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Abstract—Deep learning models such as CNNs and Trans-
formers have achieved impressive performance for end-to-end
audio tagging. Recent works have shown that despite stacking
multiple layers, the receptive field of CNNs remains severely
limited. Transformers on the other hand are able to map global
context through self-attention, but treat the spectrogram as a
sequence of patches which is not flexible enough to capture
irregular audio objects. In this work, we treat the spectrogram
in a more flexible way by considering it as graph structure and
process it with a novel graph neural architecture called ATGNN.
ATGNN not only combines the capability of CNNs with the global
information sharing ability of Graph Neural Networks, but also
maps semantic relationships between learnable class embeddings
and corresponding spectrogram regions. We evaluate ATGNN
on two audio tagging tasks, where it achieves 0.585 mAP on
the FSD50K dataset and 0.335 mAP on the AudioSet-balanced
dataset, achieving comparable results to Transformer based
models with significantly lower number of learnable parameters.

Index Terms—Audio tagging, Graph Neural Networks, Com-
putational sound scene analysis

I. INTRODUCTION

Environmental sounds carry a rich and complex mixture
of information, which is organised and categorised by the
human auditory system into distinct concepts known as sound
events (e.g. dog bark, door slam, car passing by). The
advent of deep learning models such as convolutional neural
networks (CNNs) revolutionised the research field of image
classification and achieved state of the art on numerous audio
classification & tagging benchmarks as well [1].

In recent times, Transformer-based models [2], [3] have
demonstrated superior performance over CNNs in audio tag-
ging and classification tasks. This can be attributed to their
unique capability to capture global context by employing self-
attention mechanisms, treating spectrograms as sequences of
patches. Despite the appealing advantages of Transformers
their usage comes with a trade-off as they tend to incur sub-
stantial computational costs during both training and inference
stages [4].
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Sound events can be conceptualized as compositions of
multiple regions in the spectrogram that are interlinked to
form a coherent representation of the event. This underlying
structure naturally lends itself to a graph-based representation,
where each region in the spectrogram becomes a node, and
the relationships between these regions are captured through
edges. Graphs offer a more adaptable structure compared to
grids or sequences of patches, enabling the utilization of label
correlation information. This significantly enhances the overall
predictive capabilities. Label co-occurrence graphs (LG) [5]
represent the relationships and co-occurrence patterns among
different labels in a dataset. Label Graphs have enhanced
model performance in both multi-label image recognition, [5]
and audio tagging [6]. Considering the advantages of graph
structures and the recent successes of graph-based models in
image classification [7], [8], we introduce the Audio Tagging
graph neural network (ATGNN). This is an end-to-end graph
convolution network specifically designed for audio tagging
applications.

In our method, we first extract features from an input
spectrogram using a backbone CNN. Each element of the
resultant feature map is treated as a distinct node. To ensure
efficient interaction between distant patches in the original
spectrogram, we dynamically create edges between nodes
based on their similarity in the feature space. This process
enables information exchange across various regions of the
spectrogram, allowing our model to identify and utilize intri-
cate dependencies.

Besides using graph processing in the feature space, our
approach integrates learnable label embeddings, which fulfill
two key roles by capturing two unique relationships. First,
these embeddings assist in modeling the semantic relationships
among class labels, helping the model understand the connec-
tions between various sound event categories. Second, the label
embeddings form cross-domain links between spectrogram
regions and themselves, creating associations between the
labels and specific areas of interest in the spectrogram. This
approach enhances the overall discriminatory power of our
model.

There has been a steady increase in the adoption of GNNs
for audio tasks such as speech emotion recognition (SER) [9],
speaker diarisation [10], [11], audio tagging [12], [6]. Our re-
search is different from prior works as it leverages spectrogram
graph structures to effectively utilize inter-region relationships,
and applies an end-to-end approach to concurrently learn label
correlations and label-spectrogram interactions.

The main contribution of this paper is therefore summarised
as follows: (i) We model the spectrogram as a graph structure
and propose an end-to-end graph based model for audio
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tagging. (ii) To the best of our knowledge, this is the first
attempt to simultaneously model correlations between labels
and spectrograms, as well as between labels themselves, in an
end-to-end fashion without relying on previously established
correlations and demonstrates the effectiveness of the method-
ology on two widely used audio tagging datasets.

II. MODEL ARCHITECTURE

ATGNN comprises of three components: Patch GNN (PGN),
Patch-Label GNN (PLG), and Label-Label GNN (LLG). PGN
focuses on modeling the correlations among different patches
of the input mel-spectrogram. PLG captures the relationships
between these input patches and label embeddings. Finally,
LLG is dedicated to modeling the correlations among various
label embeddings. Following the convention of [8], we refer
to the stack of single PLG and LLG block as a Multi-Label
GNN (MLG) block.

A. PGN: Patch GNN

The input spectrogram with size F ×T ×1 is first divided into
N patches, where F denotes the frequency axis dimension and
T denotes the time axis dimension. Instead of directly splitting
and flattening images into tokens based on a linear patch
embedding layer as used in Audio Spectrogram Transformer
(AST) [2], a CNN based backbone is adopted for extraction
of patches. Input X ∈ RF×T×1 is transformed to a feature
map Xt ∈ RM , where M = (F /p × T /p) ×D, with p as the
reduction ratio and D as the feature dimension. The resulting
feature map is flattened into RFT /p2×D and then combined
with a learnable positional encoding. The flattened feature map
can be conceptualized as a set of unordered nodes.From these
nodes, a k-nearest neighbor graph is constructed, using the
Euclidean distance between nodes as the basis. This graph
is then refined through a graph convolution layer, which
facilitates the exchange of information between neighboring
nodes via a message passing operation. Specifically, node xi

is updated using max-relative graph convolution [13]:

g(⋅) = x′′ = [xi,max(xj − xi) ∣ j ∈ N(xi)] (1)

h(⋅) = x′ = x′′Wupdate, (2)

where N(xi) are the neighbours of the node xi and x
′

and x
′′

denote updated node embeddings through different
update operations. Combination of (1) and (2) is termed as
GraphConv. A linear layer is applied to each node before
and after GraphConv to increase feature diversity and avoid
oversmoothing, followed by nonlinear activation. The updated
graph convolution operation can be denoted by

yi = σ(GraphConv(Winxi))Wout + xi, (3)

where yi denotes the updated node embedding, σ denotes non
linearity, Win and Wout are weights of fully connected layers
applied before and after GraphConv. In a manner akin to
Transformer models [14], a Feed-Forward Network (FFN) is
applied to each node embedding. The FFN primarily consists
of two linear layers, separated by a non-linear activation
function. A single Patch GNN (PGN) block is formed by the

sequence of a Graph Convolution (GraphConv) layer followed
by an FFN layer.

To effectively layer multiple PGNs without causing over-
smoothing from increased depth, we employ dilated aggrega-
tion in the GraphConv operation. Dilated convolutions were
proposed in [15] as an alternative to max pool operations.
Specifically, for an input graph G = (V,E) with dilated k-
NN and d as the dilation rate, the dilated k-NN returns the
k nearest neighbors within the k × d neighborhood region
by skipping every d neighbors. Dilated aggregation helps in
maintaining feature diversity and reduces the over-smoothing
across graph layers.

The PGN block architecture comes in two variants: isotropic
and pyramid. [8]. The isotropic architecture, commonly used
in Transformer-style models, maintains a consistent feature di-
mension across all layers. In contrast, the pyramid architecture,
typically found in CNN-based structures like ResNet [16],
progressively downsamples feature maps in subsequent layers.

Isotropic architecture — The number of nodes for this
architecture is set to N = FT /256, depending on the value
of F and T . The number of k in k-NN is linearly increased
from k to 2 ⋅ k across the layers.

Pyramid architecture — The pyramid architecture is used
to generate multi-scale feature maps to exploit the compo-
sitional hierarchies of the input, where higher level features
are obtained by composition of local level features captured
in the initial layers. In addition to the learnable positional
embedding, a relative positional encoding similar to [17] is
used in the pyramid model. For node i and j, if the positional
encoding is ei and ej , then their relative positional distance
between them is eTi ej . This distance is added to the feature
embedding distance to construct the k-NN graph [7].

B. PLG: Patch-Label GNN

The PLG block maps the correlation between patch and label
embeddings, where patch embeddings X = {x1, x2, . . . , xN} ∈
RN×C are the output of M PGN blocks and L =
{l1, l2, . . . , lS} ∈ RS×C are the learnable label embeddings
with dimensionality C and S number of classes. Each label
node connects to its kplg patch node neighbours measured by
Euclidean distance, post which max-relative graph convolution
is used to update the label nodes as follows:

l
′′

i = [li,max(li − xj) ∣ j ∈ N(li)] (4)

l
′

i = li + l
′′

i Wl−update (5)

where li is the i-th label node and Wl−update ∈ RS×S is the
learnable update matrix for label nodes. The label embeddings
are updated by message passing from the corresponding label
nodes, which builds the correlation between the spectrogram
regions and the label embeddings.

C. LLG: Label-Label GNN

The LLG block is used to map correlation between different
label embeddings. The updated label embeddings from PLG
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Fig. 1. ATGNN: The input spectrogram is passed through a CNN backbone and a k-nearest neighbour graph is constructed with the the feature map pixel as
nodes. The patch nodes are updated with graph convolution across M PGN blocks and then fed into an MLG block where cross-correlation between learnable
label embeddings and patch nodes is learnt. Each label node connects to its nearest patch nodes and is updated using graph convolution. The LLG block maps
label-label correlation using a learned adjacency matrix. A stack of PGN and MLG blocks is used to refine the patch and label embeddings and is combined
for final prediction.

blocks are used as nodes in a fully connected graph and each
node is updated by aggregating information from the other
nodes in the following manner:

L̂ = AL
′ +L′ , (6)

where L
′ = [l′1, l

′

2, . . . , l
′

S] ∈ RS×C are updated label embed-
dings from the PLG block. A ∈ RS×S is a learnable adjacency
matrix with random initialisation. L̂ = [l̂1, l̂2, . . . , l̂S] ∈ RS×C

is the matrix of refined label node embeddings. A is learnt
during training of the model and captures the latent label
correlations.

D. Prediction

The final output of the PGN block is aggregated via global
average pooling and a set of 1 × 1 convolution layers with
nonlinear activation are applied to obtain the final patch logits:

Ypatch = Convp(AvgPool(Xpatch)), (7)

where Ypatch ∈ R1×S denotes the final patch logits. Convp
denotes the set of 1×1 convolution layer, AvgPool denotes
the average pooling operation applied on the final output Xof
the PGN block.

For label nodes, a readout function R projects each of the
S label embeddings l

′

i using a projection matrix W p ∈ RS×d

where W p
i is the learned output vector for l

′

i. This is akin to
applying a separate linear layer to map the presence of each
label in the given input:

ŷi =W p
i l
′T
i . (8)

The classification score of each label embedding are con-
catenated as Ŷ = [ŷ1, ŷ2, . . . , ŷS] ∈ R1×S . The final score is
obtained as:

Y = sigmoid(Ypatch + Ŷ ). (9)

III. EXPERIMENTS

A. Datasets

We evaluated the proposed models on two commonly used
datasets: AudioSet [18] and FSD50K [19]. AudioSet is a large
scale weakly labelled audio event dataset of over 2 million 10-
second audio clips extracted from YouTube videos. The audio
events in the datasets are categorised into 527 predefined labels
with each audio clip containing one or more audio events.
We use the balanced subset of this dataset comprising 20550
training samples and 1887 evaluation samples. FSD50K [19]
is a publicly available weakly labelled dataset comprising
sound event audio clips categorized across 200 classes drawn
from the AudioSet ontology. The dataset comprises 3 subsets:
training, validation and evaluation subset consisting of 37134,
4170 and 10231 samples respectively. The lengths of these
audio clips vary, ranging from 0.3 to 30 seconds.

B. Training pipeline

To ensure an impartial evaluation, we adopted the training
pipeline outlined in [20]. The specifics of this approach are as
follows::

Data Preprocessing — The audio files were first resampled
to 16 kHz and a short-time Fourier transform (STFT) with a
window size of 25ms and hop length of 10 ms, was applied
to each audio clip to generate spectrograms. Following this,
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TABLE I
MEAN AVERAGE PRECISION VS k-NN VALUES FOR PGN BLOCK

k 9 12 15 18 20

mAP 57.9 57.7 57.7 57.9 57.6

we used a 128-dimensional mel filter bank and performed
a logarithmic operation to extract the log-mel spectrograms.
To accommodate the varying durations of audio clips, we
employed zero-padding to standardize the length to 1024
frames for the FSD50K dataset and 1056 frames for the
AudioSet experiments.

Model details — The PGN block of the proposed models was
initialised with ImageNet pre-trained weights from [7] for all
the experiments. The MLG blocks were trained from scratch.
The terms “iso” and “pyr” respectively denote isometric and
pyramid versions of the PGN block. The pyramid model has
two different sizes - small (s) and medium (med). In case of
pyramid model, a stage-wise approach was followed where
each stage consists of M PGN blocks followed by P MLG
blocks. In case of pyr-s, we found the best results with M =
[2,2,6,2] and P = [1,1,3,1]. For pyr-med, best results were
achieved with M = [2,2,16,2] and P = [1,1,6,1]. In our
experiments, we varied k from 9 to 20 as shown in Table I for
the PGN block and observed that the k values did not change
the results significantly, hence for all experiments we used k
and kplg = 9.

Balanced Sampling — We adopted a random balanced
sampling approach for FSD50K, where each audio clip is
assigned a sampling weight such that higher weight is assigned
to clips containing rare events. For more details, refer to [20].

Data Augmentation — We used mixup [21] data augmenta-
tion (mixup ratio = 0.5) and time-frequency masking [22] with
maximum time mask of 192 frames and maximum frequency
mask of 48 bins for all the experiments.

Label Enhancement — Label noise is prevalent in both
FSD50K and AudioSet, hence we adopted the enhanced labels
proposed in [20].

Training details — We used an initial learning rate of 5e-4
and linear learning rate warm-up strategy for the first 1,000
iterations. The learning rate was halved every 5 epochs after
the 10th epoch for FSD50K experiments and after every 5
epochs after the 35th and 10th epoch for the AudioSet exper-
iments. All models were trained for 50 epochs on FSD50K
and 60 epochs on AudioSet with batch size of 24 along with
the Adam optimizer [23] and binary cross-entropy.

IV. RESULTS AND DISCUSSION

In this section we present the results of our experiments.
Tables II and III showcase the results obtained on the eval-
uation set of AudioSet balanced and FSD50k. Our primary
comparison for ATGNN focuses on the AST and PSLA
models, both of which have achieved state-of-the-art results on

TABLE II
RESULTS ON AUDIOSET-BALANCED. ∗ INDICATES OUR RUN.

Model #Params #GFLOPs mAP

PANNS [24] 81.0 M 29.67 0.278
PSLA [20] ∗ 13.6 M 1.09 0.308
AST [2] ∗ 88.7 M 48.67 0.330

ATGNN-iso∗ 38.7 M 14.93 0.330
ATGNN-pyr-s∗ 36.4 M 14.72 0.335
ATGNN-pyr-s (-MLG)∗ 27.3 M 12.94 0.331
ATGNN-pyr-med∗ 62.7 M 27.2 0.336
ATGNN-pyr-med (-MLG)∗ 51.2 M 24.93 0.332

TABLE III
RESULTS ON FSD50K. ∗ INDICATES OUR RUN.

Model #Params #GFLOPs mAP

FSD50K Baseline [19] 0.27M - 0.434
Wav2CLIP [25] - - 0.431
Audio Transformers [26] 2.3M - 0.537
PSLA [20]∗ 13.6M 1.09 0.559
AST [2]∗ 88.7M 48.67 0.572

ATGNN-iso∗ 38.7M 14.93 0.570
ATGNN-pyr-s∗ 36.4M 14.72 0.583
ATGNN-pyr-s (-MLG)∗ 27.3M 12.94 0.579
ATGNN-pyr-med∗ 62.7M 27.2 0.585
ATGNN-pyr-med∗(-MLG) 51.2M 24.93 0.580

the AudioSet and FSD50K datasets. Table II illustrates that the
isotropic version of ATGNN achieves performance comparable
to the AST model, while also surpassing the PSLA model.
Moreover, both the pyramid versions of ATGNN outperform
the AST model. Our results for AST differs from the results
reported in the original paper [2] due to mismatch in our
training set size with [20]. hence it was not possible to use
the label enhancement files provided by [20].

The findings for the FSD50K dataset show a similar trend.
Here, the isotropic architecture of ATGNN competes well with
the AST model, while the pyramid architecture surpasses both
PSLA and AST in performance. As shown in Tables II and
III, the MLG block brings an additional benefit of ≈ 0.4 mAP
to the overall score, implying that the SGN block can be used
as a standalone model for obtaining comparable results to the
SOTA models for audio classification tasks.

V. CONCLUSIONS

We introduced an end-to-end Graph Neural Network (GNN)
model for audio tagging, adept at learning both feature and
label correlations. This model combines a CNN for extracting
local features with graph convolution operations to map global
contexts. Crucially, it learns cross-correlations between label
and feature embeddings, consistently surpassing state-of-the-
art models on two major audio classification benchmarks.
Future research will explore new approaches to graph con-
struction, such as using visibility graphs for time series or
viewing spectrograms as 3D-point clouds. Our work aims
to position graph-based models as a potent alternative to
convolution and attention-based architectures in the realm of
audio classification.
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