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Abstract

In the first part of this thesis, we give the theoretical foundations of random matrix

theory through the definitions of a random matrix, a random probability measure and

the corresponding empirical spectral distribution we will be working with. The main

technical tool of the first paper is also defined rigorously and analyzed deeply, which is

the Stieltjes transform method.

We then use this tool to prove optimal convergence of the empirical spectral distribution

of random sample covariance matrices to the deterministic Marchenko-Pastur distri-

bution. We also give new results about the rigidity of the eigenvalues of this random

sample covariance matrix as well as about the rate of their convergence.

In the second part of this thesis, we define another important and more general technical

tool which works additionally well with non-Hermitian random matrices and that is

the Dyson equation method which was used in the second paper. Just like the Stieltjes

transform method, it is also defined rigorously and analyzed deeply.

We then prove new local laws about a random matrix model that interpolates between

the Marchenko-Pastur distribution, the elliptical law and the circular law. Through

our work these local laws can now be considered universal, which means that they are

independent of the initial distribution of the random matrix entries.

We finally give an overview of our new results and provide new directions of study.
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Chapter 1

Introduction

1.1 Random matrix theory

Random matrix theory is an active research area of modern mathematics combining

Mathematical and Theoretical Physics, Mathematical Analysis and Probability, and

with numerous applications, for example in Theoretical Physics, Number Theory,

Combinatorics and further in Statistics, Financial Mathematics, Biology and Engineering.

[4], (ch.3: applications of random matrices).

The main goal of Random Matrix Theory is to provide an understanding of the

properties of random matrices, that is matrices that have as elements random variables,

real, complex or quaternion. One important direction of investigation is the study of

the eigenvalue distribution of such matrices when the matrix dimension is large. Many

quantities in physics and other applied areas are modeled by the eigenvalues of such

matrices.

The origins of random matrices can be traced back to the works of Wishart in 1928 and

James in 1960 in the discipline of Statistics, where random matrices were used to derive

distributions for numerous statistics of normal multivariate random variables. A lot

of development in this mathematical field was due to the work of Wigner in Nuclear

Physics around 1950. Wigner was the first to suggest that the fluctuations of nuclei
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resonances can be described in terms of the properties of eigenvalues of very large

symmetric matrices with random entries.

An observable in quantum mechanics can be characterized by a self-adjoint linear

operator in a Hilbert space, its Hamiltonian, which we may think informally of as

a matrix of infinitely many dimensions. This suggests that random matrix theory

should be dealing with general properties of the underlying generic Hamiltonians,

most importantly such global features as the Hermiticity, the time-inversion invariance

as well as other symmetries Hamiltonians may obey from general principles. Wigner

hoped that the output of the model, that is the distribution of the eigenvalues for

large-dimensional Hamiltonians will be universal and independent of the details of

the entries. It would be common to the majority of systems sharing the corresponding

symmetries. [46] (section 1.1: random matrices in nuclear physics).

Along those lines Wigner succeeded in calculating nontrivial spectral characteristics of

random real symmetric matrices with independent, identically distributed entries, the

mean density of the eigenvalues and demonstrated that in the limit of large matrix size

it is given quite generally by the semi-circle law.

1.2 The Wigner semi-circle law

Consider a random symmetric N × N matrix X with independent and identically

distributed entries (xij) for i ≤ j ∈ {1, ..., N} and then consider the distribution of its

random eigenvalues.

It turns out that as the dimension of the matrix increases the random distribution of the

eigenvalues becomes deterministic provided we impose these two conditions on the

matrix entries so that they don’t get too large:

E[xij ] = 0, Var[xij ] = 1.

Since the dimension is also getting large we need to normalize the matrix so that the
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eigenvalue distribution is confined to an interval independent of N. For this reason, we

consider the eigenvalues of the random matrix W := 1√
N
X with

E[wij ] = 0, Var[wij ] =
1

N
.

It turns out that the relative frequency histogram ρN of the positions of the N scaled

random eigenvalues for large N, is close to the following deterministic law f :

ρN ≈ f,

where f is a probability density supported in [−2, 2], which is a scaled semi-circle

centered at (0, 0) :

f(x) =
1

2π

√
4− x2.

Figure 1.1: Semi-circle law from [27].

This was proved back in 1958 by Wigner, [64]. The approximation details will be

clarified in the following chapters.
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1.3 The Marchenko-Pastur law

Another famous example of a deterministic distribution comes from the consideration

of a large random sample covariance matrix.

For this, we consider firstly a random N ×M matrix X with i.i.d. centered entries with

unit variance and then multiply it with its transpose. That means that we are considering

the random covariance matrix XXT and get to study its random eigenvalues, after we

normalize it as W := 1
NXX

T .

For this model, it turns out that as the dimensions N and M increase, the relative

frequency histogram µN of the positions of the N random eigenvalues of the Hermitian

and positive semi-definite square matrix 1
NXX

T approaches the following law g:

µN ≈ g,

where g is a probability density supported in [λ−, λ+], which is called the Marchenko-

Pastur distribution. The constants λ−, λ+ are defines as follows. First, we take the

limit:

d := lim
N,M→∞

M

N
∈ (0, 1],

and the we define the endpoints:

λ± := (1± d)2.

The distribution g is then given by the following density,

g(x) =
1

2πλ

√
(λ+ − x)(x− λ−)

x
, x ∈ [λ−, λ+].

This was proved back in 1973 by Marchenko and Pastur, [44]. Again, the approximation

details will be clarified in the next chapters.
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Figure 1.2: Marchenko-Pastur law from [13].

1.4 The circular law

We now turn our attention to non-Hermitian random matrix models which generally

have complex eigenvalues.

One famous such example is the case of a random matrix X that has independent

identically distributed complex entries, without any required symmetry in them.

This means that we are considering an N ×N random matrix X with i.i.d. complex

entries (xij) such that:

E[Re(xij)] = 0, Var[Re(xij)] = 1/2,

E[Im(xij)] = 0, Var[Im(xij)] = 1/2.

If we consider now the 2-dimensional relative frequency histogram cN of the positions

of the N random eigenvalues of the scaled matrix W := 1√
N
X with expectation zero

and complex variance 1
N , we get that:

cN ≈ h,
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where h is the complex uniform distribution on the unit disk, i.e.:

h(z) = 1|z|≤1.

Figure 1.3: Circular law from [12].

This is known as the circular law. For random matrices with a Gaussian distribution for

the entries, the circular law was established in 1965 by Ginibre, see [31]. Around 1980,

Girko introduced an approach which allowed to establish the circular law for more

general distributions of the matrix entries, see [32].
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1.5 The elliptic law

The circular law result was extended in 1988 by Sommers, Crisanti, Sompolinsky and

Stein to an elliptical law for ensembles of matrices with the properties described next,

(see [59]).

Let (ξ1, ξ2) be a random vector in C2 where both ξ1 and ξ2 have mean zero and unit

complex variance. We say that a random matrix X = (xij)
N
i,j=1 belongs to the complex

elliptic ensemble if the following conditions hold:

• (Independence). {xii : i ≥ 1}∪{(xij , xji) : 1 ≤ i < j} is a collection of independent

random elements.

• (Common distribution). Each pair (xij , xji), 1 ≤ i < j is an i.i.d. copy of (ξ1, ξ2).

• (Flexibility of the main diagonal). The diagonal elements {xii : i ≥ 1} are i.i.d.

with mean zero and finite variance.

• (Correlations). We have that E[ξ1ξ2] = ρ, where ρ ∈ (−1, 1) is a universal

correlation constant for the random matrix X.

If dN is the 2-dimensional relative frequency histogram of the positions of the random

eigenvalues of the scaled version of this random matrix model W := 1√
N
X , then we

have that:

dN ≈ k,

where k is the complex uniform distribution on the ellipse centered at (0, 0) and with

its edges at (1− ρ, 0) and (1 + ρ, 0) :

k(z) :=
1

π(1− ρ2)
1{

z∈C
∣∣∣ (Rez)2

(1+ρ)2
+

(Imz)2

(1−ρ)2
≤1

}.
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Figure 1.4: Elliptic law from [12].

1.6 Local laws

Since the random matrix W we are usually dealing with is normalized, we have that

its spectrum is of constant order, or in other words the operator norm ∥W∥ is of order

1. Since W has N eigenvalues, the typical separation of the eigenvalues is of order
1
N . Individual eigenvalues are expected to fluctuate from their mean locations but

as it turns out for eigenvalues of random matrices these fluctuation are really small,

eigenvalues are rigid.

This allows us to talk about convergence of the eigenvalue distribution in short scales

on an interval where there is just a constant O(1) amount of them in contrast to a large

O(N) amount of them. In general, if the fluctuations of a random process are not small

this can turn out to be impossible, as it is for example in the Poisson point process.
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Figure 1.5: Local laws.

This convergence on short scales for the eigenvalue distribution has numerous ap-

plications and is technically useful. We give a description of it for our previous

models:

Wigner matrix. We will define a certain "zooming mechanism" regarding the "scale"

of convergence of the random distribution of the eigenvalues, that is a mechanism for

creating peaks at each interval in the real line with a constant amount of eigenvalues

and a smoothing-out until the next one. Here, the typical separation of the eigenvalues

is of order O( 1
N ) everywhere in the support except from the edges and this mechanism

can create peaks in each such small interval of that order where there is a constant

amount of eigenvalues. Near the edges we have a typical separation of order O( 1
N2/3 ).

We still get convergence to the semi-circle law with such a "bandwidth" aligned to the

random eigenvalue distribution.

Covariance matrix. We will define the same mechanism for the eigenvalue distribution

of a random covariance matrix. There is a strong accumulation of eigenvalues near zero

when d = 1, which creates a singularity in the limiting Marchenko-Pastur distribution

which approximates the random eigenvalue distribution. Due to this, the typical

separation of eigenvalues there is of smaller order O( 1
N2 ). Away from this point, the
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separation is of typical order O( 1
N ) but again, near the right edge there must be a

smaller amount of eigenvalues and so the separation is of slightly larger order O( 1
N2/3 ).

We still get convergence to the Marchenko-Pastur distribution when we "zoom in" to

these intervals but now greater care is needed for our mechanism process, especially

near the singularity.

Circular law. Here the zooming process is different since the eigenvalues are complex.

We use a mechanism for creating peaks arising from small circles around each individual

eigenvalue. Here the typical separation of the eigenvalues is of orderO( 1√
N
) everywhere

inside the support of the unit disk. This means that we can create a random distribution

which gives more mass to circles of diameter O( 1√
N
) inside the unit disk while also

following the random eigenvalue distribution. This would still converge to the the

circular law for large N.

Elliptic law. We use the same zooming process as we do with the local circular law

to create small circles inside the domain of the ellipse of diameter O( 1√
N
), which is

the typical separation of the random eigenvalues inside the ellipse. The eigenvalue

distribution, aligned with this zooming mechanism still converges to the elliptic law.

1.7 Discussion about the new results

This section will be technical and will provide a description about the past results and

the new original contributions that have been made during my work as a PhD student

at Queen Mary university.

1. Local Marchenko-Pastur law.

Let XN = X/
√
N , where X is a N × N matrix with entries xij = Re(xij) + iIm(xij),

where Re(xij), Im(xij) are i.i.d. real random variables with mean 0 and variance 1
2 , so

that E(xij) = 0 and E|xij |2= 1 for i, j = 1, ..., N. We assume that the random variables

have finite fourth moments.

Let λi, i = 1, ..., N denote the eigenvalues of the positive semi-definite matrix X∗
NXN
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with 0 ≤ λ1 ≤ ... ≤ λN . If we denote by ρN the empirical spectral density of the

eigenvalues:

ρN (E) =
1

N
# {i ≤ N |si ≤ E} ,

and by ρ(E) the density of the Marchenko-Pastur distribution:

ρ(E) =
1

2π

√
4

E
− 1,

we have that ρN → P weakly in probability, where P is the cumulative density of ρ. We

show that this convergence holds locally at an optimal scale. Let’s comment here about

the previous results so far.

In [22], Erdös-Schlein-Yau-Yin established the convergence of the empirical spectral

density for general covariance matrices to the Marchenko-Pastur law in the bulk on

small intervals for XN being a M ×N matrix with M < N . They used a decomposition

by minors for the diagonal elements of the resolvent to establish a self-consistent

equation for the Stieltjes transform SN of ρN . Large deviation estimates and a continuity

argument were then used to show the convergence of the spectral measure on small

intervals (involving polynomial corrections) in the bulk distribution. These methods

have been extended to the "hard" edge for N ×N matrices and logarithmic rather than

polynomial corrections by Cacciapuoti-Maltsev-Schlein in [14]. More precisely, the

authors showed that the fluctuation of the Stieltjes transform
√
ESN away from

√
ESρ

is on the order of
√√

E
Nη and they obtained convergence of the counting function of the

eigenvalues everywhere including close to the "hard" edge. Eigenvalue rigidity with

polynomial corrections for the "bulk" and "soft" edges for entries with sub-exponential

decay can be found in Pillai-Yin [54].

In this work, we obtain optimal bounds on the expectations of high moments of the

fluctuation Λ = SN − Sρ on the optimal scale and the previous bound
√√

E
Nη gets

improved to
√
E

Nη without any logarithmic corrections. Our methods and results apply to

the "bulk" as well as to the "soft" and "hard" edges. The main objective of this work is to

extend the results and the methodology of [15] to a "hard edge setup". This is the case
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when the limiting measure has a square root singularity near 0 with typical distance

between the eigenvalues of the order of 1
N2 . We were able to simplify the proof of

Theorem 4.2.1 in [15] by avoiding different cases for the "bulk" and the "edges". Unlike

in the Wigner case, where both edges are "soft", the presence of the "hard" edge at 0

allows us to extend the bounds on the real part of the Stieltjes transform to the negative

real line, thus also yielding a fluctuation for the individual eigenvalue near the "hard"

edge that is decreasing with the eigenvalue number. In summary, this paper improves

on [14] by removing the logarithmic corrections and improving the fluctuation bounds

while keeping the same optimal scale of convergence. We also extended the proofs in

[35,62] on fluctuations of quadratic forms to a "soft edge setup" by improving a factor

of |Sρ| to a factor of Im(Sρ).

To show our results, we used the Stieltjes transform method which involves a parameter

z ∈ C that depends on N . We define:

SN (z) =

∫
R

1

x− z
ρN (x)dx

and

S(z) =

∫
R

1

x− z
ρ(x)dx,

where z = E + iη, with E ∈ R representing the position of an eigenvalue and

0 < η(N) ≤ 1 representing the local scale of the convergence for the two distributions.

It is proven that for:
Nη

|
√
z|

≥M, (1.1)

for a suitable large constant M and for each power q with 1 ≤ q ≤ c0

(
Nη
|
√
z|

)1/8
and for

each z ∈ ZE,η =
{
E, η ∈ R : E2 + η2 − 4|η|≤ 4E

}
or E < 0 :

P
(
|
√
z(SN (z)− Sρ(z))|≥ K

|
√
z|

Nη

)
≤ (Cq)cq

2

Kq
, (1.2)

for some constants C, c0 and for each K > 0.

Relation (1.1) gives the optimal scaling according to the position of the eigenvalues,
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namely we have that for E close to 0 :

η ≳ 1
N2 while for E away from the "hard" edge: η ≳ 1

N .

Relation (1.2) gives the optimal bound on the convergence of the Stieltjes transforms.

In the "hard" edge the term
√

|z| corrects this convergence, as we have that |
√
z(SN (z)−

Sρ(z))|→ 0 in probability in the optimal scaling.

This theorem has as a consequence a bound on the convergence rate of the empirical

spectral distribution to the Marchenko-Pastur distribution. Letting:

P (E) =

∫ E

0
ρ(x)dx,

we compare it to ρN . With the same assumption as before, we have that:

P
(
|ρN (E)− P (E)| ≥ Kmin

{√
E,

logN

N

})
≤ (Cq)cq

2

Kq
, (1.3)

for all E ∈ R, K > 0, N > N0 and for each q ∈ N with 1 ≤ q ≤ c0

(
Nη
|
√
z|

)1/8
.

Relation (1.3) is not optimal since it is known that the fluctuations between the number

of eigenvalues predicted by the counting measure and the M-P distribution are of the

order of
√
logN
N but the technique used here couldn’t provide such a result.

Finally the rigidity of the eigenvalues was proven. There exist constants C, c,N0, ϵ > 0

such that:

P
(
|λi − γi|≥ K

logN

N

(
i

N

))
≤ (Cq)cq

2

Kq
, (1.4)

for i = 1, ..., ⌈N/2⌉, N > N0, K > 0, and q ∈ N with q ≤ N ϵ.

Furthermore, for i ≤ logN we have that:

P
(
|λi − γi|≥ K

i2

N2

)
≤ (Cq)cq

2

Kq/2
. (1.5)

In this theorem the factor i
N accounts for the higher density at the "hard" edge. Here

we focus on hard-edge rigidity, since proofs of soft-edge rigidity require control of the
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largest eigenvalue which, to our knowledge, is not currently available in the case of

truncated entries with four moments, in either the Wigner or the Sample Covariance

case.

The terms γi are defined as the classical locations of the eigenvalues predicted by the

M-P distribution, that is: ∫ γi

0
ρ(E)dE =

i

N
.

In particular, we obtain the fluctuation of the eigenvalues near the "hard" edge to be

of the order of logN
N2 . The fluctuations of eigenvalues in the "bulk" and "soft" edges

of both the Gaussian Unitary Ensemble and the Wishart Ensemble are known to be

respectively of the order
√
logN
N in the bulk and

√
log k

k1/3N2/3 for the k-th eigenvalue from

the edge, k → ∞ (see [36,60]). To our knowledge similar results are not yet available

for the "hard" edge.

2. Universality of correlated covariance matrices.

In the second part of this thesis, we study the spectrum of matrices of the form X1X
∗
2 ,

where the matrices X1 and X2 are correlated according to a parameter τ ∈ [0, 1]. This

topic has a particularly wide application in Quantum Chromodynamics.

For τ = 0 we have two completely uncorrelated matrices whereas for τ = 1 we have two

completely correlated matrices (X1 = X2) and we can recover the Marchenko-Pastur

distribution in the limit N → ∞.

The goal of this analysis is to determine the distribution (law and support) of the

complex eigenvalues of X1X
∗
2 when the entries of each matrix are general i.i.d. random

variables. This means that we are proving universality results, so that we can extend a

recent work by Akemann, Byun and Kang in [5], where the entries there were assumed

to be Gaussian. Due to this assumption, the techniques that were used there could not

be adapted to our analysis, so we followed the techniques used in [7].
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Specifically, the model we are examining are matrices of the form X1X
∗
2 where

X1 =
√
1 + τP +

√
1− τQ, X2 =

√
1 + τP −

√
1− τQ

and P,Q areN ×N random matrices with i.i.d. entries and τ is a parameter that models

the correlation between the matrices X1 and X2.

In [5] it was shown that the eigenvalue counting measure of the matrix X = X1X
∗
2 (for

random Gaussian entries of the matrices P,Q) converges to the measure µ̂, where

dµ̂(ζ) =
1

1− τ2
1

2π|ζ|
1Ŝτ

(ζ)d2ζ (1.6)

and d2ζ is the Lebesgue measure on the complex plane. The support Ŝτ of this measure

is given by:

Ŝτ :=

{
ζ = x+ iy :

(
x− 2τ

1 + τ2

)2

+

(
y

1− τ2

)2

≤ 1

}
. (1.7)

It represents a transition from the circular law to an ellipsoid and finally to the

Marchenko-Pastur law according to the values of the correlation parameter τ .

The universal result we prove here is the convergence of the empirical spectral density

to the measure dµ̂ independently of the choice of the distributions for P,Q and extend

it on local scales.

The techniques used are based on the recent publication "Local elliptic law" [7], where

the Dyson equation method is used for non-Hermitian matrices with correlated entries

after they get "hermitized" through the Hermitization technique. The Dyson equation

is a powerful technique and except for universality, it can also provide local laws for the

limiting spectral measure.

The main idea in our analysis is to firstly prove a universal uniform limiting local elliptic

law for the distribution of the eigenvalues of the auxiliary Dirac matrix:

D :=

 0 X1

X∗
2 0

 (1.8)
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and then recover the eigenvalues of the correlated covariance matrix X1X
∗
2 . The

Hermitization matrix, resolvent matrix and then the Dyson equation are defined for

this auxiliary matrix to provide the uniform elliptic distribution for its eigenvalues

depending on the non-hermiticity parameter τ , in a similar way to [7]. Specifically, for

the Dirac matrix, we have a local law given by the distribution:

dµ(ζ) :=
1

1− τ2
1

π
1Sτ (ζ)d

2ζ. (1.9)

with its support Sτ given by:

Sτ :=

{
ζ = x+ iy :

(
x

1 + τ

)2

+

(
y

1− τ

)2

≤ 1

}
. (1.10)

Much different analysis for the stability of the Dyson equation was now used to establish

this local law as the equation is now given by 4× 4 matrices instead of 2× 2 as in [7].

The least singular value is controlled after a bounded density assumption for the entries

of P,Q as in [6].

After establishing the local law for the Dirac matrix, the linearization technique as

used for example in [51], together with a careful change of variables is then enough

to provide us with the limiting local spectral law for the initial correlated covariance

matrix.



Chapter 2

Preliminaries

Before going to the analysis of our results, we present here some preliminaries about

random matrices and their spectral properties.

2.1 Random matrices

In this section, the notion of a random matrix is defined rigorously. We will be working

with matrices which have their entries in the complex plane C. We denote by CN×N the

space of N ×N matrices X with complex entries (Xij)
N
i,j=1, which can be regarded as

vectors in CN2
. We can equip this space with a norm such as the operator norm ∥ · ∥op

or the Hilbert-Schmidt norm ∥ · ∥HS . The operator norm is defined with respect to the

Euclidean norm ∥ · ∥2 in CN , as follows:

∥X∥op:= sup
{
∥Xu∥2 : u ∈ CN , ∥u∥2= 1

}
,

while the Hilbert-Schmidt norm ∥ · ∥HS is defined as:

∥X∥HS :=
√
Tr(XX∗),
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where X∗ is the conjugate transpose of X and we also defined the trace functional

Tr : CN×N 7→ C of a matrix X as:

Tr(X) :=

N∑
i=1

Xii.

Some remarks about these norms are that they are equivalent to each other for any

finite dimension N ∈ N and that the operator norm is in some sense similar to the

maximum norm ∥ · ∥∞ in CN2 while the Hilbert-Schmidt norm similar to the Euclidean

norm ∥ · ∥2 in CN2
. The operator norm transforms (CN×N , ∥ · ∥op) into a Banach space

while the Hilbert-Schmidt norm transforms (CN×N , ∥ · ∥HS) into a Hilbert space with

corresponding inner product:

⟨X,Y ⟩ := Tr(XY ∗).

Another remark is that the convergence of a sequence of matrices
{
X(k)

}∞
k=1

, for k → ∞

under any of these two norms in CN×N is equivalent to the convergence of each matrix

entry
{
X

(k)
ij

}∞

k=1
in C for i, j = 1, ..., N, under the usual complex norm.

A matrix X ∈ CN×N is called Hermitian if the equality X = X∗ holds. An eigenvalue

λ ∈ C of a matrix X ∈ CN×N is a complex number such that Xu = λu for some

u ∈ CN different than the zero vector. Counting multiplicities, we can say that each

complex matrix in CN×N has exactly N eigenvalues. The set Spec(X) = {λ1, ..., λN} of

the eigenvalues of a matrix X is called its spectrum. We say that a matrix X ∈ CN×N

is invertible if there exists a matrix Y ∈ CN×N such that XY = Y X = I and we

write then Y = X−1. We also define the determinant functional det : CN×N 7→ C as

det(X) =
N∏
i=1

λi, where λ1, ..., λN are the N eigenvalues of the matrix X.

Some properties of the trace functional are the following:

• It is a continuous linear functional from (CN×N , ∥ · ∥op) to (C, ∥ · ∥).

• For each matrixX ∈ CN×N with corresponding eigenvalues λ1, ..., λN the equality

Tr(X) =
N∑
i=1

λi holds.
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• For each S,M ∈ CN×N we have that Tr(SM) = Tr(MS).

In the following we present two important theorems about the eigenvalue structure

of a matrix. We note that if a matrix X is Hermitian then all of its eigenvalues are

real. We denote by diag(a1, ..., aN ) the diagonal matrixD ∈ CN×N such thatDii = ai for

i = 1, ..., N andDij = 0 for i ̸= j ∈ {1, ..., N}.A triangular matrix is a matrix T ∈ CN×N

such that Tij = 0 for all i > j. A unitary matrix U ∈ CN×N is an invertible complex

matrix such that U−1 = U∗.

Theorem 2.1.1 (Spectral theorem). For any Hermitian matrix X ∈ CN×N there exists a

unitary matrix U ∈ CN×N such that U−1XU = diag(λ1, ..., λN ), where λ1, ..., λN are the N

real eigenvalues of the Hermitian matrix X.

Theorem 2.1.2 (Schur decomposition). For any matrix X ∈ CN×N there exists a unitary

matrixU ∈ CN×N such thatU−1XU = T,where T is a triangular matrix, satisfying Tii = λi,

for i = 1, ..., N where λi are the eigenvalues of X.

For a specific i ∈ {1, ..., N}, the i-th eigenvalue λiX of a matrixX ∈ CN×N is a continuous

function in the topological sense. This means that if Xk → X for a sequence of matrices

{Xk}∞k=1 under the operator or Hilbert-Schmidt norm, then the eigenvalues {λiXk
}Ni=1

can be numbered in such a way that λiXk
→ λiX . See [9], pages 138-139.

This is a consequence of the fact that the roots of a polynomial are continuous functions

of the polynomial coefficients under a suitable norm, and this fact is applied to the

characteristic polynomial of a matrix, p(x) := det(xI −X), see again [9].

We now turn our attention to the definition of a random matrix.

Definition 2.1.1 (Random matrix). Let (Ω,A,P) be a probability space and N ∈ N. An

N × N random matrix is a measurable map X : (Ω,A,P) 7→ (CN×N ,BN2
), where BN2

denotes the Borel σ-algebra on CN×N .

It is clear thatX is a measurable function if and only if all entriesX(i, j) are measurable

functions in (C,BC) where BC denotes the Borel σ-algebra in C. We show next that the
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eigenvalues of a random matrix are also measurable functions. Specifically, we show

that the eigenvalue function:

ω 7→ λiX(ω) : (Ω,A,P) 7→ C,

where λiX(ω) denotes the i-th eigenvalue of the random matrix X(ω) is measurable,

which makes it a complex-valued random variable.

We know that the eigenvalue function:

eigi : CN×N 7→ C,

X 7→ λiX

is continuous so it is measurable. The map X : Ω 7→ CN×N is also measurable by

definition, hence the composition λiX := eigi ◦X is also measurable.

This property of the eigenvalue function allows us to study the eigenvalues of a random

matrix in the context of probability theory. For this, we firstly need to define the concept

of a random measure.

2.2 Random probability measures

We denote the set of all measures on (C,BC) by M(C), the set of probability measures

by M1(C) and the set of sub-probability measures by M≤1(C). If f : C → C is a

measurable function, we write:

⟨µ, f⟩ :=
∫
C
fdµ

We are interested in studying the convergence behaviour of sequences of measures in

M1(C) where the limit may generally lie in M≤1(C). For this, we define the sets of test

functions as follows:
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1. Cb(C) := {f : C 7→ C | f continuous and bounded}

2. C0(C) := {f : C 7→ C | f continuous and vanishes at infinity}

3. Cc(C) := {f : C 7→ C | f continuous with compact support}

Definition 2.2.1. Let {µN}∞N=1 be a sequence of probability measures in M1(C).

• The sequence {µN}∞N=1 is said to converge weakly to an element µ ∈ M1(C), if

∀f ∈ Cb(C) : lim
N→∞

⟨µN , f⟩ = ⟨µ, f⟩

• The sequence {µN}∞N=1 is said to converge vaguely to an element µ ∈ M≤1(C), if

∀f ∈ Cc(C) : lim
N→∞

⟨µN , f⟩ = ⟨µ, f⟩

Some remarks about the definition are that weak convergence of measures implies

vague convergence, what’s more weak and vague limits are unique. The target measures

of weak convergence of probability measures are again probability measures. This is

because 1C ∈ Cb(C) and so we must have that µ(C) = 1. The target measures of vague

convergence are exactly sub-probability measures, see for example [39], page 143.

We will transform M1(C) into a metric space by defining an appropriate distance

function on it which metrizes the weak convergence of measures. We will define it

according to test functions f ∈ Cb. We then have that

• The following metric:

d(µ, ν) := sup

{∣∣∣∣∫
C
fdµ−

∫
C
fdν

∣∣∣∣ : ∥f∥∞≤ 1

}

metrizes weak convergence of measures, that is d(µN , µ) → 0 ⇔ µN → µ weakly.

• Equipped with this metric (M1(C), d) becomes a separable but not complete

metric space.
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The metric above is called the Prokhorov metric which can be found for example in [17],

pages 394-395.

Since M1(C) is a metric space with a corresponding Borel algebra it is also a measurable

space, so we can then study M1(C)−valued random variables which we will call

random measures.

Definition 2.2.2 (Random probability measure). Let (Ω,A,P) be a probability space. A

random probability measure on (C,BC) is a measurable map µ : Ω 7→ M1(C).

We remark that if µ is a random probability measure µ : Ω 7→ M1(C) and f : C 7→ C is

a measurable bounded function, then the map ω 7→ ⟨µ(ω), f⟩ is also measurable and

bounded by ∥f∥∞.

Based on a random probability measure, we can also define its "expected" deterministic

measure. If µ is a random probability measure µ : Ω 7→ M1(C) and B ∈ B then µ(ω,B)

is a random variable, which means that we can consider its expectation Eµ(B) as the

expected mass that µ would prescribe to the set B. The map B 7→ Eµ(B) is then the

deterministic "expected" measure on (C,BC).

Definition 2.2.3 (Expected measure). Let (Ω,B,P) be a probability space and µ a random

probability measure on (C,B). Then the map:

µ : B 7→ [0, 1]

with

µ(B) =

∫
Ω
µ(ω,B)dP(ω) = Eµ(B)

is an element of M1(C) and is called the expected measure of µ.

We will define three notions of convergence of random probability measures on

(C,BC), weak convergence in expectation, weak convergence in probability and weak

convergence almost surely.

Definition 2.2.4 (Weak convergence in expectation). Let (µn)∞n=1 be a sequence of random
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probability measures on (C,BC) and µ a random probability measure on the same space. We

say that (µN )∞n=1 converges weakly in expectation to µ, if the sequence of expected measures

(Eµn)∞n=1 converges weakly to the expected measure Eµ.

Definition 2.2.5 (Weak convergence in probability). We say that a sequence of random

measures (µN )∞N=1 converges weakly in probability to µ, if ⟨µN , f⟩ converges to ⟨µ, f⟩ in

probability, for all f ∈ Cb.

Definition 2.2.6 (Almost sure weak convergence). We say that a sequence of random

measures (µN )∞N=1 converges weakly to µ almost surely, if ⟨µN , f⟩ converges to ⟨µ, f⟩ almost

surely, for all f ∈ Cb.

We recall here that the definition of ⟨·, ·⟩ contains a random measure integral which

makes it a random variable. So we can use the definitions of almost sure convergence

and convergence of probability for random variables. See for example [17], pages

516-517.

2.3 The empirical spectral distribution

Let X be an N ×N random matrix on (Ω,A,P), then the empirical spectral distribution

(ESD) σN of X is the random probability measure on (C,BC) given by:

σN : Ω× BC 7→ [0, 1]

(ω,B) 7→ σN (ω,B) =
1

N

N∑
k=1

δλk
X(ω)

(B),

where δλk
X
(·) is the Dirac measure for the k−th eigenvalue of the random matrix X, i.e.

δλk
X
(B) =


1, if λkX ∈ B

0, if λkX /∈ B

Note that σN is indeed a random probability measure on (C,BC). This is because σN (ω)
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is a convex combination of probability measures and thus again a probability measure.

On the other hand, if B ∈ BC is arbitrary, then σN (B) is clearly measurable, making it a

random measure.

For any measurable set B ⊂ C, σN (B) gives the proportion of the N eigenvalues that

fall into the set B. Thus σN carries information about the location of the eigenvalues

and we are particularly interested in the case N → ∞.
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The Stieltjes transform method

In order to analyze properties of the empirical spectral distribution, it is useful to use a

tool that relates this distribution with entries of the random matrix or another matrix

related to it (see section 4.1). For this, we can use a suitable transform of the measure.

Definition 3.0.1 (Stieltjes transform). Let µ be a finite measure on some measurable linear

space Y . The Stieltjes transform Sµ of µ is the map:

Sµ : Y \ supp(µ) 7→ Y

y 7→
∫
supp(µ)

1

w − y
dµ(w)

The Stieltjes transform is defined via an integral involving our measure of interest.

3.1 Distributions on the real line

In the case that the measure is supported on the real line, we define the Stieltjes

transform map as:

Sµ : C \ supp(µ) 7→ C
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z 7→
∫
R

1

x− z
dµ(x)

The Stieltjes transform is now defined via an integral of a complex function with respect

to our measure of interest. We remark some properties of the Stieltjes transform:

• Im(z) ≥ 0 ⇔ ImSµ(z) ≥ 0.

• Sµ(z) = Sµ(z).

• Sµ is uniquely determined by its restriction Sµ : C+ → C+.

• |Sµ(z)|≤ 1
|Im(z)| .

• Sµ is holomorphic and in particular, Sµ is continuous and can be represented by

a power series around z0 ∈ C \ supp(µ) and is infinitely differentiable.

• The derivatives of the Stieltjes transform are given by

S(k)
µ (z) =

∫
supp(µ)

k!

(w − z)k+1
dµ(w),

where S(k)
µ denotes the k-th derivative of Sµ.

These properties can be found for example in [61], pages 169-171. We now remark an

important measure-retrieval formula.

Proposition 3.1.1 (Retrieval of measure). For any bounded interval I ⊂ R with endpoints

a < b, we have the following formula:

µ(a, b) +
1

2
(µ({a}) + µ({b}) = lim

η→0+

1

π

∫
I
ImSµ(E + iη)dE, (3.1)

Proof. Let I be an interval with endpoints a < b and η > 0. By Fubini’s theorem we get

that:
1

π

∫
I
ImSµ(E + iη)dE =

1

π

∫
I

∫
R

η

(x− E)2 + η2
dµ(x)dE

=
1

π

∫
R

∫
I

η

(x− E)2 + η2
dEdµ(x)

=
1

π

∫
R

∫ b

a

η

(x− E)2 + η2
dEdµ(x)
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Now since

∫ b

a

η

(x− E)2 + η2
dE =

1

η

∫ b

a

1(
E−x
η

)2
+ 1

dE

=

∫ b−x
η

a−x
η

1

E2 + 1
dE

= arctan

(
b− x

η

)
− arctan

(
a− x

η

)
,

and arctan : R 7→
(
−π

2 ,
π
2

)
is strictly increasing with lim

x→±∞
arctan(x) = ±π

2 , we obtain

lim
η→0+

[
arctan

(
b− x

η

)
− arctan

(
a− x

η

)]
=


π, if x ∈ (a, b)

0, if x /∈ [a, b]

π
2 , if x = a or x = b.

Thus, by dominated convergence we find

lim
η→0+

1

π

∫
I
ImSµ(E + iη)dE = lim

η→0+

1

π

∫
R
arctan

(
b− x

η

)
− arctan

(
a− x

η

)
dµ(x)

=

∫
R
1(a,b)(x) +

1

2
1{a,b}(x)dµ(x)

= µ((a, b)) +
1

2
(µ({a}) + µ({b})).

Corollary 3.1.2. For any bounded interval I ⊂ R with µ(∂I) = 0, we find that:

µ(I) = lim
η→0+

1

π

∫
I
ImSµ(E + iη)dE

The previous proposition and corollary suggest that any finite measure µ on (R,BR) is

uniquely determined by Sµ or equivalently the map µ 7→ Sµ is injective.
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3.2 Distributions on the complex plane

In the case that the measure is supported on the complex plane, we define the Stieltjes

transform map as:

Sµ : C \ supp(µ) 7→ C

z 7→
∫
C

1

w − z
dµ(w)

We remark that all the previous properties of the Stieltjes transform in the real line still

hold in the complex plane. Specifically, we have that:

• Im(z) ≥ 0 ⇔ ImSµ(z) ≥ 0.

• Sµ(z) = Sµ(z).

• Sµ is uniquely determined by its restriction Sµ : C+ → C+.

• |Sµ(z)|≤ 1
|Im(z)| .

• Sµ is holomorphic and in particular, Sµ is continuous and can be represented by

a power series around z0 ∈ C \ supp(µ) and is infinitely differentiable.

• The derivatives of the Stieltjes transform are given by

S(k)
µ (z) =

∫
supp(µ)

k!

(w − z)k+1
dµ(w),

where S(k)
µ denotes the k-th derivative of Sµ.

The proofs are similar to the ones for the real-case distributions, see [61], pages 169-171.

The measure-retrieval formula is different in the complex case. We have the following

proposition:
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Proposition 3.2.1 (Retrieval of measure). Let µ be a finite measure on (C,BC) with

corresponding Stieltjes transform Sµ, such that dµ = f(z)d2z, we then get that:

f(z) =
1

π
∂zSµ(z). (3.2)

Some remarks about this proposition are the following.

Here, d2z denotes the Lebesgue measure applied on the complex domain, while

f : C 7→ [0, 1] is a complex density function, i.e. f(z) = fRe(Z),Im(Z)(Re(z), Im(z)) is the

joint density of the real and imaginary part of a complex random variable Z evaluated

at the point z ∈ C.

The symbol ∂z denotes the Wirtinger derivative of a complex function g(z), i.e.

∂zg =
∂g

∂z
:=

1

2

(
∂g

∂x
+ i

∂g

∂y

)
, whenever z = x+ iy.

For the proof, see section 3.5.

3.3 Stieltjes transform and weak convergence of measures

Since Sµ carries all the information about µ, Sµ can also be used to analyze weak

convergence of probability measures.

Theorem 3.3.1 (Convergence theorem). Let (Y,BY ) be a measurable linear normed topological

space (either C or R) with corresponding Borel algebra BY and let µ be a probability measure on

that space. If Z ⊂ Y \ supp(µ) is a set that has at least one accumulation point in Y \ supp(µ),

then we get the following statement:

For a sequences of measures (µn)∞n=1 ∈ M1(Y ) and a measure µ ∈ M1(Y ), we have that

µn → µ weakly ⇔ ∀y ∈ Z : Sµn(y) → Sµ(y),

where we remind that Sµ(y) =
∫
supp(µ)

1
w−ydµ(w).
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In order to prove theorem 3.3.1 we need the following three Lemmas:

Lemma 3.3.2 (Helly’s selection theorem). Let (µn)∞n=1 be a sequence in M1(Y ), then there

exists a subsequence (µnk
)∞k=1 and a sub-probability measure µ ∈ M≤1(Y ) such that µnk

→ µ

vaguely.

Proof. The Lemma and its proof can be found for example in [18], page 108.

Lemma 3.3.3. Let (µn)∞n=1 ∈ M1(Y ) and µ ∈ M≤1(Y ). Then (µn)
∞
n=1 converges weakly

(respectively vaguely) to µ if every subsequence (µn)n∈J , J ⊂ N has a further subsequence

(µn)n∈I , I ⊂ J that converges weakly (respectively vaguely) to µ.

Proof. We prove this by contradiction. Suppose that (µn)∞n=1 doesn’t converge weakly

(respectively vaguely) to µ. Then we can find a continuous and bounded (respectively

with compact support) function f : Y 7→ Y and an ϵ > 0 such that |⟨µn, f⟩ − ⟨µ, f⟩| ≥ ϵ,

for all n in an infinite set J ⊂ N. But now we can find a subsequence (µn)n∈I , I ⊂ J that

converges weakly (respectively vaguely) to µ. This means that we can find n ∈ I ⊂ J

such that |⟨µn, f⟩ − ⟨µ, f⟩| < ϵ, which is a contradiction.

Lemma 3.3.4. If we have a sequence of probability measures that converges vaguely to a

probability measure onM1(Y ), then vague convergence can be strengthened to weak convergence.

Proof. For this Lemma and its proof, check for example [16], page 93.

We now continue with the proof of our main theorem in this section.

Proof of Theorem 3.3.1. The ” ⇒ ” is obvious since the function y 7→ 1
w−y is continuous

and bounded. To show ” ⇐ ”, we will use Lemma 3.3.3. Let (µn)n∈J , J ⊂ N be a

subsequence of (µn)∞n=1. Then, by Lemma 3.3.2 there exists a further subsequence

(µn)n∈I , I ⊂ J such that (µn)n∈I → ν vaguely for some ν ∈ M≤1(Y ). Since y 7→ 1
w−y

vanishes at infinity, it follows that S(µn)n∈I
(y) → Sν(y) and therefore Sν(y) = Sµ(y),

for all y ∈ Z. Since the functions are holomorphic, we establish that Sµ = Sν . By

the retrieval of measure identities, (3.1) and (3.2) we conclude that µ = ν. For any
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other subsequence (µn)n∈J , J ⊂ N we get by the same arguments, that every further

subsequence should converge to µ vaguely. Therefore, µn → µ, vaguely. Because all

measures involved are probability measures, by using Lemma 3.3.4, we conclude that

µn → µ weakly, as we want.

Proposition 3.3.5 (Convergence theorem for random measures). Let (µn)∞n=1 be a sequence

of random probability measures on M1(Y ) and µ a deterministic probability measure on the

same space. Then we have the following equivalences:

• µn → µ weakly in expectation ⇔ ESµn(y) → Sµ(y) for all y ∈ Z.

• µn → µ weakly in probability ⇔ Sµn(y) → Sµ(y) in probability for all y ∈ Z.

• µn → µ weakly almost surely ⇔ Sµn(y) → Sµ(y) almost surely for all y ∈ Z.

Proof. The first statement comes from our main theorem in this section, considering

that:

ESµn(y) = E
∫
supp(µ)

1

w − y
dµ(w)

(∗)
=

∫
supp(µ)

1

w − y
dEµ(w) = SEµn(y),

where dEµ(w) denotes the "expected measure" as defined in 2.2.3. The (∗) equality is

justified because it holds generally that:

E
∫
fdµ =

∫
fdEµ,

where µ is a random probability measure, Edµ its expected measure and f : Y 7→ Y

any bounded measurable function. This can be found in [40], page 53.

For the second statement, the ” ⇒ ” direction is obvious since the function y 7→ 1
y−w is

continuous and bounded. The proof of the ” ⇐ ” direction can be found in [8], page 45.

For the third statement we work as follows. If µn → µ weakly in a measurable set

A ⊂ Ω such that P(A) = 1, then on A we also have that Sµn(y) → Sµ(y) for all y ∈ Z,

by our main theorem. This proves the ” ⇒ ” direction. For the ” ⇐ ” direction, we fix
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a sequence (zk)
∞
k=1 in Z that converges to some z ∈ Y \ supp(µ). For each k ∈ N we

find a measurable set Ak with P(Ak) = 1 and Sµn(zk) → Sµ(zk). Then A :=
⋂
k∈N

Ak is

measurable with P(A) = 1 and for all y ∈ {zk : k ∈ N} we have Sµn(y) → Sµ(y). Since

this set has an accumulation point, we find by our main theorem that µn → µ weakly

on A, as we want.

3.4 The imaginary part of the Stieltjes transform

In this section we analyze further the retrieval of measure identity from Corollary 3.1.2

for measures on the real line. According to this identity, the functionE 7→ 1
π ImSµ(E+iη)

should represent a density that approximates µ well as η → 0+.

To analyze this property we introduce the concept of the convolution of probability

measures as well as the kernel density estimators.

Definition 3.4.1 (Convolution). Let µ and ν be two probability measures on (R,BR) and f, g

be two probability density functions.

• (convolution of measures). The convolution of the two measures is defined as µ ∗ ν :=

(µ⊗ ν)+, where µ⊗ ν is the product measure and the addition in the exponent represents

the push-forward of the product measure over the addition map.

• (convolution of density with measure). The convolution of the density f and the probability

measure ν is defined as the function f ∗ ν : R → R with:

(f ∗ ν)(x) :=
∫
R
f(x− y)dν(y)

• (convolution of densities). The convolution of the densities f and g is the function

f ∗ g : R → R with:

(f ∗ g)(x) :=
∫
R
f(x− y)g(y)dy

Some remarks about the definitions are the following. For the first definition, for an
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arbitrary set B ∈ BR, we have that:

(µ ∗ ν)(B) = (µ⊗ ν)({(x, y) ∈ R2 : x+ y ∈ B}).

If f : R → R is µ⊗ ν-integrable, we then obtain that:

∫
R
fd(µ∗ν) =

∫
R2

(f◦+)d(µ⊗ν) =
∫
R2

f(x+y)d(µ⊗ν)(x, y) =
∫
R

∫
R
f(x+y)dµ(x)dν(y).

Particularly, for an indicator function f = 1B for some B ∈ BR we get that:

(µ ∗ ν)(B) =

∫
R
1Bd(µ ∗ ν) =

∫
R

∫
R
1B(x+ y)dµ(x)dν(y) =

∫
R
µ(B − y)dν(y).

The equality of the first with the third term shows that the convolution function is

commutative in the space of probability measures. We denote by fdx the probability

measure with density f, where f is a probability density function. We then have the

following properties of the convolution:

• The convolution is a commutative binary operation in the space of probability

measures where the neutral element is given by the Dirac probability measure δ0.

• The function f ∗ ν is a probability density for the convolution measure (fdx ∗ ν),

that is fdx ∗ ν = (f ∗ ν)dx.

• The function f ∗g is a probability density for the convolution measure (fdx∗gdx),

that is fdx ∗ gdx = (f ∗ g)dx, where g is another probability density function.

• The convolution of probability measures on (R,BR) is continuous with respect to

weak convergence of measures. That is, if µ , ν , (µn)∞n=1 , (νn)∞n=1 are probability

measures on (R,BR) with µn → µweakly and νn → ν weakly, then µn ∗νn → µ∗ν

weakly.

We introduce here the kernel density estimators and particularly focus on the Cauchy

kernel.
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Definition 3.4.2 (Cauchy kernel). For all η > 0, we define the Cauchy kernel as the function

Pη : R → R with

Pη(x) =
1

π

η

x2 + η2
,

which is the density function of the Cauchy distribution with scale parameter η.

For the Cauchy kernel, the following important identity holds:

lim
η→0+

(Pηdx) = δ0,

where δ0 denotes the Dirac measure centered at 0. That is, for every B ∈ BR,

δ0(B) =


1 , if 0 ∈ B

0 , if 0 /∈ B.

This is because the characteristic function of the Cauchy distribution with parameter η

is given by t 7→ e−η|t| and so letting η → 0+ yields the identity.

For the imaginary part of the Stieltjes transform we have the following fundamental

property for any real bounded measure µ:

1

π
ImSµ(E + iη) =

∫
R

1

π

η

(E − x)2 + η2
dµ(x) = (Pη ∗ µ)(E)

This property means that the function 1
π ImSµ(·+ iη) is the convolution of the kernel

density Pη with µ and thus a density for the measure (Pηdx) ∗ µ. As η → 0+, we have

that:
1

π
ImSµ(·+ iη)dx = (Pηdx) ∗ µ→ δ0 ∗ µ = µ.

Assume now that {σn}∞n=1 is a sequence of empirical spectral distributions of Hermitian

random matrices so that σn converges to a real deterministic measure σ. We now take

the convolution of σn with the Cauchy kernel Pη. Since σn → σ, we get by the previous

analysis that (Pηn ∗ σn)dx → σ, for any sequence ηn → 0. However, if σ has some

density σ = fσdx, this is not enough to deduce that Pηn ∗ σn → fσ for example in the
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supremum norm. This would allow local estimation by σn through the Cauchy kernel

about the density fσ. If η = ηn drops too quickly to zero as n→ ∞ then (Pηn ∗ σn) will

have steep peaks at each eigenvalue and thus will not approximate the density of σ.

This phenomenon is typical for kernel density estimators. We introduce them next in

their generality.

Definition 3.4.3 (Kernel). A kernel K is a real probability density function. If K is a kernel

and h > 0 a real parameter, we define Kh as the kernel with Kh(x) =
1
hK(xh) for all x ∈ R and

call Kh "the kernel K at bandwidth h.”

It is clear that Kh is a kernel if h > 0 and K is a kernel. An example of a kernel is the

previously defined Cauchy kernel Pη. We have for all x ∈ R and η > 0 :

P (x) =
1

π

1

x2 + 1
and Pη(x) =

1

πη

1(
x
η

)2
+ 1

=
1

π

η

x2 + η2
.

We are interested in constructing a density function f that describes the experiment of

drawing at random from the real-valued observations u = (u1, ..., uN ), in other words

that approximates the empirical probability measure:

fdx ≈ ρN =
1

N

N∑
i=1

δui

This can be done with the help of a kernel Kh, which is usually chosen to be unimodal

and symmetric around zero, see for example [52].

Definition 3.4.4 (Kernel density estimator). The kernel density estimator with kernel K and

bandwidth h > 0 for an empirical measure ρN is the density function given by the convolution

Kh ∗ ρN .

We therefore have the density function estimator Kh ∗ ρN : R → R with

x 7→ (Kh ∗ ρN )(x) =
1

N

N∑
i=1

Kh(x− ui) =
1

Nh

N∑
i=1

K

(
x− ui
h

)
.

The center of the kernel is placed upon each observation, whose influence is smoothed
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out over its neighbourhood. The size of this neighborhood is governed by the bandwidth.

A small bandwidth will retain the probability mass of 1/N to be closer to its observation,

whereas a larger bandwidth will result in a wider spread of probability mass. Therefore,

a smaller bandwidth will result in a peaky density function (with steep peaks at each

observation), whereas a larger one will result in a smoother density function.

Assume now we are given an empirical spectral distribution ρN which comes from a

Hermitian N ×N matrix XN . The kernel density estimator at the location E ∈ R for

ρN with Cauchy kernel P at bandwidth η > 0 is then given by:

(Pη ∗ ρN )(E) =
1

Nη

N∑
i=1

1

π

1(
E−λ

XN
i

η

)2

+ 1

=
1

πN

N∑
i=1

η

(E − λXN
i )2 + η2

=
1

π
ImSρN (E + iη).

This gives the imaginary part of the Stieltjes transform the role of the kernel density

estimator, see for example [10] pages 7-8. Choosing different values of η we get different

estimations of the empirical spectral distribution. For a very small parameter of η, we

may not obtain a useful approximation of the density, whereas for a bigger one the

estimation would be better. In the next chapter, we will find the optimal value of η

so that the estimation is still useful for the approximation of the empirical eigenvalue

density of the Marchenko-Pastur law for covariance matrices.
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3.5 The Wirtinger derivative of the Stieltjes transform

In this section we analyze further the retrieval of measure identity from Corollary 3.2.1

for measures on the complex plane. According to this identity, we have a density given

by the function z 7→ 1
π∂zSµ(z) which matches the density of µ on the complex plane.

We will analyze the generalized Cauchy theorem as well as convolutions with the

Cauchy kernel, see for example [43], pages 109-110.

Theorem 3.5.1 (Generalized Cauchy theorem). LetD be a disk on C and f a complex-valued

C1 function on the closure of D. Then:

∀ζ ∈ D : f(ζ) =
1

2πi

∫
∂D

f(z)

z − ζ
dz − 1

π

∫∫
D

∂

∂z

f(z)

z − ζ
d2z.

Notice that if f is complex-differentiable (holomorphic) then the identity reduces to the

well-known Cauchy formula. By saying that f is a C1 function we just mean that the

derivatives ∂f
∂x and ∂f

∂y exist and they are continuous functions.

Notice also that if we pick a function f ∈ Cc(C) with compact support, then the identity

reduces to:

∀ζ ∈ supp(f) : f(ζ) = − 1

π

∫∫
C

∂

∂z

f(z)

z − ζ
d2z =

1

2πi

∫∫
C

∂

∂z

f(z)

z − ζ
dz ∧ dz,

where we defined the wedge product as dz ∧ dz := −2i d2z. This is a complex measure, the

space of which is a linear space over the complex numbers and also a Banach space, see

[57], pages 116-119.

We now turn our attention to convolutions of complex functions and measures on the

complex plane.

Definition 3.5.1 (Convolution of complex measures and densities). Let µ and ν be two

probability measures on (C,BC) and f, g two complex probability density functions. We can

define again the following convolutions:
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• (convolution of measures). The convolution of the two complex measures is defined as in

the real case in which we recall that we defined them in a general setting.

• (convolution of density with measure). The convolution of the complex density f and

probability measure ν is defined as the complex function f ∗ ν : C → C with:

∀z ∈ C : (f ∗ ν)(z) :=
∫
C
f(z − w)dν(w).

• (convolution of densities). The convolution of the complex densities f and g is the function

f ∗ g : C → C with:

∀z ∈ C : (f ∗ g)(z) :=
∫
C
f(z − w)g(w)dw.

The same remarks that hold for the real measures and densities also hold for the

complex ones.

We introduce now the Cauchy kernel in complex analysis, see for example [43], page 10.

Definition 3.5.2 (Cauchy kernel). We define the complex Cauchy kernel as the function

k : C \ {0} → C with:

k(z) :=
1

2πi

1

z
.

For the Stieltjes transform of a complex measure µwe now have the following expression

for it as a convolution with the complex Cauchy kernel:

Sµ(z) =

∫
C

1

w − z
dµ(w) = −2πi

∫
C
k(z − w)dµ(w) = −2πi · (k ∗ µ)(z).

Suppose now that the measure µ has a complex density f such that dµ = f(z) d2z. Then

through the Stieltjes transform ofµwe can retrieve the density f by the Cauchy-Riemman

equation:
1

π

∂

∂z
(Sµ) = f.

In a more general setting, we have that the convolution of a measure µ with complex
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density ϕ(z, z) such that dµ = ϕ(z, z) dz∧dz with the Cauchy kernel solves the equation:

∂

∂z
(k ∗ µ) = ϕ.

This means that we have the following retrieval of measure identity which we prove

through the generalized Cauchy theorem:

dµ =

(
1

π

∂

∂z
Sµ

)
d2z.

Proof. We pick a complex test function f with compact support. By the analysis of the

generalized Cauchy formula, we recall that:

∀ζ ∈ supp(f) : f(ζ) =
1

2πi

∫∫
C

∂

∂z

f(z)

z − ζ
dz ∧ dz.

Suppose now we have the C-R equation:

∂

∂z
(v) = g,

where g is a complex continuous function with compact support and v is an unknown

complex function. Suppose that there exists a complex measure µ such that dµ =

g(z, z) dz ∧ dz. The existence of a solution v for the C-R problem is established for

example in [63], pages 35-36. We show that if such a solution exists then we must have

v = k ∗ µ. Indeed, by the generalized Cauchy formula, we get that:

(k ∗ µ)(z, z) = 1

2πi

∫
C

1

w − z
dµ(w) =

1

2πi

∫
C

g(w,w)

w − z
dw ∧ dw

=
1

2πi

∫
C

∂

∂w

v(w,w)

w − z
dw ∧ dw = v(z, z).

In particular, for the Stieltjes transform, we get that:

1

π

∂

∂z
Sµ = −2i

∂

∂z
(k ∗ µ) = −2i

dµ

dz ∧ dz
=

dµ

d2z
.
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Assume now that {σn}∞n=1 is a sequence of empirical spectral distributions of non-

Hermitian random matrices, so that σn converges to a complex deterministic measure σ.

If we take the convolution of σn with the complex Cauchy kernel k, then to show the

convergence σn → σ, it is enough to establish that σn ∗ k → σ ∗ k.



Chapter 4

Local Marchenko-Pastur law

We let X be an M ×N matrix with complex components xij = Re(xij) + iIm(xij), for

i = 1, ...,M and j = 1, ..., N. Assume that Re(xij) and Im(xij) are independent and

identically distributed real random variables with mean zero and variance 1
2 so that:

E(xij) = 0 and E|xij |2= 1, for i = 1, ...,M, j = 1, . . . , N. (4.1)

We denote by XN the scaled matrix:

XN := X/
√
N. (4.2)

In this chapter, we will analyze asymptotics of the empirical spectral measure (see

section 2.3) of the matrix X∗
NXN for N → ∞, when M = N. We define:

KXX := X∗
NXN ∈ CN×N (4.3)

For general M and N we can consider the collection of the complex random variables

{xij} as M observations of CN -valued normalized random variables, where we can

consider N as the number of features of each observation. Hence we have the name

Sample Coviariance Matrix for the random matrix X∗
NXN , as its matrix-expectation gives

the covariances of the sample of M observations of the CN -valued random variables.
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The Sample Covariance Matrix KXX is always Hermitian and positive semi-definite.

This is because:

K∗
XX = (X∗

NXN )∗ = X∗
NXN = KXX ,

where we used the property (AB)∗ = B∗A∗, valid for any complex matrices A,B such

that their multiplication makes sense. We also have that:

x∗KXXx = x∗X∗
NXNx = (XNx)∗XNx = ∥XNx∥2≥ 0,

where we used the usual Euclidean norm for the vector XNx and x is any vector in CN .

We remind that a matrix A ∈ CN×N is called positive semi-definite when

∀x ∈ CN : x∗Ax ≥ 0.

For a Hermitian matrix H ∈ CN×N the following relation holds:

H is positive semi-definite ⇔ All eigenvalues of H are non-negative.

We denote by λi, i = 1, ...N the eigenvalues of the matrixKXX . SinceKXX is Hermitian

and positive semi-definite, we can assume that:

0 ≤ λ1 ≤ λ2 ≤ ... ≤ λN .

We denote by ρN the empirical spectral cumulative density of these eigenvalues,

according to the definition in section 2.3, applied to the Borel sets Bx := (−∞, x] ⊂ R :

ρN (x) :=
1

N
#{i ≤ N : λi ≤ x} (4.4)

It was first established in 1967 in [44] that the limiting measure of ρNdx is the following

measure ρddx which is defined according to the parameter:

d := lim
M,N→∞

M

N
∈ (0, 1]. (4.5)
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Specifically, we have that ρNdx→ ρddx weakly almost surely, where:

ρd(x) :=
1

2πd

√
(λ+ − x)(x− λ−)

x
, x ∈ [λ−, λ+] (4.6)

and λ− := (1−
√
d)2, λ+ := (1 +

√
d)2.

This has been called the Marchenko-Pastur distribution. In the case of a square matrix

X in which the number of observations is equal to the number of features, we have that

M = N ⇒ d = 1 and so the limiting density becomes:

ρ(x) =


1

2π

√
4

x
− 1, 0 < x ≤ 4

0, otherwise
(4.7)

This is the case when the limiting measure has a square root singularity near 0. We call

this point the hard edge of the density, while the point 4 on the real line will be called

the soft edge of the limiting density. The space between 0 and 4 will be called the bulk of

the density, as there will be a "bulk amount" of eigenvalues there.

4.1 Resolvent identities for Sample Covariance Matrices

The matrix transformation that is closely related to the Stieltjes transform of the empirical

spectral measure is called the resolvent matrix.

For a matrix X we define its resolvent transformation as the matrix:

GX
z := (X − zI)−1,

where z ∈ C is a complex parameter related to the complex parameter of the Stieltjes

transformation.

We have the following identity relating the Stieltjes transform of the empirical spectral
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measure with the resolvent matrix:

SN (z) := SµN (z) =

∫
R

1

x− z
dµN (x) =

1

N

N∑
i=1

1

λi − z
=

1

N
Tr(GX

z ), (4.8)

for any z ∈ C \R, where µN is the empirical spectral measure of the matrix X ∈ CN×N .

We recall from section 3.4 that the imaginary part of the Stieltjes transform of ρN can

provide local information about the convergence ρNdx → ρdx. If we set z = E + iη,

then 1
π ImSρN (E) will approximate the cumulative density ρN (E) while the parameter

η depending on N will model the scale of this convergence around each individual

eigenvalue.

In this chapter we will prove this convergence in the optimal scale for η while also

improving bounds for the rate of convergence of the corresponding Stieltjes transforms

of the empirical spectral measure and the limiting Marchenko-Pastur measure:

SN → Sρ.

This will provide us with some new results about the rate of convergence of the

cumulative density ρN to the cumulative density provided by the measure ρ. This

means that we will quantify the convergence:

ρN (E) →
∫ E

0
ρ(x)dx, (4.9)

in a new way. We will also quantify the rigidity of each individual eigenvalue of the

Sample Covariance Matrix in a new way, that is:

λi ≈ γi, (4.10)

where γi is the i−th quantile of the Marchenko-Pastur distribution, i.e.

∫ γi

0
ρ(x)dx =

i

N
. (4.11)
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We collect now for the sake of the proofs some useful resolvent identities for the Sample

Covariance Matrix. The resolvent transformation of the matrix KXX will be denoted by

G, omitting the dependence on z and KXX .

Firstly, we remark some properties of the Stieltjes transform of the Marchenko-Pastur

measure, see also [14] section 2.2.

Lemma 4.1.1. Let Sρ be the Stieltjes transfrom of the measure ρdx. We then have that:

Sρ(z) = −1

2
+

1

2

√
1− 4

z
, z ∈ C \ [0, 4] (4.12)

and the following algebraic identity:

Sρ(z) = − 1

z(Sρ(z) + 1)
. (4.13)

We note that the square root is chosen so that Im
(√

1− 4/z
)
≥ 0. It is a simple calculus

exercise to compute the integral in the definition of Sρ to derive (4.12) and then derive

the algebraic equation (4.13).

The algebraic identity (4.13) will be the basis of our proof. We will show that SN satisfies

a similar algebraic identity with high probability so that it has to be "close" to Sρ.

Resolvent identities.

From now on X will denote the scaled version of our matrix. We define the two

resolvent matrices G and G related to KXX as:

G := (XX∗ − zIN )−1 and G := (X∗X − zIN )−1. (4.14)

For j1, j2 ∈ {0, 1, ..., N − 1} we denote by X(j1) the submatrix of the N ×N matrix X

with the first j1 columns removed. We denote by X(j2) the submatrix of X with the

first j2 rows removed.
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We now define the resolvents of the covariance of the "stripped" matrix X(j1)
(j2)

as follows:

G
(j1)
(j2)

:=
(
(X

(j1)
(j2)

)∗X
(j1)
(j2)

− z
)−1

and G(j1)
(j2)

:=
(
X

(j1)
(j2)

(X
(j1)
(j2)

)∗ − z
)−1

(4.15)

We denote by G(j1)
(j2),kl

the (k, l) element of the resolvent matrix G(j1)
(j2)

. We remark that

(X(m))∗X(m) is the minor matrix of KXX with the first m rows and the first m columns

removed.

Lemma 4.1.2. The following trace equality holds:

Tr
[
G(j1)
(j2)

]
=
j1 − j2
z

+Tr
[
G

(j1)
(j2)

]
. (4.16)

Proof. We have that (X(j1)
(j2)

)∗X
(j1)
(j2)

andX(j1)
(j2)

(X
(j1)
(j2)

)∗ have the same non-zero eigenvalues

and a total of N − j1 eigenvalues for the first and a total of N − j2 eigenvalues for the

second. If j1 < j2 then the first matrix has j2− j1 extra zero eigenvalues, while if j1 > j2

the second one has j1 − j2 extra zero eigenvalues. Hence, we have the identity.

We now define the following quantities

SN (z)
(j1)
(j2)

:=
1

N
Tr
[
G

(j1)
(j2)

]
and Λ(z)

(j1)
(j2)

:= SN (z)
(j1)
(j2)

− Sρ(z) (4.17)

and we use the notation SN and Λ when j1 = j2 = 0. We will generally omit denoting

the dependence on the z-variable.

We now state some identities for resolvent entries.

We denote by
[
G

(j1)
(j2)

]k
the resolvent which occurs after an extra removal of the k−th

column of the scaled matrix X, where k ∈ {j1 + 1, ..., N}.

Lemma 4.1.3 (Stripping lemma). With G(j1)
(j2)

and k as before, we have that for i, j ̸= k :

G
(j1)
(j2),ij

=
[
G

(j1)
(j2)

]k
ij
+
G

(j1)
(j2),ik

G
(j1)
(j2),kj

G
(j1)
(j2),kk

. (4.18)
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Proof. For the proof we will use Woodbury’s matrix identity:

(A+ UBV )−1 = A−1 −A−1U(B−1 + V A−1U)−1V A−1

This identity can be found for example in [38] page 258.

We can assume that j1 = j2 = 0, otherwise the proof will be similar. We denote by M

the matrix X∗X − zI . Let ek be the standard k−th column unit basis vector and define

the matrices:

M
[k]
ij :=Mij1(i ̸= k)1(j ̸= k), U :=

(
Mek ek

)
, V :=

 e∗k

e∗kM


so that we have

M =M [k] + UV −Mkkeke
∗
k.

Then by the Woodbury matrix identity we have

(
M [k] −Mkkeke

∗
k

)−1
= G+GU(I − V GU)−1V G.

A straightforward calculation yields

I − V GU = −

 0 Gkk

Mkk 0

 , (I − V GU)−1 = − 1

MkkGkk

 0 Gkk

Mkk 0

 ,

from which we deduce, after a short calculation,

(
M [k] −Mkkekek

)−1
= G− 1

Mkk
eke

∗
k −

1

Gkk
Geke

∗
kG.

Using the formula for the block inversion of a matrix, we conclude

[G]kij = Gij −
1

Gkk
Geke

∗
kG,

from which (4.18) follows.
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Next, we have the following relationship between the (i, i) element of |G|2:= GG∗ and

(ImG)ii, and the same holds for G(j1)
(j2)

,G(j1)
(j2)

instead of G:

Lemma 4.1.4 (Ward identity). If z = E + iη, then

|G(z)|2ii=
(ImG(z))ii

η
. (4.19)

Proof. We apply spectral decomposition to G as follows:

G =
N∑
j=1

uju
∗
j

λj − z
,

where uj is the j−th eigenvector of KXX and λj is the j−th eigenvalue of KXX . We

then have that:

(GG∗)ii =
N∑
j=1

|uj(i)|2

|λj − z|2
=

N∑
j=1

1

η
Im

|uj(i)|2

λj − z
=

(ImGii)

η
.

The Lemma above yields the following inequality:

|(G2)ii|≤
ImGii

η
. (4.20)

This is because

|(G2)ii|= |⟨ei, G2ei⟩|≤ ∥G∗ei∥ ∥Gei∥= |G|2ii.

Furthermore, we obtain the following result for the resolvent of the Sample Covariance

ensemble, and the proof works also for G(j1)
(j2)

and G(j1)
(j2)

instead of G, see [15], equation

(3.10):

Lemma 4.1.5. With G and G as before and s ∈ R, we have that

Gii(E + iη/s) ≤ sGii(E + iη). (4.21)

Proof. The proof can be found in [15], page 18 and is based on the Ward property of the

resolvent of a Hermitian matrix.
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The following identity holds exclusively for Sample Covariance matrices and it will be

the starting point of our analysis. It can be found in [14], equation 2.1.

We denote by [X
(j1)
(j2)

]k the matrix that occurs after the extra removal of the k−th column,

where k ∈ {j1 + 1, ..., N}. We denote by [X
(j1)
(j2)

]l the matrix that occurs after the extra

removal of the l−th row, where l ∈ {j2 + 1, ..., N}.

Lemma 4.1.6 (Sample Covariance stripping lemma). We let xk
(j) denote the k−th column

of the scaled matrix X(j). We then have the following identity regarding the resolvent diagonal

elements, for j1, j2 ∈ {0, 1, ..., N − 1} and k as before:

G
(j1)
(j2),kk

=
1

∥xk
(j2)

∥2−z − (xk
(j2)

)∗[X
(j1)
(j2)

]k
(
([X

(j1)
(j2)

]k)∗[X
(j1)
(j2)

]k − z
)−1

([X
(j1)
(j2)

]k)∗xk
(j2)

(4.22)

= − 1

z
(
1 + (xk

(j2)
)∗G(k)

(j2)
xk
(j2)

) (4.23)

Proof. The proof is based on the block inversion formula (Schur’s inversion). To ease

the notation, we can assume that j1 = j2 = 0, otherwise the proof is similar. We can

also asume that k = 1. We strip the X matrix by the column x1, giving that:

G = (X∗X − z)−1 =M−1,

where M is the matrix:

M = X∗X − zI =

(
x1 X(1)

)∗(
x1 X(1)

)
− zI

=

 (x1)∗

(X(1))∗

(x1 X(1)

)
− zI

=

 ∥x1∥2 (x1)∗X(1)

(X(1))∗x1 (X(1))∗X(1)

− zI

=

 ∥x1∥2−z (x1)∗X(1)

(X(1))∗x1 (X(1))∗X(1) − zI

 .
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By the matrix inversion formula, we get that:

G11 = (M11 −M12M
−1
22 M21)

−1,

for the corresponding sub-blocks of M. This gives (4.22).

To derive (4.23), we use the matrix identity:

X(1)
[
(X(1))∗X(1) − zI

]−1
(X(1))∗ = X(1)(X(1))∗

[
X(1)(X(1))∗ − zI

]−1
,

which can be proved as follows:

LHS = RHS ⇔

X(1)
[
(X(1))∗X(1) − zI

]−1
(X(1))∗

[
X(1)(X(1))∗ − zI

]
= X(1)(X(1))∗ ⇔

X(1)G(1)(X(1))∗X(1)(X(1))∗ − zX(1)G(1)(X(1))∗ = X(1)(X(1))∗ ⇔

X(1)
[
G(1)(X(1))∗X(1) − zG(1)

]
(X(1))∗ = X(1)(X(1))∗ ⇔

X(1)(X(1))∗ = X(1)(X(1))∗,

after which (4.23) is straight-forward.

Furthermore we have the following asymptotic behaviour for the Stieltjes transform of

the Marchenko-Pastur distribution near the "soft" edge, E → 4 and η → 0+. Notice that

near the "soft" edge we have that Sρ + 1
2 ≈ 0 and Im(Sρ) ≈ 0, according to (4.12).

Lemma 4.1.7. For E > 0 we set κ := |E− 4|. Then for any fixed E0, E1 > 0 and η0 > 0 there

exist constants c, C > 0 such that

∣∣∣∣Sρ + 1

2

∣∣∣∣ ≥ C(κ2 + η2)
1
4 ≥ C

√
κ+ η, (4.24)

and

c
η√
κ+ η

≤ Im(Sρ) ≤ C
η√
κ+ η

, (4.25)

for all E ∈ [E0, E1], and η ∈ (0, η0], with κ ≥ η.
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Proof. For (4.24) we notice that

Sρ +
1

2
=

√
1− 4

z
=

√
z − 4

z
=

√
E − 4 + iη

E + iη
,

and so ∣∣∣∣Sρ + 1

2

∣∣∣∣ =
√

|κ+ iη|
|E + iη|

≥ C
√
|κ+ iη| = C(κ2 + η2)

1
4 .

The result now follows from the elementary inequality:

√
a2 + b2

2
≥ a+ b

2
.

For (4.25), we notice that

Im(Sρ) =
1

2
Im

√
1− 4

z

(z→4)∼ Im
√
z − 4.

If we set w := z − 4, with |w|= |κ+ iη|, we then get that:

Im(Sρ)
(z→4)∼ Im(

√
w) =

√
|w| sin

(
θ

2

)
,

where

θ := tan−1
(η
κ

)
.

By the asymptotics tan−1(x)
x→0∼ x and sin(x)

x→0∼ x, we get that:

Im(Sρ)
(z→4)∼ (κ2 + η2)1/4

η

κ
(κ,η→0)∼

√
κ+ η

η

κ

=
η√
κ+ η

(
1 +

η

κ

)
(κ,η→0)∼ η√

κ+ η
,

where we used the fact that η = O(κ). This concludes the proof of (4.25).
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4.2 Main theorems

To state our theorems we define the domain for our parameters where we obtain our

results:

ZE,η :=
{
4|η|≥ c(E2 + η2 − 4E)

∣∣ E, η ∈ R
}

(4.26)

for some c > 0. This domain is chosen so that |Im(Sρ + 1/2)2|≥ c|Re(Sρ + 1/2)2| which

we need for the proof of Proposition 4.4.1. While all the proofs work for all c > 0 not

dependent on N , we will specifically work with c = 1 to allow us the opportunity to

illustrate it in the following picture, Figure 4.1.

Figure 4.1: The set ZE,η shaded in blue and the integration contour L(z0) from (4.126)
in red.

We assume that

E|x11|4=: µ4 <∞, (4.27)

and that there exists a constant D > 0 such that for all N ∈ N and q ≥ 1:

E|x11|4q≤ D4(q−1)N q−1µ4. (4.28)

These assumptions are inspired by the papers of Götze-Tikhomirov [35, 62], where

they assume four-moment bounds just for independent random matrix entries and not

necessarily identically distributed. Notice that by the identical-distribution assumption,

x11 can be replaced by any xij , i, j = 1, ..., N.
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We are now ready to state our first theorem.

Theorem 4.2.1. Let XN be a N × N matrix as described in equations (4.1) and (4.2) and

assume (4.27) and (4.28) for its matrix entries. Let SN and Sρ be the Stieltjes transforms as

defined in equations (4.8) and (4.12). Moreover set z = E + iη, with Nη
|
√
z| ≥ M for some

suitably large M . Then there exist positive constants c0, C such that for each K > 0 and

1 ≤ q ≤ c0

(
Nη
|
√
z|

)1/8
and z ∈ ZE,η or E < 0:

P
(
|SN (z)− Sρ(z)| ≥

K

Nη

)
≤ (Cq)cq

2

Kq
. (4.29)

Furthermore, for any E ∈ R and η > 0 such that Nη
|
√
z| ≥M we have that:

P
(
|ImSN (z)− ImSρ(z)) |≥

K

Nη

)
≤ (Cq)cq

2

Kq
. (4.30)

Some remarks about this theorem are the following. Firstly, if η ∼ 1, we have the

so-called "global" law. Notice that in this case we also have that |
√
z|∼ 1. Then, for a

fixed and large enough N we can pick a large enough K(N) > 0 such that K
N ∼ N−c,

for some c > 0 and also choose q(N) such that (Cq)cq
2

Kq ∼ N−d for some d > 0. This gives

the standard convergence SN → Sρ on "global" scales η ∼ 1.

For "local" scales, η → 0+, we have to consider two cases, whether we are near the

"hard" edge, E → 0+, or somewhere else, E ∼ 1.Notice that in the second case, we once

more have that |
√
z|∼ 1 and we must haveNη to be large enough, so that we can choose

K(N) such that K
Nη ∼ N−c for some c > 0. This means that we can optimally have

η ∼ 1
N1−ϵ , for any small ϵ > 0. Choosing also a suitable q(N) gives that (Cq)cq

2

Kq ∼ N−d,

for some d > 0. Thus, we have achieved the "local" convergence SN → Sρ up to the

scale η ∼ 1
N away from the "hard" edge.

What is more important in this theorem, is the case when E, η → 0+, which means that

|
√
z|→ 0+ and we get close to the "hard" edge of the Marchenko-Pastur distribution.

Notice that in this case, the quantity Nη
|
√
z| needs to be large enough. Now, because of

the singularity on the "hard" edge, the convergence SN → Sρ is still valid up to scales
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η ∼ 1
N but if we want to go further down to scales η ∼ 1

N2 , we have to correct it as

|
√
z||SN − Sρ| → 0. Notice that:

|SN (z)− Sρ(z)| ≥
K

Nη
⇔ |

√
z|(SN − Sρ) ≥ K

|
√
z|

Nη
.

We now want Nη
|
√
z| ≥M, for some large enough M. This means that:

Nη

(E2 + η2)1/4
≥M ⇔

η√
E + η

≳
1

N
⇔

E + η ≲ (Nη)2.

If now η ∼ N−a, for some a > 0, we must then have that:

−a ≤ 2− 2a⇔ a ≤ 2,

so that we can have this convergence up to the scale η ∼ 1
N2 . Notice that we must

also have that E = O
(

1
N2

)
for these η - scales. Thus, we have proved the convergence

|
√
z||SN − Sρ| → 0, optimally for η ∼ 1

N2−ϵ for any small ϵ > 0 since we can choose

K(N) > 0 large enough such that K
Nη
|
√
z|

∼ N−c, for some c > 0 and choose q(N) such

that (Cq)cq
2

Kq ∼ N−d, for some d > 0. To summarize, we have proved the convergence

|
√
z||SN − Sρ| → 0, up to the scale η ∼ 1

N2 near the "hard" edge for E = O
(

1
N2

)
.

We now state our second theorem which is a result of theorem 4.2.1. We obtain

fluctuation estimates on the counting cumulative function as stated next. Letting:

P (E) :=

∫ E

0
ρ(x)dx, (4.31)

we compare it to ρN (E), as defined in (4.4).
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Theorem 4.2.2. With assumptions as in Theorem 4.2.1, there exist constants M0, N0, C, c > 0

such that for any K > 0 and E ≥ M0
N2 :

P
(
|ρN (E)− P (E)|≥ Kmin

{√
E,

logN

N

})
≤ (Cq)cq

2

Kq
, (4.32)

for all E ∈ R, K > 0, N > N0, q ∈ N.

We use the above theorem 4.2.2 to obtain rigidity estimates, that is how far each

eigenvalue can fluctuate away from its "classical" location.

We define the "classical" locations of the eigenvalues, predicted by the Marchenko-Pastur

distribution, as the quantiles γi, for i = 1, ..., N , such that:

∫ γi

0
ρ(x)dx =

i

N
.

Theorem 4.2.3. With assumptions as in Theorem 4.2.1, there exist constants C, c,N0, ϵ > 0

such that:

P
(
|λi − γi|≥ K

logN

N

(
i

N

))
≤ (Cq)cq

2

Kq
(4.33)

for i = 1, ..., ⌈N/2⌉, N > N0, K > 0, and q ∈ N with q ≤ N ϵ. Furthermore, for i ≤ logN we

have that

P

(
|λi − γi|≥ K

(
i

N

)2
)

≤ (Cq)cq
2

Kq/2
. (4.34)

4.3 A quadratic formula for the difference of the Stieltjes trans-

forms

We have defined the difference of the Stieltjes tranform Sρ(z) from its approximation

SN (z) as follows:

Λ
(j1)
(j2)

:= SN (z)
(j1)
(j2)

− Sρ(z). (4.35)
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The fixed-point relation for Sρ(z) is:

Sρ(z) = − 1

z(Sρ(z) + 1)
. (4.36)

We will try to deduce something similar for SN (z). We denote by x
(j)
k the k-th row of

the scaled matrix X(j) and by xk
(j) the k-th column of the scaled matrix X(j). We start

with the following lemma, after we define the following quantities:

[
T (j1)
(j2)

]k
:=

1

N
Tr
[
G(j1)
(j2)

]k
− 1

N
Tr
[
G

(j1)
(j2)

]
,
[
T
(j1)
(j2)

]
l
:=

1

N
Tr
[
G

(j1)
(j2)

]
l
− 1

N
Tr
[
G(j1)
(j2)

]
(4.37)[

Υ
(j1)
(j2)

]k
:= (I−Exk

(j2)
)(xk(j2))

∗
[
G(j1)
(j2)

]k
xk(j2) ,

[
Y

(j1)
(j2)

]
l
:= (I−Ex(j1)l

)(x(j1)l )∗
[
G

(j1)
(j2)

]
l
x(j1)l

(4.38)

where Exk
(j)

denotes the expectation with respect only to the randomness of the k−th

column of X(j) while Ex(j)l

denotes the expectation with respect only to the randomness

of the l−th row of X(j). The term I denotes the identity operator applied to a scalar

random variable, i.e I(a) := a. The superscipt k in the resolvents denotes an extra

removal of the k−th column of the scaled matrix X, where k ∈ {j1 + 1, ..., N}. The

subscript l in the resolvents denotes an extra removal of the l−th row of the scaled

matrix X, where l ∈ {j2 + 1, ...N}.

Lemma 4.3.1 (Probabilistic fixed-point relation). For any z ∈ ZE,η and N ∈ N we have the

following almost fixed point equation for SN :

SN
(j1)
(j2)

= − 1

N

N∑
k=j1+1

1

z
(
1 + SN

(j1)
(j2)

+ [T (j1)
(j2)

]k + [Υ
(j1)
(j2)

]k
) (4.39)

= − 1

N

N∑
l=j2+1

1

z
(
1 + SN

(j1)
(j2)

+ [T
(j1)
(j2)

]l + [Y
(j1)
(j2)

]l

) , (4.40)

where the quantities [T
(j1)
(j2)

]l, [Υ
(j1)
(j2)

]k, [T (j1)
(j2)

]k, [Y
(j1)
(j2)

]l, are the previous probabilistic error

terms.
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Proof. To derive the first equality (4.39) we use (4.23):

G
(j1)
(j2),kk

= − 1

z
(
1 + (xk

(j2)
)∗[G(j1)

(j2)
]kxk

(j2)

) .
It is now enough to show that (for j1 = j2 = 0):

Exk

[
(xk)∗Gkxk

]
=

1

N
Tr
[
Gk
]
. (4.41)

The first identity will then follow, because we can take summation in (4.23) and then

divide by N .

To prove (4.41), we notice that:

Exk

[
(xk)∗Gkxk

]
= Exk

 N∑
i,j=1

xkiGk
ijxjk

 =
1

N

N∑
i=1

Gk
ii,

where we used the fact that the entries of X are independent with expectation 0 and

variance 1
N . We also used the fact that the matrix Gk is independent of the column xk.

The second equality (4.40) comes from the following modified stripping identity, the

proof of which is similar to the original:

G(j1)
(j2),ll

= − 1

z

(
1 + (x(j1)l )

(
([X

(j1)
(j2)

]l)∗[X
(j1)
(j2)

]l − z
)−1

(x(j1)l )∗
) , (4.42)

where l is defined as before. It similarly yields the second part (4.40), recalling (4.16).

We have an easy deterministic bound for the quantities [T (j1)
(j2)

]k and [T
(j1)
(j2)

]l in the

following lemma:

Lemma 4.3.2. ∣∣∣[T (j1)
(j2)

]l

∣∣∣ , ∣∣∣[T (j1)
(j2)

]k
∣∣∣ ≤ |j1 − j2|+1

Nη
. (4.43)

Proof. We prove the bound for [T (j1)
(j2)

]k. We use the stripping lemma 4.1.3 for the proof.
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We use the notation G = G
(j1)
(j2)

.

[T (j1)
(j2)

]k = −j1 − j2
Nz

+
1

N

∑
i ̸=k

Gk
ii −

N∑
i=1

Gii


= −j1 − j2

Nz
+

1

N

∑
i ̸=k

(
Gii −

GikGki

Gkk

)
−

N∑
i=1

Gii


= −j1 − j2

Nz
− 1

N

∑
i ̸=k

GikGki

Gkk
−Gkk

 = −j1 − j2
Nz

− 1

N

1

Gkk

N∑
i=1

GikGki

= −j1 − j2
Nz

− (G2)kk
NGkk

.

We now use (4.20) to obtain

∣∣∣[T (j1)
(j2)

]k
∣∣∣ ≤ |j1 − j2|

N |z|
+

ImGkk

|Gkk|Nη

yielding that ∣∣∣[T (j1)
(j2)

]k
∣∣∣ ≤ |j1 − j2|+1

Nη
. (4.44)

A similar argument also works for the quantity [T
(j1)
(j2)

]l, replacing G with G and using

the modified stripping lemma for G :

G(j1)
(j2),ij

=
[
G(j1)
(j2)

]
l,ij

+
G(j1)
(j2),il

G(j1)
(j2),li

G(j1)
(j2),ll

, (4.45)

which holds for l ∈ {j2 + 1, ..., N} and i, j ̸= l.

It is highly non-trivial to bound the terms [Υ
(j1)
(j2)

]k and [Y
(j1)
(j2)

]l if we only have a four

moment bound as an assumption for the matrix entries of X . We will bound them in

section 4.5. In the case of a more powerful assumption like a sub-gaussian decay of the

entries, bounds on these quantities would be almost trivial.

We now connect the two similar fixed-point equations yielding a quadratic formula for

the difference Λ = SN − Sρ involving a new probabilistic error term R which combines

the previous ones and prevents the equation from being trivial with a zero solution.
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We start with the equation (4.39) and modify it by including in it the information

provided by equation (4.13) to deduce an equation for Λ.

We will use the identity
1

A+ ϵ
=

1

A
− ϵ

A(A+ ϵ)
,

where ϵ will represent the sum of the two probabilistic error terms plus the quantity Λ,

all multiplied by z.

We obtain that (also for any j1, j2 and so we suppress here the notation):

SN = − 1

N

N∑
k=1

1

z(1 + Sρ) + zΛ + z(T k +Υk)

= − 1

z(1 + Sρ)
+

1

N

N∑
k=1

1

z(1 + Sρ)

zΛ + z(T k +Υk)

z (1 + SN + T k +Υk)

= Sρ +
Sρ
N

N∑
k=1

zΛGkk −
Sρ
N

N∑
k=1

Gkkz(T
k +Υk)

= Sρ + SρzΛSN − Sρ
N

N∑
k=1

Gkkz(T
k +Υk).

(4.46)

This yields that

Λ = zSρΛ(Sρ + Λ)− Sρ
N

N∑
k=1

Gkkz(T
k +Υk). (4.47)

We can now define the error term R we were talking about, as:

R :=
1

N

N∑
k=1

Gkk(T
k +Υk). (4.48)

Of course we can similarly define the error term R
(j1)
(j2)

. Now (4.47) together with the

definition of R yields the following quadratic equation for Λ:

zSρΛ
2 + (zS2

ρ − 1)Λ + zSρR = 0. (4.49)

Dividing by zSρ, using that zSρ = − 1
1+Sρ

and the quadratic formula, yields

−(Sρ + 1/2)±
√
(Sρ + 1/2)2 −R (4.50)
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as two solutions for our estimated difference SN −Sρ. From the definition of Λ in (4.17),

it follows that Im(Λ) ≥ −Im(Sρ). Thus, if we take the branch cut of the square root to

be on the positive reals so that the imaginary part of the square root is always positive,

we obtain that:

Λ = −(Sρ + 1/2) +
√

(Sρ + 1/2)2 −R (4.51)

We also notice that the second solution, call it Λ̃, to (4.49) is given by:

Λ̃ = −Λ− 2Sρ − 1. (4.52)

4.4 A first look at the error term R

We explain here how exactly the probabilistic error term R quantifies the distance of Λ

from 0 according to our quadratic equation. We get the following estimates:

Proposition 4.4.1. Let z = E + iη. There exists a constant C > 0, such that:

|Λ|≤ Cmin

{
|R|

|Sρ + 1
2 |
,
√
|R|

}
, (4.53)

for all (E, η) ∈ ZE,η or E < 0. Furthermore, for any E ∈ R and η > 0 we have that:

|ImΛ|≤ Cmin

{
|R|

|Sρ + 1
2 |
,
√
|R|

}
(4.54)

and

min{|Λ|, |Λ̃|} ≤ C
√

|R|. (4.55)

Analogous statements hold for Λ(j1)
(j2)

with R(j1)
(j2)

.
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We will use the first bound near the "hard" edge, because |Sρ + 1
2 |→ ∞ when z → 0

and so it will be most useful there. The
√
|R|− bound will be most useful in the "bulk"

and near the "soft" edge, where z ∼ 1.

Proof. We apply the following Lemma which can be found in [15], page 12:

Lemma 4.4.2. We denote by
√
w the square root of w with Im

√
w ≥ 0.

• For any fixed c > 0, there exists a constant C > 0 such that:

∣∣∣√a+ b−
√
a
∣∣∣ ≤ C

|b|√
|a|+|b|

, (4.56)

for all a, b ∈ C with |Im(a)|≥ cRe(a).

• There exists a constant C > 0 such that:

∣∣∣Im(√a+ b
)
− Im(

√
a)
∣∣∣ ≤ C

|b|√
|a|+|b|

, (4.57)

for all a, b ∈ C.

We apply this Lemma with a = (Sρ +
1
2)

2 and b = −R.

Since Im(Sρ +
1
2) ≥ 0, with our choice of branch cut we have that

√
(Sρ + 1/2)2 =

Sρ + 1/2, and we recall that we defined ZE,η in (4.26) to be exactly the set where∣∣Im [(Sρ + 1/2)2
]∣∣ ≥ c

∣∣Re [(Sρ + 1/2)2
]∣∣ for some c > 0. These observations are

enough for the proof of (4.53) according to the proof of Lemma 4.4.2 in [15] on page 13.

Analogously, (4.54) follows directly from (4.57) and again the fact that
√
(Sρ + 1/2)2 =

Sρ + 1/2. For the
√
R− bound, it is again enough the follow the proof of 4.4.2 in [15] on

page 13.

The proof of (4.55) follows from Vieta’s formula:

|Λ||Λ̃|= |R|,
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so that we must have:

min{|Λ|, |Λ̃|} ≤
√
|R|.

We now extend (4.53) for E < 0. Recalling that SN (z) = 1
N

N∑
i=1

1
λi−E−iη and noting that

for E < 0 the real part of each summand is positive we conclude that Re(SN ) > 0 for

E < 0, and similarly to our argument about the imaginary part of Λ, we see from (4.17)

that Re(Λ) > −Re(Sρ) while from (4.52) we see that Re(Λ̃) < −Re(Sρ) − 1. Since we

have that:

Re(Λ) = −Re(Sρ + 1/2) + Re

(√
(Sρ + 1/2)2 −R

)
Re(Λ̃) = −Re(Sρ + 1/2)− Re

(√
(Sρ + 1/2)2 −R

)
,

we see that Re
(√

(Sρ + 1/2)2 −R
)
> 0 and thus |Re(Λ)|< |Re(Λ̃)| and thus one part

of (4.53) follows from (4.55). For the other part of (4.53), we estimate that:

|Λ|=

∣∣∣∣∣ R√
(Sρ + 1/2)2 −R+ (Sρ + 1/2)

∣∣∣∣∣ ≤
∣∣∣∣ R

Sρ + 1/2

∣∣∣∣ , (4.58)

where the last inequality follows since both the real and imaginary parts of both

summands in the denominator are positive. The fact that Re(Sρ + 1
2) ≥ 0 comes

from the definition of the Stieltjes transform which integrates a measure that has a

non-negative support.

What remains now is to focus on the error term

R :=
1

N

N∑
k=1

Gkk(T
k +Υk) (4.59)

and deduce some bounds for it (also for R(j1)
(j2)

). To obtain our optimal bounds, the

deterministic bounds on T k are enough, Υk will be regarded as a quadratic form and

will get bounded in section 4.5. The resolvent entry Gkk will get bounded in section

4.6.
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4.5 The four-moments condition and bounds for quadratic

forms

Here we obtain bounds for the quadratic form Υ := 1
N (I − Ex)x

∗Gx, where x is a

column vector of X .

We remark that we only have a four-moment condition as an assumption for the entries

of X . If instead, we had a sub-gaussian decay assumption for the entries, a bound for Υ

would be much easier to deduce by using the Hanson-Wright inequality for quadratic

forms as for example in [14], page 5. The proof here heavily relies on the Ward identity

(4.1.4) which is true both for G and G.

We simplify the notation by taking j1 = j2 = 0, but everything would work out for a

different case as well.

We prove the following Lemma:

Lemma 4.5.1. Let G = G or G. Let Υ := 1
N (I−Ex)x

∗Gx, assuming (4.27) and (4.28) for the

elements of x. Then, for any q ≥ 1, we have that

E|Υ|2q≤ (Cq)cq
(
E (ImTrG)q

N q(Nη)q
+

E|G11|2q

N q
+

E|G11|q

(Nη)q

)
. (4.60)

Moreover, we have the more precise inequality:

E|Υ|2q≤ (Cq)cq

(Nη)q

(
E
(
ImTrG
N

)q

+ E
∣∣∣∣ G11√
N

∣∣∣∣q)+ (Cq)cq
E|G11|2q

N q
. (4.61)

Proof. We start by the decomposition:

Υ =
1

N

∑
j ̸=l

xjxlGjl +
1

N

∑
j

(|xj |2−1)Gjj = ϵ2 + ϵ1,

where

ϵ2 :=
1

N

∑
j ̸=l

xjxlGjl and ϵ1 :=
1

N

∑
j

(|xj |2−1)Gjj . (4.62)
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We use Rosenthal’s inequality (Lemma 4.5.2) to obtain for any q ≥ 1, that:

E|ϵ1|2q≤ (Cq)2qN−2q

µ4 N∑
j=1

E|Gjj |2
q

+
N∑
j=1

E|xj |4qE|Gjj |2q
 . (4.63)

We use our four-moment assumption (4.28):

E|xj |4q≤ D4q−4N q−1µ4,

which yields that

E|ϵ1|2q≤ (Cq)2qN−qE|G11|2q. (4.64)

For ϵ2 we will systematically use both Burkholder’s and Rosenthal’s inequalities, ex-

pressed for complex random variables in the Lemmas 4.5.2 and 4.5.3. Using Burkholder’s

inequality we obtain:

E|ϵ2|2q≤ N−2q(C1q)
2q

E
 N∑

j=2

∣∣∣∣∣
j−1∑
k=1

xkGjk

∣∣∣∣∣
2
q

+max
k

E|xk|2q
N∑
j=2

E

∣∣∣∣∣
j−1∑
k=1

xkGjk

∣∣∣∣∣
2q


+N−2q(C1q)
2q

E
 N∑

j=2

∣∣∣∣∣∣
∑

1≤k≤j−1

xkGkj

∣∣∣∣∣∣
2q

+max
k

E|xk|2q
N∑
j=2

E

∣∣∣∣∣
j−1∑
k=1

xkGkj

∣∣∣∣∣
2q
 (4.65)

We define the quantities:

Q0 :=

N∑
j=2

∣∣∣∣∣
j−1∑
k=1

xk
Gjk√
N

∣∣∣∣∣
2

and Q̂0 :=

N∑
j=2

∣∣∣∣∣
j−1∑
k=1

xk
Gkj√
N

∣∣∣∣∣
2

(4.66)

The difficult part of the proof will be to bound expectations of powers of these quantities.

For the other terms we apply Rosenthal’s inequality and (4.27) getting that:

E|ϵ2|2q≤ (Cq)2qN−q(E|Q0|q+E|Q̂0|q) + (Cq)4qN− 3q
2
−1× (4.67) N∑

j=2

E

{(
j−1∑
k=1

|Gjk|2
)q

+

(
j−1∑
k=1

|Gkj |2
)q}

+
N∑
j=2

j−1∑
k=1

E|xk|2q(E|Gjk|2q+E|Gkj |2q)


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For the last terms we observe that

|Gjk|≤
1

2

√
ImGjj

η
+

1

2

√
ImGkk

η
, (4.68)

which can be obtained as follows. Let (ui)Ni=1 be the normalized eigenvectors of G and

λ0 = 0. Then

|Glj |=

∣∣∣∣∣∣
N∑
q=0

ulquqj
λq − z

∣∣∣∣∣∣ ≤
N∑
q=0

|ulquqj |
|λq − z|

≤ 1

2

N∑
q=0

|ulq|2+|uqj |2

|λq − z|

≤ 1

2

√√√√ N∑
q=0

|ulq|2
|λq − z|2

+
1

2

√√√√ N∑
q=0

|uqj |2
|λq − z|2

,

where in the last step we recall that the eigenvectors are normalized and use Jensen’s

inequality. Then (4.68) follows. Using for the first terms the Ward identity (4.1.4),
N∑
l=1

|Gjl|2≤ η−1Im Gjj , we now get that

E|ϵ2|2q≤ (Cq)2qN−q
[
E|Q0|q+E|Q̂0|q

]
+

(Cq)4q

(Nη)q
E|ImG11|q. (4.69)

We will now bound the quantity E|Q0|q, and note that E|Q̂0|q is similar. We will

implement an induction scheme on the quantity E|Q0|q to gradually decrease its

exponent q and finally remove it. The technique is similar to the one in [35, 62] but

we extend Rosenthal and Burkholder inequalities to complex entries and improve the

bound near the "soft" edge, where ImTrG
N = ImSN ≈ ImSρ → 0, see (4.60) and (4.61).

Notice that this improvement is captured only on (4.61).

Similarly to [35] we define the following quantities. This analysis will let us exploit the

resolvent identities for the resolvent entries that appear on the quadratic forms Q0 and

Q̂0. Also, notice the decomposition (4.73).
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Qν :=

N∑
j=2

∣∣∣∣∣
j−1∑
k=1

xja
(ν)
jk

∣∣∣∣∣
2

, Qν1 :=

N∑
l=1

a
(ν+1)
ll ,

Qν2 :=
N∑
l=1

(
|xl|2−1

)
a
(ν+1)
ll , and Qν3 :=

∑
l ̸=j

xlxja
(ν+1)
lj , (4.70)

where a(ν)jk are defined recursively via

a
(0)
jk :=

Gjk√
N

and a
(ν+1)
jk :=

N∑
l=max{j,k}+1

a
(ν)
jl a

(ν)
kl (4.71)

for ν = 0, 1, ..., L− 1, L where L is an integer such that 2L−1 < q ≤ 2L.

From [35] Lemma 5.1 and Corollaries 5.2 and 5.3, we have the following bounds:

max

|a(ν+1)
rr |,

∑
j

|a(ν)jr |2
 ≤

(
ImTrG
Nη

)2ν−1 ImGrr

Nη
(4.72)

To set up our induction scheme we expand the absolute value square and interchange

the order of summations in Qν :

Qν =

N∑
j=2

∑
1≤k1,k2≤j−1

xk1xk2a
(ν)
k1j
a
(ν)
k2j

=
∑

1≤k1,k2≤N−1

xk1xk2

N∑
j=max{k1,k2}+1

a
(ν)
k1j
a
(ν)
k2j

=
∑

1≤j1,j2≤N

xj1xj2a
(ν+1)
j1j2

= Qν1 +Qν2 +Qν3. (4.73)

We now take the power 2L−ν so as to match the case E|Q0|2
L
, for ν = 0, after we

gradually increase the powers under an induction scheme from ν = L to ν = 0. The

base case will be E|QL|.

Taking power 2L−ν and expectation we obtain that:

E|Qν |2
L−ν≤ 32

L−ν
(
E|Qν1|2

L−ν
+E|Qν2|2

L−ν
+E|Qν3|2

L−ν
)
. (4.74)

Firstly, by the definition of Qν1 and the definition of the coefficients a(ν+1)
ll and (4.72)
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we can check that:

E|Qν1|2
L−ν≤ E

[
ImTrG
Nη

]2L
. (4.75)

We apply Rosenthal’s inequality for the quantity Qν2 getting that:

E|Qν2|2
L−ν≤ (Cq)q

E( N∑
l=1

|a(ν+1)
ll |2

)2L−(ν+1)

+

N∑
l=1

E||xl|2−1|2L−ν |a(ν+1)
ll |2L−ν


≤ (Cq)q

E( N∑
l=1

|a(ν+1)
ll |2

)2L−(ν+1)

+N2L−(ν+1) 1

N

N∑
l=1

E|a(ν+1)
ll |2L−ν

 , (4.76)

where we used (4.28) in the last line. We notice that the first term is bounded above by

the second term by Jensen’s inequality, so we obtain that:

E|Qν2|2
L−ν≤ (Cq)qN2L−(ν+1) 1

N

N∑
l=1

E|a(ν+1)
ll |2L−ν≤ (Cq)qJν , (4.77)

where we used (4.72) and introduced the notation

Jν := N−2L−(ν+1)
E

[∣∣∣∣ ImTrG
Nη

∣∣∣∣2L−2L−ν ∣∣∣∣ ImG11(z)

η

∣∣∣∣2L−ν
]
. (4.78)

Now we apply Burkholder’s inequality to E|Qν3|q to obtain a bound which involves

E|Qν+1|q/2 and E|Q̂ν+1|q/2 as in (4.65). We use Rosenthal’s inequality to bound the

other term arising from the application of Burkholder’s inequality:

E|Qν3|2
L−ν ≤ E

∣∣∣∣∣∣
∑
j1 ̸=j2

xj1xj2a
(ν+1)
j1j2

∣∣∣∣∣∣
2L−ν

≤ (Cq)q
(
E|Qν+1|2

L−(ν+1)
+E|Q̂ν+1|2

L−(ν+1)
)

+ (Cq)qE|x1|2
L−ν

n∑
j=2

E

∣∣∣∣∣
j−1∑
k=1

a
(ν+1)
jk xk

∣∣∣∣∣
2L−ν

+

∣∣∣∣∣
j−1∑
k=1

a
(ν+1)
kj xk

∣∣∣∣∣
2L−ν

≤ (Cq)q
(
E|Qν+1|2

L−(ν+1)
+E|Q̂ν+1|2

L−(ν+1)
)

+ (Cq)2qN2L−(ν+2) 1

N

N∑
j=2

E

 ∑
1≤l≤N,l ̸=j

|a(ν+1)
jl |2

2L−(ν+1)
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+ (Cq)qN2L−(ν+1) 1

N2

N∑
j=2

∑
1≤l≤N,l ̸=j

E|a(ν+1)
jl |2L−ν (4.79)

The resulting terms are bounded by (4.72) and the following argument. By Hölder

inequality and the definition (4.71), we obtain that:

1

N2

N∑
j=2

∑
1≤r≤N,r ̸=j

|a(ν+1)
rj |2L−ν≤ 1

N2

N∑
j=2

∑
1≤r≤N,r ̸=j

∣∣∣∣∣∣
∑
l1

|a(ν+1)
rl1

|2
∑
l2

|a(ν+1)
l2j

|2
∣∣∣∣∣∣
2L−(ν+1)

≤ 1

N2

N∑
j=2

∑
1≤r≤N,r ̸=j

∣∣∣a(ν)rr a
(ν)
jj

∣∣∣2L−(ν+1)

≤

 1

N

∑
j

|a(ν)jj |2L−(ν+1)

2

≤ 1

N

∑
j

|a(ν)jj |2L−ν
, (4.80)

where in the last step we used Jensen’s inequality. This yields that:

E|Qν3|2
L−ν ≤ (Cq)q

(
E|Qν+1|2

L−(ν+1)
+E|Q̂ν+1|2

L−(ν+1)
)

+ (Cq)2qN2L−(ν+2)
E

∣∣∣∣∣
(
ImTrG
Nη

)2ν+1−1 ImG11

Nη

∣∣∣∣∣
2L−(ν+1)

+ (Cq)qN2L−(ν+1)
E

∣∣∣∣∣
(
ImTrG
Nη

)2ν−1 ImG11

Nη

∣∣∣∣∣
2L−ν

≤ (Cq)q
(
E|Qν+1|2

L−(ν+1)
+E|Q̂ν+1|2

L−(ν+1)
)
+ (Cq)2q(Jν+1 + Jν). (4.81)

Same bounds hold for Q̂ν with Q̂ν1 , Q̂ν2 and Q̂ν3 defined analogously. Thus, by (4.74),

we have proved that:

E|Qν |2
L−ν≤ 32

L−ν
(
E|Qν1|2

L−ν
+E|Qν2|2

L−ν
+E|Qν3|2

L−ν
)
≤

(Cq)2q

(
E
[
ImTrG
Nη

]2L
+ Jν + E|Qν+1|2

L−(ν+1)
+E|Q̂ν+1|2

L−(ν+1)
+(Jν+1 + Jν)

)
,

for any ν = 0, 1, ..., L. By an induction argument we obtain that:

E(|Q0|2
L
+|Q̂0|2

L
) ≤

≤ (Cq)cq

(
E(|QL|+|Q̂L|) +

L−1∑
ν=0

(
E|Qν1|2

L−ν
+E|Q̂ν1|2

L−ν
+E|Qν2|2

L−ν
+E|Q̂ν2|2

L−ν
+Jν + Jν+1

))
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≤ (Cq)cq

(
E|QL|+E|Q̂L|+

L−1∑
ν=0

E
(
|Qν1|2

L−ν
+|Q̂ν1|2

L−ν
)
+

L∑
ν=0

Jν

)
. (4.82)

Now, we bound the three terms on the RHS. For 0 ≤ ν ≤ L we have that

Jν = η−2LE

[(
ImTrG
N

)2L ∣∣∣∣ ImG11√
N

N

ImTrG

∣∣∣∣2L−ν
]

≤ η−2LE

[(
ImTrG
N

)2L

+

∣∣∣∣ ImG11√
N

∣∣∣∣2L
]
, (4.83)

where in the last step we used Young’s inequality and 0 ≤ ν ≤ L.

Using (4.73) and (4.72) we obtain

E|QL|= E

∣∣∣∣∣∣
∑

1≤j1,j2≤N

xj1xj2a
(L+1)
j1j2

∣∣∣∣∣∣ =
N∑
j=1

E|a(L+1)
jj |≤ E

(
ImTrG
Nη

)2L

, (4.84)

and a similar bound for E|Q̂L|.

Upon substitution of (4.75), (4.83) and (4.84) into (4.82), we get that:

E|Q0|q+E|Q̂0|q≤ (Cq)cqη−q

(
E
(
ImTrG
N

)q

+ E
∣∣∣∣ ImG11√

N

∣∣∣∣q) , (4.85)

We can now go back to (4.69) and replace this bound on the RHS. The desired bounds

(4.60) and (4.61) on E|Υ|2q will follow from (4.64) and (4.69).
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Rosenthal’s and Burkholder’s inequalities.

Here we state Rosenthal’s and Burkholder’s inequalities adapted to complex variables

and non-Hermitian bilinear forms (useful for G). We are given complex random

variables x1, ..., xN with i.i.d. real and imaginary parts and E [Re(xj)] = E [Im(xj)] = 0

and E |Re(xj)|2 = E |Im(xj)|2 = 1/2, for j = 1, ..., N as in our setup. We assume that for

j = 1, ..., N : E|xj |p≤ µp for any p ≥ 1, so that all the moments exist and are bounded

by these quantities. In our setup, they may also depend on N.

The following Lemma is our version of Rosenthal’s inequality. Here we have a vector

a = (a1, ..., aN ) of complex scalars. It is easy to prove by separating real and imaginary

parts of the random variables and using Lemma 7.1 of [35]:

Lemma 4.5.2 (Rosenthal’s inequality). For any p ≥ 1, there exists a constant C1 such that

E

∣∣∣∣∣∣
N∑
j=1

ajxj

∣∣∣∣∣∣
p

≤ (C1p)
p


 N∑

j=1

|aj |2
p/2

+ µp

N∑
j=1

|aj |p

 . (4.86)

Proof. We let xj = Re(xj) + iIm(xj) for j = 1, .., N and then use Lemma 7.1 of [35].

The following Lemma is our version of Burkholder’s inequality. Here, we have a family

of complex scalars (aij)
N
i,j=1. This is an extension of Lemma 7.3 of [35] for complex

entries and non-Hermitian quadratic forms. Let

Q :=
∑
j ̸=k

ajkxjxk.

Lemma 4.5.3 (Burkholder’s Inequality). For any q ≥ 1, there exist absolute constants C1, C2

such that:

E|Q|q ≤ (C1q)
q

E

 n∑
j=2

∣∣∣∣∣
j−1∑
k=1

ajkxk

∣∣∣∣∣
2
q/2

+ µq

n∑
j=2

E

∣∣∣∣∣
j−1∑
k=1

ajkxk

∣∣∣∣∣
q


+ (C2q)
q

E

 n∑
j=2

∣∣∣∣∣
j−1∑
k=1

akjxk

∣∣∣∣∣
2
q/2

+ µq

n∑
j=2

E

∣∣∣∣∣
j−1∑
k=1

akjxk

∣∣∣∣∣
q
 .
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Proof. We introduce for j = 1, 2, ..., N the random variables

ξj := xj

j−1∑
k=1

ajkxk , ξ̂j := xj

j−1∑
k=1

akjxk (4.87)

We let Rj := σ(ξ1, ..., ξj) be the sigma-algebra generated by the first j random variables

ξ1, ..., ξj . We observe that the ξj and ξ̂j are Rj−measurable with E[ξj |Rj−1] = 0 and

E[ξ̂j |Rj−1] = 0, which means that they form martingale differences. Next, we write Q

as

Q =

n∑
j=2

ξj +

n∑
j=2

ξ̂j (4.88)

and so,

E|Q|q≤ CqE

∣∣∣∣∣∣
n∑

j=2

ξj

∣∣∣∣∣∣
q

+ CqE

∣∣∣∣∣∣
n∑

j=2

ξ̂j

∣∣∣∣∣∣
q

.

We now apply a general Burkholder-Rosenthal Inequality as seen in [50], analogous to

Lemma 7.2 from [35], to the martingale-difference sequences ξ1, ..., ξn and ξ̂1, ..., ξ̂n. We

just have to evaluate E[ξ2j |Rj−1] and E|ξj |q, for j = 1, 2, ..., N. The case is similar for the

ξ̂1, ..., ξ̂n random variables. We therefore observe that:

E
[∣∣ξj |2∣∣Rj−1

]
= E|xj |2

∣∣∣∣∣
j−1∑
k=1

ajkxk

∣∣∣∣∣
2

=

∣∣∣∣∣
j−1∑
k=1

ajkxk

∣∣∣∣∣
2

,

E|ξj |q = E|ζj |qE

∣∣∣∣∣
j−1∑
k=1

ajkxk

∣∣∣∣∣
q

≤ µq E

∣∣∣∣∣
j−1∑
k=1

ajkxk

∣∣∣∣∣
q

,

and the lemma follows after applying the inequality seen in [50].

4.6 The resolvent bounds

In this section we will bound the quantities E|Gkk|q that appear in the main error term

R defined in (4.59).

We remind that our strategy is to bound high powers of the expected value of this term

(i.e. bound E|R|q) and use Markov’s inequality to show that it is small in probability.
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Let

λ
(j1)
(j2)

:= max
{∣∣∣Λ(j1)

(j2)

∣∣∣χSE,η
,min

{∣∣∣Λ(j1)
(j2)

∣∣∣ , ∣∣∣Λ̃(j1)
(j2)

∣∣∣} , ∣∣∣ImΛ
(j1)
(j2)

∣∣∣} (4.89)

By Proposition 4.4.1, E
∣∣∣λ(j1)(j2)

∣∣∣2q ≤ C2qE
∣∣∣R(j1)

(j2)

∣∣∣q . Taking expectation of a power q ≥ 1 of∣∣∣R(j1)
(j2)

∣∣∣ we obtain (as in [15]), using (4.44), (4.60), (4.16), Jensen’s and Cauchy-Schwartz

inequalities:

E
∣∣∣R(j1)

(j2)

∣∣∣q ≤ 1

N

N∑
k=j1+1

E
∣∣∣([T (j1)

(j2)
]k + [Υ

(j1)
(j2)

]k
)
G

(j1)
(j2)kk

∣∣∣q ≤
E
∣∣∣([T (j1+1)

(j2)
] + [Υ

(j1+1)
(j2)

]
)
G

(j1)
(j2),11

∣∣∣q
≤

E
∣∣∣C(|j1 − j2|+1)G

(j1)
(j2),11

∣∣∣q
(Nη)q

+ |C|q
√
E|G(j1)

(j2),11
|2qE

∣∣∣[Υ(j1+1)
(j2)

]
∣∣∣2q

≤
E
∣∣∣C(|j1 − j2|+1)G

(j1)
(j2),11

∣∣∣q
(Nη)q

+ |Cq|cq

√
E|G(j1)

(j2),11
|2q

E|G(j1+1)
(j2),11

|2q

N q

+ |Cq|cq

√√√√√E|G(j1)
(j2),11

|2q

E(ImTrG(j1+1)
(j2)

)q

(Nη)qN q
+

E|G(j1+1)
(j2),11

|q

(Nη)q


≤

E
∣∣∣C(|j1 − j2|+1)G

(j1)
(j2),11

∣∣∣q
(Nη)q

+ |Cq|cq

√
E|G(j1)

(j2),11
|2q

E|G(j1+1)
(j2),11

|2q

N q

+ Cq

√
E|G(j1)

(j2),11
|2q (Cq)

cq

(Nη)q

((
|j1 + 1− j2|

Nη

)q

+ E
(
ImSρ + ImΛ

(j1+1)
(j2)

)q
+ E|G(j1+1)

(j2),11
|q
)

≤
|C(|j1 − j2|+1)|q

√
E|G(j1)

(j2),11
|2q

(Nη)q
+ |Cq|cq

√
E|G(j1)

(j2),11
|2q

√
E|G(j1+1)

(j2),11
|2q

N q
(4.90)

+ |Cq|cq
√

E|G(j1)
(j2),11

|2q

(Nη)
q
2

( |j1 + 1− j2|
Nη

)q/2

+

√√√√( C√
|z|

)q

+ E|λ(j1)(j2)
|q +

√
E|G(j1+1)

(j2),11
|q

 .
In the second to last line, the term |j1+1−j2|

N |z| arises from equation (4.16) and |λ(j1)(j2)
−

λ
(j1+1)
(j2)

|= O
(

1
Nη

)
similarly with the proof of (4.44). We notice here that in order to get

finite bounds near the "hard" edge, we have to extinguish the 1√
|z|

term, that came from

the imaginary part of Sρ. This suggests that we should multiply everything with |z|q

and actually get bounds for the quantity E|zR|q, which in turn suggests bounds for the

resolvent entries of the form E|
√
zG11|q and E|

√
zG11|q.
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Multiplying by |z|q, (4.90) becomes:

E
∣∣∣zR(j1)

(j2)

∣∣∣q ≤
|C

√
z(|j1 − j2|+1)|q

√
E|
√
zG

(j1)
(j2),11

|2q

(Nη)q
+ |Cq|cq

√
E|
√
zG

(j1)
(j2),11

|2q

√
E|
√
zG(j1+1)

(j2),11
|2q

N q

+ |Cq|cq
|z|q/4

√
E|
√
zG

(j1)
(j2),11

|2q

(Nη)
q
2

[
|j1 + 1− j2|q/2 +

√
E|
√
zλ

(j1)
(j2)

|q +
√
E|
√
zG(j1+1)

(j2),11
|q
]

≤ Cq |z|q/2(|j1 − j2|+1)q

(Nη)q

√
E|
√
zG

(j1)
(j2),11

|2q + (Cq)cq

√
E|
√
zG

(j1)
(j2),11

|2q
E|
√
zG(j1+1)

(j2),11
|2q

N q

(Cq)cq
|z|q/4

√
E|
√
zG

(j1)
(j2),11

|2q

(Nη)
q
2

[
|j1 − j2 + 1|q/2+

√
E|
√
zλ

(j1)
(j2)

|q +
√
E|
√
zG(j1+1)

(j2),11
|q
]
.

(4.91)

We now try to deduce a bound for E|
√
zλ

(j1)
(j2)

|2q. Since for any x, δ > 0,

x1/4 ≤ δx+ δ−1/3,

for x = E|
√
zλ

(j1)
(j2)

|2q by Cauchy-Schwartz we obtain that:

x ≤ (Cq)q
|z|q/2(|j1 − j2|+1)q

(Nη)q

√
E|
√
zG

(j1)
(j2),11

|2q + (Cq)cq
√
E|
√
zG

(j1)
(j2),11

|2q

√
E|
√
zG(j1+1)

(j2),11
|2q

N q

+ (Cq)cq
|z|q/4

√
E|
√
zG

(j1)
(j2),11

|2q

(Nη)
q
2

[
δx+ δ−1/3 +

√
E|
√
zG(j1+1)

(j2),11
|q + |j1 − j2 + 1|q/2

]
.

Writing this as

x ≤ A+B
[
δx+ δ−1/3 + Γ

]
⇔

(1−Bδ)x ≤ A+Bδ−1/3 +BΓ,

we see that we can set

δ =
B−1

2
=

2(Cq)cq
√
E|
√
zG

(j1)
(j2),11

|2q

(Nη)
q
2

−1

,
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to get that:

E|
√
zλ

(j1)
(j2)

|2q ≤ (Cq)cq
|z|q/2(|j1 − j2|+1)cq

(Nη)q

(
(E|

√
zG

(j1)
(j2),11

|2q)1/2
)

+ (Cq)cq
|z|q/3

(
E|
√
zG

(j1)
(j2),11

|2q
)2/3

(Nη)2q/3
+ (Cq)cq

√
E|
√
zG

(j1)
(j2),11

|2q

√
E|
√
zG(j1+1)

(j2),11
|2q

N q

+ (Cq)cq

√√√√ |z|q/2E|
√
zG

(j1)
(j2),11

|2q

(Nη)q

[√
E|
√
zG(j1+1)

(j2),11
|q + |j1 − j2 + 1|q/2

]
.

(4.92)

Lemma 4.6.1 (Resolvent bounds). Let E ≤ 4, η ≤ η0 and q ≤
(

Nη
|
√
z|

)1/4
with Nη

|
√
z| ≥ M

for some suitable large constant M > 0. Assume that j1, j2 ∈ {0, ..., N − 1} are such that

0 ≤ |j1 − j2|≤ C1q for a uniform constant C1. Then with definitions as before,

E|
√
zG

(j1)
(j2),11

|q≤ Cq and E|
√
zG(j1+1)

(j2),11
|q≤ Cq,

for some constant C.

Proof. We will implement an induction argument similar to [15, 35]. The induction

hypothesis will be that for ηi = η0/16
i for some constant η0 and any j1, j2 with

|j1 − j2|≤ Li := C1

(
Nηi
|
√
E|

)1/4
.

E|
√
zG

(j1)
(j2),11

(ηi)|q≤ Cq
0 and E|

√
zG(j1+1)

(j2),11
(ηi)|q≤ Cq

0 (4.93)

for q ≤
(

Nηi
|
√
E|

)1/4
for a universal constant C0.

Induction basis: We notice that this holds to initiate our induction for η0 as a constant.

This can be proved for example by the inequality |SN (z)|≤ 1
η as seen in section 3.1,

point 4.

Induction step: Letting ηi+1 = ηi/16 and Li+1 = Li/2 we will show that inequality

(4.93) taken at ηi implies the same inequality with the same constant C0 for ηi+1.
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From the induction hypothesis and Lemma 4.1.5 we see that

E|
√
zG

(j1)
(j2),11

(ηi+1)|q≤ (16C0)
q and E|

√
zG(j1+1)

(j2),11
(ηi+1)|q≤ (16C0)

q (4.94)

for any j1, j2 with |j1 − j2|≤ Li. This will need to be improved to the bound Cq
0 for any

k1, k2 with |k1 − k2|≤ 2−1Li.

We will use the inequality |k1 − k2|≤ Li+1 in equation (4.101).

From (4.23), (4.37), (4.38), (4.13) and (4.52) we obtain that (for ηi+1):

G
(k1)
(k2),11

= Sρ + zSρ

(
Λ
(k1)
(k2)

+ [T (k1)
(k2)

]N + [Υ
(k1)
(k2)

]N
)
G

(k1)
(k2),11

(4.95)

G
(k1)
(k2),11

= Sρ − zSρ

(
Λ̃
(k1)
(k2)

− [T (k1)
(k2)

]N − [Υ
(k1)
(k2)

]N
)
G

(k1)
(k2),11

+ zSρ(2Sρ + 1)G
(k1)
(k2),11

. (4.96)

The analogous statements for G(k1)
(k2),11

follow similarly from (4.42), (4.37), (4.38), (4.13)

and (4.52) (for ηi+1):

G(k1)
(k2),11

= Sρ + zSρ

(
Λ
(k1)
(k2)

+ [T
(k1)
(k2)

]N + [Y
(k1)
(k2)

]N

]
G(k1)
(k2),11

(4.97)

G(k1)
(k2),11

= Sρ − zSρ

(
Λ̃
(k1)
(k2)

− [T
(k1)
(k2)

]N − [Y
(k1)
(k2)

]N

]
G(k1)
(k2),11

+ zSρ(2Sρ + 1)G(k1)
(k2),11

. (4.98)

This yields that:

|G(k1)
(k2),11

|≤ |Sρ|+
∣∣∣G(k1)

(k2),11

∣∣∣ (∣∣∣√zΛ(k1)
(k2)

∣∣∣+ ∣∣∣√z[T (k1)
(k2)

]N
∣∣∣+ ∣∣∣√z[Υ(k1)

(k2)
]N
∣∣∣) |√zSρ|

|G(k1)
(k2),11

|≤
∣∣∣∣ Sρ
1− zSρ(2Sρ + 1)

∣∣∣∣+ ∣∣∣G(k1)
(k2),11

∣∣∣ (∣∣∣√zΛ̃(k1)
(k2)

∣∣∣+ ∣∣∣√z[T (k1)
(k2)

]N
∣∣∣+ ∣∣∣√z[Υ(k1)

(k2)
]N
∣∣∣)×∣∣∣∣ √

zSρ
1− zSρ(2Sρ + 1)

∣∣∣∣ ,
and using (4.13) we see that 1− zSρ(2Sρ + 1) = 2− zS2

ρ and thus Sρ

1−zSρ(2Sρ+1) =
Sρ

2−zS2
ρ
.

We use the bounds |zS2
ρ − 2|≥ c1 and |

√
zSρ|≤ C2, valid in our domain, and let

C = max{C2, C2/c1}.
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We then have that:

|
√
zG

(k1)
(k2),11

|≤ C
[
1 +

∣∣∣√zG(k1)
(k2),11

∣∣∣ (|√z|min
{
|Λ(k1)

(k2)
|, |Λ̃(k1)

(k2)
|
}
+
∣∣∣√z[T (k1)

(k2)
]N
∣∣∣+ ∣∣∣√z[Υ(k1)

(k2)
]N
∣∣∣)]

and taking power q, expectation, and using Jensen, Cauchy-Schwarz and (4.44) we get

at ηi+1:

E|
√
zG

(k1)
(k2),11

|q≤ Cq

[
1 +

√
E|
√
zG

(k1)
(k2),11

|2q
√
E|
√
zλ

(k1)
(k2)

|2q

+
|
√
z|q(|k1 − k2|+1)q

(Nηi+1)q
E|
√
zG

(k1)
(k2),11

|q+
√
E|
√
zG

(k1)
(k2),11

|2q
√
E|
√
z[Υ

(k1)
(k2)

]N |2q
]

(4.99)

Using the above, Lemma 4.5.1 and a calculation similar to (4.90) we obtain again at ηi+1:

E|
√
zG

(k1)
(k2),11

|q≤ Ccq

[
1 +

√
E|
√
zG

(k1)
(k2),11

|2q
√
E|
√
zλ

(k1)
(k2)

|2q

+
|
√
z|q(|k1 − k2|+1)q

(Nηi+1)q
E|
√
zG

(k1)
(k2),11

|q

+ (Cq)cq
√

E|
√
zG

(k1)
(k2),11

|2q |
√
z|q/4

(Nηi+1)q/2

√
1 + E|

√
zλ

(k1)
(k2)

|q+E|
√
zG(k1+1)

(k2),11
|q

+

√
E|
√
zG

(k1)
(k2),11

|2q
E|
√
zG(k1+1)

(k2),11
|2q

N q

]
(4.100)

We use (4.94) to bound the terms E|
√
zG

(k1)
(k2),11

|2q and E|
√
zG(k1+1)

(k2),11
|2q in the above

inequality, noting that |k1 − k2|≤ Li+1 ≤ Li. To use (4.94) we need 2q ≤
(
Nηi+1

|
√
E|

)1/4
,

which gives us q ≤
(

Nηi
16|

√
E|

)1/4
, which is what we need. Then using (4.94) on equation

(4.92) at ηi+1 and recalling that |k1 − k2|≤ C1q we obtain:

E|
√
zλ

(k1)
(k2)

|q ≤ (Cq)cq
|z|q/2

(Nηi+1)q
(16C0)

q/2 + (Cq)cq
|z|q/3

(Nηi+1)2q/3
(16C0)

2q/3

+ (Cq)cq
|z|q/4

(Nηi+1)q/2
(16C0)

3q/4 + (Cq)cq
(16C0)

q

N q/2
. (4.101)
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Since we will choose a large enough M > 0 such that Nηi+1

|
√
z| ≥M to work the argument,

we can assume that Nηi+1

|
√
z| > 1, so that (4.101) becomes:

E|
√
zλ

(k1)
(k2)

|q≤ (Cq)cq
|z|q/4

(Nηi+1)q/2
(16C0)

3q/4 + (Cq)cq
(16C0)

q

N q/2
. (4.102)

Substituting this into (4.100), we obtain that at ηi+1:

E|
√
zG

(k1)
(k2),11

|q≤ Ccq

{
1 + (16C0)

q(Cq)cq

[
|
√
z|q/2

(Nηi+1)q/2
(16C0)

q/4 +
(16C0)

q

N q/2

]
+

+ (16C0)
q(Cq)cq

|
√
z|q/2

(Nηi+1)q/2

√
1 +

|
√
z|q/2

(Nηi+1)q/2
(16C0)q/4 +

(16C0)q

N q/2
+ (16C0)q +

(16C0)
2q

N q/2

}

≤ Ccq

[
1 +Kq

(
|
√
z|

Nηi+1

)q/4
]
,

where we used the bound for q. Here we have a constant K > 0 depending on C0 and

C. We can choose C0 > 2Cc and Nηi+1

|
√
z| > M > K4, so that Kq

(
|
√
z|

Nηi+1

)q/4
< 1 and

therefore E|
√
zG

(k1)
(k2),11

(ηi+1)]
q ≤ Cq

0 as required.

We notice that all the steps are identical for G(k1+1)
(k2),11

using (4.97) and exactly one row gets

stripped as well as exactly one column so that |k1 + 1− (k2 + 1)|= |k1 − k2|≤ Li+1.

Combining 4.6.1 with (4.92), we can deduce a first bound for Λ, which will be optimized

in the next section.

Corollary 4.6.2 (Weak local law). Let z ∈ ZE,η such that Nη
|
√
z| ≥M, for some suitably large

constant M . Then, there exist C,C1 > 0 such that:

E|Λ|2q≤ (Cq)cq

(Nη)q/2
,

for any 0 ≤ q ≤ C1

(
Nη
|
√
z|

)1/4
.
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4.7 Optimal bound for the Stieltjes transform

In this section we prove Theorem 4.2.1. We will use the matrix expansion algorithm

from [15], which carries over directly as it is based entirely on linear algebra of resolvents.

We will make a note of the important modifications. We note, importantly, that as we

expand resolvent entries, we will be removing columns of XN and we never need to

remove rows. The expansion algorithm yields results in terms of high moments of the

following quantities:

|
√
zG

(J)
kk |,

∣∣∣∣∣ 1
√
zG

(J)
kk

∣∣∣∣∣ ,
∣∣∣∣∣(I− Ek)

1
√
zG

(J)
kk

∣∣∣∣∣ , |√zG(J)
kl |, (4.103)

where J is any subset of {1, .., N} and G(J) means that we remove all columns of the

scaled matrix X that belong on that subset J and then take the resolvent of KXX .

Analogously, G(J) means that we remove all rows of the scaled matrix X that belong on

that subset J and then take the resolvent of KXX .

To obtain optimal bounds on Λ, we will use the precise inequality in (4.61).

We begin this section by estimating high moments of the quantities in (4.103). We will

use (4.60) to obtain bounds on E|
√
zG

(j1)
(j2),kl

| as well as |E
√
zG(j1)

(j2),kl
|.

For convenience of notation, we introduce the control parameter:

Eq :=
1

N q|z|q/2
+max

{
[Im(|z|Sρ)]q + E|zΛ|q

(Nη)q
,

|z|q

(Nη)2q

}
. (4.104)

We now show how to estimate the last quantity in (4.103), using the following formulas

(see for example (2.20) of [54] ) (valid also for any j1, j2, with G = G
(j1)
(j2)

or G = G(j1)
(j2)

with k, l > max{j1, j2}):

Gkl = zGllG
({l})
kk

[
(xl)∗G({k,l})xk

]
=:

√
zGll

√
zG

({l})
kk Kkl

Gkl = zGllG({l}),kk
[
xlG({k,l})(xk)

∗] =:
√
zGll

√
zG({l}),kkKkl.

(4.105)

We can defineK(j1)
(j2),kl

,K(j1)
(j2),kl

analogously. The following lemma provides the necessary
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bound on E|Kkl|2q.

Lemma 4.7.1. Assume (4.27) and (4.28) for the entries of the matrix XN as before and let

z = E + iη. Then there exist constants c, C,M1,M2 > 0 such that

|z|qmax{E|Kkl|2q,E|Kkl|2q} ≤ (Cq)cqEq (4.106)

for E, η ∈ ZE,η, N > M1 , Nη
|
√
z| > M2, k ̸= l ∈ {1, ..., N}, q ∈ N with q ≤ c

(
Nη
|
√
z|

)1/4
.

Assuming |j1 − j2|≤ Cq for some constant C, the same inequality holds for K(j1)
(j2),kl

,K(j1)
(j2),kl

.

with k, l > max{j1, j2}.

Proof. The following argument is identical for K(j1)
(j2),kl

,K(j1)
(j2),kl

, so we work with Kkl. By

the definition of Kkl and using the notation ϵk1, ϵk2 for ϵ1 and ϵ2 as in (4.62) we get that:

|z|qE|Kkl|2q≤
(Cq)cq

N2q

E|ϵk2|2q+E
∑
j

|G(kl)
jj xkjxlj |2q

 ≤ (Cq)cq

(Nη)q
|z|q/2 (4.107)

where E|ϵk2| is bounded using (4.69), (4.85) and E
∑
j
|G(kl)

jj xkjxlj |2q is bounded by

Rosenthal’s inequality like E|ϵk1|2q in (4.63). We also used Lemma 4.6.1 to bound

E|Gkk|2q. In summary, we used the bound (4.60) to bound this quantity.

We now improve this to (4.106). We use the bound (4.61), after we modify it using

Lemma 4.6.1 and the fact that:

2

(Nη)qN q/2
≤ 1

(Nη)2q
+

1

N q
,

to obtain:

E|Υ|2q≤ (Cq)cq

(Nη)2q
E|ImTrG|q+(Cq)cq

(
1

N q
+

1

(Nη)2q

)
(4.108)

and using this, we can improve the bound on (4.107), which yields (4.106).

This gives the desired bound:

E|
√
zG

(J)
12 |

2q≤ (Cq)cqEq, (4.109)
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where |J|≤ Cq.

Lemma 4.7.2. Assume (4.27) and (4.28) for the entries of XN as before and let z = E + iη ∈

ZE,η. Then, there exist constants c, C,M > 0 such that:

E
1

|
√
zG

(J)
11 |2q

≤ Cq,

for Nη√
|z|
> M , q ≤

(
Nη
|
√
z|

)1/4
, with |J|≤ cq.

Proof. We can take |J|= 0 as the argument is similar in the general case. We use (4.23)

to get that:

E
1

|
√
zG11|2q

= E
∣∣∣√z(1 + (x1)∗G(1)x1)

∣∣∣2q ≤ Cq + Cq|z|qE
∣∣∣(x1)∗G(1)x1

∣∣∣2q
≤ Cq

(
1 + |z|qE

∣∣∣(x1)∗G(1)x1 − Ex1(x1)∗G(1)x1
∣∣∣2q + E

∣∣∣Ex1

√
z(x1)∗G(1)x1

∣∣∣2q) .
The second term on the RHS is small by Lemma 4.5.1. For the third term, we find that:

E
∣∣∣Ex1

√
z(x1)∗G(1)x1

∣∣∣2q = E
∣∣∣∣ 1N√

zTr(G(1))

∣∣∣∣2q = E
∣∣∣∣ 1N√

z

(
1

z
+Tr(G(1))

)∣∣∣∣2q ≤ Cq,

(4.110)

where we used Lemma 4.6.1 and that |S(1)
N − SN |≤ 1

Nη as in (4.44), as well as the bound
Nη√
|z|
> M.

To estimate the third quantity in (4.103), we find by (4.108) that:

E
∣∣∣∣(I− Exk)

1√
zGkk

∣∣∣∣2q = E
∣∣∣−√

zΥ({k})
∣∣∣2q ≤ (Cq)cqEq, (4.111)

where we used (4.23) and the precise bound (4.61) along with Lemma 4.6.1.
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Lastly, we also need a bound on E
∣∣∣∣ 1
Ex1

1√
zG11

∣∣∣∣q which we obtain in the following Lemma:

Lemma 4.7.3. Let E, η ∈ ZE,η, where z = E + iη. There exist constants c, C,M > 0 such

that:

E

∣∣∣∣∣ 1

Ex1
1√
zG11

∣∣∣∣∣
q

≤ Cq,

for Nη ≥ |
√
z|M and for q ∈ N with q ≤ c

(
Nη
|
√
z|

)1/4
.

Proof. The proof is similar to Lemma 5.1 in [15]. We define:

G̃11 =
1

Ex1
1

G11

= − 1

z
(
1 + TrG({1})

N

) .
We calculate that:

∣∣∣∣ ddη log G̃11(E + iη)

∣∣∣∣ =
∣∣∣∣∣ ddη log

(
1

z

)
+

d

dη
log

(
1

1 + TrG
({1})

N

)∣∣∣∣∣ =
∣∣∣∣∣− i

z
−

d
dηTrG

({1})

N +TrG({1})

∣∣∣∣∣ .
We show that

∣∣∣ ddηTrG({1})
∣∣∣ ≤ ImTrG({1})

η as follows:

d

dη
TrG(1) =

N∑
k=1

d

dη
G({1})
kk (θ) =

N∑
k=1

i((G({1}))2)kk =
N∑
k=1

i⟨ek, (G({1}))2ek⟩

⇒
∣∣∣∣ ddηG({1})

∣∣∣∣ ≤ N∑
k=1

∥(G({1}))∗ek∥ ∥G({1})ek∥≤
N∑
k=1

((G({1}))∗G({1}))kk

=
N∑
k=1

Im(G({1}))kk
η

=
ImTrG({1})

η
. (4.112)

We conclude that ∣∣∣∣ ddη log G̃11

∣∣∣∣ ≤ 1

|z|
+

ImTrG({1})

η|N +TrG({1})|
≤ 2

η
, (4.113)

yielding that:

∣∣∣log G̃11(E + iη)− log G̃11(E + iη/s)
∣∣∣ = ∣∣∣∣∣

∫ η

η/s

d

dν
log G̃11(E + iν)dν

∣∣∣∣∣ ≤
∫ η

η/s

2

ν
dν = log s2

(4.114)
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and thus

|G̃11(E + iη)|≤ s2|G̃11(E + iη/s)|.

The proof now proceeds with induction on η just like in the proof of Lemma 4.6.1 using

the identity
√
zG̃11 =

√
zG11 +

√
zG11

√
zG̃11(I− Ex1)(

√
zG11)

−1. (4.115)

as well as (4.111) and the results of Lemma 4.6.1. Specifically, we notice that:

E|
√
zG̃11|q≤ Cq + (Cq)cqE

(
|
√
zG̃11|3q

)1/3 |z|q/2

(Nη)q
,

after which the induction is straight-forward just like Lemma 4.6.1.

Lastly, we use the matrix expansion algorithm to take advantage of the fluctuations.

This technique was firstly introduced in the papers [24] and [25] and was later simplified

and improved in the papers [19] and [20]. We will follow the analysis in [15].

Hence the following proposition, analogous to Lemma 4.1 of [15]:

Proposition 4.7.4. Let Eq be the control parameter as in (4.104). There exist constants

C,M, c0 > 0 such that:

E

∣∣∣∣∣ 1N ∑
k

√
zΥ({k})√zGkk

∣∣∣∣∣
2q

≤ (Cq)cq
2E1/2

4q , (4.116)

for 1 ≤ q ≤ c0

(
Nη
|
√
z|

)1/8
, Nη√

|z|
≥M , K > 0 , z = E + iη ∈ ZE,η.

Proof. To match notation in [15], we introduce Wk =
√
zΥk

√
zGkk and we split:

1

N

∑
k

Wk =
1

N

∑
k

(I− Ek)Wk +
1

N

∑
k

EkWk. (4.117)

By Hölder’s inequality,

E

∣∣∣∣∣ 1N ∑
k

Wk

∣∣∣∣∣
2q

≤ CqE

∣∣∣∣∣ 1N ∑
k

(I− Ek)Wk

∣∣∣∣∣
2q

+ CqE|E1W1|2q. (4.118)
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To bound the second term in (4.118) above, using that
√
θΥ({k}) = −(I− Ek)

1√
zGkk

, we

obtain

EkWk =
Ek[

√
zGkk(

√
zΥ({k}))2](

Ek
1√

zGkk

) . (4.119)

and applying Lemma 4.7.3 to (4.119), we get that:

E|E1W1|2q ≤ (E|
√
zG11|8q)

1
4

E

∣∣∣∣∣ 1

E1
1√
zG11

∣∣∣∣∣
8q
 1

4

(E|
√
zΥ({1})|8q)

1
2

≤ (Cq)cq (E4q)1/2 ,

which is what we want.

In order to handle the first term of (4.118), we use the matrix expansion algorithm as in

Section 5.2 of [15]. We notice that equations (5.7), (5.8), and (5.9) are the basis of the

expansion algorithm, and they are equivalent to the following (see e.g. (2.18) in [54]):

√
zG

(T)
ij =

√
zG

(Tk)
ij +

√
zG

(T)
ik

√
zG

(T)
kj

√
zG

(T)
kk

for i, j, k /∈ T and i, j ̸= k,

1
√
zG

(T)
ii

=
1

√
zG

(Tk)
ii

−
√
zG

(T)
ik

√
zG

(T)
ki√

zG
(T)
ii

√
zG

(Tk)
ii

√
zG

(T)
kk

for i, k /∈ T and i ̸= k

(4.120)

Using the above equation (4.120), we see that in our case the steps of the expansion

algorithm (5.13), (5.14), (5.15) in [15] are the same except that each resolvent entry is

multiplied by a factor of
√
z. Using our definition of W , equation (5.6) in [15] becomes

analogous to

(I− Eks)Wks = (I− Eks)

[
(I− Eks)

1√
zGksks

]√
zGksks , s = 1, ..., 2q, (4.121)

so the initial terms of the algorithm are Ar :=
√
zGkrkr and Br := 1√

zGkrkr
are the same

as (5.16), (5.17) of [15] except that each resolvent entry is multiplied by a
√
z. Then

(5.18), (5.19), and (5.20) of [15] carry over directly as well as properties (1) through (5) of
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relevant strings. We then obtain the desired result

E

∣∣∣∣∣ 1N ∑
k

(I− Ek)Wk

∣∣∣∣∣
2q

≤ (Cq)cq
2E1/2

4q

using the proof of (5.32) of [15]. It relies on counting the types of terms that result from

the expansion algorithm. Since our algorithm yields the same type and number of

terms in each step, the proof in our case will be identical. In [15], we notice the use

of bounds (3.9) and Lemma 5.2 in (5.44) as well as in Case 2, bounds (5.26) and (3.4)

in (5.43) and (5.49). We can replace (3.9), Lemma 5.2, (5.26), and (3.4) of [15] by our

bounds on the relevant quantities in (4.103) as well as our (5.4).

Proof of Theorem 4.2.1. By Proposition 4.4.1, in order to control Λ, we need to control

high moments of R = N−1
N∑
k=1

Gkk(Tk + Υ({k})). Taking expectation of 2q power we

obtain:

E|zR|2q≤ Cq

E

∣∣∣∣∣ 1N ∑
k

√
zTk

√
zGkk

∣∣∣∣∣
2q

+ E

∣∣∣∣∣ 1N ∑
k

√
zΥ({k})√zGkk

∣∣∣∣∣
2q
 . (4.122)

For the first term by (4.44), we obtain

E

∣∣∣∣∣ 1N ∑
k

√
zTk

√
zGkk

∣∣∣∣∣
2q

≤ Cq 1

N2q|z|q
. (4.123)

while the second term is handled in Proposition 4.7.4, yielding that

E|zR|2q≤ (Cq)cq
2E1/2

4q .

Here we are able to simplify the analysis in [15] by only using the bounds proportional

to R from Proposition 4.4.1 to control E|Λ|2q in ZE,η and E|ImΛ|2q. Our simplifications

carry over also to the Wigner case. We can assume that

[Im(Sρ)]
2q + E|Λ|2q≥ 1

(Nη)2q
,
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(otherwise E|Λ|2q≤ 1
(Nη)2q

, as we want) and in this case:

E2q =
1

N2q|z|q
+

Im(|z|Sρ)]2q + E|zΛ|2q

(Nη)2q
≤ ηq + Im(|z|Sρ)]2q + E|zΛ|2q

(Nη)2q
,

Using the bound proportional to |R| from Proposition 4.4.1, we obtain

E|zΛ|q ≤ CqE|zR|q

|Sρ + 1
2 |q

≤ (Cq)cq
2

|Sρ + 1
2 |q

(
ηq + [Im(|z|Sρ)]2q

(Nη)2q

)1/2

=
(Cq)cq

2

|Sρ + 1
2 |q

|z|q

(Nη)q

(
ηq

|z|2q
+ [Im(Sρ)]

2q

)1/2

≤ (Cq)cq
2 |z|q

(Nη)q

[( √
η

|z||Sρ + 1
2 |

)q

+

(
ImSρ

|Sρ + 1
2 |

)q]
.

To obtain the desired bound we now note that ImSρ ≤ |Sρ + 1
2 | and

√
η

|z||Sρ+
1
2
| ≤ C in our

domain. The first one follows easily and for the second one we argue as follows:

√
η

|z||Sρ + 1
2 |

=
2
√
η√

|z|
√
|z − 4|

,

and by triangle inequality either |z|≥ 2 or |z − 4|≥ 2. Then in the first case, we use the

bound √
η ≤

√
|z − 4| and in the second case the bound √

η ≤
√
|z|.

Overall, this implies that:

P
(
|SN − Sρ|≥

K

Nη

)
≤ (Nη)q

Kq
E|Λ|q≤ (Cq)cq

2

Kq
, (4.124)

for 1 ≤ q ≤ c0

(
Nη
|
√
z|

)1/8
, Nη√

|z|
≥M , K > 0 , z = E + iη ∈ ZE,η .

4.8 Rate of convergence to the Marchenko-Pastur distribution

In this section we prove Theorem 4.2.2.

Let

N (I) := #{i ≤ N | λi ∈ I}, (4.125)
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denote the number of eigenvalues in the interval I. We denote by ν the probability

distribution of Re(xij) and Im(xij), for i, j = 1, ..., N.

Proof of Theorem 4.2.2. Let 0 < E ≤ 4. We will use a Pleĳel argument from [55], recently

used in obtaining estimates on a measure µ from estimates on its Stieltjes transform as

in [23]. We start from the following equations (equations (13) and (14) in [23], following

from equation (5) of [55]). Here µ is any probability measure supported on an interval

[−K,K], for a large K > 0 :

µ(−K,E) =
1

2πi

∫
L(z0)

Sµ(z)dz +
η0
π
ReSµ(z0) +O (η0ImSµ(z0)) (4.126)

and

µ(x, x′) =
1

2πi

∫
γ(x,x′)

Sµ(z)dz +O
(
η0 |Sµ(x+ iη0)|+ η0

∣∣Sµ(x′ + iη0
∣∣) , (4.127)

where Sµ is the Stieltjes transform of µ and L(z0) is a contour as in Figure 4.1 (see also

[23] Fig 1A), namely connects with line segments the points E − iη0, E − iQ,−1 −

iQ,−1 + iQ,E + iQ,E + iη0 in that order with arbitrarily chosen constants −1 and Q,

and γ(x, x′) is the chain connecting x+ iη0 with x′ + iη0 and x′ − iη0 with x− iη0.

By Markov inequality, we obtain that

P
(
|ρN (E)− P (E)|≥ C logN

N

)
≤ N qE |ρN (E)− P (E)|q

(C logN)q
. (4.128)

Then using (4.126) and taking z0 := E + iη0 with η0 := M
√
E

N with M as in Theorem

4.2.1, we obtain that:

E |ρN (E)− P (E)|q = E
∣∣∣∣ 1

2πi

∫
L(z0)

Λ(z)dz+
η0
π
ReΛ(z0)+O

(
η0(ImSN (z0)+ImSρ(z0))

)∣∣∣∣q
≤ Cq

(
E

∣∣∣∣∣
∫
L(z0)

Λ(z)dz

∣∣∣∣∣
q

+O
(
ηq0E|Λ(z0)|

q+ηq0ImSρ(z0)
q

))
, (4.129)

noting that the constant in the O comes from the Pleĳel formula and is uniform in the

matrix randomness. We study the above expression one term at a time. For E ≤ 4 we
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can bound the second term as follows

ηq0E|Λ(z0)|
q≤ ηq0

(Cq)cq
2

(Nη0)q
≤ (Cq)cq

2

N q
. (4.130)

The third term is bounded using the above inequality (4.130) on Λ as well as

η0ImSρ ≤ Cη0√
E

=
CM

N
. (4.131)

Now for the integral, we note that it suffices to study the part of the contour where

Im(z) > 0 since Λ(z̄) = Λ(z). Thus we obtain:

E

∣∣∣∣∣
∫
L(z0)

Λ(z)dz

∣∣∣∣∣
q

≤ Cq

(
E
∣∣∣∣∫ η0

0
Λ(−1 + iy)dy

∣∣∣∣q
+ E

∣∣∣∣∫ Q

η0

Λ(−1 + iy)− Λ(E + iy)dy

∣∣∣∣q + E
∣∣∣∣∫ E

−1
Λ(x+ iQ)dx

∣∣∣∣q )

Since all eigenvalues are positive we bound |Λ| for −1 < 0 by |Λ(−1 + iη)|≤ 2 which

yields: ∣∣∣∣∫ η0

0
Λ(−1 + iy)dy

∣∣∣∣q ≤ (∫ η0

0
|Λ(−1 + iy)|dy

)q

≤ Cqηq0. (4.132)

Next we note that:

E
∣∣∣∣∫ E

−1
Λ(x+ iQ)dx

∣∣∣∣q ≤ (Cq)cq
2

(NQ)q
(4.133)

Now we can bound the expected value of the integrals E
(∫ Q

η0
|Λ(E + iy)|dy

)q
and

E
(∫ Q

η0
|Λ(−1 + iy)|dy

)q
for E ≤ 4, noting that the argument is identical at E and −1,

E
(∫ Q

η0

|Λ(E + iy)|dy
)q

= E
∫ Q

η0

|Λ(E + iy1)|dy1
∫ Q

η0

|Λ(E + iy2)|dy2 · · ·
∫ Q

η0

|Λ(E + iyq)|dyq

= E
∫ Q

η0

· · ·
∫ Q

η0

q∏
j=1

|Λ(E + iyj)|
q∏

j=1

dyj =

∫ Q

η0

· · ·
∫ Q

η0

E
q∏

j=1

|Λ(E + iyj)|
q∏

j=1

dyj

≤
∫ Q

η0

· · ·
∫ Q

η0

q∏
j=1

(E|Λ(E + iyj)|q)
1
q

q∏
j=1

dyj ≤
1

N q

∫ Q

η0

· · ·
∫ Q

η0

q∏
j=1

(Cq)cq

yj

q∏
j=1

dyj

=
(Cq)cq

2

N q

(∫ Q

η0

1

y
dy

)q

≤ (Cq)cq
2 (logN)q

N q
,

where we can apply (4.124) inside the integral because our estimates on Λ are uniform
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on compact sets.

To prove the other part of (4.32) near the "hard" edge, we use the (4.127) and study the

interval [−E,E], noting that ρN (E) = N ([−E,E])/N and P (−E,E) = P (E). Similarly

to the above, we have that:

ρN (−E,E)−ρ(−E,E) =
1

2πi

∫
γ(−E,E)

Λ(z)dz+O (η0Λ(E + iη0))+O (η0Sρ(E + iη0)) .

We now take expectation and power q and use Hölders inequality. The corresponding

integral can be bounded similarly to above:

E

∣∣∣∣∣
∫
γ(−E,E)

Λ(z)dz

∣∣∣∣∣
q

= E
∣∣∣∣∫ E

−E
Λ (x+ iη0)− Λ (x− iη0) dx

∣∣∣∣q
= E

∣∣∣∣∫ E

−E
2ImΛ (x+ iη0)

∣∣∣∣q ≤ (Cq)cq
2
Eq

(Nη0)
q ≤ (Cq)cq

2
(
√
E)q

M q

and, similarly to (4.131):

η0Sρ(E) ≤ η0√
E

=
M

N
, (4.134)

which together with (4.130) yields the
√
E - bound of (4.32) for E < 4.

To establish the (4.32) for E > 4, we use (4.32) for E = 4 to establish bounds on

the number of eigenvalues outside of the spectrum. Letting NI be the number of

eigenvalues in an interval I , we see that:

N(4,∞) = N −NρN (4) = N(P (4)− ρN (4)) (4.135)

which by (4.32) for E = 4 yields that:

P
(N(4,∞)

N
>
K logN

N

)
≤ (Cq)q

2

Kq
(4.136)

and for E > 4,

P
(
|ρN (E)− P (E)|≥ K logN

N

)
≤ P

(N(4,∞)

N
>
K logN

N

)
, (4.137)
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thus (4.136) gives the desired bound.

4.9 Rigidity of the eigenvalues

The aim of this section is a proof of Theorem 4.2.3.

Proof of Theorem 4.2.3. Let i ≤ N
2 . We will make use of the following inequalities near

the "hard" edge and away from the "soft" edge:

c
√
x ≤ P (x) ≤ C

√
x, (4.138)

and

cP (x)−1 ≤ ρ(x) ≤ CP (x)−1. (4.139)

valid for x ∈ (0, 3]. The second inequality implies that

c
N

i
≤ ρ(γi) ≤ C

N

i
, (4.140)

for any i ≤ N
2 .

For ϵ > 0, we have that:

P
(
|λi − γi|≥ Kϵ

i

N

)
≤ P

(
|λi − γi|≥ Kϵ

i

N
and λi ≤ γi

)
+ P

(
|λi − γi|≥ Kϵ

a

N
and λi > γi

)
= A+B. (4.141)

We consider first the term A. We set

ℓ = Kε
i

N
.

From λi ≤ γi and |λi−γi|≥ ℓwe find that λi ≤ γi−ℓ. This implies that ρN (γi−ℓ) ≥ i
N =

P (γi). By the mean value theorem for the function P , there exists a point x∗ ∈ [γi− ℓ, γi]
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such that P (γi)− P (γi − ℓ) = ρ(x∗)ℓ, yielding that:

ρN (γi − ℓ)− P (γi − ℓ) = ρN (γi − ℓ)− P (γi) + ρ(x∗)ℓ ≥ ρ(x∗)ℓ

≥ ρ(γi)Kϵ
i

N
≥ cKϵ, (4.142)

because ρ is non-increasing, i < N/2, and we used (4.140). Setting ε = logN
N we deduce

from Theorem 4.2.2 that:

A ≤ P
(
|ρN (γi − ℓ)− P (γi − ℓ)|≥ cK logN

N

)
≤ (Cq)cq

2

Kq
(4.143)

For i ≤ logN , set ϵ = i
N ≥ c

√
γi, from (4.138), to obtain the better bound:

A ≤ P
(
|ρN (γi − ℓ)− P (γi − ℓ)|≥ cK

√
(γi − ℓ)+

)
≤ (Cq)cq

2

Kq
, (4.144)

because c
√

(γi − ℓ)+ ≤ c
√
γi ≤ i

N ≤ logN
N and we used Theorem 4.2.2.

We now estimate the term B. From the estimate (4.138) near the "hard" edge we have

that P (x) ∼
√
x, so:

γi ≤ C

(
i

N

)2

,

for some constant C > 0 for all i < N/2. We consider the number

y = 2C

(
i

N

)2

and we further consider the cases that γi + ℓ ≤ y or γi + ℓ > y.

In the first case, since λi > γi and |λi − γi|≥ ℓ, we have that λi > γi + ℓ and so

ρN (γi + ℓ) ≤ i
N = P (γi).

Hence, from the mean value theorem, we find x∗ ∈ [γi, γi + ℓ] ⊂ [γi, y] such that

P (γi + ℓ)− P (γi) = ρ(x∗)ℓ, yielding that:

P (γi + ℓ)− ρN (γi + ℓ) = P (γi)− ρN (γi + ℓ) + ρ(x∗)ℓ

≥ ρ(x∗)ℓ = ρ(x∗)Kϵ
i

N
≥ ρ(y)Kϵ

i

N
≥ cKϵ, (4.145)
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where we used that ρ is non-increasing and that ρ(y) ≥ c√
y near the "hard edge".

Setting ϵ = logN
N and using Theorem 4.2.2, we conclude that

B ≤ P
(
|P (γi + ℓ)− ρN (γi + ℓ)|≥ cK

logN

N

)
≤ (Cq)cq

2

Kq
, (4.146)

as required. To obtain rigidity at the "hard" edge ( equation (4.34), let ϵ = i
N to obtain:

B ≤ P
(
|P (γi + ℓ)− ρN (γi + ℓ)|≥ cKi

N

)
≤ P

(
|P (γi + ℓ)− ρN (γi + ℓ)|≥ c

√
K
√
γi + ℓ

)
≤ (Cq)cq

2

Kq/2
, (4.147)

where the second line follows as before because √
γi ≤ c i

N and ℓ = Ki2

N2 .

In the other case we have that γi+ ℓ > y so the inequality λi > γi+ ℓ implies that λi > y

and therefore ρN (y) ≤ i
N = P (γi). Hence from the mean value theorem, there exists

x∗ ∈ [γi, y] such that P (y)− P (γi) ≥ ρ(x∗)ℓ, which yields:

P (y)− ρN (y) ≥ P (γi)− ρN (y) + ρ(x∗)ℓ ≥ ρ(x∗)ℓ = ρ(x∗)Kϵ
i

N
≥ ρ(y)Kϵ

i

N
≥ cKϵ,

and we can conclude (4.33) and (4.34) as above. This finishes the proof of Theorem

4.2.3.



Chapter 5

The Dyson equation method

In this chapter we generalize the Stieltjes transform technique to the Dyson equation

technique.

Let H be a N ×N Hermitian random matrix, whose spectrum we want to compute

for large N . We recall that with the Stieltjes transform method we had to define the

resolvent matrix G(z) = (H − zI)−1 and then the Stieltjes transform of the empirical

spectral measure would be equal to the normalized trace of G(z). We then had to show

that the normalized trace of G(z) convergences to a suitable Stieljes tranform Sµ(z) of a

limiting measure µ. Usually, Sµ(z) satisfies an algebraic equation which is "close" to the

probabilistic one satisfied by ⟨G(z)⟩, which can be found using resolvent identities.

In the Dyson equation technique, instead of studying the normalized trace ⟨G(z)⟩ of

the resolvent matrix, we study the whole matrix G(z) and deduce a basic probabilistic

equation satisfied by it in the Gaussian case which we generalize for any distribution for

the entries. If some conditions are satisfied about the initial Hermitian random matrix

H , then we can simplify this equation to deduce a deterministic one which is "close" to

the original and whose determistic solutionM(z)would be "close" toG(z).Analogously,

M(z) turns out be the Stieltjes transform of a matrix-valued measure, whose normalized

trace ⟨M(z)⟩ can give us the liming spectral measure for the eigenvalues of H .
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This technique is especially useful when we have correlations inside the Hermitian

matrix H . In section 5.1 we will apply this technique to the Gaussian Unitary Ensemble

(GUE) and find out that it coincides with the Stieltjes transform technique. We then

find out some differences for Wigner-type matrices and correlated Hermitian matrices

in section 5.2.

The technique is then studied and established theoretically in the next sections. There

are two steps for this method to work, after proving the existence and uniqueness of

the solution M(z):

1. Show that the probabilistic equation satisfied by G(z) and the deterministic

equation satisfied by M(z) are "close" to each other. This is done by treating

the first as a perturbation of the second one and showing that the error is small.

This is achieved through the multivariate cumulant expansion technique and is

summarized in 5.3.

2. Show that the deterministic equation is stable. This means that solutions to it are

"close" to solutions of small perturbations of it. This is achieved by showing the

invertibility of a suitable linear stability operator. This is summarized in section 5.4.

We finally give the resulting theorems in section 5.5.

This analysis is based on the lecture notes [26]. The publications [21] and [3] analyze

these two steps and give the final theorems, while the existence and uniqueness of the

solution for the Dyson equation can be found in [37] for the matrix case and in [1] for

the vector case.

5.1 Gaussian Hermitian random matrix models

The definition of the resolvent G = G(z) results in the basic identity:

HG = I + zG. (5.1)
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We will include in this identity the information provided by the expected value of HG,

which reminds of the formula (for Gaussian random variables):

E[hf(h)] = E[h2]E[f ′(h)], (5.2)

where h is real centered Gaussian and f a smooth function. The version of this for

complex Gaussian random variables is the following:

E[zf(z)] = E∥z∥2E
[
∂f(z)

]
, (5.3)

where ∂ denotes the Wirtinger derivative and f is sufficiently smooth. This gets

generalized for Gaussian random vectors V ∈ Rn as follows:

E[V f(V )] = KE [∇f(V )] , (5.4)

where K = E[V V T ] and f : Rn 7→ R is sufficiently smooth.

The application of this formula to resolvent matrices in random matrices firstly appeared

in [42]. In our case, where f represents the resolvent function of a complex centered

Gaussian matrix, we have the following:

Lemma 5.1.1. For a Hermitian Gaussian random matrix H and its resolvent G, it holds that:

E[HG] = −E
[
Ẽ[H̃GH̃]G

]
, (5.5)

where H̃ is an independent copy of H and the second expectation is with respect to H̃ , i.e.

Ẽ[H̃GH̃] = E [HGH|G] .

Proof. For the proof, we apply (5.4), while identifying C with R2. We obtain that:

E[HjkGab]

= E
[
K11∂Re(Hjk)Gab +K12∂Im(Hjk)Gab + iK21∂Re(Hjk)Gab + iK22∂Im(Hjk)Gab

]
= −E

[
(K11 −K22 + iK12 + iK21)GajGkb + (K11 +K22 − iK12 + iK21)GakGjb

]
,
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where K is the real 2N × 2N covariance matrix of the k-th column of H which belongs

in CN .

We observe that K11 = K22 = E[ReHjk]
2 = E[ImHjk]

2 and

K12 = K21 = E[ReHjkImHjk] = 0.

Therefore, we have that:

E[HjkGab] = −E
[
∥Hjk∥2GakGjb

]
= −E∥H12∥2E [GakGjb] , (5.6)

for any j, k, a, b ∈ {1, ..., N}. Calculating the desired expected value, we see that:

Ẽ[H̃GH̃]jk =
∑
a,b

Ẽ[H̃jaGabH̃bk] =
∑
a,b

GabẼ[H̃jaH̃bk]

= δjkE∥H12∥2
N∑
a=1

Gaa = δjkE∥H12∥2Tr[G], (5.7)

and this means that:

E
[
Ẽ[H̃GH̃]G

]
jk

= E∥H12∥2E [GjkTr(G)] .

On the other hand, by (5.6), we have that:

E[HG]jk =

N∑
a=1

E [HjaGak] = −
N∑
a=1

E∥H12∥2E [GaaGjk]

= −E∥H12∥2E [GjkTr(G)] ,

and the proof is complete.

We can now define a linear operator S : CN×N 7→ CN×N , by:

S[R] = Ẽ[H̃RH̃], (5.8)
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so that we may write:

E[HG] = −E[S[G]G]. (5.9)

Plugging this information to (5.1) we obtain the Dyson equation:

I + (z + S[G])G = D, D := HG+ S[G]G, (5.10)

where S defined in (5.8) is called the self-energy operator in the Dyson equation and D

is called the error matrix. Observe that E[D] = 0, so that we can always work with the

probabilistically "close" equation:

I + (z + S[M ])M = 0. (5.11)

In the GUE ensemble we have that K11 = K22 =
1
2N and of course K12 = K21 = 0. This

gives the following expression (see (5.7)) for the self-energy operator:

(S[R])jk = Ẽ[H̃RH̃]jk = δjk
1

N
Tr(R), (5.12)

so that the Dyson equation becomes:

I +

(
z +

1

N
Tr(G)

)
G = 0. (5.13)

Taking normalized trace this is identical to the Stieltjes transform equation:

1 + (z + SN )SN = 0. (5.14)

5.2 Wigner-type and correlated Hermitian models

In the Wigner-type model we still assume that the entries of H are independent up to

the Hermitian symmetry, but we drop the identically-distributed condition. We define
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the variances of each random entry hij as:

sij = E∥hij∥2, (5.15)

which correspond to the matrix of variances S with (S)ij := sij . In the Wigner model,

we have that sij = 1
N but here we just impose the condition that:

c

N
≤ sij ≤

C

N
, (5.16)

uniformly for each i, j = 1, ..., N and some c, C > 0.

We calculate the self-energy operator for this model as follows:

Ẽ[H̃RH̃]jk =
∑
a,b

RabẼ[H̃jaH̃bk]

= δjk

N∑
a=1

Raasaj = δjk ⟨Sj , diag(R)⟩ , (5.17)

where Sj is the j-th column of S and diag(R) is the vector corresponding to the diagonal

of R.

For the Dyson equation, by using (5.17), we now have to consider a system of N

equations for the unknown vector m = (m1, ...,mN ) which represents the diagonal of

G:

1 + (z + ⟨Sj ,m⟩)mj = 0, (5.18)

for j = 1, ..., N .

For the stability analysis, the linear stability operator is given by:

I −m2S : CN 7→ CN,

with: [
(I −m2S)(x)

]
j
:= xj −m2

j

N∑
a=1

sjaxa. (5.19)
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We will see a proof of this in section 5.4 where the linear stability operator is given in

its general form.

In the correlated Hermitian model, we drop the independence condition in the matrix

entries of H , so that the matrix elements may have non-trivial correlations in addition

to the one required by the Hermitian symmetry.

This is the most general model and the one mostly used in applications where we

use the Hermitization technique to "hermitize" the matrix and then apply the Dyson

equation technique. This is what we will do with the model of the next chapter, see

section 6.1.

The self-energy operator here is in its most general form:

(S[R])ij = E[HRH]ij =
∑
a,b

E[HiaHbj ]Rab,

and we have to use the analogue of (5.16) which is:

c⟨R⟩ ⪯ S[R] ⪯ C⟨R⟩, (5.20)

where ⟨ · ⟩ represents the normalized trace of a matrix andA ⪯ B means that the matrix

B −A is positive semi-definite.

Conditions (5.16) and (5.20) are known as mean-field conditions which make the spectrum

map into an interval or area of order 1.

The Dyson equation is in its general form:

I + (z + S[G])G = 0,

while the linear stability operator is also in its general form and given by:

I − CM ◦ S : CN×N 7→ CN×N , (5.21)
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where CM is the "sandwich" operator CM [R] =MRM, and M is the solution matrix,

so that the linear stability operator becomes:

R 7→ R−MS[R]M. (5.22)

Notice that this form implies (5.19) for the vector Dyson equation. A summary for the

proof of (5.22) will be given in the deterministic stability analysis in section 6.7.

5.3 The multivariate cumulant expansion

In this section we give a summary of the proof that the probabilistic Dyson equation is

"close" to the original one, which is treated as a perturbation of the probabilistic one

with error given by the matrix D:

I + (z + S[M ])M = 0, I + (z + S[M ])M = D.

In order to prove this we have to bound expectations of high powers of the quantity

|Dij |, for any i, j = 1, ...N .

We will follow the multivariate cumulant expansion technique which was given in [21]

and involves more general matrix cases with slow correlation decay.

Another approach for the proof was given in [3] for correlated matrices with fast

exponential correlation decay. There they used the Schur complement method together

with concentration estimates on quadratic functionals of independent or essentially

independent random vectors.

Let:

D = HG+ S[G]G. (5.23)

We extend formula (5.2) to non-Gaussian random variables as follows:
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Lemma 5.3.1. Let h be a general non-Gaussian real random variable such that all its moments

and cumulants exist. Then for f ∈ C∞, we have that:

E[hf(h)] =
∞∑
k=0

κk+1

k!
E[f (k)(h)], (5.24)

where κk is the k-th cumulant of h.

We recall that the cumulants of a real random variable are defined by the relation:

logE[eth] =
∞∑
k=0

κk
k!
tk, (5.25)

which is similar to the moment-generating formula:

E[eth] =
∞∑
k=0

mk

k!
tk, (5.26)

and so the moments can define the cumulants and the cumulants can define the

moments, by comparing the two power series.

Proof of (5.24). For the proof, we can use the Fourier transform of f ,

f̂(t) =

∫
R
f(x)eitxdx

and then differentiate to get that:

f̂ ′(t) = i

∫
R
xf(x)eitxdx,

so by the Fourier-inversion formula for the function xf(x) we have that:

xf(x) = i

∫
R
f̂ ′(t)eitxdt⇒ E[xf(x)] = i

∫
R
f̂ ′(t)µ̂(t)dt, (5.27)

where we defined the measure µ to be the distribution of the real random variable h and

µ̂(t) =

∫
R
eitxdµ(x) = E[eith].
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We then perform integration by parts on the RHS of (5.27) to get that:

i

∫
R
f̂ ′(t)µ̂(t)dt = −i

∫
R
f̂(t)µ̂′(t)dt = −i

∫
R
f̂(t)µ̂(t)(log µ̂(t))′dt

=
∞∑
k=0

κk+1

k!

∫
R
(it)kf̂(t)µ̂(t)dt =

∞∑
k=0

κk+1

k!
E[f (k)(h)],

where in the last step we used the Fourier-inversion formula once more for f and

differentiated it k times.

In order to apply (5.24) to random matrices, we have to define the joint cumulants for a

family of random variables, such as a random matrix.

If h = (h1, h2, . . . hm) is a collection of random variable, then

κ(h) = κ (h1, h2, . . . hm)

are the coefficients of the logarithm of the moment-generating function:

logE[et·h] =
∑
k

tk

k!
κk, (5.28)

where t = (t1, t2, . . . , tn) ∈ Rn and k = (k1, k2, . . . , kn) ∈ Nn is a multi-index with n

components and:

tk :=
n∏

i=1

tki,i , k! :=
n∏

i=1

ki! , κk = κ (h1, h1, . . .h2, h2, . . .) ,

where hj appears kj-times. The analogue of (5.24) is:

E[h1f(h)] =
∑
k

κk+e1

k!
E[f (k)(h)], h = (h1, h2, . . . ,hn) , (5.29)

where f (k) = ∂k1 ...∂kn

∂h1...∂hn
f and the summation is for all n multi-indices with:

k+ e1 = (k1 + 1, k2, ..., kn).
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The proof is similar with the proof of (5.24).

Now, back to the definition of the error matrix D in (5.23), we will use this multivariate

cumulant expansion (5.29) to prove that the expectation of high powers of the quantity

|Dij | is small. This is done by writing:

E|Dij |2p= E
[
(HG+ S[G]G)ijDp−1

ij Dp
ij

]
(5.30)

and then use (5.29) to do an integration by parts in the first H factor, while considering

everything else as a function f(H). This involves some heavy analysis of cumulant

expansions and combinatorics, which can be found in [21].

The authors there arrive at the result of [Theorem 4.1] in [21], which takes into account

a couple of different possible random matrix norms for the error matrix D. A simple

corollary is for the following maximum-norm:

Theorem 5.3.2 (Bound on the error matrix D). Under the mean-field condition (5.20) and a

finite-moments condition (5.33) for the matrix H , we have that for any γ, ϵ,D > 0 and some

bounded z = E + iη with η ≥ N−1+γ , there exists C > 0 such that:

P
(
∥D(z)∥max≥

N ϵ

√
Nη

)
≤ C

ND
. (5.31)

Here the maximum-norm of a matrix T is defined by:

∥T∥max:= max
i,j

|Tij |, (5.32)

while the finite-moments condition can be described by:

max
i,j

E|
√
NHij |p≤ µp, (5.33)

for a sequence of constants µp, where H is our initial Hermitian matrix.
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5.4 The deterministic stability step

In this section we give a summary for the proof of the stability of the deterministic

equation:

I + (z + S[M ])M = 0. (5.34)

Since the solution M of the equation (5.34) as well as the solution M ′ of its perturbed

version (5.10) can be expressed as a function of the variable z, to prove its stability it is

enough to control the derivative:

∂zM =
∂M(z)

∂z
,

therefore we differentiate (5.34) to get a formula for the derivative of the solution:

(I + S[∂zM ])M + (z + S[M ])∂zM = 0 ⇒

M2 +MS[∂zM ]M − ∂zM = 0 ⇔

∂zM −MS[∂zM ]M =M2 ⇔

(I − CM ◦ S)[∂zM ] =M2, (5.35)

where CM is the "sandwich" operator defined in (5.21).

If we now show that the "linear stability operator" I − CM ◦ S is invertible, then the

derivative ∂zM will have reasonable behaviour, which means that the equation (5.34)

will be stable to perturbations.

To show invertibility, we have to bound the norm of the inverse of the linear stability

operator. For this, we will use the "super-operator" norm ∥ · ∥op which is the operator

norm over the Hilbert-Schmidt norm in the Hilbert space of complex matrices.

The idea of the proof in [3] is to write the linear stability operator as a product of

invertible operators with an operator of the form U − T , where U is a unitary operator

and T is a self-adjoint operator, called the "saturated self-energy" operator. In [21] the

multivariate cumulant expansion technique is used instead, to give the same result.
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They both arrive at the following theorem:

Theorem 5.4.1 (Stability of the Dyson equation). If the mean-field condition (5.20) is

satisfied, then for z in the "bulk" of the support of ρ, we have that:

∥∥(I − CM(z) ◦ S)−1
∥∥
op

≲
1

ρ(z)C
,

for some constant C > 0, where ρ is called the "density of states" and is defined as:

ρ(z) :=
1

π
⟨ImM(z)⟩ . (5.36)

We will see in section 5.5 that this is indeed a density for a measure and it is actually

the harmonic extension of the real density of the limiting spectral measure of H .

The following Lemma is derived by the analysis in [3]:

Lemma 5.4.2 (Linear stability operator estimate). Under the mean-field condition (5.20),

we have the following estimate, for z in the "bulk" of ρ:

∥∥(I − CM(z) ◦ S)−1
∥∥
op

≲
1

ρ(z)C

∥∥∥(U − T )−1
∥∥∥
op
,

for some constant C > 0, where U is a unitary operator and T a self-adjoint one.

Under some further conditions we can get the same result by the following supplemen-

tary Lemma in [3], which is of independent interest and inspired our stability analysis

in section 6.7 for a different random matrix model:

Lemma 5.4.3 (Rotation-Inversion Lemma). Let T be a self-adjoint and U a unitary operator

on CN×N . Suppose that T has a spectral gap, i.e., there is a constant θ > 0 such that:

Spec (T ) ⊂ [−∥T ∥op+θ, ∥T ∥op−θ] ∪ {∥T ∥op} ,

with a non-degenerate largest eigenvalue ∥T ∥op≤ 1. Then there exists a constant C > 0 such
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that: ∥∥(U − T )−1
∥∥
op

≤ C

θ

∣∣∣∣1− ∥T ∥op⟨K,U [K]⟩
∣∣∣∣−1

,

where K is the normalized eigenmatrix of T , corresponding to the largest eigenvalue ∥T ∥op.

The combination of Lemma 5.4.2 and Lemma 5.4.3 gives again Theorem 5.4.1.

5.5 Results about the Dyson equation

In this section, we give three results concerning the Dyson equation analysis of a

Hermitian matrix. Notice that the first and second result is independent of the third

one for which we need the small perturbation theorem as well as the stability theorem.

The first two results summarize the properties of the solution matrix M which can

be regarded as a Stieltjes transform of a matrix-valued measure, which gives rise to a

certain real density ρ.

The third result asserts that ρ should be the limiting spectral density of the initial

Hermitian matrix H since its resolvent G is indeed "close" to the solution matrix M , as

the dimensions go to infinity.

1. Solution of the Dyson equation.

We remind that the existence and uniqueness of the solution M for the Dyson equation,

with a positive semi-definite imaginary part, is established in [37], through a certain

fixed-point theorem and can be deduced by a well-defined iterative scheme.

Since M(z) : C+ 7→ CN×N
+ is actually a function from C+ := {z ∈ C | Im(z) > 0} to the

Hilbert space of complex matrices with Im(M(z)) ⪰ 0 (because Im(z) = η > 0), we can

view it as a matrix-valued Herglotz function and apply its Nevanlinna representation

for a suitable matrix-valued measure on the real line. All the underlying theory can be

found in section 5 of [30].
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We get the following theorem for the solution matrix M(z):

Theorem 5.5.1 (Stieltjes transform representation of M ). Let M be the unique solution

of (5.34) with positive semi-definite imaginary part. Then, M admits a Stieltjes transform

representation:

Mxy =

∫
R

Vxy(dt)

t− z
,

for x, y = 1, ..., N and z ∈ C+. The measure V (dt) = (Vxy(dt))
N
x,y=1 on the real line with

values in positive semi-definite matrices is unique and satisfies the normalization V (R) = I .

2. Density of states for the solution matrix.

Following the analysis from the Nevanlinna functions in [30], we have that the diagonal

elements of V are actually finite Borel measures in R. The normalization V (R) = I

makes them probability measures. This makes the normalized trace of V a probability

measure, as a convex combination of probability measures. Hence, from the previous

theorem 5.5.1, we derive the following:

Theorem 5.5.2 (Density of states). Let ⟨M(z)⟩ : C+ 7→ C+ denote the normalized trace of

the solution matrix. Then ⟨M(z)⟩ admits a Stieltjes tranform representation of a probability

density ρ, such that:

⟨V (dt)⟩ = ρ(t)dt,

i.e.

⟨M(z)⟩ =
∫
R

ρ(t)

t− z
dt.

We remark that under the flatness condition (5.20), the density ρ becomes Hölder

continuous. [Proposition 2.2] in [3].

The density ρ is called the density of states as we have seen in section 5.4 because of the

following fact. By the Stieltjes inversion formula, we have that:

lim
η→0+

1

π
⟨ImM(z)⟩ = ρ(t),
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hence

ρ(z) =
1

π
⟨ImM(z)⟩

is the harmonic extension of ρ.

We will see now that ρ is actually the limiting density for the eigenvalue counting

function of the Hermitian matrix H .

3. Approximation of the resolvent matrix - Local law.

Here we use our two ingredients, the small error term D in section 5.3 and the stability

of the Dyson equation in section 5.4, to present the last important theorem of this

chapter, which is the approximation of the resolvent matrix G = (H − zI)−1 by the

solution matrix M(z) for large dimensions.

Theorem 5.5.3 (Local law for the solution matrix). Assume that the flatness condition

(5.20) and the finite-moments condition (5.33) hold, as well as a suitable decay of correlations

condition like (5.38) for the matrix H . Let M be the solution of the Dyson equation (5.34) with

the self-energy operator defined as in (5.8). Then for the spectral parameter z = E + iη inside

the "bulk" of the support of ρ, where ρ is the density of states, i.e. with ρ(E) ≥ δ and with

η ≥ N−1+γ , for some γ, δ > 0, we have the "entrywise local law":

P
(
|Gij(z)−Mij(z)| ≥

N ε

√
Nη

)
≤ C

ND
, (5.37)

for some constant C depending on γ, δ, ε,D and the constants on (5.20) and (5.33).

We note the correlation decay condition for an exponential decay of the matrix correla-

tions, is:

Cov (ϕ (WA) , ψ (WB)) ≤ C(ϕ, ψ)e−d(A,B), (5.38)

where W =
√
NH is the re-scaled random matrix, A,B are two subsets of the index

set [1, N ]× [1, N ] and the distance d is the usual Euclidean distance between the sets

A ∪At and B ∪ Bt and WA = (wij)(i,j)∈A .
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For a more general slow correlation decay, the condition is:

|κ (f1(W ), f2(W ))| ≤ C

1 + d (supp f1, supp f2)
s ∥f1∥2 ∥f2∥2 , (5.39)

for some s > 12 and f1, f2 square integrable functions on random N × N complex

Hermitian matrices.

A simple corollary of Theorem 5.5.3 is the following "averaged local law":

Corollary 5.5.4. With the same conditions as in Theorem 5.5.3, we have that:

P
(∣∣∣∣ 1N Tr[G(z)−M(z)]

∣∣∣∣ ≥ N ε

Nη

)
≤ C

ND
, (5.40)

again for a constant C depending on γ, δ, ε,D and the constants on (5.20) and (5.33).

The main key technical tool and observation is still the fact that the Stieltjes transform of

the eigenvalue counting function ρN is given by the normalized trance of the resolvent,

because:

SN (z) =

∫
R

ρN (t)

t− z
dt =

1

N

N∑
i=1

1

λi − z
= ⟨G(z)⟩,

so that:

SN (z) = ⟨G(z)⟩ → ⟨M(z)⟩ = Sρ(z)

and hence according to all of our analysis in section 3.4: ρN → ρ, where ρ is the density

of states.



Chapter 6

A non-Hermitian generalization of

the Marchenko-Pastur distribution

6.1 The random matrix model

In order to define our model, we firstly define two auxiliary square random matrices P

and Q of a given dimension N ×N. We assume that all the entries of P and Q are i.i.d.

complex random variables with mean value 0 and complex variance 1
2N .

The key difference in this random matrix model compared to the previous results stated

in section 6.2 is that we allow the entries of P and Q to have any possible common

distribution F with the following properties:

• F has mean zero, complex variance 1
2N and second moment zero, that is if

x ∼ F then E[Re(x)] = E[Im(x)] = 0, Var[Re(x)] = Var[Im(x)] = 1
4N and

E[Re(x)Im(x)] = 0. The last assumption is made to ease the computations of the

model while the first two are vital for the results.

• F has all of its moments finite, this means that if x ∼ F then E[xn] <∞ for any

n ∈ N. This is necessary for the Dyson equation method to take place.

• F has a bounded density. Specifically, we make the assumption that there exist
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q ≥ 1, κ > 0 and a probability density ψ ∈ Lq(C) with ∥ψ∥q≤ Nκ such that:

P
(√

NPij ∈ B
)
= P

(√
NQij ∈ B

)
=

∫
B
ψ(z)d2z, (6.1)

for each i, j = 1, ..., N and B ⊂ C a Borel set. This condition makes the least

singular value problem (see section 6.8) much easier.

Our model is defined as follows. We pick

X1 :=
√
1 + τP +

√
1− τQ and X2 :=

√
1 + τP −

√
1− τQ, (6.2)

for a real parameter τ ∈ [0, 1]. Notice that X1 and X2 are correlated through this

parameter. For τ = 0, we have that X1 and X2 are completely uncorrelated, while

for τ ∈ (0, 1) and τ → 1 they become more and more correlated, reaching complete

correlation for τ = 1 where they become identical matrices. Through X1 and X2 we

now form the correlated sample covariance ensemble:

X := X1X
∗
2 (6.3)

What can we say about the eigenvalues of this ensemble? For τ = 0, 1 we get two

well-known cases. Specifically, for τ = 0 we have a product of two independent circular

matrices, while for τ = 1 we have a product of a circular matrix and its conjugate.

Notice that in this case X becomes hermitian, that’s why τ is called the non-hermiticity

parameter.

In the first case, we have a finite product of circular random matrices, which means

that the empirical spectral distribution converges to a power of a circular law. This

distribution has the unit disk as support and exhibits a concentration of eigenvalues

around the origin according to the number of product elements. In our case, we have

the second power of the circular law. See [49] for this result.

In the second case, we have the classical sample covariance ensemble, which means that

the empirical spectral distribution converges to the Marchenko-Pastur distribution. This



6.2. Previous results on the spectral distribution 117

means that the support in this case collapses to the real line in [0, 4]. This is expected

since the matrix becomes Hermitian and the eigenvalues real. See [44] for this result.

For τ ∈ (0, 1) we are expecting a transition between these two distributions. Since there

is a concentration of eigenvalues near the origin both in the second power of the circular

law as well as in the Marchenko-Pastur distribution, we are expecting this to hold for

the transitional distribution while the initial disk moves to the right and shrinks to the

real line. Of course, we are also expecting local laws to hold for this random matrix

ensemble.

6.2 Previous results on the spectral distribution

This model was previously studied in [5] where it was assumed that F ∼ CN (0, 1
2N ),

that is F follows a complex normal distribution with mean 0 and variance 1
2N . It was

therefore given the name non-Hermitian Wishart ensemble.

In that study, since there was a Gaussian distribution assumption for the entries ofP and

Q, different and more concrete methods were used through orthogonal polynomials.

This is because in this case we have specific potentials in our joint eigenvalue density

for X1 and X2, which can then be used to find the joint eigenvalue density of X and

proceed with asymptotic estimates.

These methods are rather concrete and powerful, so they gave rise to the calculation of

the transitional distribution (0 < τ < 1) even for rectangular matrices P,Q ∈ CN×(N+ν),

where ν = O(N) is a non-square parameter.

Using the parameter α := lim
N→∞

ν
N they arrived at the following result concerning the

transitional distribution of the non-Hermitian Wishart ensemble:

Theorem 6.2.1 (Non-Hermitian Wishart ensemble law from [5]). AsN → ∞ the empirical

spectral measure of the non-Hermitian Wishart ensemble converges to the following deterministic
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measure on the complex plane:

dµ̂(ζ) :=
1

1− τ2
1

π

√
4|ζ|2+(1− τ2)2 α2

· 1
Ŝτ,α

(ζ)d2ζ, (6.4)

where the support Ŝτ,α of the spectrum is given by:

Ŝτ,α :=

{
ζ = x+ iy :

(
x− τ(2 + α)

(1 + τ2)
√
1 + α

)2

+

(
y

(1− τ2)
√
1 + α

)2

≤ 1

}
. (6.5)

Figure 6.1: The eigenvalues of X for large N. We have that α = 0 for the figures (A)-(D)
and α = 1 for (E)-(H). This figure is from [5].

6.3 Main theorems

Our main theorem is about the spectrum of the correlated covariance matrixXN = X1X
∗
2

where X1 and X2 are square matrices and its corresponding limiting local law, as the

dimension increases.

The empirical measure µ̂N associated with XN is given by:

µ̂N :=
1

N

N∑
j=1

δ
ζ̂j
,

where {ζ̂j}Nj=1 are the N complex eigenvalues of XN . We firstly introduce the limiting

measure µ̂ of the empirical spectral distribution of this matrix as follows:
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Definition 6.3.1 (Limiting measure B). The measure µ̂ is defined by

dµ̂(z) :=
1

1− τ2
1

2π|z|
1
Ŝτ
(z)d2z, (6.6)

with the following support Ŝτ :

Ŝτ (z) :=

{
z = x+ iy :

(
x− 2τ

1 + τ2

)2

+

(
y

1− τ2

)2

≤ 1

}
. (6.7)

Notice that Ŝτ (z) defines a shifted ellipse centered at (2τ, 0) while the measure predicts

a concentration of eigenvalues around the edge point of the ellipse at (0, 0).

The theorem about the correlated covariance matrix ensemble will follow from a similar

theorem about the Dirac matrix, defined as follows:

YN :=

 0 X1

X∗
2 0

 ∈ C2N×2N

The limiting measure µ of the empirical spectral distribution of the Dirac matrix is

defined as follows:

Definition 6.3.2 (Limiting measure A). The measure µ is defined by

dµ(z) :=
1

1− τ2
1

π
1Sτ (z)d

2z, (6.8)

with the following support Sτ :

Sτ :=

{
z = x+ iy :

(
x

1 + τ

)2

+

(
y

1− τ

)2

≤ 1

}
. (6.9)

Here, Sτ is a classical ellipse centered at (0, 0) with its eccentricity and edge points

depending on τ.

For the proof of our theorems we will work primarily on the following domain for the

Dirac matrix:
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Definition 6.3.3 (Spectral parameter domain A). For any δ, κ > 0, define the ellipse that

arises from the exclusion of the edges and a small ball around 0 as follows:

Sτ,δ,κ :=

{
ζ = x+ iy :

(
x

1 + τ

)2

+

(
y

1− τ

)2

≤ 1− δ

}
\B0(κ), (6.10)

where B0(κ) is a ball of radius κ around 0.

Analogously, we define the spectral domain for the correlated covariance matrix:

Definition 6.3.4 (Spectral parameter domain B). For any δ, κ > 0 define the shifted ellipse

that arises from the exclusion of the edges and a small ball around 0 as follows:

Ŝτ,δ,κ :=

{
ζ = x+ iy :

(
x− 2τ

1 + τ2

)2

+

(
y

1− τ2

)2

≤ 1− δ

}
\B0(κ). (6.11)

For the statement of the main theorem we need to define the test functions as complex

functions f : C → C with compact support and at least two times complex-differentiable

with continuous complex second derivative. Their corresponding zoom functions are

defined as follows:

fζ0,a(ζ) := N2af(Na(ζ − ζ0)), (6.12)

whereN is the dimension of the matrix, ζ ∈ C and ζ0 ∈ C is the point we want to "zoom

in" at a zooming scale given by a > 0.

We are now ready to state our main theorem.

Theorem 6.3.1 (Local universal law for the spectrum of the correlated sample covariance

ensemble). Let a ∈ (0, 1/2) and κ, δ ∈ (0, 1). Then, for any ϵ > 0 and ν ∈ N, there is a

constant C > 0, such that:

P


∣∣∣∣∣∣∣
1

N

∑
ζ̂∈Spec(X1X∗

2 )

f
ζ̂0,a

(z)−
∫
C
f
ζ̂0,a

(z)dµ̂(z)

∣∣∣∣∣∣∣ ≤ N−1+2a+ϵ∥∆f∥L1

 ≥ 1− CN−ν ,

uniformly for all N ∈ N, ζ̂0 ∈ Ŝτ,δ,κ and test functions f with corresponding zoom function

f
ζ̂0,a

, such that ∥∆f∥L2+a≤ ND∥∆f∥L1 for some D ∈ N.
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The Dirac matrix follows an elliptic law, as formulated in the following theorem.

Theorem 6.3.2 (Local universal law for the spectrum of the Dirac matrix). Let a ∈ (0, 1/2)

and κ, δ ∈ (0, 1). Then, for any ϵ > 0 and ν ∈ N, there is a constant C > 0, such that:

P

∣∣∣∣∣∣ 1

2N

∑
ζ∈Spec(YN)

fζ0,a(ζ)−
∫
C
fζ0,a(z)dµ(z)

∣∣∣∣∣∣ ≤ N−1+2a+ϵ∥∆f∥L1

 ≥ 1− CN−ν ,

uniformly for all N ∈ N, ζ0 ∈ Sτ,δ,κ and test functions f with corresponding zoom function

fζ0,a, such that ∥∆f∥L2+a≤ ND∥∆f∥L1 for some D ∈ N.

Here we will recover the identical Dyson equation for the approximation of the trace of

the resolvent of the Dirac matrix as in [7], and we can rely on the work done in [7] to

deduce Theorem 6.3.2, as most proof details carry over directly to our case. We will

focus on the differences between the case of the Dirac matrix and the elliptical law

matrix from [7]. The two ingredients we must prove will be as follows:

1. We have to show that the trace of the resolvent for the Dirac matrix can be

approximated by the v as in the 2×2 Dyson equation (6.22). The precise statement

of this is formulated in Proposition 6.5.3. This furthermore requires a proof of

stability for the 4 × 4 Dyson equation as formulated in Proposition 6.7.1 and

proved in Section 6.7.

2. We need to control the relevant least singular values, formulated in Theorem 6.8.1

and proved in Section 6.8.

Proof of Theorem 6.3.2. The proof is identical to the proof of Theorem 2.1 in [7], using

our Proposition 6.5.3 in place of their Proposition 3.1 and our Theorem 6.8.1 instead of

their Theorem 3.4 to control the smallest singular value.
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6.4 Hermitization and Green function estimate

We start with Girko’s formula

1

2N

∑
ξ∈Spec(YN )

f(ξ) =
1

4πN

∫
C
∆f(ζ) log|detHζ |d2ζ, (6.13)

where we introduced the Hermitization:

Hζ :=

 0 YN − ζ

Y∗
N − ζ̄ 0

 ∈ C4N×4N (6.14)

The log-determinant of Hζ can be obtained from the resolvent matrix G(ζ, η) :=

(Hζ − iη)−1 through the identity:

log|detHζ |= −4N

∫ T

0
⟨ImG(ζ, η)⟩dη + log|det(Hζ − iT )|, (6.15)

valid for any T > 0, where we defined the normalized trace of a matrix R ∈ Ck×k as

⟨R⟩ := 1
kTrR.

Formula (6.13) is called the logarithmic potential method and we will use approximations

of the normalized resolvent trace and of the quantity log|det(Hζ − iT )| to estimate

the left-hand side. The spectral distribution can be recovered from the Laplacian

of the log-determinant of the Hermitization on the right-hand side of (6.13) or its

approximation as the spectral resolution η goes to 0.

This method is based on the complex retrieval of measure identity in section 3.5 and we

will not see the details here except from the approximation of the normalized trace of

the resolvent as in proposition 6.5.3. The rest of the proof can be found in the proof of

Theorem 2.1 in [7], including the proof of Lemma 3.5.
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6.5 Solution of the Dyson equation

We consider now, as in [7], the Dyson equation, which will provide an approximation

of the normalized resolvent trace. Since we are working with a 4× 4 matrix here the

equation will be modified:

−M−1 =

iH Z

Z iH

+ P(M), P [(Mij)i,j≤4] =



M44 0 τM42 0

0 M33 0 τM31

τM24 0 M22 0

0 τM13 0 M11


,

(6.16)

where ζ ∈ C, η > 0 and M = M(ζ, η) ∈ C4×4 is the unknown matrix. Since there are

many possible solutions, we require

ImM =
1

2i
(M −M∗) (6.17)

to be positive definite. We have defined

Z :=

ζ 0

0 ζ

 , iH :=

iη 0

0 iη

 .

The operator P arises from the calculation in (6.38).

Proposition 6.5.1 (Solution of the Dyson equation). There exists a unique solution M of

(6.16) with the constraint (6.17) and it satisfies:

M =

iV B

B iV

 , (6.18)

where we defined

iV :=

iv(ζ, η) 0

0 iv(ζ, η)

 , B :=

b(ζ, η) 0

0 b(ζ, η)

 (6.19)
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for each η > 0 , ζ ∈ C and for some v = v(ζ, η) ∈ (0,∞) and b = b(ζ, η) ∈ C.

Proof. Let W =

iH Z

Z iH

 .

The claim follows from Theorem 2.1 of [37], which demonstrates the existence and

uniqueness of the solution M and gives it as a limit of iterates Mn = Fn(M0) with

F(Mj) = −(W + P(Mj))
−1. We see that if we take M0 of the form (6.18), it remains

of the form (6.18) upon application of F , thus M is of the form (6.18). Indeed, using a

Schur complement formula for inversion and noting that all the 2 × 2 blocks commute,

we see that for Mj of the form (6.18), explicitly, we compute

F(Mj)11 = i
v + η

(v + η)2 + |ζ + τb|2
= F(Mj)33 (6.20)

F(Mj)13 =
−ζ − τb

(v + η)2 + |ζ + τb|2
= F(Mj)31. (6.21)

This completes the proof of 6.5.1.

Due to (6.19) and (6.18), we can take partial normalized traces on (6.16) (see definition

after equation (6.42)) to recover a 2 × 2 Dyson Equation, which we will work with

henceforth and which matches the equation in [7]:

−M−1 =

iη ζ

ζ iη

+ P2(M), P2 [(Mij)1≤i,j≤2] =

M22 τM21

τM12 M11

 , (6.22)

where ζ ∈ C, η > 0 and M =M(ζ, η) ∈ C2×2 is the unknown matrix with

ImM =
1

2i
(M −M∗) ⪰ 0. (6.23)

As the equation is identical to the equation in [7], the solution will satisfy all the same

properties. Thus we can import without changes the following lemma and identities

from [7]:
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Lemma 6.5.2 (Lemma 4.1 in [7], Basic estimates of M ). We have the following estimates:

(i) Uniformly for all η > 0 and ζ ∈ C, we have that:

∥M∥≤ min{1, η−1} ≤ 2(1 + η−1), (6.24)

∥M−1∥≲ 1 + η + |ζ|. (6.25)

(ii) Let r > 0. Then uniformly for all η > 0 and ζ ∈ Dr, we have:

M = iη−1 +Or(η
−2), (6.26)

M∗M ≿r (1 + η)−2, (6.27)

ImM ≿r η(1 + η)−2 (6.28)

and in particular,

∥M∥2= v2 + |b|2= v

v + η
. (6.29)

Here the ≲ symbol means that a quantity is less than another up to a constant. The

symbol ≲a means that a quantity is less than another up to a constant that may depend

on a.

Furthermore, we import equation (4.7) from [7], which gives the following expression

for b:

b = − Reζ

1 + τ + η/v
+ i

Imζ

1− τ + η/v
. (6.30)

The following proposition will give an estimate for the normalized trace of the Green

function of the Hermitization of the Dirac matrix, by the solution matrix of the Dyson

equation, the proof of which will be the theme of section 6.6:

Proposition 6.5.3 (Local law for Hζ , averaged version). Let v be defined as in (6.18) and

let γ, δ, κ > 0. Then for any ϵ > 0 and ν > 0, there exists Cϵ,ν > 0 such that:

P
(
|⟨G(ζ, η)⟩ − iv(ζ, η)| ≤ N ϵ

Nη

)
≥ 1− Cϵ,νN

−ν ,
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uniformly for all bounded η ≥ N−1+γ , ζ ∈ Sτ,δ,κ and N ∈ N.

6.6 Local law for the Hermitization matrix

In this section we prove Proposition 6.5.3.

To express the approximation G
(N→∞)

≈ M we introduce as in [7] some appropriate

norms. For any random matrix R ∈ Cl×l in dimension l ∈ N we define the p-norms

∥R∥p:= ∥R∥isop := sup
∥x∥,∥y∥≤1

(E|⟨x,Ry⟩|p)1/p,

∥R∥avgp := sup
∥W∥≤1

(E|⟨WR⟩|p)1/p, (6.31)

where the supremum is taken over x, y ∈ Cl and W ∈ Cl×l, respectively. The symbol

⟨·, ·⟩ denotes the Euclidean scalar product on Cl and the symbol ⟨ · ⟩ the normalized

trace on Cl×l.

Notice that for any finite l ∈ N the norms are equivalent to each other and also equivalent

to the standard norm of the random variable ∥R∥ where ∥·∥ denotes the operator norm.

(∥R∥ is a positive real random variable).

The main Theorem 6.6.1 states the approximation of the 4N × 4N resolvent matrix G =

G(ζ, η) = (Hζ − iη)−1 ∈ C4N×4N to the deterministic matrix M = M(ζ, η) ∈ C4N×4N ,

as N → ∞. We recall that M is defined as M :=M ⊗ 1N×N which means that

M(ζ, η) =

iv(ζ, η) b(ζ, η)

b(ζ, η) iv(ζ, η)

 (6.32)

where every entry in this 2 × 2 block structure is a multiple of the identity matrix

12N×2N , where v(ζ, η) and b(ζ, η) are defined as in 6.18.
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Theorem 6.6.1 (Local law for the Hermitization matrix Hζ , main version). Let γ ∈ (0, 1)

and p ∈ N. Uniformly, for all bounded η ≥ N−1+γ and ζ ∈ Eρ,γ , the following local law holds:

∥G−M∥isop ≲p,γ
Nγ

√
Nη

, ∥G−M∥avgp ≲p,γ
Nγ

Nη
. (6.33)

Proof of Proposition 6.5.3. By the definition of M in (6.32) we have that ⟨M⟩ = iv. Thus,

for suitably chosen γ and p, we get as in [7] that

P
(
|⟨G(ζ, η)⟩ − iv(ζ, η)| ≥ N ϵ

Nη

)
≤ (Nη)p

N ϵp
E |⟨G(ζ, η)⟩ − iv(ζ, η)|p ≤

≤ (Nη)p

N ϵp

(
∥G−M∥avgp

)p
,

by Markov’s inequality and the result follows.

Here we prove Theorem 6.6.1 in the local regime η ≪ 1 so as to get our universal local

spectral distribution for the Dirac matrix.

Proof of Theorem 6.6.1. As in [7] the proof follows from the fact that G approximately

satisfies the matrix Dyson equation:

1 + (iη + Z+ SM)M = 0, (6.34)

where each constant is a multiple of the identity matrix 14N×4N , Z := −EHζ , and the

unknown matrix M will approximate the resolvent matrix G in C4N×4N . Here S is the

natural extension of P in (6.16) to C4N×4N , i.e. for

A =



A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


∈ C4N×4N , (6.35)
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Z =

 0 ζ12N×2N

ζ12N×2N 0

 , SA =



⟨A44⟩ 0 τ⟨A42⟩ 0

0 ⟨A33⟩ 0 τ⟨A31⟩

τ⟨A24⟩ 0 ⟨A22⟩ 0

0 τ⟨A13⟩ 0 ⟨A11⟩


, (6.36)

where each entry is a multiple of the N ×N identity matrix. The matrix M defined in

(6.32) solves (6.34).

As in [7] and [21], we introduce the self-energy operator:

Ŝ : C4N×4N 7→ C4N×4N by

ŜA = E {(Hζ + Z)A(Hζ + Z)} . (6.37)

We show that Ŝ = S which justifies the form that we have for the Dyson equation (6.34).

Careful calculation of the self-energy operator for a general matrix A shows that:

ŜA = E{(Hζ + Z)A(Hζ + Z)} = E


 0 YN

YN
∗ 0


A11 A12

A21 A22


 0 YN

YN
∗ 0




= E

YNA22YN
∗ YNA21YN

YN
∗A12YN

∗ YN
∗A11YN

 ,

where Aij are 2N × 2N matrices for i, j = 1, 2. We now calculate each term in the

resulting block matrix. We only show what happens in the first and second block entry

and the rest calculations will be similar:

E[YNA22YN
∗] = E


 0 X1

X∗
2 0


[A22]11 [A22]12

[A22]21 [A22]22


 0 X2

X∗
1 0




=

 ⟨[A22]22⟩ [A22]
T
21

[
(1 + τ)Ep211 − (1− τ)Eq211

]
[A22]

T
12

[
(1 + τ)Ep211 − (1− τ)Eq211

]
⟨[A22]11⟩


=

⟨[A22]22⟩ 0

0 ⟨[A22]11⟩

 ,
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where [A22]kl are N ×N matrices for k, l = 1, 2. We used the first assumption 6.1 for

the distribution of the matrix entries in the last equality. We now compute the second

block:

E[YNA21YN] = E


 0 X1

X∗
2 0


[A21]11 [A21]12

[A21]21 [A21]22


 0 X1

X∗
2 0




=

 τ⟨[A21]22⟩ [A21]
T
21(1 + τ)Ep211 + [A21]

T
21(1− τ)Eq211

[A12]
T
12(1 + τ)Ep211 + [A12]

T
12(1− τ)Eq211 τ⟨[A21]11⟩


=

τ⟨[A21]22⟩ 0

0 τ⟨[A21]11⟩

 ,

where [A21]kl are N ×N matrices for k, l = 1, 2 and AT denotes the transpose matrix of

the matrix A.

The result will be

ŜA =



⟨A44⟩ 0 τ⟨A42⟩ 0

0 ⟨A33⟩ 0 τ⟨A31⟩

⟨A24⟩ 0 ⟨A22⟩ 0

0 τ⟨A13⟩ 0 ⟨A11⟩


, (6.38)

with each entry being a multiple of the N ×N identity matrix, which coincides with

SA.

We continue with the proof and mark that (6.34) is an approximation of the resolvent

identity:

1 + (iη + Z+ SG)G = D, D := (Hζ + Z+ SG)G, (6.39)

which can be regarded as a perturbation of (6.34) with error matrix D.

The following theorem from [21] gives bounds for the error matrix D when S is given

by the self-energy operator Ŝ of our random matrix model:
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Theorem 6.6.2 (Bound on the error matrix, from [21], Theorem 4.1). Under our assumptions

6.1 for our random matrix model, we have the following for the error matrix of the Dyson

equation. Let ϵ > 0 and p ∈ N. There exists a constant C∗ > 0 such that, uniformly for

η ∈ [ 1N , 1], we have the following bounds on the error matrix:

∥D∥isop ≲p,ϵ N
ϵ

√
∥ImG∥q
Nη

(1 + ∥G∥q)C∗

(
1 +

∥G∥q
N1/4

)C∗p

(6.40)

∥D∥avgp ≲p,ϵ N
ϵ ∥ImG∥q

Nη
(1 + ∥G∥q)C∗

(
1 +

∥G∥q
N1/4

)C∗p

, (6.41)

with q = C∗p
4/ϵ, where D is defined by equation (6.39).

With the help of this proposition we are able to prove the local law (6.33) for the

Hermitization matrix Hζ . By subtracting (6.34) from (6.39) and defining our target

matrix ∆ := G−M we arrive at the equation:

∆−M(S∆)M = M(S∆)∆−MD. (6.42)

We now use the partial trace operator: C2N×2N 7→ C2×2, A → A, where:

A :=

⟨A11⟩ ⟨A12⟩

⟨A21⟩ ⟨A22⟩

 ,

whenever

A =

A11 A12

A21 A22

 ,

with each entryAij being anN ×N block matrix. This allows us to reduce our equation

from C4N×4N to C4×4 and deduce a first bound for the matrix ∆ := ∆. We arrive at the

equation:

L∆ =M(P∆)∆−MD, (6.43)

where D := D, and L : C4×4 7→ C4×4 is the linear stability operator from (4.10) of [7] -

see section 6.7. From Corollary 6.7.2 we have that L leaves a certain subspace of C4×4
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which we call A+ invariant - see section 6.7, and

Kδ,κ := sup
ζ∈Sτ,δ,κ

∥L −1|A+∥≲δ,κ 1. (6.44)

Note, importantly, that ∆ ∈ A+ because ⟨G11⟩ = ⟨G22⟩ (which can be seen using the

Schur formula for inverse) and ⟨M11⟩ = ⟨M22⟩ = iv (see (6.32)).

Thus, we can invert L on A+ in (6.43) and take the p-norm defined on (6.31) and derive

the inequality:

∥∆∥p(1−Kδ,κ∥∆∥p) ≲ Kδ,κ∥D∥p,

where we used the comparability of the norms for l = 2. This means that if we choose c

as a small enough constant, then:

∥∆1(∥∆∥p≤ c/Kδ,κ)∥p≲ Kδ,κ∥D∥p. (6.45)

We also note two important inequalities that connect D with D and ∆ with ∆. We have

that:

∥D∥p≲ ∥D∥avgp (6.46)

and

∥∆∥#p ≲ ∥∆∥p+∥∆∥2p∥∆∥#2p+∥D∥#p , (6.47)

which comes from (6.42) after taking norms and using Cauchy-Schwartz as well as the

definition of S. This relationship between norms of ∆ and ∆ is analogous to (5.22)

in [7] and is the final ingredient that is needed to complete the proof of Lemma 6.6.3,

which yields the next Proposition 6.5.3. The proof of Lemma 6.6.3 is identical to the

proof of Lemma 5.4 in [7].

Lemma 6.6.3 (Bootstrapping). There is a constant c∗ > 0 depending only on the distribution

of the entries of the random matrices P and Q such that ∥∆∥p≲p,δ,γ N
−γ/6 for all p ∈ N in

Aδ,γ implies ∥∆∥p≲p,δ,γ N
−γ/6 for all p ∈ N in Aδ,(1−c∗)γ .
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Here we recall the main steps of the bootstrapping argument from [7]. Inequality (6.45),

together with the inequalities (6.46) , (6.47) and (6.40) allows us to show proposition

6.6.1, i.e. ∥∆∥p≪ 1, by bootstapping from η ∼ 1 to η ∼ N−1+γ , for 1 ≫ γ > 0. We

remark a sketch of the proof and the rest of the details can be found in [7]:

• Implication inside induction. Through proposition (6.40) a bound of the form

∥∆∥p≲ 1 implies that ∥D∥p≪ 1 because then ∥G∥p≤ ∥M∥p+∥∆∥p≲ 1, for all

p ∈ N and Nη ≫ 1. This in turn, through (6.45), implies that ∥∆∥p≪ 1. Finally we

estimate that ∥∆∥p≪ 1 because of (6.47). Altogether, this argument shows that

∥∆∥p≲ 1 implies ∥∆∥p≪ 1 on all of Aδ,γ , for any γ > 0, where we introduced the

parameter set:

(ζ, η) ∈ Aδ,γ := Sτ,δ,κ × [N−1+γ , 1].

This implication is bootstrapped from η ∼ 1 all the way to η ∼ N−1+γ , and is

formulated in the following bootstrapping lemma 6.6.3 which we import from [7].

Its proof in our model is similar.

• Induction basis. The regime η ∼ 1 is established by the global law in [21], [Theorem

2.1] in combination with [Lemma 5.4.1] and the bound ∥G∥≤ η−1 ≤ N on Aδ,γ .

Notice that the M matrix there can be replaced by our solution matrix M.

Specifically, we get the following proposition:

Proposition 6.6.4 (Global law). There exists a universal constant c > 0 such that for

any ϵ > 0 :

∥∆∥p≲
N ϵ

√
Nη

, ∥∆∥avgp ≲
N ϵ

Nη
(6.48)

for any bounded ζ and η ∈ [N−cϵ, 1].
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6.7 Stability of the Dyson equation

To relate ∆ and ∆ in the boostrapping argument above, we will need to show the

invertibility of the stability operator defined by:

L : C4×4 7→ C4×4

L (R) := R−MP(R)M (6.49)

Specifically, we will need bounds on the norm of the inverse of this operator, in a

subspace of C4×4 where it can be inverted.

We introduce the 4× 4 matrix:

E− :=

I2×2 0

0 −I2×2


We will work on the subspace A+ := E⊥

− orthogonal to this matrix where orthogonality

is understood with respect to the Hilbert-Schmidt inner product on C4×4. We note that:

A+ =


A B

C D

 ∈ C4×4

∣∣∣∣ TrA = TrD


We write L −1|A+ to denote the restriction of the inverse of L in the domain A+, i.e.

the operator is first restricted on A+ and then inverted. In the proof of this proposition

we will use ∥.∥ for the operator norm.

Proposition 6.7.1 (Linear stability estimate). For any ζ ∈ C and η > 0, the operator L

leaves A+ invariant and is invertible on that subspace. Let

α := 1− |v2 − |b|2| (6.50)

The norm of the inverse of the restriction operator on A+ satisfies:

∥L −1|A+∥≲ α−2, (6.51)
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uniformly for all bounded ζ and η ∈ (0, 1].

Proof. As in [7], the linear stability operator L can be written in this form U − T ,

where U is a unitary matrix and T a self-adjoint matrix. From (6.18), we deduce that

the solution matrix M is normal and therefore there exists a polar decomposition,

M = |M |U = U |M |, for some unitary matrix U. By direct computation, we find that:

|M |2=M∗M = ∥M∥2·I4, ∥M∥2= v2 + |b|2= v

η + v

and so we have that U should be equal to:

U = (v2 + |b|2)−1/2M.

We write the linear stability operator as L = U∗(U − ∥M∥2P), where we defined P

as in (6.16) and U is defined as UR = U∗RU∗, for any R ∈ C4×4. Note that U and P

leave A+ invariant and P is self-adjoint whereas U is unitary. We observe that:

Spec(P|A+) = {1,−1, 0, τ,−τ} ,

with the following eigenspaces:

• P1 =

〈


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


,



0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


〉

• P−1 =

〈


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


〉

Hence, for T := ∥M∥2P, we have that ∥T ∥= ∥M∥2·∥P∥= ∥M∥2= v
η+v ≤ 1 . To

complete the proof, we will take inspiration from [2], (Lemma 5.8) and [7], (Lemma
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4.5). In our case, the Hermitian operator has no spectral gap. Instead it has a double

eigenvalue at 1 and a non-degenerate eigenvalue at −1. However, using a projection

onto the span of the eigenvectors corresponding to ±1 instead of a projection onto

the top eigenvector in the case of a non-trivial spectral gap and performing explicit

computations for our particular operator U , we are able to recover necessary estimates

on the inverse of the stability operator.

We will show that

∥(U − T )−1∥≤ C
(
min

{
(1− v2 + |b|2)2, (1 + v2 − |b|2)2

})−1
, (6.52)

which is equivalent to proving that

∥(U − T )w∥≥ cmin
{
(1− v2 + |b|2)2, (1 + v2 − |b|2)2

}
∥w∥ (6.53)

for some constant c > 0, for any unit vector w. Let w ∈ C4×4 with ∥w∥= 1. We will

decompose w according to the spectral projections of T ,

w = P1w + P2w (6.54)

where P1 is the projection onto span(h1, ..., hk) and P2 is the projection onto its orthog-

onal complement. The matrices h1, ..., hk are defined as the eigenvectors corresponding

to the eigenvalues ±∥M∥2 of T which correspond to the eigenvalues ±1 of P. Notice

that k = 3.

We will consider 2 cases:

Case 1: ∥P2w∥2≥ cα2

Case 2: ∥P2w∥2< cα2 ,

for some suitably small c > 0.
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In Case 1, using triangle inequality we obtain

∥(U − T )w∥≥ ∥w∥−∥T w∥= 1− (∥T P1w∥2+∥T P2w∥2)1/2

≥ 1− (∥T ∥2∥P1w∥2+∥T P2w∥2)1/2

and using that 1−
√
1− y ≥ y/2 for any y ∈ [0, 1] we obtain:

2∥(U − T )w∥ ≥ 1− ∥T ∥2∥P1w∥2−∥T P2w∥2

= 1− ∥T ∥2∥P1w∥2−τ2∥P2w∥2

≥ 1− (∥P1w∥2+∥P2w∥2) + (1− τ2)∥P2w∥2

= (1− τ2)∥P2w∥2. (6.55)

Using the definition of Case 1 in the above inequality, we obtain:

2∥(U − T )w∥≥ (1 + τ)(1− τ)cα2 ≥ cα2. (6.56)

. For Case 2, we note:

∥(U − T )w∥ = ∥(I − U∗T )w∥≥ ∥P1(1− U∗T )w∥

≥ ∥P1(1− U∗T )P1w∥−∥P1(1− U∗T )P2w∥.

Looking at the first term, we obtain by direct computation:

∥P1(1− U∗T )P1w∥2 =

∥∥∥∥∥∥
3∑

i=1

⟨hi, (1− U∗T )
3∑

j=1

⟨hj , w⟩hj⟩hi

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
3∑

i,j=1

⟨hj , w⟩(⟨hi, hj⟩ − ⟨hi,U∗T hj⟩)hi

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
3∑

i,j=1

⟨hj , w⟩(⟨hi, hj⟩ − λj⟨hi,U∗hj⟩)hi

∥∥∥∥∥∥
2

=
3∑

i=1

 3∑
j=1

⟨hj , w⟩(⟨hi, hj⟩ − λj⟨hi,U∗hj⟩)

2
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We expand now everything to get that:

∥P1(1− U∗T )P1w∥2

=
(
⟨h1, w⟩(1 + v2)− |b|2⟨h2, w⟩

)2
+
(
−|b|2⟨h1, w⟩(1 + v2)⟨h2, w⟩

)2
+ ⟨h3, w⟩2(1− v2 + |b|2)2

=
(
(1 + v2)2 + |b|4

)
⟨h1, w⟩2 +

(
(1 + v2)2 + |b|4

)
⟨h2, w⟩2 − 4|b|2(1 + v2)⟨h1, w⟩⟨h2, w⟩

+ ⟨h3, w⟩2(1− v2 + |b|2)2

=
(
(1 + v2 − |b|2

)2 (⟨h1, w⟩2 + ⟨h2, w⟩2
)
+ 2|b|2(1 + v2 + |b|2)(⟨h1, w⟩ − ⟨h2, w⟩)2

+ ⟨h3, w⟩2(1− v2 + |b|2)2

≥ ∥P1w∥2min
{
(1− v2 + |b|2)2, (1 + v2 − |b|2)2

}
. (6.57)

Now to upper bound the second term:

∥∥∥∥∥
3∑

i=1

⟨hi,U∗T P2w⟩hi

∥∥∥∥∥
2

=

3∑
i=1

⟨hi,U∗T P2w⟩2 =
3∑

i=1

⟨P2Uhi, T P2w⟩2

≤ ∥T ∥2∥P2w∥2
3∑

i=1

∥P2Uhi∥2≤ 3∥T ∥2cα2 ≤ cα2 (6.58)

From (6.30), we notice that 0 ≤ α ≤ 1, and we have that:

∥P1w∥2= 1− ∥P2w∥2≥ 1− cα2. (6.59)

Putting this together, we obtain that:

∥(U − T )w∥≥ |α|
√

1− cα2 − c|α|≥ ca2 (6.60)

which yields the result.

Corollary 6.7.2 (Linear stability estimate in the bulk). Let δ, κ ∈ (0, 1). Then uniformly,

for all ζ ∈ Sτ,δ,κ and η ∈ (0, 1], we have:

∥L −1|A+∥≲δ,κ 1 (6.61)
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Proof. It follows from (6.51) and (6.30), and noting that

1− v2 + |b|2 = η

η + v
+ 2|b|2, and

1 + v2 − |b|2 = η

η + v
+ 2v2.

Notice that we have α = 0 when η → 0 and u = b = 0, i.e. when we are near the origin,

that’s why we exclude it from our domain when we get our local laws.

6.8 The least singular value problem

We prove here an important theorem about the least singular value of the matrix YN−ζ.

Not so surprisingly, the Dirac matrix

YN =

 0 X1

X∗
2 0


has almost elliptic correlations. This can be seen as follows. We pick elements X1ij and

X∗
2ab for i, j = 1, ..., N and a, b = 1, ..., N and compute that:

X1ijX
∗
2 ab = (1 + τ)PijP

∗
ab − (1− τ)QijQ

∗
ab −

√
1− τ2PijQ

∗
ab +

√
1− τ2QijP

∗
ab

= (1 + τ)PijPba − (1− τ)QijQba −
√

1− τ2PijQba +
√
1− τ2QijPba

If we take expectation in this expression the only non-zero terms in this correlation will

appear for b = i and a = j, which means that:

NEX1ijX
∗
2 ab =


τ, if a = j, b = i

0, otherwise
(6.62)

The matrix
√
NYN however doesn’t fully satisfy the assumptions of [[48],Theorem

1.9] with the elliptic correlation parameter τ ∈ [0, 1], (see also [34]), because of the

deterministic zero entries.
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Due to this we are assuming a bounded density on the entries (see 6.1) and follow the

proof in [6] to deduce a lower bound for the least singular value of YN − ζ with high

probability.

Theorem 6.8.1 (Smallest singular value of YN − ζ.). Let σ2N (ζ) denote the least singular

value of the random matrix YN − ζ. Then for any B > 0 there exists A > 0 and C > 0 such

that

P
(
σ2N (ζ) ≤ N−A

)
≤ CN−B,

uniformly for all suitably large N ∈ N and bounded ζ ∈ C.

Proof. We will use assumption 6.1. We begin with the usual estimate about the least

singular value connecting it with the rows of the matrix YN − ζ. This estimate was

firstly established in [56] and the general technique can be found for example in (Lemma

4.12, [11]) and (Proposition 7.1, [6]):

σ2N (ζ) ≥ (2N)−1/2 min
i∈[2N ]

dist(Ri, R−i),

where R1, ..., R2N are the rows of YN − ζ . Continuing with a union bound, we get that,

for 0 < u < 1:

P(σ2N (ζ) ≤ u) ≤ 2N max
i∈[2N ]

P[(2N)−1/2dist(Ri, R−i) ≤ u] (6.63)

We fix i ∈ [2N ] and pick a unit vector y orthogonal to R−i and measurable with respect

to Ai := {Rj | j ̸= i}. We remind that R−i := span(Ai). We notice that:

dist(Ri, R−i) = ∥πi(Ri)∥·∥y∥≥ |⟨Ri, y⟩|,

by the Cauchy-Schwartz inequality, where πi is the orthogonal projection onto the

orthogonal complement of R−i. Since y is normalized there exists j ∈ [2N ] such that

|yj |= max
k

|yk|≥ (2N)−1/2. We then estimate that:

P
(
|⟨Ri, y⟩| ≤ u

√
2N
)
= E

[
P
(
|⟨Ri, y⟩| ≤ u

√
2N

∣∣∣∣y)] . (6.64)
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We now estimate the inequality |⟨Ri, y⟩| ≤ u
√
2N as:

|⟨Ri, y⟩| =

∣∣∣∣∣∑
k

xikyk − ζyi

∣∣∣∣∣ ,
where the sum is over N indices and xik are elements of either X1 or X∗

2 .

To deduce the bound u
√
2N it is enough that:

∣∣∣∣xikyk − ζ

N
yi

∣∣∣∣ ≤ 1

N
u
√
2N, for each k,

or:

|yk|
∣∣∣∣xik − ζ

N

yi
yk

∣∣∣∣ ≤ 1

N
u
√
2N, for each k with yk ̸= 0.

But,

|yk|
∣∣∣∣xik − ζ

N

yi
yk

∣∣∣∣ ≤ |yj |
∣∣∣∣xik − ζ

N

yi
yk

∣∣∣∣ ,
so it is enough that:

∣∣∣∣√Nxik − ζ√
N

yi
yk

∣∣∣∣ ≤ √
2u

|yj |
, for each k with yk ̸= 0, (6.65)

Thus,

P
(
|⟨Ri, y⟩| ≤ u

√
2N

∣∣∣∣y) ≤
∑
k

P

(∣∣∣∣√Nxik − ζ√
N

yi
yk

∣∣∣∣ ≤ √
2u

|yj |

)

=
∑
k

∫
B

(
ζ√
N

yi
yk

,
√
2u

|yj |

) ψ(z)d2z ≤ N

(
π
2u2

|yj |2

) q−1
q

∥ψ∥q

≤ Nκ+1

(
πu2

N

) q−1
q

= πN
κ− 1

q u
2− 2

q .

From (6.63), we deduce that, for every u ∈ (0, 1) :

P (σ2N (ζ) ≤ u) ≤ 2πN
κ+1− 1

q u
2− 2

q . (6.66)
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Let B > 0. We pick A > 0 and q > 1 such that:

κ+ 1− 1

q
− 2A+

2A

q
≤ −B,

or:

A ≥
B + κ+ 1− 1

q

2− 2
q

,

and then choose u = N−A ∈ (0, 1) to get the result we want.

6.9 Universality results

We now perform the change of variables to deduce the local law for the correlated

covariance matrix. We follow the linearization of a random matrix technique from [51].

Proof of Theorem 6.3.1. For the Dirac matrix YN, it holds that:

Y2
N =

X1X
∗
2 0

0 X∗
2X1.


Notice that X1X

∗
2 has the same eigenvalues with X∗

2X1. Define now a test function

f : C 7→ C with corresponding zoom function f
ζ̂0,a

for ζ̂0 ∈ Ŝτ,δ,κ and a ∈ (0, 1/2) such

that ∥∆f∥L2+a≤ ND∥∆f∥L1 for some D ∈ N. Observe that:

∫
C
f
ζ̂0,a

(z)dµ̂N =
1

N

∑
ζ∈Spec(X1X∗

2 )

f
ζ̂0,a

(ζ)

=
1

2N

∑
ζ∈Spec(Y2

N)

f
ζ̂0,a

(ζ)

=

∫
C
f
ζ̂0,a

(z2)dµN (z),

where µ̂N is the counting measure for the correlated covariance matrix, whereas µN

is the counting measure for the Dirac matrix. By Theorem 6.3.2 we get the local weak

convergence µN → µ, where µ is the measure for the spectrum of the Dirac matrix,
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which means that:

P

∣∣∣∣∣∣ 1N
∑

ζ∈Spec(X1X∗
2 )

f
ζ̂0,a

(ζ)−
∫
C
f
ζ̂0,a

(z2)dµ(z)

∣∣∣∣∣∣ ≤ N−1+2a+ϵ

 ≥ 1− CN−ν , (6.67)

for any ϵ > 0, ν ∈ N and some suitable C > 0.

We now perform the change of variables z2 7→ z. The Jacobian of the transformation is

equal to:

|J(z)|=
∣∣∣∣ ddz (√z)

∣∣∣∣2 = 1

4|z|
. (6.68)

We are left to prove the transformation from the centered ellipse to the shifted one.

Indeed, by firstly expanding the elliptic spectral domain of the Dirac matrix to an

equivalent form and then introducing complex variables z = x + iy we arrive at the

desired domain:

x2

(1 + τ)2
+

y2

(1− τ)2
− 1 ≤ 0 ⇔[

x2

(1 + τ)2
+

y2

(1− τ)2
− 1

] [
x2

(1− τ)2
+

y2

(1 + τ)2
+ 1

]
≤ 0 ⇔

x4

(1− τ2)2
+

y4

(1− τ2)2
+

x2y2

(1 + τ)4
+

x2y2

(1− τ)4
+
x2 − y2

(1 + τ)2
− x2 − y2

(1− τ)2
≤ 1 ⇔

x4 + y4

(1− τ2)2
+

(1 + τ)4 + (1− τ)4

(1− τ2)4
x2y2 +

(1− τ)2 − (1 + τ2)

(1− τ2)2
(x2 − y2) ≤ 1 ⇔

x4 + y4 − 4τ(x2 − y2) + 2
1 + 6τ2 + τ4

(1− τ2)2
x2y2 ≤ (1− τ2)2 ⇔

x4 + y4 − 4τ(x2 − y2) + 2
(1− τ2)2 + 8τ2

(1− τ2)2
x2y2 ≤ (1− τ2)2 ⇔

(x2 + y2)2 +
16τ2

(1− τ2)2
x2y2 − 4τ(x2 − y2) ≤ (1− τ2)2.
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In this more convenient form we introduce complex variables before making the

substitution:

(x2 + y2)2 +
16τ2

(1− τ2)2
x2y2 − 4τ(x2 − y2) ≤ (1− τ2)2 ⇔

|z|4+ 16τ2

(1− τ2)2
x2y2 − 4τ(z2 − 2ixy) ≤ (1− τ2)2 ⇔

|z|4−4τz2 + 8τi
z + z

2

z − z

2i
+

16τ2

(1− τ2)2

(
z + z

2

z − z

2i

)2

≤ (1− τ2)2 ⇔

|z|4−4τz2 + 2τ(z2 − z2)− τ2

(1− τ2)2
(z2 − z2)2 ≤ (1− τ2)2.

This is the right place to make the substitution z2 7→ z and then we will get back to real

variables, expand everything and complete the squares. We arrive at the new domain

Ŝτ as follows:

|z|2−4τz + 2τ(z − z)− τ2

(1− τ2)2
(z − z)2 ≤ (1− τ2)2 ⇔

x2 + y2 − 4τx+
4τ2

(1− τ2)2
y2 ≤ 1 + τ4 − 2τ2 ⇔

x2 − 4τx+ 2τ2 +
(1− τ2)2y2 + 4τ2y2

(1− τ2)2
≤ 1 + τ4 ⇔

x2 − 4τx+ 2τ2 +
y2

(1− τ2)2
(1 + τ2)2 ≤ 1 + τ4 ⇔

(x− 2τ)2 +
y2

(1− τ2)2
(1 + τ2)2 ≤ (1 + τ2)2 ⇔

(x− 2τ)2

(1 + τ2)2
+

y2

(1− τ2)2
≤ 1.

That means that

∫
C
f
ζ̂0,a

(z2)dµ(z) =

∫
C
f
ζ̂0,a

(z)dµ̂(z), (6.69)

as we wanted, where we used the fact that the transformation z 7→ z2 maps the complex

plane two times onto itself and the identity for the Jacobian (6.68) to retrieve the measure

µ̂ for the correlated covariance matrix.

Inequality 6.67 together with equality 6.69 implies theorem 6.3.1.



Chapter 7

Conclusion

7.1 Overview

In this thesis we started by giving some preliminary definitions and results about the

usual deterministic matrices of linear algebra and functional analysis. We then moved

on to define them as random objects in some proper probability spaces in which they

are called random matrices.

We then gave definitions regarding the convergence behaviour of a sequence of usual

deterministic measures to another measure. We managed to transform the space

of all probability measures in a field into a measurable space, which allowed us to

study measure-valued random variables, which are called random measures. Just like

the convergence behaviour of usual deterministic measures, we discussed about the

probabilistic convergence of a sequence of random measures to another deterministic

measure. A classical example of a random measure in random matrix theory which

encodes a lot of information about the eigenvalues of a random matrix as we saw was

the empirical spectral measure, which as a sequence depends on the dimension of the

matrix. Its convergence properties as well as its deterministic limiting measure can give

valuable insights about the initial random matrix.
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After that, we defined an appropriate transformation of a measure to a complex analytic

function which encodes a lot of the properties of the measure, such as its convergence.

This was about the Stieltjes tranformation which gives a 1-1 correspondence between

each finite Borel measure and its Stieltjes function. We saw that there were easy

formulas to recover the measure by its Stieltjes transformation, while the limiting

measure corresponds to the limiting Stieltjes function in terms of uniform convergence

of functions. This means that in order to establish the convergence of the measures it is

enough to establish the convergence of the Stieltjes functions. What’s more, we saw that

this technique is specifically useful for establishing local laws for the limiting measure,

as the Stieltjes function also encodes the scale of the convergence of the measures.

We used the Stieltjes transform technique to analyse the convergence of the empirical

spectral measure of a random sample covariance matrix to the deterministic Marchenko-

Pastur measure. Initially, we proved an optimal rate of convergence of the Stieltjes

functions of the sequence of the spectral measures to the Stieltjes function of the

Marchenko-Pastur distribution. We proved this in the optimal scaling for the Stieltjes

functions. Special care was taken for the concentration of the eigenvalues around

zero and the corresponding singularity of the limiting measure. Using this functional

convergence we could go back to the measure-theoretic convergence of the spectral

measures to the Marchenko-Pastur distribution and establish it in an almost optimal

rate. We then used this result to prove the rigidity of the eigenvalues depending on

their position with special treatment given near zero. Their locations turn out to be

really close to the ones predicted by the Marchenko-Pastur measure while the size of

the fluctuations proved was almost optimal.

In the second part of this thesis, we started analysing the Dyson equation method. It

turns out that the Stieltjes transform method is a special case of this technique, as the

random empirical spectral measure gets Stieltjes-transformed to the complex function

which matches with the trace of the resolvent of the initial random matrix. The Dyson

equation method is more general as it involves the treatment of the resolvent as a

whole matrix and not just its trace. Of course, this means that the resolvent matrix
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includes almost all the information about the empirical spectral measure in which we are

interested. The Dyson equation method gives a self-consistent matrix equation for the

resolvent matrix which takes into account only the first and second order correlations

of the initial random matrix. A stability analysis is always needed then for such a

technique so as to prove that the solution matrix of the Dyson equation remains close

to the resolvent matrix subject to perturbations. If some assumptions are satisfied for

the initial random matrix, then the method works well and we get as a theorem that

the solution matrix is indeed close to the resolvent matrix and admits now a Stieltjes

transform representation of a matrix whose trace can give us the limit measure of the

empirical spectral measure sequence.

We used the Dyson equation technique in a random matrix model whose limitng

spectral measure lies on the complex plane and interpolates between the second power

of the circular law, the second power of a shifted elliptical law and the Marchenko-Pastur

distribution. There were previous results about this limit measure when the entries

of the random matrix model were Gaussian random variables. The Dyson equation

technique could then be used for proving the same result for a universal case of random

variables. We began by hermitizing the random matrix and setting up a Dyson equation

for the new hermitized matrix. We solved this equation and proved that the trace of

the solution was close to the trace of the resolvent matrix of the initial random matrix.

For the solution, we needed to apply a stability analysis. After that, we were able to

retrieve the same limit measure from the trace of the solution matrix while also using a

least singular value control of the hermitized matrix.
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7.2 Further directions

There were some missing targets while producing all the previous results. Specifically,

in the local Marchenko-Pastur analysis, we wanted to prove a rate of convergence of

the rate of O
(√

logN
N

)
and a fluctuation estimate for the bulk eigenvalues of order

O
(√

logN
N

)
as these are the optimal bounds and they have been proved for the Wishart

ensemble. Secondly, in the Correlated Covariance matrices, the initial goal was to prove

everything for rectangular random matrices X1 and X2 and not just square ones, as

was the case in the previous result for the non-Hermitian Wishart ensemble. What’s

more, our analysis avoided some local laws around the origin of the spectrum of this

ensemble as well as in its edges.

We invite all random matrix theory researchers to deal with these issues by providing

even more refined results in this analysis while advancing and pushing forward this

rather new and exciting scientific field.
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