [100,101], and a stem cell-like phe-

notype can be generated following vascular injury

[102,103]. One study showed that an ncRNA transcript

of the SIRT1 gene, circ-Sirt1, could inhibit inflamma-

tory phenotype switching of VSMCs under TNF-a
stimulation. This ‘anti-inflammatory’ circRNA was

found to inhibit nuclear translocation of NFjB p65

and enhance expression of its host gene by directly

binding to miR-132/212, resulting in reduced transcrip-

tional activity of NFjB [104].

A ‘pro-inflammatory’ ncRNA, Lnc-Ang362, was

found to be essential for angiotensin II-mediated pro-

liferation and migration of human pulmonary artery

smooth muscle cells. As the host transcript for miR-

221 and miR-222, upregulation of Lnc-Ang362 led to

increased expression of miR-221 and miR-222, which

in turn increased phosphorylation of NFjB proteins,

p65 and IjBa [105].

Under ox-LDL exposure, expression of lncRNA

LINC00341 was significantly increased, resulting in

enhanced VSMC proliferation and migration. Interest-

ingly, cytoplasmic LINC00341 acted as an endogenous

sponge for miR-214, thereby preventing translational

repression of FOXO4, a transcription factor, that

binds to the TFBS 3 binding motif of promoter region

for LINC00341, revealing a positive feedback loop

[106]. As such, the LINC00341/miR-214/FOXO4 path-

way presents an interesting target to prevent VSMC

differentiation towards a foam cell-like phenotype.

Another lncRNA urothelial carcinoma-associated

(UCA1) was upregulated following ox-LDL exposure

and enabled VSMC proliferation and migration. This

lncRNA acted as an endogenous sponge for miR-26a,

which regulates the expression of phosphatase and ten-

sin homolog (PTEN) required for VSMC apoptosis

[107].

VSMCs versus stem/progenitor cells

A recent study revealed the ability of a subpopulation

of VSMCs to dedifferentiate into Sca1+/CD34+ vascu-

lar progenitor cells, which undergo cellular expansion

in response to vascular injury [103]. Majesky et al.

(2017) identified Kr€uppel-like factor 4 (KLF4) as key

to maintaining their progenitor phenotype. A key reg-

ulator of VSMC phenotype commitment, KLF4, has

been studied extensively with regard to VSMC beha-

viour during neointimal formation [108-112]. Indeed,

several knockdown studies have shown that KLF4 reg-

ulates phenotype switching and proliferation of

VSMCs [110]. One study revealed that, although

SMC-specific deletion of KLF4 could delay phenotype

switching, this ultimately resulted in enhanced cellular

proliferation and accelerated neointimal formation in a

murine model of ISR [113]. The lncRNA, POU3F3,

was recently identified as a potential regulator of

KLF4 by Zhang et al. [114]. They showed that

POU3F3 is upregulated in PCI patients with ISR and

that overexpression of POU3F3 in VSMCs downregu-

lates expression of SMC genes but increases VSMC

proliferation and migration. Interestingly, POU3F3

overexpression increased KLF4 expression, but this

was attenuated by miR-449a, revealing a POU3F3/

miR-449a/KLF4 regulatory axis, providing a new reg-

ulatory route for modulating KLF4 expression in

VSMCs for the treatment of ISR.

This discovery of a subpopulation of VSMCs with

stem cell-like properties in the neointima, combined

with the existence of multiple stem/progenitors cell

families contributing to VSMC populations during

vascular remodelling [115-117], adds further complex-

ity to our understanding of cellular responses during

neointimal formation [118-120]. Studies have identified

numerous stem cell subtypes in both the medial and

adventitial layers of mammalian arteries such as Sca1+

CD34+ adventitial stem/progenitor cells [27], Sox17+

Sox10+ multipotent vascular stem/progenitor cells [26]

and mesenchymal stem cell-like cells [121] capable of

differentiating into neointimal VSMCs. As such,

molecular signalling pathways governing the differenti-

ation of these vascular stem cells will be of great inter-

est to both the field of stem cell biology and vascular

disease. For instance, miR-34a has been shown to play

a role in stem cell specialisation during neointima for-

mation [80]. Several ncRNAs have been studied during

embryonic stem cell differentiation, including miR-214

that has been found to promote VSMC differentiation

by suppressing its target gene, Quaking (QKI) [122].

Moreover, Guttman et al. (2009) identified over 100

lncRNAs with putative functions in four different

murine ESC lines involved in regulating pluripotency

as well as cell proliferation using chromatin state map-

ping [123]. Many lncRNA molecules promote cardio-

vascular lineage commitment such as Braveheart,

which ensures commitment of mesoderm towards to

the cardiac fate [73]; Fendrr, which is crucial for heart

and body wall development [124]; and (CAR)diac (M)

esoderm (E)nhancer-associated (N)oncoding RNA

(CARMEN), which maintains cardiac identity of car-

diomyocytes from cardiac precursor cells [125]. All

three lncRNAs function through epigenetic regulation

via the polycomb repressive complex 2 (PRC2); how-

ever, Braveheart is not expressed in humans. At
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present, studies focussing on lncRNA function in stem

cells have mainly identified roles for ncRNAs in main-

taining stem cell pluripotency and self-renewal rather

than differentiation [126]. However, lncRNAs, Termi-

nator, Alien and Punisher, have all been identified as

being vital for different stages of angiogenic processes

such as blood vessel development and endothelial

tubule formation [127].

As more and more studies investigate the role of

newer members of the ncRNA family, it is clear that

our understanding of VSMC origin and differentiation

will improve and eventually provide us with unique

molecular switches to manipulate VSMC towards a

desired phenotype and therefore behaviour (Table 2

and Fig. 3).

NcRNAs in VSMC proliferation and
migration

A key component of neointimal formation is the influx

of rapidly dividing VSMCs. As such, an abundance of

ncRNAs have been identified as regulators of VSMC

proliferation and migration. One of the earliest known

players in VSMC biology, the miR-143/miR-145 clus-

ter, was shown to play a key role in modulating

VSMC migration and proliferation (see Table 1). Elia

et al. (2009) demonstrated greater migratory and pro-

liferative capacity of miR-143/miR-145 knockout

VSMCs, which formed part of a wider response of

dedifferentiation towards a pro-migratory, hyperprolif-

erative and synthetic phenotype [128]. Despite this

however, in vivo knockout of both miRs led to

impaired migration of VSMCs due to dysregulated

cytoskeletal dynamics, resulting in attenuated neointi-

mal formation [129]. In the same year, these two stud-

ies were published, and another study found that miR-

143/miR-145-deficient mice exhibited greater neointi-

mal lesion formation, with VSMCs appearing to be

‘locked in’ a synthetic state [130]. More recently, the

circRNA, circ-LRP6, was shown to have several miR-

145 binding sites, allowing it to ‘sponge’ miR-145 as

seen by colocalisation of these two RNAs in P-bodies

using fluorescence in situ hybridisation [131]. Impor-

tantly, silencing of circ-LRP6 led to increased miR-145

levels with VSMCs exhibiting reduced proliferation

and migration, and increased VSMC differentiation

markers, reinforcing an atheroprotective role for miR-

145. However, the authors note that this inverse rela-

tionship could only be seen under TGFb treatment

conditions, and that under PDGF stimulation, circ-

LRP6 expression followed that of miR-145 expression

patterns. Moreover, hypoxic conditions were shown to

cause significant downregulation of miR-145

expression, with circ-LRP6 expression levels remaining

largely unaffected, a pattern that was observed in

atherosclerotic vessels isolated from ApoE-/- knockout

mice. Nevertheless, viral delivery of circ-LRP6-shRNA

led to reduced NIH. The relationship between miRs

and circRNAs highlights the complex nature of RNA

regulation in VSMCs, which can substantially alter

depending on the cellular conditions and disease con-

text, but provides a promising use for circ-LRP6 as a

useful molecular switch to prevent ISR following PCI.

Unsurprisingly, circ-LRP6 silencing was found to

reduce expression of the miR-145 target, KLF4, which,

as discussed previously, plays a vital role in modulat-

ing vascular stem cell differentiation.

Countless other signalling pathways governing pro-

liferation and migration have been discovered to be

under ncRNA regulation. Indeed, the lncRNA,

lncRNA-steroid receptor RNA activator (LncRNA-

SRA), is upregulated during NIH in mice following

femoral artery wire injury and was found to promote

VSMC proliferation and migration by triggering phos-

phorylation of the MEK/ERK/CREB pathway [132].

The lncRNA, BRAF-activated noncoding RNA

(BANCR), was found to promote VSMC proliferation

and migration through phosphorylation and activation

of the JNK pathway. Importantly, BANCR expression

was increased in VSMCs under both TNFa stimula-

tion in vitro and in human atherosclerotic tissues

ex vivo [133]. The nuclear lncRNA, Giver, was shown

to play an important role in regulating expression of

genes associated with cell proliferation and oxidative

stress through epigenetic regulation. Das et al. (2018)

showed that Giver expression can be induced following

angiotensin II treatment of rat VSMCs by promoting

transcription of its neighbouring gene, Nr4a3. Using

chromatin immunoprecipitation, Giver was shown to

enrich RNA polymerase activity and prevent histone

H3 trimethylation of lysine 27 at the Nox1 gene pro-

moter, as well as promote transcription of pro-inflam-

matory genes, interleukin-6, Ccl-2 and TNF-a [134].

The lncRNA, smooth muscle-induced lncRNA

enhances replication (SMILR), was found to regulate

the late mitotic phase of cell division and could bind

directly to centromere protein F (CENPF), a mitotic

centromere protein [135], thereby promoting human

saphenous vein VSMC proliferation following treat-

ment with PDGF and interleukin 1-a. Reduced expres-

sion of SMILR in unstable atherosclerotic plaques and

plasma taken from patients undergoing carotid

endarterectomies provides a useful insight into the

potential of promoting SMILR expression in vascular

disease to reduce the risk of adverse coronary events

[136].
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Two other lncRNAs, lnc-RNCR3 and lncRNA-

430945, have recently been identified as regulators of

VSMC proliferation and migration, with elevated

levels of both lncRNAs seen in human atherosclerotic

lesions. LncRNA-430945, in particular, was found to

act mainly through activation of the RhoA signalling

pathway by promoting the expression of receptor tyro-

sine kinase‑like orphan receptor 2 [137]. Knockdown

of lncRNA 430945, using small interfering RNA, led

to reduced angiotensin II-induced VSMC proliferation

and migration. Similarly, knockdown of lnc-RNCR3

saw a significant drop in VSMC proliferation and

migration; however, this was found to further aggra-

vate atherosclerosis and promote inflammation in mice

[138]. Interestingly, lnc-RNCR3 appeared to promote

EC proliferation by acting as a competing endogenous

RNA (ceRNA) for miR-185-5p, resulting in elevated

levels of KLF2. Whether a similar regulatory network

exists in VSMCs remains to be seen.

The lncRNA, lnc-00113, was also found to be highly

expressed in the serum of atherosclerosis patients, and

silencing of lcn-00113 was found to suppress prolifera-

tion, but promote migration of VSMCs and HUVECs.

Lnc-00113-mediated proliferation was considered to

occur through activation of the PI3K/Akt/mTOR

pathway in HUVECs; however, these findings have yet

to be confirmed in VSMCs [139]. Finally, the previ-

ously mentioned ceRNA, GAS5, was downregulated

following PDGF-BB stimulation in VSMCs. Overex-

pression of GAS5 could prevent PDGF-BB-induced

VSMC proliferation and migration by acting as a

‘molecular sponge’ for miR-21 [140]. Crucially, exo-

some release of GAS5 from GAS5-overexpressing ECs

could reduce VSMC proliferation and migration, and

vice versa, highlighting an important role for GAS5 in

VSMC-EC crosstalk. Moreover, GAS5 was found to

regulate the b-catenin signalling pathway through

nuclear localisation of b-catenin in both VSMCs and

ECs [141]. Importantly, this study provides an excep-

tion to the rule that most lncRNAs are cell specific,

therein providing both an opportunity for multicellular

approach to targeting NIH, but also a heightened risk

of off-target effects with unwanted consequences on

EC growth and consequently stability and integrity of

a vulnerable endothelium.

A multitude of lncRNAs and circRNAs has been

identified in recent years (Table 3 and Fig. 4), with

important roles in VSMC proliferation in particular.

In some cases, ncRNAs appear to share the same role

in cancer cells, and potentially, this overlap will pro-

vide useful clues to investigate previously unknown

pathways across the two different cell types and

pathologies.

NcRNAs in VSMC apoptosis and
survival

Most studies attempt to address NIH, by targeting

pathways responsible for the initial presence and activ-

ity of VSMCs. Nevertheless, several studies have

Table 2. Summary of newly discovered members of lncRNA and circRNA family involved in regulating VSMC phenotype commitment and

specialisation, and ncRNA expression levels under different external stimuli and/or CVD pathologies and their molecular targets. ‘↑’ and ‘↓’
indicate up- and downregulation, respectively; ‘+’ and ‘�’ represent ‘promoting’ and ‘inhibiting’, respectively.

ncRNA Stimulus Expression following stimulus or in CVD

VSMC

phenotype

Promotes/

Inhibits

(+/�) Target Ref

LncRNAs

Lnc-

Ang362

Angiotensin

II

(pulmonary arterial hypertension patients) Inflammatory + miR-221/

222

[105]

NEAT-1 PDGF-BB ↑ (PDGF-BB) Synthetic + WDR5 [94]

POU3F3 N/A ↑ (in PCI patients with ISR) Stem cell + KLF4

miR-449a

[114]

GAS5 TGFb ↓ (CAD patients) Contractile � Smad3 [93,205]

MYOSLID TGFb ↓ Neointimal lesions of arteriovenous fistula

tissue

Contractile + Smad2 [98]

Linc00341 ox-LDL ↑ (ox-LDL) Foam cell � miR-214 [106]

UCA1 ox-LDL ↑ (ox-LDL) Foam cell + miR-26a [107]

CircRNAs

Circ-Sirt1 TNF-a ↓ (neointima of atherosclerotic tissues) Inflammatory � p65

miR-132/

212

[206]

CircActa2 TGFb ↑ (TGFb) Contractile + miR-548f-5p [96,97]
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revealed the merit of targeting ncRNAs involved in

subsequent events, which determine the long-term sur-

vival of VSMCs in the ever-growing neointima

(Table 4 and Fig. 5). Indeed, several miRs have been

found to play a key role in regulating VSMC apopto-

sis including miR-210, miR-21 and miR-26a. Using

human carotid artery SMCs, miR-210 expression was

shown to prevent VSMC apoptosis in human carotid

artery SMCs by directly targeting the tumour suppres-

sor gene and adenomatous polyposis coli [142], thereby

providing a novel therapeutic target that could prevent

late-stage VSMC apoptosis responsible for fibrous cap

rupture. MiR-21 was also found to have a protective

role in preventing VSMC apoptosis, promoting cell

proliferation and preventing dedifferentiation, by tar-

geting PTEN and B-cell lymphoma 2 (Bcl-2) to induce

downregulation and upregulation of its target mRNAs,

respectively [143]. Similarly, miR-26a was also shown

to target PTEN against H2O2-induced apoptosis,

thereby conferring protection through activation of the

AKT/mammalian target of rapamycin (mTOR) path-

way [144].

An important role for PTEN in VSMC function

has previously been investigated. One study showed

that expression of PTEN increases in apoptotic

VSMCs 12 h following balloon injury in rat carotid

arteries. Importantly, overexpression of PTEN pre-

vented Akt phosphorylation, resulting in increased

VSMC apoptosis [145]. Conversely, PTEN overex-

pression was found to suppress PDGF-induced

VSMC proliferation [146] and angiotensin II-induced

VSMC proliferation and migration [147]. Given

PTEN’s instrumental role in regulating VSMC apop-

tosis, proliferation and migration, VSMC-specific

ncRNAs, capable of manipulating PTEN activity,

present a useful means of targeting VSMC behaviour.

More recently, the circular RNA and miRNA

sponge, circSLC8A1, was found to modulate PTEN

activity by sponging miR130b/miR-494 to suppress

progression of bladder cancer cells [148].

Studies have detected the expression of miR-130b in

murine embryonic stem cell cultures as well as adult

tissues [149]. Importantly, miR-494 was found to have

a proliferative role in human coronary artery SMCs,

with overexpression resulting in reduced proliferation

of murine SMCs and attenuated neointimal formation

following femoral arterial wire injury [150]. Whether

the circSLC8A1/miR-130b/miR-494/PTEN axis exists

in VSMCs, and exerts a similar effect as seen in cancer

cell lines, has yet to be determined. Nevertheless,

Fig. 3. Diagram representing newly

discovered members of lncRNA and

circRNA family involved in regulating VSMC

phenotype commitment and specialisation

under different external stimuli. VSMC

phenotype is regulated by different ncRNAs

during specialisation towards a ‘pro-

inflammatory’ phenotype (Lnc-Ang362, CirC-

Sirt1), ‘synthetic’ phenotype (NEAT1),

‘contractile’ phenotype (GAS5, CircActa2,

MYOSLID) and ‘foam cell-like’ phenotype

(Linc00341, UCA1). VSMCs can also adopt

a SPC phenotype under KLF4 regulation,

itself regulated by lncRNA POU3F3. Finally,

lncRNA CARMEN is required for

cardiomyocyte lineage specification, and

Terminator, Alien and Punisher are each

required for different stages of

cardiovascular development. NcRNAs in

green and red highlight ncRNAs that

promote and inhibit the relevant molecular

pathway, respectively. NcRNA, noncoding

RNA; lncRNA, long noncoding RNA;

circRNA, circular RNA; ESC, embryonic

stem cell; SPC, stem/progenitor cell; KLF4,

Kr€uppel-like factor 4. This diagram was

created with Biorender.com.
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research conducted thus far presents a compelling case

for the exploration of this pathway in VSMCs, which

may prove useful in redefining the rates of VSMC pro-

liferation and apoptosis during neointimal formation.

Several other ncRNAs have also been implicated in

the regulation of VSMC apoptosis pathways, most

notably through the p53 pathway, an important

tumour suppressor pathway responsible for triggering

cell cycle arrest and apoptosis. One study showed that

Linc-p21, a lncRNA transcribed upstream of a critical

cell cycle regulator, Cdkn1a [151], acts as a down-

stream repressor of p53 target genes by binding to

hnRNP-K and guiding it to target genes destined for

transcriptional repression [152]. Moreover, Linc-p21

was found to form a positive feedback loop, further

promoting p53 transcriptional activity by preventing

ubiquitin–proteasome degradation by binding to

mouse double minute 2 (MDM2), an E3 ubiquitin–
protein ligase in human aortic VSMCs. Importantly,

Linc-p21 expression was found to be significantly

downregulated in atherosclerotic plaques of ApoE-/-

mice as well as patients with coronary heart disease.

As mentioned previously, GAS5 plays an important

role in preventing TGFb-induced SMC differentiation

[93] and becomes downregulated under PDGF-BB

stimulation [140]. It is associated with high blood pres-

sure and has been shown to play a key role in VSMC

apoptosis [141]. Knockdown of GAS5 in VSMCs was

found to not only protect against H2O2-induced apop-

tosis but also accelerate VSMC proliferation and

migration, and promote dedifferentiation towards a

synthetic phenotype.

The known lncRNA molecule, ANRIL, transcribed

from the CVD risk locus on chromosome 9p21, was

found capable of forming a circular RNA molecule,

circ-ANRIL. Despite the finding that a high circ-

ANRIL to ANRIL ratio was associated with a lower

risk of CAD in patients, overexpression of circ-

ANRIL in HEK293 cells and human primary SMCs

was found to promote cell apoptosis and prevent cell

proliferation through p53 activation. circ-ANRIL was

also found to bind to RNA binding proteins required

for ribosomal assembly complex and RNA splicing

[153]. Finally, another ncRNA associated with VSMC

Table 3. Summary of ncRNA family involved in regulating VSMC proliferation and migration, expression levels under different external

stimuli and/or CVD pathologies and their molecular targets. ND, not determine; ‘↑’ and ‘↓’ indicate up- and downregulation, respectively; ‘+’

and ‘�’ represent ‘promoting’ and ‘inhibiting’, respectively.

ncRNA

Expression following

stimulus and/or in CVD

Promotes/Inhibits

proliferation (+/�)

Promotes/Inhibits

migration (+/�) Target Ref

miR-145 ↑ (TGFb)

↓ (PDGF-BB)

↓(hypoxia)
↓ (aneurysm)

↓ (murine atherosclerosis)

↑ (murine hypertension)

� � KLF4

Myocardin

ELK-1

[72,131]

circ-LRP6 ↓ (TGFb)

↓ (PDGF-BB)

No change (hypoxia)

No change (aneurysm)

No change (murine atherosclerosis)

No change

(murine hypertension)

+ (TGFb) + (TGFb) miR-145 [131]

LncRNA-SRA ↑ (mouse model ISR) + + MEK/ERK/CREB [132]

BANCR ↑ (TNF-a) + + Jnk [133]

Giver ↑ (angiotensin II) + (Angiotensin II) ND NONO [134]

SMILR ↓ (unstable atherosclerotic plaques) + (PDGF, IL1-a) ND CENPF [207,208]

lnc-RNCR3 ↑ox-LDL treatment

↑ (human atherosclerotic lesions)

+ + miR-185-5p (EC) [138]

lncRNA-430945 ↑(human atherosclerotic lesions) + (Angiotensin II) + receptor tyrosine kinase‑like

orphan receptor 2 (ROR2

[137]

lnc-00113 ↑(human atherosclerosis + � PI3K/Akt/mTOR

(EC)

[139]

GAS5 ↓(Hypertension) �
(VSMC and EC)

�
(VSMC and EC)

b-Catenin nuclear translocation [141]
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apoptosis has been investigated in the context of tho-

racic aortic aneurysms. LncRNA, HIF 1a-antisense
RNA 1 (HIF1a-AS1), is upregulated in patients with

aneurysms and promotes apoptosis by regulating the

expression of caspases 3 and 8, and Bcl2 proteins

[154].

Often considered two sides of the same coin, VSMC

apoptosis and proliferation are frequently regulated by

the same ncRNA molecule. As these two vital events

can determine the rate of neointimal thickening,

ncRNAs targeting both may significantly improve our

chances of tackling pathological remodelling of the

vessel wall.

Noncoding RNAs as biomarkers for MI
and CAD

Numerous ncRNAs have been found to play key role in

VSMC biology and vascular pathology. However, in the

absence of any concrete methods for targeting these

ncRNA in vascular disease, other clinical uses for these

ncRNAs have been put forward, including their suitabil-

ity as CVD biomarkers. Several ncRNAs have been

identified as useful predictors of MI, the culminating

event of neointimal formation whereby the advanced

atherosclerotic plaque has either ruptured or

encroached into the blood vessel significantly enough to

require revascularisation [155]. MiRs, miR-1, miR-133,

miR-208 and miR-499, were shown to be upregulated in

the serum of patients following acute MI [156]. Elevated

levels of lncRNAs, HIF1a-AS1, member 1 opposite

strand/antisense transcript 1 and mitochondrial long

noncoding RNA uc022bqs.1 (LIPCAR), were also posi-

tively correlated with MI. Moreover, LIPCAR upregu-

lation was found to have the greatest predicative ability

for patients with ST-segment elevation myocardial

infarction (STEMI) [157] and was found to be associ-

ated with left ventricular remodelling and heart failure

[158]. On the other hand, circRNA_081881 was signifi-

cantly downregulated in the plasma samples of acute

MI patients, which appeared to target PPARc expres-

sion in macrophages to prevent foam cell formation

[159]. Another CVD pathology whereby VSMC func-

tion plays an important role is in CAD. Reduced expres-

sion of platelet-derived miRs, miR-126 and mir-199,

was also associated with CAD [160]. Unfortunately,

miR-126 findings were not replicable [161]. The

lncRNA, ANRIL and circ-ANRIL precursor, is

another known biomarker for CAD in patients with

type II diabetes [162]. More pertinently, elevated plasma

expression levels of ANRIL are increased in patients

with ISR [163], and high levels of circ-ANRIL are

Fig. 4. Noncoding RNAs govern signalling

pathways required for VSMC and EC

proliferation and/or migration. Different pro-

inflammatory stimuli (PDGF-BB, angiotensin

II, TNF-a) triggers upregulation of ncRNAs

(SMILR, Lnc430945 and Giver, BANCR).

LncRNA-SRA promotes activation of the

MEK/ERK/CREB pathway. Meanwhile, Lnc-

RNCR3 and Lnc-00113 are upregulated in

proliferative ECs and VSMCs, with their

molecular signalling pathways delineated in

ECs only. Finally, GAS5-mediated VSMC-EC

cross-talking controls both VSMC and EC

proliferation and migration by affecting b-

catenin nuclear translocation. NcRNAs in

green and red promote and inhibit relevant

molecular pathway, respectively. ‘?’

denotes unknown pathway. NcRNA,

noncoding RNA; lncRNA, long noncoding

RNA; EC, endothelial cell; VSMC, vascular

smooth muscle cell; KLF2, Kr€uppel-like

factor. This diagram was created with

Biorender.com.
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associated with less severe CAD due in part to its

atheroprotective role [164]. Nine other circRNAs

(circ_0089378, circ_0083357, circ_0082824,

circ_0068942, circ_0057576, circ_0054537, circ_0051172,

circ_0032970 and circ_0006323) were differentially

expressed in CAD patients [165], and their mechanism

of action appeared to converge on the miR-130a-3p

responsible for modulating expression of transient

receptor potential cation channel subfamily M member

3, which regulates VSMC contractility and proliferation

[166]. However, due to a small samples size, the signifi-

cance of these circRNAs requires further investigation.

The role of miRs as biomarkers in various CVDs is

well established [167]. However, conflicting reports of

miRs expression levels in pathology, as seen with miR-

210 (Table 4), present an important difficulty in assess-

ing their predictive value [52]. Studies have also been

carried out to examine lncRNA biomarker potential;

however, due to their low detectability and sporadic

expression levels, they may not prove as useful as

other ncRNAs [168]. CircRNAs are more abundant,

have greater cytoplasmic accessibility and are more

stable within the body [169]. As such, circRNAs pre-

sent the most potential for monitoring and detecting

CVD development and pathology, and future studies

should attempt to not only delineate their signalling

network and cellular function, but also seek to deter-

mine any predictive value they may present in the

diagnosis and treatment of CVDs.

Future perspectives and conclusion

As evidenced by the latest research in ncRNA biology,

numerous avenues are available to modulate VSMC

presence and behaviour in the neointima (Fig. 6). With

the emergence of newer sequencing technologies for

identifying and characterising complex ncRNA mole-

cules and their targets, identifying unique molecular

signalling pathways governing VSMCs during neointi-

mal formation have become easier to unravel

[170,171]. Despite this, novel treatment strategies tar-

geting these ncRNAs directly are sorely lacking. More-

over, lncRNAs present additional difficulties as future

therapeutic targets due to their low evolutionary con-

servation, resulting in an absence of murine homo-

logues through which to test their therapeutic potential

[172].

Fortunately, our understanding of ncRNAs in can-

cer therapy resistance has shed a useful light on a

complex disease, and as such has spurred the develop-

ment of specialised nanotechnologies and RNA-guided

precision medicine [173], which may pave the way for

future CVD treatment. However, the evident overlap

of ncRNAs, which regulate VSMC proliferation and

apoptosis as well as cancer cell proliferation and inva-

sion, presents an additional tumorigenic risk for these

molecules in the treatment of vascular disease.

As it stands, the less invasive use of ncRNAs as

biomarkers provides a compelling therapeutic tool for

CVD, and genetic variation in the coding regions of

several ncRNAs has revealed important associations

for CVD risk [153,174-176]. As ncRNA signalling net-

works that govern VSMC phenotype, apoptosis, pro-

liferation and migration become mapped out over

time, more techniques will develop to harness the

potential of ncRNAs and provide new ways of fine-

tuning the vascular microenvironment with the aim of

preventing NIH, and its adverse outcomes.

Table 4. Summary of ncRNAs involved in regulating VSMC apoptosis and survival in neointimal hyperplasia, their expression in CVD and

molecular targets. ‘↑’ and ‘↓’ indicate up- and downregulation, respectively; ‘+’ and ‘�’ represent ‘promoting’ and ‘inhibiting’, respectively.

ncRNA Expression in CVD

Promotes/Inhibits

(+/�) Target Ref

miR-21 ↑ � PTEN

Bcl2

[143,209]

miR-26a ↓ � PTEN [144]

miR-210 ↑ (human atherosclerosis) ↓ (advanced

atherosclerosis)

� adenomatous polyposis

coli

[210,211]

circ-ANRIL ↓(high CAD burden) + P53 [153]

circSLC8A1 (bladder cancer

cells)

N/A + miR-130b/miR-494 [148]

Linc-p21 ↓ (murine atherosclerosis) + hnRNP-K MDM2 [152]

GAS5 ↓(murine microvascular dysfunction & arterial

hypertension)

+ (H2O2) b-catenin nuclear

translocation

[141]

HIF1a-AS1 ↑ (TAA patients) + Caspase 3 & 8 Bcl2 [154]
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Fig. 5. Noncoding RNA regulators of VSMC apoptosis and survival pathways. Several miRs regulate PTEN expression in VSMCs to target

activity of the PI3K/Akt/mTOR pathway (miR-26a, miR-21). Other ncRNAs (blue) have been shown to modulate PTEN activity and apoptosis

in bladder cancer cells (miR-130b, miR-494, circSLC8A1). NcRNAs also regulate caspase activation, either through Bcl2-mediated regulation

(miR-21, HIF1a-AS1), or through the tumour suppressor, p53 (Linc-p21, circ-ANRIL). Interference of b-catenin nuclear translocation is

dependent on GAS5, which promotes VSMC apoptosis or inhibits VSMC viability. Black arrows indicate ncRNA expression levels in the

neointima. Green designates anti-apoptotic/pro-proliferative pathways, whereas red designates pro-apoptotic/antiproliferative pathways.

NcRNA, noncoding RNA; miRs, microRNAs; PTEN, phosphatase and tensin homolog; EC, endothelial cell; VSMC, vascular smooth muscle

cell. This diagram was created with Biorender.com.
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