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Sensitivity Analysis for Meta-Analyses

Summary

Random-effects meta-analyses of observational studies can produce biased estimates if

the synthesized studies are subject to unmeasured confounding. We propose sensitivity

analyses quantifying the extent to which unmeasured confounding of specified magnitude

could reduce to below a certain threshold the proportion of true effect sizes that are

scientifically meaningful. We also develop converse methods to estimate the strength of

confounding capable of reducing the proportion of scientifically meaningful true effects

to below a chosen threshold. These methods apply when a “bias factor” is assumed to

be normally distributed across studies or is assessed across a range of fixed values. Our

estimators are derived using recently proposed sharp bounds on confounding bias within

a single study that do not make assumptions regarding the unmeasured confounders

themselves or the functional form of their relationships to the exposure and outcome

of interest. We provide an R package, ConfoundedMeta, and a freely available online

graphical user interface that compute point estimates and inference and produce plots

for conducting such sensitivity analyses. These methods facilitate principled use of

random-effects meta-analyses of observational studies to assess the strength of causal

evidence for a hypothesis.

Key words: Bias; Confounding; Meta-analysis; Observational studies; Sensitivity analysis
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1. Introduction

Meta-analyses can be indispensable for assessing the overall strength of evidence for a

hypothesis and for precisely estimating effect sizes through aggregation of estimates. However,

conclusions drawn from meta-analyses are only as reliable as the synthesized studies themselves;

systematic bias in the meta-analyzed studies typically produces bias in the pooled point

estimate (Egger et al., 1998). A common source of bias is unmeasured confounding (Shrier

et al., 2007), which is our focus in this paper. When eliminating such bias by restricting

attention to well-designed randomized studies is infeasible because the exposure cannot be

randomized, an attractive option is to conduct sensitivity analyses assessing the extent to

which unmeasured confounding of varying magnitudes could have compromised the results of

the meta-analysis.

Existing sensitivity analyses for confounding bias or other internal biases in meta-analysis

estimate a bias-corrected pooled point estimate by directly incorporating one or more bias

parameters in the likelihood and placing a Bayesian prior on the distribution of these

parameters (McCandless, 2012; Welton et al., 2009). An alternative frequentist approach

models bias as additive or multiplicative within each study and then uses subjective assessment

to elicit study-specific bias parameters (Turner et al., 2009). Although useful, these approaches

typically require strong assumptions on the nature of unmeasured confounding (for example,

requiring a single binary confounder), rely on the arbitrary specification of additive or

multiplicative effects of bias, or require study-level estimates rather than only meta-analytic

pooled estimates. Furthermore, the specified bias parameters do not necessarily lead to

precise practical interpretations.
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An alternative approach is to analytically bound the effect of unmeasured confounding on

the results of a meta-analysis. To this end, bounding methods are currently available for point

estimates of individual studies. We focus on sharp bounds derived by Ding & VanderWeele

(2016) because of their generality and freedom from assumptions regarding the nature of the

unmeasured confounders or the functional forms of their relationships with the exposure of

interest and outcome. This approach subsumes several earlier approaches (Cornfield et al.,

1959; Flanders & Khoury, 1990; Schlesselman, 1978) and relies on only two simple sensitivity

parameters representing the strength of association of the unmeasured confounders with,

firstly, the exposure and, secondly, the outcome.

The present paper extends these analytic bounds for single studies to the meta-analytic

setting. Using standard estimates from a random-effects meta-analysis and intuitively

interpretable sensitivity parameters on the magnitude of confounding, these results enable

inference about the size of the true, unconfounded effects in a potentially heterogeneous

population of studies. That is, we can select a minimum threshold of scientific importance

for the magnitude of the true effect in any given study. If sensitivity analysis for unmeasured

confounding indicates that too few studies in the meta-analysis have a true effect stronger than

this threshold, then arguably the results of the meta-analysis are not robust to confounding,

and scientifically meaningful causal conclusions are not warranted despite the observed point

estimate. To this end, we develop estimators that answer the questions: “What proportion

of studies would have a true effect size stronger than q in the presence of unmeasured

confounding of a specified strength?” and “How severe would unmeasured confounding need

to be to reduce to less than r the proportion of studies with true effect size stronger than q?”.

This approach to sensitivity analysis is essentially a meta-analytic extension of a recently
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proposed metric (the “E-value”) that quantifies, for a single study, the minimum confounding

bias capable of reducing the true effect to a chosen threshold (VanderWeele & Ding, 2017).

We provide and demonstrate use of an R package (ConfoundedMeta) and a free, interactive

online user interface for conducting such analyses and creating plots.

2. Existing Bounds on Confounding Bias in a Single Study

Ding & VanderWeele (2016) developed bounds for a single study as follows. Let X denote a

binary exposure, Y a binary outcome, Z a vector of measured confounders, and U one or

more unmeasured confounders. Let:

RRc
XY |z =

P (Y = 1 | X = 1, Z = z)

P (Y = 1 | X = 0, Z = z)

be the confounded relative risk (RR) of Y for X = 1 versus X = 0 conditional or stratified

on the measured confounders Z = z.

Let its true, unconfounded counterpart standardized to the population be:

RRt
XY |z =

∑
u P (Y = 1 | X = 1, Z = z, U = u)P (U = u | Z = z)∑

u P (Y | X = 0, Z = z, U = u)P (U = u | Z = z)

(Throughout, we use the term “true” as a synonym for “unconfounded” or “causal” when

referring to both sample and population quantities. Also, henceforth, we condition implicitly

on Z = z, dropping the explicit notation for brevity.)

Let RRXu = P (U = u | X = 1) /P (U = u | X = 0). Define the first sensitivity parameter

as RRXU = maxu (RRXu); that is, the maximal relative risk of U = u for X = 1 versus

X = 0 across strata of U . (If U is binary, this is just the relative risk relating X and U .)

Next, for each stratum x of X, define a relative risk of Y on U , maximized across all possible
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contrasts of U :

RRUY |X=x =
maxu P (Y = 1|X = x, U = u)

minu P (Y = 1|X = x, U = u)
, x ∈ {0, 1}

Define the second sensitivity parameter as RRUY = max
(
RRUY |X=0, RRUY |X=1

)
. That is,

considering both strata of X, it is the largest of the maximal relative risks of Y on U

conditional on X. Then, Ding & VanderWeele (2016) showed that a sharp bound for the

true effect is:

RRt
XY ≥ RRc

XY /
RRXU ·RRUY

RRXU +RRUY − 1
(2.1)

where we will refer to the “bias factor” RRXU ·RRUY

RRXU+RRUY −1
as B.

If the two sensitivity parameters are equal (RRXU = RRUY ), then to produce a bias

factor B, each must exceed B +
√
B2 −B (Ding & VanderWeele, 2016). Thus, a useful

transformation of B is the “confounding strength scale”, g, which is the minimum size of

RRXU and RRUY under the assumption that they are equal:

g = B +
√
B2 −B ⇔ B =

g2

2g − 1
(2.2)

If RRc
XY < 1 (henceforth the “apparently preventive case”), then Equation (2.1) becomes

(Ding & VanderWeele, 2016):

RRt
XY ≤ RRc

XY ·
RR∗XU ·RRUY

RR∗XU +RRUY − 1

where RR∗XU = maxu

(
RR−1Xu

)
, i.e., the maximum of the inverse relative risks, rather than

the relative risks themselves. Thus, B remains ≥ 1, and we have RRt
XY ≥ RRc

XY .

Although these results hold for multiple confounders, in the development to follow, we will

use a single, categorical unmeasured confounder for clarity. However, all results can easily be
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interpreted without assumptions on the type of exposure and unmeasured confounders, for

instance by interpreting the relative risks defined above as “mean ratios” (Ding & VanderWeele,

2016).

3. Random-Effects Meta-Analysis Setting

In this paper, we use the aforementioned analytic bounds to derive counterparts for the

random-effects meta-analysis model with the standard Dersimonian-Laird point estimate.

This model assumes that each of k studies measures a potentially unique effect size M , such

that M ∼iid N(µ, V ) for a grand mean µ and variance V . Let yi be the point estimate of the

ith study and σ2
i the within-study variance (with the latter assumed fixed and known).

Analysis proceeds by first estimating V via one of many possible estimators, denoted τ 2

(Veroniki et al., 2015), then estimating µ via a weighted mean defined as:

ŷR =

∑k
i=1wi yi∑k
i=1wi

The weights are inversely proportional to the total variance of each study (a sum of the

between-study variance and the within-study variance), such that wi = 1/ (τ 2 + σ2
i ).

4. Main Results

Consider k studies measuring relative risks with confounded population effect sizes on the log-

RR scale, denoted M c, such that M c ∼ N(µc, V c). (Other outcome measures are considered

briefly in the Discussion.) Let the corresponding true effects be M t with expectation µt

and variance V t. Let ŷcR be the standard inverse-variance-weighted random effects point

estimate and τ 2c be a heterogeneity estimate, both computed from the confounded data.
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Consider the bias factor on the log scale, B∗ = log
(

RRXU ·RRUY

RRXU+RRUY −1

)
, and allow it to vary

across studies under the assumption that B∗ ∼ N (µB∗ , σ2
B∗) independently of M t. That is,

we assume that the bias factor is independent of the true effects but not the confounded

effects: naturally, studies with larger bias factors will tend to obtain larger effect sizes. The

normality assumption on the bias factor holds approximately if, for example, its components

(RRXU and RRUY ) are identically and independently normal with relatively small variance

(Web Appendix). We now develop three estimators enabling sensitivity analyses.

4.1. Proportion of studies with large effect sizes as a function of the bias factor

For an apparently causative relative risk (ŷcR > 0, or equivalently the confounded pooled

RR is greater than 1), define p(q) = P (M t > q) for any threshold q, i.e., the proportion of

studies with true effect sizes larger than q. Then a consistent estimator of p(q) is:

p̂(q) = 1− Φ

(
q + µB∗ − ŷcR√

τ 2c − σ2
B∗

)
, τ 2c > σ2

B∗

where Φ denotes the standard normal cumulative distribution function. In the special case in

which the bias factor is fixed to µB∗ across all studies, the same formula applies with σ2
B∗ = 0.

Many common choices of heterogeneity estimators, τ 2c , are asymptotically independent of

ŷcR (Web Appendix), an assumption used for all standard errors in the main text. Results

relaxing this assumption appear throughout the Web Appendix. An application of the delta

method thus yields an approximate standard error:

ŜE (p̂(q)) ≈

√
V̂ar (ŷcR)

τ 2c − σ2
B∗

+
V̂ar (τ 2c ) (q + µB∗ − ŷcR)2

4 (τ 2c − σ2
B∗)

3 · φ

(
q + µB∗ − ŷcR√

τ 2c − σ2
B∗

)

where φ denotes the standard normal density function. (If τ 2c ≤ σ2
B∗ , leaving one of the

denominators undefined, this indicates that there is so little observed heterogeneity in the
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confounded effect sizes that, given the specified bias distribution, V t is estimated to be less

than 0. Therefore, attention should be limited to a range of values of σ2
B∗ such that τ 2c > σ2

B∗ .)

For an apparently preventive relative risk (ŷcR < 0 or the confounded pooled RR is

less than 1), define instead p(q) = P (M t < q), i.e., the proportion of studies with true effect

sizes less than q. Then a consistent estimator is:

p̂(q) = Φ

(
q − µB∗ − ŷcR√

τ 2c − σ2
B∗

)
, τ 2c > σ2

B∗

with approximate standard error:

ŜE (p̂(q)) =

√
V̂ar (ŷcR)

τ 2c − σ2
B∗

+
V̂ar (τ 2c ) (q − µB∗ − ŷcR)2

4 (τ 2c − σ2
B∗)

3 · φ

(
q − µB∗ − ŷcR√

τ 2c − σ2
B∗

)
(4.1)

Because p̂(q) is monotonic in σ2
B∗ , the homogeneous bias case (i.e., σ2

B∗ = 0) provides

either an upper or lower bound on p̂(q) (Table 1). We later return to the practical utility of

these results.

4.2. Bias factor required to reduce proportion of large effect sizes to a threshold

Conversely, we might consider the minimum common bias factor (on the RR scale) capable of

reducing to less than r the proportion of studies with true effect exceeding q. We accordingly

define T (r, q) = B : P (M t > q) = r to be this quantity, with B taken to be constant across

studies. (Note that taking B to be constant does not necessarily imply that the unmeasured

confounders themselves are identical across studies.) Then for an apparently causative

relative risk, a consistent estimator for the the minimum common bias capable of reducing

to less than r the proportion of studies with effects surpassing q is:

T̂ (r, q) = exp
{

Φ−1(1− r)
√
τ 2c − q + ŷcR

}
(4.2)
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with approximate standard error:

ŜE
(
T̂ (r, q)

)
= exp

{√
τ 2c
(
Φ−1(1− r)

)
− q + ŷcR

}√
V̂ar (ŷcR) +

V̂ar (τ 2c ) (Φ−1(1− r))2

4τ 2c

(4.3)

For an apparently preventive relative risk, we can instead consider the minimum

common bias factor (on the RR scale) capable of reducing to less than r the proportion of

studies with true effect less than q, thus defining T (r, q) = B : P (M t < q) = r. Then a

consistent estimator is:

T̂ (r, q) = exp
{
q − ŷcR − Φ−1(r)

√
τ 2c

}
(4.4)

with approximate standard error:

ŜE
(
T̂ (r, q)

)
= exp

{
q − ŷcR −

√
τ 2c
(
Φ−1(r)

)}√
V̂ar (ŷcR) +

V̂ar (τ 2c ) (Φ−1(r))2

4τ 2c
(4.5)

4.3. Confounding strength required to reduce proportion of large effect sizes

to a threshold

Under the assumption that the two components of the common bias factor are equal as in

Equation 2.2, such that g = RRXU = RRUY , the bias can alternatively be parameterized on

the confounding strength scale. Consider the minimum confounding strength required to lower

to less than r the proportion of studies with true effect exceeding q and accordingly define

G(r, q) = g : P (M t > q) = r. For both the apparently causative and the apparently

preventive cases, an application of Equation 2.2 yields:

Ĝ(r, q) = T̂ (r, q) +

√(
T̂ (r, q)

)2
− T̂ (r, q) (4.6)
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with approximate standard error:

ŜE
(
Ĝ(r, q)

)
= ŜE

(
T̂ (r, q)

)
·

1 +
2T̂ (r, q)− 1

2

√
T̂ (r, q)2 − T̂ (r, q)



5. Practical Use and Interpretation

The estimators p̂(q), T̂ (r, q), and Ĝ(r, q) enable several types of sensitivity analysis. Firstly,

p̂(q) can be computed over a range of values of µB∗ and σ2
B∗ . If p̂(q) remains large for even

large values of µB∗ , this indicates that even if the influence of unmeasured confounding were

substantial, a large proportion of studies nevertheless would have true effects of scientifically

meaningful magnitudes. Similarly, T̂ (r, q) and Ĝ(r, q) can be computed for r representing a

“large enough” proportion of studies to warrant scientific interest; large values would again

lead to the conclusion that results of the meta-analysis are relatively robust to unmeasured

confounding. For example, by choosing q = log(1.10) and r = 0.20 and computing T̂ (r, q) =

2.50 (equivalently, Ĝ(r, q) = 4.44), one might conclude: “The results of this meta-analysis are

relatively robust to unmeasured confounding, insofar as a bias factor of 2.50 on the relative

risk scale (e.g., a confounder associated with the exposure and outcome by risk ratios of 4.44

each) in each study would be capable of reducing to less than 20% the proportion of studies

with true relative risks greater than 1.10, but weaker confounding could not do so.” On the

other hand, small values of p̂(q), T̂ (r, q), and Ĝ(r, q) indicate that only weak unmeasured

confounding would be required to reduce the effects to a scientifically unimportant level; the

meta-analysis would therefore not warrant strong scientific conclusions regarding causation.

A general guideline might be to use q = log 1.10 for an apparently causative relative risk

or q = log 0.90 for an apparently preventive relative risk. When the number of studies, k,
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is large (for example, ≥ 10), one might require at least 10% of studies (r = 0.10) to have

effect sizes above q for results to be of scientific interest. For k < 10, one might select a

higher threshold, such as r = 0.20 (thus requiring at least 20% of studies to have effects

more extreme than, for example, log 1.10). Of course, these guidelines can and should be

adapted based on the substantive application. Furthermore, note that the amount of bias

that would be considered “implausible” must be determined with attention to the design

quality of the synthesized studies: a large bias factor may be plausible for a set of studies

with poor confounding control and with high potential for unmeasured confounding, but not

for a set of better-designed studies in which the measured covariates already provide good

control of confounding.

Sensitivity analyses based on p̂(q) should be reported for a wide range of values for µB∗

and with σ2
B∗ ranging from 0 to somewhat less than τ 2c . The bounds achieved when σ2

B∗ = 0

(Table 1) can provide useful conservative analyses. For example, for ŷcR > 0 and q > µ̂t, the

σ2
B∗ = 0 case provides an upper bound on p̂(q). When concluding that results are not robust

to unmeasured confounding, the analysis with σ2
B∗ = 0 is therefore conservative in that fewer

true effect sizes would surpass q under heterogeneous bias. For example, if we calculated

T̂ (r = 0.20, q = log 1.10) = 1.20, then an analysis like this would yield conclusions such as:

“The results of this meta-analysis are relatively sensitive to unmeasured confounding. Even a

bias factor as small as 1.20 in each study would reduce to less than 20% the proportion of

studies with true relative risks greater than 1.10, and if the bias in fact varied across studies,

then even fewer studies would surpass this effect size threshold.”
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6. Software and Applied Example

The present methods are implemented in an R package, ConfoundedMeta, which produces

point estimates and inference for sensitivity analyses, tables across a user-specified grid of

sensitivity parameters, and various plots. Descriptions of each function are provided in the

Web Appendix and standard R documentation. A graphical user interface implementing the

main functions is freely available (https://mmathur.shinyapps.io/meta_gui_2/).

We illustrate the package’s basic capabilities using an existing meta-analysis assessing,

among several outcomes, the association of high versus low daily intake of soy protein with

breast cancer risk among women (Trock et al., 2006). The analysis comprised 20 observational

studies that varied in their degree of adjustment for suspected confounders, such as age,

body mass index (BMI), and other risk factors. To obtain τ 2c and V̂ar(τ 2c ) (which were not

reported), we obtained study-level summary measures as reported in a table from Trock et

al. (2006), approximating odds ratios with risk ratios given the rare outcome. This process

is automated in the function ConfoundedMeta::scrape_meta. We estimated ŷcR = log 0.82,

ŜE (ŷcR) = 8.8× 10−2 via the Hartung & Knapp (2001) adjustment (whose advantages were

demonstrated by IntHout et al. (2014)), τ 2c = 0.10 via the Paule & Mandel (1982) method,

and ŜE (τ 2c ) = 5.0× 10−2.

Figure 1 (produced by ConfoundedMeta::sens_plot) displays the estimated proportion of

studies with true relative risks < 0.90 as a function of either the bias factor or the confounding

strength, holding constant σ2
B∗ = 0.01. Table 2 (produced by ConfoundedMeta::sens_table)

displays T̂ (r, q) and Ĝ(r, q) across a grid of values for r and q. For example, only a bias factor

exceeding 1.63 on the relative risk scale (equivalently, confounding association strengths of

13
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2.64) could reduce to less than 10% the proportion of studies with true relative risks < 0.90.

However, variable bias across studies would reduce this proportion, and the confidence interval

is wide.

7. Simulation Study

We assessed finite-sample performance of inference on p̂(q) in a simple simulation study.

While fixing the mean and variance of the true effects to µt = log 1.4 and V t = 0.15 and

the bias parameters to µB∗ = log 1.6 and σ2
B∗ = 0.01, we varied the number of studies (k ∈

{15, 25, 50, 200}) and the average sample size N within each study (E[N ] ∈ {300, 500, 1000}).

The fixed parameters were chosen to minimize artifacts from discarding pathological samples

with τ 2c < σ2
B∗ or with truncated outcome probabilities due to extreme values of RRc

XY .

We ran 1000 simulations for each possible combination of k and E[N ], primarily assessing

coverage of nominal 95% confidence intervals and secondarily assessing their precision (total

width) and bias in p̂(q).

For each study, we drew N ∼ Unif (150, 2E[N ]− 150), using 150 as a minimum sample size

to prevent model convergence failures, and drew the study’s true effect size asM t ∼ N(µt, V t).

We simulated data for each subject under a model with a binary exposure (X ∼ Bern(0.5)), a

single binary unmeasured confounder, and a binary outcome. We set the two bias components

equal to one another (g = RRXU = RRUY ) and fixed P (U = 1|X = 1) = 1, allowing

closed-form computation of:

P (U = 1|X = 0) =
exp(M t)[1 + (g − 1)]− exp(M c)

(g − 1) exp(M c)

as in Ding & VanderWeele (2016). Within each stratum X = x, we simulated U ∼
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Bern (P (U = 1|X = x)). We simulated outcomes as Y ∼ Bern (exp{log 0.05 + log(g)U +M tX}).

Finally, we computed effect sizes and fit the random-effects model using the metafor package

in R (Viechtbauer et al., 2010), estimating τ 2c per Paule & Mandel (1982) and V̂ar (ŷcR) with

the Hartung & Knapp (2001) adjustment.

Results (Table 3) indicated approximately nominal performance for all combinations of k

and E[N ], with precision appearing to depend more strongly on k than E[N ]. As expected

theoretically, p̂(q) was approximately unbiased.

8. Discussion

This paper has developed sensitivity analyses for unmeasured confounding in a random-effects

meta-analysis of a relative risk outcome measure. Specifically, we have presented estimators

for the proportion, p̂(q), of studies with true effect sizes surpassing a threshold and for the

minimum bias, T̂ (r, q), or confounding association strength, Ĝ(r, q), in all studies that would

be required to reduce to a threshold the proportion of studies with effect sizes less than q. Such

analyses quantify the amount of confounding bias in terms of intuitively tractable sensitivity

parameters. Computation of p̂(q) uses two sensitivity parameters, namely the mean and

variance across studies of a joint bias factor on the log-relative risk scale. Estimators T̂ (r, q)

and Ĝ(r, q) make reference to, and provide conclusions for, a single sensitivity parameter,

chosen as either the common joint bias factor across studies or the strength of confounding

associations on the relative risk scale. These methods assume that the bias factor is normally

distributed or fixed across studies, but do not make further assumptions regarding the nature

of unmeasured confounding.
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Assessing sensitivity to unmeasured confounding is particularly important in meta-analyses

of observational studies, where a central goal is to assess the current quality of evidence and to

inform future research directions. If a well-designed meta-analysis yields a low value of T̂ (r, q)

or Ĝ(r, q) and thus is relatively sensitive to unmeasured confounding, this indicates that

future research on the topic should prioritize randomized trials or designs and data collection

that reduce unmeasured confounding. On the other hand, individual studies measuring

moderate effect sizes with relatively wide confidence intervals may not, when considered

individually, appear highly robust to unmeasured confounding; however, a meta-analysis

aggregating their results may nevertheless suggest that a substantial proportion of the true

effects are above a threshold of scientific importance even in the presence of some unmeasured

confounding. Thus, conclusions of the meta-analysis may in fact be robust to moderate

degrees of unmeasured confounding.

We focused on relative risk outcomes because of their frequency in biomedical meta-

analyses and their mathematical tractability, which allows closed-form solutions with the

introduction of only one assumption (on the distribution of the bias factor). To allow

application of the present methods, an odds ratio outcome can be approximated as a relative

risk if the outcome is rare. If the outcome is not rare, the odds ratio can be approximately

converted to a relative risk by taking its square root; provided that the outcome probabilities

are between 0.2 and 0.8, this transformation is always within 25% of the true relative risk

(VanderWeele, in press). Comparable sensitivity analyses for other types of outcomes, such as

mean differences, would require study-level summary measures (for example, of within-group

means and variances) and in some cases would yield closed-form solutions only at the price

of more stringent assumptions. Under the assumption of an underlying binary outcome with
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high prevalence, such measures could be converted to log-odds ratios (Borenstein et al., 2009)

and then to relative risks (VanderWeele, in press) as described above (see VanderWeele &

Ding (2017)). It is important to note that, in circumstances discussed elsewhere (Tang, 2000;

Thorlund et al., 2011), relative risk outcomes can produce biased meta-analytic estimates.

When such biases in pooled point estimates or heterogeneity estimators are likely, sensitivity

analyses will also be biased.

We operationalized “robustness to unmeasured confounding” as the proportion of true

effects surpassing a threshold, an approach that focuses on the upper tail (for an apparently

causative RRc
XY ) of the distribution of true effect sizes. Potentially, under substantial

heterogeneity, a high proportion of true effect sizes could satisfy, for example, RRt
XY > 1.10

while, simultaneously, a non-negligible proportion could be comparably strong in the opposite

direction (RRt
XY < 0.90). Such situations are intrinsic to the meta-analysis of heterogeneous

effects, and in such settings, we recommend reporting the proportion of effect sizes below a

symmetric threshold on the opposite side of the null (e.g., log 0.80 if q = log 1.20) both for

the confounded distribution of effect sizes and for the distribution adjusted based on chosen

bias parameters. For example, a meta-analysis that is potentially subject to unmeasured

confounding and that estimates ŷcR = log 1.15 and τ 2c = 0.10 would indicate that 45% of

the effects RRc
XY surpass 1.20, while 13% are less than 0.80. For a common B∗ = log 1.10

(equivalently, g = 1.43), we find that
(

1− Φ
(

log 1.20−log 1.15+log 1.10√
0.10

))
· 100% = 33% of the

true effects surpass RRc
XY = 1.20, while 20% are less than RRc

XY = 0.80. More generally,

random-effects meta-analyses could report the estimated proportion of effects above the

null or above a specific threshold (along with a confidence interval for this proportion) as

a continuous summary measure to supplement the standard pooled estimate and inference.
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Together, these reporting practices could facilitate overall assessment of evidence strength

and robustness to unmeasured confounding under effect heterogeneity.

The proposed sensitivity analyses in theory require only standard summary measures from

a meta-analysis (namely, the estimated pooled effect and a heterogeneity estimator to compute

point estimates, along with their estimated variances to compute inference), rather than

study-level data. However, in practice, we find that reporting of τ 2c and V̂ar (τ 2c ) is sporadic in

the biomedical literature. Besides their utility for conducting sensitivity analyses, we consider

τ 2c and V̂ar (τ 2c ) to be inherently valuable to the scientific interpretation of heterogeneous

effects. We therefore recommend that they be reported routinely for random-effects meta-

analyses, even when related measures, such as the proportion of total variance attributable

to effect heterogeneity (I2), are also reported. To enable sensitivity analyses of existing meta-

analyses that do not report the needed summary measures, the package ConfoundedMeta

helps automate the process of obtaining and drawing inferences from study-level data from a

published forest plot or table. The user can then simply fit a random-effects model of choice

to obtain the required summary measures.

Our framework assumes that the bias factor is normally distributed or taken to be fixed

across studies. Normality is approximately justified if, for example, RRXU and RRUY are

approximately identically and independently normal with relatively small variance. Since

RRUY is in fact a maximum over strata of X and the range of U , future work could potentially

consider an extreme-value distribution for this component, but such a specification would

appear to require a computational, rather than closed-form, approach. Perhaps a more useful,

conservative approach to assessing sensitivity to bias that may be highly skewed is to report

T̂ (r, q) and Ĝ(r, q) for a wide range of fixed values B∗, including those much larger than a

18
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plausible mean.

An alternative sensitivity analysis approach would be to directly apply existing analytic

bounds (Ding & VanderWeele, 2016) to each individual study in order to compute the

proportion of studies with effect sizes more extreme than q given a particular bias factor. This

has the downside of requiring access to study-level summary measures (rather than pooled

estimates). Moreover, the confidence interval of each study may be relatively wide, such

that no individual study appears robust to unmeasured confounding, while nevertheless a

meta-analytic estimate that takes into account the distribution of effects may in fact indicate

that some of these effects are likely robust. One could also alternatively conduct sensitivity

analyses on the pooled point estimate itself, but such an approach is naïve to heterogeneity:

when the true effects are highly variable, a non-negligible proportion of large true effects

may remain even with the introduction of enough bias to attenuate the pooled estimate to a

scientifically unimportant level.

In summary, our results have shown that sensitivity analyses for unmeasured confounding

in meta-analyses can be conducted easily by extending results for individual studies. These

methods are straightforward to implement through either our R package ConfoundedMeta

or graphical user interface and ultimately help inform principled causal conclusions from

meta-analyses.

Reproducibility

All code required to reproduce the applied example and simulation study is publicly available

(https://osf.io/2r3gm/).
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Supplementary Materials

Web Appendices referenced in Sections 4 and 6 are available with this paper at the Biometrics

website on Wiley Online Library.
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Tables and Figures

Table 1: Bounds on p̂(q) provided by homogeneous bias with an apparently causative or preventive

pooled effect. µ̂t estimates µt and is equal to ŷcR−µB∗ for ŷcR > 0 or ŷcR +µB∗ for ŷcR < 0.

q > µ̂t q < µ̂t

ŷcR > 0 Upper bound Lower bound

ŷcR < 0 Lower bound Upper bound
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Figure 1: Impact of varying degrees of unmeasured confounding bias on proportion of true relative

risks < 0.90
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Table 2: T̂ (r, q) and Ĝ(r, q) (in parentheses) for varying r and q. Blank cells indicate combinations

for which no bias would be required.

r

q

0.70 0.80 0.90

0.1 1.27 (1.85) 1.45 (2.25) 1.63 (2.64)

0.2 1.10 (1.44) 1.26 (1.84) 1.42 (2.19)

0.3 1.14 (1.55) 1.29 (1.89)

0.4 1.05 (1.28) 1.18 (1.64)

0.5 1.09 (1.41)
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Table 3: Point estimate bias, 95% confidence interval (CI) coverage, and 95% CI width for varying

numbers of studies (k) and mean sample sizes within each study (Mean N).

k Mean N p̂ bias CI coverage CI width

15 300 0.030 0.968 0.572

25 300 0.034 0.976 0.452

50 300 0.031 0.967 0.315

200 300 0.028 0.929 0.154

15 500 0.022 0.967 0.524

25 500 0.022 0.977 0.408

50 500 0.025 0.974 0.283

200 500 0.024 0.934 0.140

15 1000 0.018 0.976 0.479

25 1000 0.016 0.976 0.370

50 1000 0.018 0.969 0.259

200 1000 0.015 0.970 0.129
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