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ABSTRACT

Humans categorise and structure perceived acoustic signals into hier-
archies of auditory objects. The semantics of these objects are thus
informative in sound classification, especially in few-shot scenarios.
However, existing works have only represented audio semantics as
binary labels (e.g., whether a recording contains dog barking or not),
and thus failed to learn a more generic semantic relationship among
labels. In this work, we introduce an ontology-aware framework
to train multi-label few-shot audio networks with both relative and
absolute relationships in an audio taxonomy. Specifically, we pro-
pose label-dependent prototypical networks (LaD-ProtoNet) to learn
coarse-to-fine acoustic patterns by exploiting direct connections be-
tween parent and children classes of sound events. We also present a
label smoothing method to take into account the taxonomic knowl-
edge by taking into account absolute distance between two labels
w.r.t the taxonomy. For evaluation in a real-world setting, we curate
a new dataset, namely FSD-FS, based on the FSD50K dataset and
compare the proposed methods and other few-shot classifiers using
this dataset. Experiments demonstrate that the proposed method
outperforms non-ontology-based methods on the FSD-FS dataset.

Index Terms— Few-shot learning, multi-label classification,
audio taxonomy, everyday sound recognition

1. INTRODUCTION

Everyday sound recognition is to classify types of sound events in a
recording. It is a core task of machine listening and involves many
practical applications, such as smart cities [1, 2] and bioacoustics [3].
While many works in the past years have succeeded in recognising
sound events using large amounts of labelled data [4, 5], these meth-
ods are not always suitable to real-world scenarios where it takes great
effort to gather sufficient amounts of annotated data for each category
or there exist sound events of unknown classes in the inference stage.

Recently, some works proposed the use of few-shot learning in
everyday sound classification [6, 7, 8]. These classifiers can rapidly
learn new acoustic patterns with a small set of labelled examples,
largely due to their different training objective. However, they are still
restricted to using the ground truth as a binary attribute (e.g., whether
the recording contains dog barking or not), instead of capturing
the audio semantics in labels. Fig.1 showcases an example of four
predictions: Hoot; Bird; Chirp; and Water for examples with the
ground-truth Hoot. It can be observed that the three false positives are
not equally “wrong” as their semantic meaning varies. In other words,
the prediction with Water is more “wrong” than Bird and Chirp. This
suggests that labels cannot be assumed to be independent with each
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(a) prediction: Hoot,
(b) ground truth: Hoot.

Bird

Hoot Chirp

Water

(e) Label relationships among the
ground truth and false positive
predictions. “arrow” is used to
indicate the direct relationship
between parent and children class,
pointing to the latter one.

(b) prediction: Bird.
(b) ground truth: Hoot

(c) prediction: Chirp,
(b) ground truth: Hoot.

(d) prediction: Water,
(b) ground truth: Hoot.

Fig. 1. Audio labels convey more information than a binary
attribute. Given the ground-truth Hoot, the false positives (b-d)
reflect different extents where the model captures the audio semantics
of audio input. As shown in (e), Bird in prediction (b) is the parent
class of the ground-truth, Chirp in the prediction (c) is a sibling class,
and Water in the prediction (d) is an irrelevant class.

other. Thus, one question arises: can we leverage the relationship
between labels to improve audio encoders in data-scarce scenarios?

In this work, we introduce an ontology-aware framework, namely
label-dependent prototypical network (LaD-ProtoNet), to learn audio
semantics from abstract to fine-grained levels using both relative and
absolute label relationships in an audio taxonomy. To that end, we
first convert a multi-label classification task to multiple single-label
classification tasks. Particularly, when both a parent and a child
class in the taxonomy are present in the ground-truth, LaD-ProtoNet
takes the classification task for the parent class with a higher priority.
The network will thus learn audio semantics from abstract to fine-
grained levels. In addition, we propose taxonomy-informed (Ti) label
embedding, a label smoothing method that encodes pairwise label
distance w.r.t the ontology [9] into the ground truth. Experiments
show that the LaD-ProtoNet alone outperforms the non-ontology-
based methods by a large margin. When combined with Ti-embedded
label, LaD-ProtoNet can yield an even better performance. The
contributions of this paper are three-fold:
i) We introduce LaD-ProtoNet to exploit the label relationship in

sound recognition. The network handles the classification task
associated with more abstract label with a higher priority than
that associated with a more fine-grained label.

ii) We propose Ti label embedding to encode label distance in the
ontology, improving the model’s performance with negligible
computational cost.

iii) We curate a new, large-scale database, FSD-FS, for multi-label
few-shot audio classification. Different from existing datasets,
FSD-FS is publicly available, making it a useful dataset for bench-
marking few-shot audio classification.
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Fig. 2. Ontology-aware learning. Suppose a query example is associated with two labels: Dog and Animal, where Animal is the parent class
of Dog. TDog and TAnimal are formed and two support sets SDog and SAnimal are sampled from the training set D, respectively, to train
the network. On each task, Ti-embedded labels are derived to take into account the taxonomic knowledge into the ground-truth labels that is
incorporated into the loss function for network training.

2. RELATED WORK
2.1. Few-shot everyday sound recognition

There exist some works applying few-shot learning to everyday sound
recognition [8, 10, 6, 11, 12]. Heggan et al. implemented various few-
shot algorithms in some everyday sound datasets for single-label few-
shot classification [8]. Targeting the multi-label few-shot problem,
Wang et al. curated a synthesized dataset, FSD-MIX-CLIPS and
FSD-MIX-SED, and compared model performance by controlling
some generative factors in FSD-MIX-SED [6]. Cheng et al. adapted
existing single-label few-shot algorithms to multi-label classification
by proposing a One-vs.-Rest strategy [11]. They then evaluated their
methods on the AudioSet [9] dataset. Shi et al. used meta-learning
algorithms as well as linear regression on AudioSet and found that
meta learning performed better than other few-shot methods [12]. We
note that while Cheng and Shi both conducted experiments using
AudioSet, their results are not comparable since AudioSet is not
released to the public directly and neither of them detailed how the
database was adapted for few-shot learning.

2.2. Prototypical networks

Given a training set D = {(xi, ci)}|D|
i=1 where xi denotes the feature

vector, ci ∈ C denotes the discrete label of the i-th example, and
C denotes the label set of C classes, C = {1, . . . , C}. Prototypical
networks are trained with a series of “N -way K-shot” classification
problems formed from the training set D.

For such a “N -way K-shot” problem, the classification task is
formed by three ingredients: (i) a label subset Cs of N classes sam-
pled from C, (ii) K examples (known as support examples) sampled
from D for each class in Cs, and (iii) Q examples (known as query
examples) further sampled from D for each class in Cs. For a class
n ∈ Cs, let Sn be the subset of support examples belonging to this
class, |Sn| = K. The prototype an of class n is then derived as the
mean of embedding vectors of the support examples in Sn. Formally,

an =
1

K

∑
(x,c)∈Sn

fϕ(x), (1)

where f denotes the embedding mapping realized by the model whose
parameters are denoted collectively as ϕ.

Given a query example xq , the model performs classification
by producing a probability distribution over N classes in Cs based
on a softmax over distances between xq and the N prototypes in

the embedding space. More specifically, the probability that xq is
classified as class n ∈ Cs is calculated as

pϕ(ŷq = n|xq) =
exp(−d(fϕ(xq),an))∑

j∈Cs
exp(−d(fϕ(xq),aj))

, (2)

where ŷq is the predicted label for xq , d is a distance function, such as
ℓ2 or cosine distance. The network is trained to minimize the negative
log-probability of the true class over the N×Q query examples:

L(ϕ) =
∑

(x,c)∈Q
− log pϕ(ŷ = c|x), (3)

where Q is the set of query examples, |Q|=N ×Q.
Although prototypical networks perform well in many applica-

tions [13, 14], they are not suitable to multi-label few-shot classifica-
tion directly where “N -way K-shot” problems are hard to formulate
since labels often co-occur with each other (i.e., multi-label setting).

2.3. Label smoothing

Label smoothing originates from the idea of knowledge distillation
where soft labels are derived from one-hot ground-truth by an en-
semble system [15]. It helps models avoid over-confidence in the
training process. Szegedy et al. simplified this technique by replacing
pre-trained models with a uniform distribution [16]. Bertinetto et al.
incorporated semantic information into the ground-truth by consid-
ering distances between different classes in a taxonomy [17]. The
distance between two labels is measured by counting the intermediate
nodes between them. However, their method is not suitable for a
hierarchical label set as it cannot embed labels from different levels
of the hierarchy. This work improves this taxonomy-aware label
smoothing technique for multi-label few-shot settings by adopting a
different distance measure.

3. PROPOSED METHOD
We propose an ontology-aware framework to train prototypical net-
works for multi-label few-shot settings and to take into account label
relationships in a given taxonomy. The proposed framework is il-
lustrated in Fig. 2 and contains two core techniques: LaD-ProtoNet
and Ti label embedding. LaD-ProtoNet takes a multi-label example
as input and converts the multi-label classification task into multiple
single-label tasks w.r.t. the input labels, enabling training prototypical
networks for few-shot settings. Rather than treating the single-label



tasks equally, LaD-ProtoNet puts more importance to those associ-
ated with more abstract labels (i.e., in higher levels of the hierarchy)
so that it can learn patterns from coarse to fine-grained levels. In
addition, the Ti-embedded label takes into consideration label rela-
tionships in the taxonomy by incorporating the label distances into
the ground-truth.

3.1. LaD-ProtoNet

Let (xq,yq) be a query example in the training set D. Note that we
are dealing with multi-label classification here, thus, yq ∈ {0, 1}C is
a multi-hot encoding vector. Assume that there are M positive classes
present in yq , we denote the set of these M positive classes as M.
In order to deal with multiple labels for few-shot learning settings
with prototypical networks, in LaD-ProtoNet, we first convert the
multi-label classification task into M single-label classification tasks,
{Tm}m∈M, as follows.

For the task Tm, in addition to the positive class m ∈ M, we
randomly sample N − 1 classes from C \ M, which will serve as
the negative classes, resulting in the label set Cm, |Cm| = N , for
the classification task Tm. Subsequently, for each class in Cm, we
sample (without replacement) K examples from D, making N ×K
examples for the support set Sm. Let Sn

m denote the subset of Sm

corresponding to a class n ∈ Cm. A prototype is then derived for
each class n as

an
m =

1

|Sn
m|

∑
(x,y)∈Sn

m

fθ(x). (4)

Note that due to multi-label, |Sn
m| is not necessarily equal to K as

each support example can be associated with more than one class in
the label set Cm. We then calculate l2 distance between the query ex-
ample xq and the N prototypes in the embedding space and produce
the probability distribution over the N classes in Cm via a softmax.
Specifically, the probability for xq to be classified as class n ∈ Cm is
calculated as

pϕ(ŷq = n|xq) =
exp(−d(fθ(xq),a

n
m))∑

j∈Cm
exp(−d(fθ(xq),a

j
m))

, (5)

where d denotes the l2 distance function. The loss induced by the
task Tm on the query example xq is calculated as

Lm(ϕ) = − log pϕ(ŷq = m|xq). (6)

The network is optimized to minimize the total loss induced by
all M tasks on the query example xq:

L(ϕ) =
∑

m∈M
Lm(ϕ), (7)

where Lm(ϕ) is given in (6).
While the above method converts a multi-label classification prob-

lem to multiple single-label classification tasks and enables training
prototypical networks for multi-label few-shot settings, it assumes the
independence between the labels, and thus, ignores the label relation-
ship during training. To further take into account the label relationship
w.r.t a taxonomy, we incorporate parent-children relationship in the
training objective in (7) and re-write it as

L(ϕ) =
∑

m∈M
max

(
Lm(ϕ),1 (P (m) ,M)LP(m)(ϕ)

)
, (8)

where P(m) is the function mapping a child label m to its parent
label in the taxonomy and

1(P(m),M) =

{
1 if P (m) ∈ M
0 otherwise. (9)
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Fig. 3. Ti label embedding. R represents the root node. Ti-
embedded label encodes the taxonomic knowledge into the label
via label smoothing. It then measures the taxonomy distance between
a label in Cm = {A,B,C,D} to the posible label B and produces
the probability distribution via a softmax over the distances.

With the integration of parent-children relationship in (8), the network
will be optimised using the loss Lm(ϕ) associated with the child label
m only if it can perform better on LP(m)(ϕ) associated with its parent
P(m).

It is interesting to find that eq. (8) behaves as a simple aggrega-
tion of the task losses when the set M does not contain any parent-
children label pairs and that One-vs.-Rest selection strategy in [11]
is a special case of the proposed LaD-ProtoNet. It should be noted
that LaD-ProtoNet can be easily extended to multi-level ontology by
decomposing the tree structure into parent-children pairs.

3.2. Taxonomy-informed label smoothing

In addition to parent-children relationships, we take into account the
audio taxonomic knowledge via label smoothing. Fig. 3 gives an
illustrative example on how the Ti label embedding works. Assume
that for the task Tm in the LaD-ProtoNet framework in Section 3.1,
the positive label is B, i.e., m = B. Furtheremore, assume that we
have sampled three negative classes A, C, and D. That is, the label
set Cm = {A,B,C,D}. We derive the Ti-embedded label encoding
vector qB = (qB(A), qB(B), qB(C), qB(D)) ∈ [0, 1]N (N = 4 in
this case) for the query example, where

qB(ℓ) =
exp(−βdt(ℓ, B))∑

j∈Cm
exp(−βdt(j, B))

, (10)

for ℓ ∈ Cm. Here, β is a temperature factor controlling how class
probabilities are distributed among the labels. dt(i, j) denotes the
taxonomy distance which is measured by the number of edges be-
tween two nodes i and j. In that way, the negative classes A, C,
and D are assigned with nuance probabilities larger than 0 while the
probability of the positive class B is slightly lower than 1.

For generalization, with a derived Ti-embedded label qm w.r.t
the positive label m, the loss in (6) is re-written as:

Lm(ϕ) =
∑

n∈Cm

−qm(n) log pϕ(ŷq = n|xq). (11)

Please note that the Ti-embedded label encoding vector ap-
proaches a one-hot encoding vector when β increases and approaches
a uniform distribution when β decreases.

4. EXPERIMENTS
4.1. FSD-FS dataset

We curated a multi-label few-shot database, namely FSD-FS, by
adapting the FSD50K dataset [19]. We inherited the taxonomy from
FSD50K and excluded part of them to avoid the issue when there are
multiple paths to travel from a node to the root node of the taxonomy.



Table 1. Comparison of different methods in terms of mAP, AUC, F1-score with 0.95 confidence. The best results are highlighted in bold.

validation set (%) evaluation set (%)
mAP ↑ AUC ↑ F1-score ↑ mAP ↑ AUC ↑ F1-score ↑

Baseline [18] 33.02±1.04 83.73±0.80 37.32±0.75 34.75±1.39 84.81±0.97 39.29±1.37
one-vs.rest [11] 38.71±1.06 86.07±0.29 41.65±0.64 38.71±2.00 86.71±1.41 42.82±1.93
LaD-ProtoNet (β=15) 39.36±0.90 86.10±0.33 42.04±0.58 40.33±1.57 87.10±0.73 43.82±1.21
LaD-ProtoNet (β=30) 39.71±0.56 85.77±0.67 42.16±0.98 40.05±0.58 87.04±0.58 43.97±0.29
LaD-ProtoNet (β=45) 39.98±0.51 86.01±0.30 42.47±0.57 39.68±0.75 86.97±0.31 43.40±0.74

The rendered FSD-FS spans across 143 classes and contains 43,805
raw audio recordings. Following [20], we split the label set with the
ratio 7:2:1, resulting in 98 classes in the base set, 30 classes in the
validation set, and 15 classes in the evaluation set. More details can
be found in the supplemental material1 and data repository2.

4.2. Experimental setup

We used prototypical networks as the baseline. The models (i.e., the
baseline and the proposed LaD-ProtoNet models) were trained with
15-way classification tasks to match the evaluation condition where
only 15 classes are available. Note that we excluded irrelevant labels
whose classes are not sampled in a “N -way K-shot” problem.

In all the experiments, the audio recordings were sampled at
44.1kHz. Log-Mel spectrogram was used as input. A spectrogram
was extracted from an audio recording using a window length of 20ms
with 50% overlap, and 64 Mel filters. In addition, the spectrograms
were z-normalized along each Mel bin. We applied a 8-layer convo-
lutional neural network (CNN) as audio encoder to all the few-shot
learner for a fair comparison. Details of the network architecture can
be found in our available implementation3.

4.3. Experiment results

Table 2. Ablation study on FSD-FS evaluation split. LaD denotes the
label-dependent structure, and Ti represents the Ti-embedded label.

LaD Ti mAP ↑ AUC ↑ F1-score ↑

✓ 39.34±1.24 86.92±0.62 43.20±0.88
✓ 39.79±0.67 87.23±0.28 43.41±0.57

✓ ✓ 40.33±1.57 87.10±0.73 43.82±1.21

Table 1 compares the performance of different methods in terms
of mAP, AUC, and F1-score. It can be seen that our proposed LaD-
ProtoNets with Ti-embedded labels obtain better performance than
both the baseline and the one-vs.rest method over all the evaluation
metrics. This indicates that capturing the relationships between labels
does help models learn useful features for classification.

Table 2 shows the ablation study of the proposed framework on
the evaluation split of FSD-FS. It achieves the best performance in
terms of mAP and F1-score with the combination of LaD-ProtoNet
and the Ti-embedded label. We should note that the standalone LaD-
ProtoNet has the relative parent-children relationship integrated while
coupling with the Ti-embedded labels, the network is able to leverage
the absolute relationship between any two labels in the taxonomy.
This implies that the two techniques are compliment to each other.

The effect of β to the mAP metric of the models coupled with
Ti-embedded labels is shown in Fig. 4. The best mAP is highest on
the evaluation and validation set with β=30, 45, respectively. We note

1https://github.com/JinhuaLiang/LaD-ProtoNet/blob/main/assets/appendix.pdf
2https://zenodo.org/record/7557107
3https://github.com/JinhuaLiang/LaD-ProtoNet

Fig. 4. Performance comparison of the models coupled with the
Ti-embedded label with various β values.

that the model with β=45 performs worse on the evaluation set than
the one with β=30 while it achieves the best mAP in the validation
set. This is a sign of outfitting, suggesting that models’ generalisation
deteriorates when the Ti-embeded labels approximate the one-hot
encoding vector.

5. CONCLUSION

We proposed the LaD-ProtoNet framework for multi-label few-shot
audio classification. In the framework, a multi-label classification task
was converted into multiple single-label tasks that makes few-shot
learning feasible. LaD-ProtoNet then took into account the parent-
children relationships in a given sound taxonomy and purposed the
model training so that the task associated with a parent label (in
more abstract level) was handled with higher importance than the one
associated with a child node (in more fine-grained level). Beyond the
parent-children relationship, we further proposed Ti label embedding
to encode knowledge of the audio taxonomy into the ground-truth
labels by considering the taxonomic distance between a label pair.
Evaluations conducted on a newly curated dataset, FSD-FS, showed
that the proposed framework outperformed the baseline by 1.34%
absolute in terms of mAP.

Although this work proves that taxonomy knowledge can ben-
efit few-shot sound classification, it still needs a predefined audio
ontology which restricts the method to a close-world knowledge. In
future work, we will explore approaches to leverage label correla-
tions without predefined taxonomies in multi-label few-shot audio
classification.
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