
44 ■ March/Apr i l 2022 IEEE POTENTIALS 0278-6648/22©2022IEEE

Playing
with evolution

Raluca D. Gaina

The Evolution of Video Games

E
volution: a process we’ve
all been through but have
yet to fully understand.
You started off as a tiny
little creature who couldn’t

talk, couldn’t walk, and didn’t
even have feet. There were many
other possibilities, too, but, some-
how, nature decided you were the
fittest. You were given the chance
to live and do your thing in the
world, while millions of others
were discarded at the concept

stage. Genes from your parents
were selected, combined, and
modified in an attempt to make
you best adapted to your environ-
ment. This whole process is fasci-
nating: how does nature decide
what features give you the chance
to be the best that you can be?

That’s not a question to be an-
swered here. Instead, this article
explores some of the ways in which
this process was coded into pro-
grams that can do a variety of cool
things in games. These programs
fall under the name of evolution-
ary algorithms. It is not only that

the games themselves evolve over
time due to new computational
resources and the diversity of
people gaining access to tools to
bring their creations into exis-
tence and to the wider public—we
can also evolve content within the
games themselves.

How do evolutionary
algorithms work?
While there are many ways in which
these algorithms can be implement-
ed, a typical scenario works as fol-
lows: we consider populations (or
groups) of individuals. An individual

Digital Object Identifier 10.1109/MPOT.2021.3124305
Date of current version: 14 March 2022

ROBOTS—©SHUTTERSTOCK.COM/BLUE PLANET STUDIO

C
R

E
AT

U
R

E
—

C
O

U
R

T
E

S
Y

 O
F

 K
O

N
A

M
I,

PA
C

-M
A

N
—

IM
A

G
E

 L
IC

E
N

S
E

D
 B

Y
 IN

G
R

A
M

 P
U

B
LI

S
H

IN
G

Authorized licensed use limited to: Queen Mary University of London. Downloaded on December 12,2023 at 11:09:04 UTC from IEEE Xplore. Restrictions apply.

 IEEE POTENTIALS March/Apr i l 2022 ■ 45

(or what would be one person for
humans) is going to be one solution
considered for whichever problem we
are addressing: a player who wins a
game, a sequence of actions to exe-
cute that lead to winning, a designer
who creates interesting levels for
games, and so on. Individuals are
represented by a genotype and a
phenotype. The genotype is the
genetic encoding, or the genes, that
define the unique properties of the
individual: for example, how risky a
strategy should be or how far into
the future a player should imagine
the game playing out. The pheno-
type, then, is the manifestation of
the genotype in the context of the
problem: the behavior of the player
or levels created by a designer.

To create an evolutionary pro-
cess, we start with a randomly gen-
erated population of individuals: the
genes for each of them are selected
at random from the pool of all pos-
sible genes. We then evaluate each
individual’s fitness, or how good they
are at solving the given problem:
how often a player wins at the game
or how interesting the levels created
are. Each individual gets a score
based on this evaluation, which is
its fitness score. We can then take
the fittest individuals (or those with
the highest scores), combine their
genes [a process called crossover
(Fig. 1)], and change some of them
(by randomly replacing some with
others from the gene pool, known as
mutation) to create more individuals
called offspring.

After evaluating the offspring as
well, we choose to keep only the best
ones in our population; this selection
completes the first generation, result-
ing in a population of individuals that
are similar or better than before. Then
we repeat this process for several gen-
erations. How long? This depends on
the application. However, at some
point, we stop the process and choose
the best individual in the final popu-
lation to actually solve our problem to
the extent of that individual’s ability.
Generally, these are the algorithms
used for optimization problems: they
find a solution that best addresses a
given problem (Fig. 2).

Evolutionary algorithms
playing games
A big question remains: what do evo-
lutionary algorithms actually do in
games? They can play games; design
levels; optimize games, levels, play-
ers, and strategies; and much more.

Rolling horizon evolutionary al-
gorithms (RHEAs) are an example
of a class of algorithms that use the
ideas of this evolutionary process to
play games (Fig. 3). What they evolve
is action plans: at each step in the
game, they choose a sequence of ac-
tions of a particular length (which
defines how far into the future the
algorithm can see) that brings the
player closest to winning the game.

Here, individuals are sequences
of actions (in practical terms, a list of
numbers, where each number corre-
sponds to an action). In other words,
they imagine, at every game step,

several possible future scenarios
based on what they might try to do
(given by the evolutionary algorithm)
and pick a plan based on the result
from these simulations.

Therefore, to evaluate an individu-
al, a model of the game is used to sim-
ulate the effect of the action sequence.
Just like human intuition, this is
often inaccurate (or plain wrong) in
games with elements of chance or
randomness as well as those where
a player does not know everything
about the world (for example, when
parts of the map are covered in the
fog of war or if an opponent holds a
hand of cards that is hidden from
the player).

Individuals can only find this out
when they actually follow their plan
in the real game, although research
has found that even inaccurate or
smaller, more abstract world models

FIG1 Crossover for game levels.

FIG2 An evolutionary process.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on December 12,2023 at 11:09:04 UTC from IEEE Xplore. Restrictions apply.

46 ■ March/Apr i l 2022 IEEE POTENTIALS

could be good enough to approxi-
mate what may be the best thing to
do in different situations. As with
any problem, a “good enough” solu-
tion is often preferred to the alterna-
tive of spending more resources to
possibly find something better.

The game state reached after fol-
lowing each action plan is given a
value based on the likelihood that
the player will win from there (often,

the game score is a good indication
of this), and this value becomes the
fitness of the individual. At the end
of the process—for example, when
the time budget given has been used
up—the algorithm chooses the first
action of the best plan found to exe-
cute in the game, and then it repeats
the process in the next game step.

RHEA has been used for many
games, and it is an area increas-

ingly more researched in recent
years due to its ability to adapt to
many unknown situations through
the power of evolution and its sur-
prising strength in situations where
the player receives little information
about progress in the game, such as
puzzle games. Many modifications
to the basic method were tried, and
many parameters controlling the de-
cision-making process were adjusted
for different environments, which
include video games, such as Space
Invaders, or even complex modern
strategy board games, such as Ter-
raforming Mars.

The algorithm works better when
preserving action plans evolved
from one game step to the next in-
stead of starting from scratch each
time or when it dynamically modi-
fies the length of the action plans
evolved depending on the diversity of
information in the environment. All
modifications produce players able
to perform the best in at least one
game, but no single configuration
of the algorithm is able to solve all
given problems. We are still not yet
at the stage of a generally applicable
adaptive algorithm.

Evolutionary algorithms
evolving other algorithms
If we frame the problem differently,
we can add another layer on top:
RHEA itself has a series of control
parameters that indicate how the
algorithm behaves, such as the
number o f i nd iv idua ls i n a
population, length of an action
sequence, or mutation rate. These
parameters can be seen as genes
themselves—so we can use an
evolutionary algorithm to evolve
RHEAs, which, in turn, evolve
action sequences (Fig. 4).

 This has been tried in two ways:
optimizing parameters 1) so that
RHEA obtains the highest win rate
by playing a game several times and
trying out different configurations
and 2) to maximize the improve-
ment in the quality of individuals in
the population from one generation
to the next. While these methods
do not always succeed in producing
better results, they can be used to

FIG3 RHEA simulates multiple trajectories through a level to make decisions about
what to do in each situation.

FIG4 An optimization algorithm controls RHEA’s parameters while RHEA plays games.
NTBEA: N-Tuple Bandit Evolutionary Algorithm.

As long as you can define gene pools, genotypes, and
phenotypes in a way that a computer understands them,

you can apply evolutionary algorithms to bring some of
the power of evolution shown by nature to your problems.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on December 12,2023 at 11:09:04 UTC from IEEE Xplore. Restrictions apply.

 IEEE POTENTIALS March/Apr i l 2022 ■ 47

solve some very difficult problems
without any domain information.
We could, perhaps, continue adding
such layers of algorithms, which
may be one path toward fulfilling
the great quest for general artificial
intelligence (AI).

Evolutionary algorithms
evolving games
We can also look at another side of
the problem: to play a game, we
first need a game. What if AI creat-
ed the game before playing it? Typi-
cal applications of evolutionary
algorithms do not go quite that far,
although some have tried and even
succeeded in creating new board
games: Yavalath is a classic exam-
ple here.

However, they are more often
used to create pieces of games, such
as game levels: we can encode an in-
dividual as a list of numbers again,
but, this time, each gene represents
a tile on the screen. Combining
two different levels would then take
chunks from each to create a new
level, and mutations would lead to
changing some tiles to other types.
The only thing left is to evaluate the
levels and give each a fitness score—
this is a larger problem, which can
be addressed in several ways:
■■ An algorithm could extract fea-

tures from the level (for example,
the distribution of ground tiles or
number of enemies present) and
assign a fitness score depending
on the distance to ideal target
values.

■■ Several automatic game players
could play the level, and statis-
tics recorded about their game
play could be used to determine
a level’s score (for example, did
the more proficient player win
more than the silly player?).

■■ A human could be brought into
the mix to assess levels subjec-
tively and use their expertise and
wishes for the final design to
guide evolution in the desired
direction.

The game Super Mario Bros. is a
great example here, where extensive
research has shown it is possible to
generate whole new levels with a

similar look and feel to existing
human-designed levels or even gen-
erate these on the fly, just in front of
the player, during play itself to max-
imize a player’s enjoyment.

These methods could also be
combined. Recent work shows this
in practice for evolving structures
in Minecraft. In this application,
you start with a base structure and
work together with an evolutionary
algorithm to improve it by iteratively
choosing one of the options the al-
gorithm gives you and then letting it
create more offspring from there.

Generally, as long as you can de-
fine gene pools, genotypes, and phe-
notypes in a way that a computer
understands them, you can apply
evolutionary algorithms to bring
some of the power of evolution shown
by nature to your problems and sim-
ply let potential solutions evolve un-
til they’re good enough. If only this
worked for all of life’s problems! May-
be soon.

Read more about it
 • R. D. Gaina, “Rolling horizon

evolutionary algorithms for general
video game playing,” Ph.D. disserta-
tion, Queen Mary Univ. London,
UK, Apr. 2021.

 • R. D. Gaina, M. Balla, A.
Dockhorn, R. Montoliu, and D. Per-
ez-Liebana, “TAG: A tabletop games
framework,” GitHub, 2020. [Online].
Avai lable: https://github.com/
GAIGResearch/TabletopGames

 • A. Khalifa, “Current framework
version: 0.8.0,” GitHub, 2006. [Online].
Available: https://github.com/
amidos2006/Mario-AI-Framework

 • T. Shu, J. Liu, and G. N. Yan-
nakakis, “Experience-driven PCG
via reinforcement learning: A super
Mario bros study,” 2021, arXiv:
2106.15877.

 • D. Grbic, R. B. Palm, E. Najar-
ro, C. Glanois, and S. Risi, “Evo-
Craft: A new challenge for open-end-
edness,” in Proc. EvoApplications,

May 2021, pp. 325 –340, doi:
10.1007/978-3-030-72699-7_21.

About the author
Raluca D. Gaina (r.d.gaina@qmul
.ac.uk) earned her B.Sc. and M.Sc.
degrees in computer games at the
University of Essex in 2015 and
2016, respectively. She is a lecturer
in game artificial intelligence (AI) at
Queen Mary University of London,
London, E1 4NS, U.K., where she
earned her Ph.D. degree in intelli-
gent games and games intelligence
in April 2021 (in the area of rolling
horizon evolution in general video
game playing). She did a three-
month internship at Microsoft
Research Cambridge and was
involved in the organization of vari-
ous competitions and committees
related to game AI. Her research
interests include general video game
playing AI, evolutionary algorithms,
and tabletop games.

As with any problem, a “good enough” solution is
often preferred to the alternative of spending more

resources to possibly find something better.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on December 12,2023 at 11:09:04 UTC from IEEE Xplore. Restrictions apply.

