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ABSTRACT: We report here a highly straightforward 
access to a variety of CHF2-containing heterocycles, 
including lactones, tetrahydrofuranes, tetrahydropyrans, 
benzolactones, phthalanes and pyrrolidines, through a 
visible light-mediated intramolecular oxy-
difluoromethylation under continuous flow. The 
method, which relies on the use of readily available 
starting materials, low-cost 3D printed photoflow 
reactors, and difluoromethyltriphenylphosphonium 
bromide used here as a CHF2 radical precursor, is 
practical, scalable, and provides the desired products in moderate to excellent yields and excellent regio- and stereoselectivities.  

he addition of fluorine-containing groups can dramatically 
alter the properties of bioactive molecules, enhancing their 

lipophilicity and often improving their metabolic stability, 
their pharmacokinetic properties and their bioavailability.1-4 

For all of these reasons, tremendous efforts have been 
dedicated over the past few decades to the development of 
efficient synthetic methods enabling the incorporation of these 
groups, with a special emphasis given to late-stage 
functionalization strategies,5 which remains an area ripe for 
exploration. While a large body of work has been focused on 
the development of effective fluorination6 and 
trifluoromethylation reactions,7 the synthetic community has 
recently turned their attention to the difluoromethyl group as it 
has emerged as a promising bioisosteric substitute for 
hydroxyls, thiols, amines and hydroxamic acids due to its 
ability to act as a weak hydrogen bond donor.8 

As heterocycles are ubiquitous in medicinal chemistry, 
their synthesis and functionalization have always been an area 
of intense scrutiny.9 Several groups around the world have 
tackled the challenging task of developing methods that 
provide a direct access to (per)fluoroalkylated heterocycles, 
particularly lactones, starting from linear precursors, but the 
number of effective methods are limited (Figure 1, A and B).10 
Over the years, our group has been interested in developing 
new synthetic methods to access a variety of diversely 
functionalized heterocyclic scaffolds,11 including one which 
allows access to a variety of tertiary difluoromethylated 
lactones, lactams, glutaramides, succinimides and 
quinolinones via a sequential sulfoximine-mediated 
difluoromethylation/palladium-catalyzed decarboxylative 

protonation.12 Surprisingly, despite the number of methods 
reporting the fluorination and fluoroalkylation of 
alkenes/alkynes to construct fluoro-containing heterocyclic 
scaffolds,13 methods affording CHF2-substituted heterocycles 
are rather scarce. One such example was recently reported by 
Xu and co-workers featuring an electrochemical oxy-
difluoromethylation of alkenes to form the corresponding 
lactones, albeit in only moderate yields (Figure 1, C).14 

Following our recent work on the synthesis of α-CHF2 
substituted ketones through the difluoromethylation of enol 
silanes under photoredox conditions,15 we set out to develop a 
new, practical and scalable method to access a variety of 
CHF2-substituted heterocycles via a photocatalytic oxy-
difluoromethylation of functionalized alkenes under 
continuous flow conditions (Figure 1, D). Indeed, flow 
chemistry has emerged as a powerful tool,16 particularly for 
conducting photoredox processes.17 In contrast to batch 
reactions, flow chemistry offers substantial advantages, in 
particular a larger surface area-to-volume ratio and provides a 
better light penetration within the reaction media and a swift 
mixing of the reagents, resulting in a higher efficiency. 
Additionally, the use of microreactors in flow chemistry 
provides a higher degree of control over the reaction 
parameters and a more straightforward scale-up of the 
reactions. Despite the many benefits of continuous flow 
chemistry, its widespread adoption by synthetic chemists has 
been limited by the substantial costs associated with its 
implementation. The recent development of low-cost 3D 
printed reactors has provided researchers with new 
opportunities to leverage the benefits of flow chemistry at a  
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Figure 1. Strategies for the oxy-difluoroalkylation of alkenes. 

more affordable expense.18 Most importantly, the application 
of 3D printing technology in flow chemistry has enabled the 
creation of bespoke flow reactors that are tailored to specific 
reaction requirements. Hence, Hilton and co-workers reported 
the development of a modular, small-footprint, and low-cost 
3D printed continuous-flow system and demonstrated its use 
in flow photochemistry.19 This innovative system allows for 
easy integration with existing stirrer hot plates, and its flow is 
driven and controlled by compressed air. The 3D printed 
circular disk reactor (CDR) has a path length that can be 
extended and connected to create various flow path volumes, 
while the residence time can be easily controlled using 
resistive capillaries. The system is also associated with a 
3D printed adaptor for a Kessil lamp specially designed for 
flow photochemistry.  

We initiated our study by conducting a first set of reactions 
in batch using 1a as a model substrate. We evaluated three 
different difluoromethylating reagents (dFM1-dFM3) based on 
their inherent solubility and oxydo-reduction potentials as well 
as several photocatalysts (Table 1). As a general trend, the best 
result was obtained when running the reaction in DCM 
[0.1 M] at rt overnight under light irradiation using a 440 nm 
Kessil lamp, and using difluoromethyltriphenylphosphonium 
bromide (dFM2, 1.2 equiv.)21 in conjunction with fac-Ir(ppy)3 
(2 mol%) and 1 equiv. of 2,6-lutidine (81%, Table 1, entry 2). 
In comparison, the use of Hu’s reagent (dFM1)20 under 
otherwise identical conditions only led to 52% yield (Table 1, 
entry 1). Unfortunately, neither 4CzlPN nor perylene, two 
widely used organic photocatalysts, were compatible with the 
phosphonium salt as no product was formed (Table 1, entries 3 
and 4). Interestingly, the use of 10-phenylphenothiazine and 
perylene in conjunction with the sulfonium salt C22 afforded 
the desired product, albeit in only 8 and 52% yield, 
respectively (Table 1, entries 5 and 6). 

After identifying the most favorable conditions in batch, 
we sought to implement this protocol into our 3D printed 
photoflow system. We first conducted a screening of various 
bases and solvents. Given the limited compatibility of the 
polypropylene CRD with certain organic solvents, we tested 
DMF and MeCN. Interestingly, the reactions run with 1 equiv. 
of dFM2 and 1 equiv. of 2,6-lutidine in both solvents led to the 
desired lactone in 50 and 71% yield, respectively (see SI for 
more details), while the reaction run with 2,6-di-tert-
butylpyridine instead of 2,6-lutidine afforded 2a brought the  

Table 1. Systematic study under batch conditions.  

 

yield back down to 50%. Most importantly, the use of the 3D 
printed photoflow system significantly reduced the reaction 
time from several hours to only 20 min. However, although 
acetonitrile showed promise, the limited solubility of the 
reagents raised some concerns of potential flow blockages. To 
circumvent this issue, we first attempted to lower the 
concentration from 0.1 M to 0.05 M, but this had a detrimental 
effect on the yield. We then decided to run the reaction in a 
1:1 MeCN/DCM mixture. This sounded counterintuitive at 
first as the use of neat DCM is in theory incompatible with the 
polypropylene reactor, causing material softening or swelling 
over time, however the mixed solvent conditions proved 
perfectly well suited as no noticeable change of the 
photoreactor was observed even after several cycles of 
utilization. 

After establishing the optimized reaction conditions 
[dFM2 (2 equiv.), fac-Ir(ppy)3 (2 mol%), 2,6-lutidine 
(1 equiv.), CH3CN/CH2Cl2 (1:1), rt, 8 W Blue LED (440 nm), 
flow rate: 100 µL/min, residence time = 20 min)], we 
proceeded to examine the substrate scope starting with 
terminal alkenes 1b-i (Figure 2). The reaction appeared to be 
tolerant to substrates bearing both electron-donating and 
electron-withdrawing groups on the aromatic ring. Hence, the 
para-methyl (2b, 75%), para-fluoro (2c, 70%), para-chloro 
(2d, 75%), and para-bromo (2e, 72%) derivatives were all 
obtained in high yields. The method was also successfully 
applied to the bicyclic precursor 1f and ene-yne 1g to form the 
corresponding difluoromethyl-containing spirolactone 2f and 
the phenyl acetylene-containing butyrolactone 2g in 69 and 
38% yield, respectively. Finally, increasing the length of the 
alkyl chain to generate the corresponding 6- and 7-membered 
lactones 2h (45%) and 2i (11%) also proved feasible although 
the yields were more moderate. 

The scope was further extended to internal alkenes 3a-e 
with the objective of forming 4,5-disubstituted γ-lactones. 
Under the same reactions conditions, 4-phenylbut-3-enoic acid 
(3a) afforded the corresponding difluoromethylated lactone 4a 
in 69% yield as a single trans stereoisomer. This trans 
diastereoselectivity supported by DFT calculations (vide infra) 
was also observed by Akita and co-workers in their analogous 
oxy-trifluoromethylation of alkenoic acids.10a Following this 
result, we successfully extended the method to the naphthyl

A. CF3-Substituted lactones via photoredox-catalyzed carbolactonization.10a

Oxy-di/trifluoromethylation of alkenes

B. Copper(I)-catalyzed oxy-difluoroalkylation of alkenes.10b

C. Electrochemical oxy-difluoromethylation of alkenes.14

D. Oxy-difluoromethylation of alkenes using low-cost 3D printed photoflow reactors (this work).
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Figure 2. Substrate scope. a Reaction run on a 1 mmol scale. 

(4b, 48%), para-bromo phenyl (4c, 37%) and 
1,3-benzodioxole (4d, 24%) derivatives as well as to a 
trisubstituted alkene to form the corresponding lactone bearing 
a quaternary center at the γ position (4e, 43%). The method 
could also be applied to alkenes bearing a pendent alcohol 
moiety to form the corresponding difluoromethylated 
tetrahydrofurans. Hence, in the case of the terminal alkenes 
5a-e, all five γ-quaternary butyrolactones 6a-e were obtained 
in yields ranging from 33 to 84%. Once again, the method 
proved compatible with both electron-rich and electron-poor 
aromatic derivatives, however it is worth pointing out that the 
yields were slightly higher with the substrates bearing an 
electron-rich aromatic ring such as the para-methylthio 
derivative 6b. Interestingly, the method could also be used to 
access tetrahydropyran scaffolds, albeit in only moderate 
yields (6e, 29%). In the case of substrates bearing an internal 
alkene (7a-e), the corresponding difluoromethylated 
2,3-disubstituted tetrahydrofurans 8a-e were obtained as a 
single trans strereoisomer in yields ranging from 29 to 67%. 
The method was also particularly effective in producing 
benzolactones (10a-b, up to 81% yield) and phthalanes (12, 

80% yield) starting from the corresponding ortho-vinyl-
substituted benzoic acid and benzyl alcohol precursors, 
respectively. Finally, the method was successfully applied to a 
terminal alkene (13) bearing a pendent acetamide to form the 
corresponding pyrrolidine 14, albeit in only 36% yield.  

To confirm the mechanism, we conducted a fluorescence 
quenching and a TEMPO-mediated radical trapping 
experiment (Figure 3, A). We found that dFM2 exhibited a 
greater efficiency in quenching the fluorescence (see SI for 
more details), while the reaction between 1a and dFM2 in the 
presence of TEMPO resulted in the formation of 75% of the 
difluoromethylated butyrolactone 2a along with 13% of the 
TEMPO-CHF2 adduct, which strongly supports a one-electron 
reduction of dFM2 and subsequent decomposition releasing 
the CHF2 radical. 

DFT studies, performed using the PBE0 functional with 
Grimme’s D3 dispersion correction, provided further support 
for the reaction between the photocatalytically generated CHF2 
and the styrene derivative (Figure 3, B). An exhaustive 
conformational search showed the addition of CHF2 radical to 
be highly exergonic (ΔG from –33.1 to –33.8 kcal/mol) with a 
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Figure 3. Full survey. [Gibbs free energies in kcal/mol, reduction potentials in V referenced to standard calomel electrode] 

readily accessible early transition state (ΔG‡ from 8.1 to 
8.4 kcal/mol and F2HC–C bond distance 2.57-2.58 Å, see SI 
for more details). A reduction potential E° of 0.40 V for the 
II/I pair suggest that radical I could be easily oxidized to 
carbocation II by the catalyst in its oxidized form 
(E°Ir(IV)/Ir(III) = 0.77 V). Our studies with both inter- and 
intramolecular attack by carboxylate or carboxylic acid 
showed a barrierless reaction to form the corresponding ester. 
This barrierless reaction led us to hypothesize that in 
substrates leading to diastereomers, the diastereoselectivity of 
the reaction would be determined by the conformational 
distribution of radical intermediate I. Indeed, a study on the 
cyclisation of compound 3a showed the most stable 
conformation among those with a trans arrangement of the 
CHF2 and Ph substituents was lower in energy (by 
3.9 kcal/mol) than the most stable cis conformation. In a more 
general view, the trans-inducing conformations were on 
average 4.1 kcal/mol lower than the cis-inducing ones. 

We therefore propose the following mechanism where the 
excited *Ir(ppy)3 undergoes a single-electron-transfer (SET) to 
the triphenylphosphonium bromide (dFM2), which leads to the 
release of a CHF2 radical (Figure 3, C). This radical is 
subsequently added onto the alkene of the enoic acid 1a, 
leading to the formation of a radical intermediate. This 
intermediate is then oxidized by SET from fac-IrIV(ppy)3 to 
regenerate the photocatalyst and form the desired carbocation 
intermediate. The final step of the reaction involves the 
deprotonation of the carboxylic acid by the base and 
subsequent cyclisation to produce the desired 
difluoromethylated butyrolactone 2a. 

To demonstrate the scalability of the method, the oxy-
difluoromethylation of 1a was carried out on a mmol scale 
under continuous flow. The reaction proved easy to set up and 
the product was isolated in 82% yield, thus highlighting the 
potential of this low-cost 3D printed standardized photoflow 
setup for future industrial application. 

Finally, we evaluated an intermolecular multicomponent 
approach which would see styrene (15) converted into the 
corresponding difluoromethylated ester in the presence of 
acetic acid (Figure 3, D). Unfortunately, the formation of the 

ester wasn’t observed. Instead, we isolated difluoromethylated 
acetamide17 in 55% yield. The latter is obtained following a 
Ritter-type amidation process where the in situ generated 
benzylic carbocation reacts with CH3CN to form a nitrilium 
intermediate, which is eventually hydrolyzed to form the 
corresponding acetamide.22  

In summary, we have developed, a practical, operationally 
trivial and highly straightforward access to a variety of CHF2-
containing heterocycles, including lactones, tetrahydrofuranes, 
tetrahydropyrans, benzolactones, phthalanes and pyrrolidines, 
through a visible light-mediated intramolecular oxy-
difluoromethylation. The method, which generally offers 
moderate to excellent yields and excellent regio- and 
stereoselectivities, can also be used to synthesize 
difluoromethylated amides through a Ritter-type amidation. Most 
importantly, the use of low-cost23 3D printed photoflow reactors 
offers increased safety, cost-saving potential, short reaction times, 
ease of scale-up, and greater control over reaction parameters, all 
of which are key points for both academic and industrial 
applications. 
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