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scMoMaT jointly performs single cell mosaic
integration and multi-modal bio-marker
detection

Ziqi Zhang 1, Haoran Sun2, Ragunathan Mariappan3, Xi Chen 4, Xinyu Chen5,
Mika S. Jain6, Mirjana Efremova 7, Sarah A. Teichmann 6, Vaibhav Rajan3 &
Xiuwei Zhang 1

Single cell data integration methods aim to integrate cells across data batches
and modalities, and data integration tasks can be categorized into horizontal,
vertical, diagonal, and mosaic integration, where mosaic integration is the
most general and challenging case with few methods developed. We propose
scMoMaT, amethod that is able to integrate single cell multi-omics data under
the mosaic integration scenario using matrix tri-factorization. During inte-
gration, scMoMaT is also able to uncover the cluster specific bio-markers
across modalities. These multi-modal bio-markers are used to interpret and
annotate the clusters to cell types. Moreover, scMoMaT can integrate cell
batches with unequal cell type compositions. Applying scMoMaT to multiple
real and simulated datasets demonstrated these features of scMoMaT and
showed that scMoMaT has superior performance compared to existing
methods. Specifically, we show that integrated cell embedding combined with
learned bio-markers lead to cell type annotations of higher quality or resolu-
tion compared to their original annotations.

The advance in single cell multi-omics technologymakes it possible to
profile a single cell from multiple modalities. Single cell RNA-
sequencing (scRNA-seq) is able to measure the gene expression of
individual cells, whereas single cell ATAC-sequencing (scATAC-seq)
measures the chromatin accessibility of individual cells. On the other
hand, new sequencing technologies have been proposed to profile
more than one modality in a cell simultaneously. There exist technol-
ogies that are able to profile both protein abundance and gene
expression1, chromatin accessibility and gene expression2, or chro-
matin accessibility and protein abundance3 within a cell at the same
time. Integrating cells from multiple modalities provides a compre-
hensive view of cellular identity and the key features (e.g. chromatin
regions, genes, proteins, etc) that define the identity, and can further
help to understand the underlying cross-modalities relationships.

Data integration tasks on such single cell data matrices can be
categorized into four different scenarios4: horizontal integration, or
termed batch effect removal, refers to the case where all data batches
have the samemodality. Vertical integration refers to the case where a
data batch is measured with multiple modalities. Diagonal integration
refers to the case that neither cells nor modalities are shared between
data matrices. Mosaic integration is the most general case and can be
any combination of horizontal, vertical, and diagonal integration.
Considering an m × b grid that corresponds to m modalities and b
batches, mosaic integration methods aim to integrate any subset of
data matrices from this grid.

Various methods have been proposed to deal with these inte-
gration scenarios4. LIGER5 and Seurat v36 were developed for hor-
izontal and diagonal integration tasks. CoupleNMF7, MMD-MA8,
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scDART9 were developed for diagonal integration task. Seurat v410,
scAI11, and MultiVI12 were developed for vertical integration task.
Recently, new methods have been proposed to work with less
restricted integration scenarios. Bridge integration13 uses one jointly
profiled data batch that included all modalities as the “bridges” and
integrates all data batches using dictionary learning. Cobolt14 employs
a multimodel variational autoencoder framework to learn the cell
representations. Both methods require one batch of cells where all
modalities were measured. Recently proposed methods, including
MultiMap15, UINMF16 and StabMap17, can integrate data matrices in
mosaic integration scenario.

When integrating data matrices from multiple batches and one
modality, the goal is to learn cell representations where batch effects
are removed and cell identities are preserved. When integrating data
from multiple batches and multiple modalities, the multi-modality
data should yield more output than single-modality data. However,
existing mosaic integration methods still focus on learning cell
representations, though the use of multi-modality data was shown to
lead to better cell embedding in terms of certain metrics compared to
single-modality data16.

Here we propose scMoMaT (single cell Multi-omics integration
using Matrix Tri-factorization), a data integration framework that is
designed to integrate an arbitrary number of data matrices under
mosaic integration scenario (Fig. 1a). Apart from integrating cells,
scMoMaT aims to exploit the multi-modality data: scMoMaT learns cell
type specific bio-markers across modalities, including marker genes
(from the gene expression modality), marker motifs or regions (from
the chromatin accessibility modality) and marker proteins (from the
protein abundance modality). It extracts the bio-marker not only from

theoriginal features of thedatamatrices, but also from the features that
are generated by other methods. For example, users can add motif
deviation matrices (learned from the original scATAC-seq matrix
through chromVAR18, representing the motif activities within cells) to
the input, and scMoMaT can learn the motif markers in addition to the
bio-markers from the original modalities. These bio-markers can be
used to interpret the cell clusters and annotate cell types with evidence
from multiple modalities. In addition, scMoMaT does not assume cells
to have similar distribution across batches and can integrate cell bat-
ches with disproportionate cell type compositions. We test scMoMaT
on both real and simulated datasets covering various kinds of integra-
tion tasks. We first test scMoMaT on multiple simulated datasets and
quantitatively evaluate its performance. We then test scMoMaT on four
real datasets covering different integration scenarios, including one
human PBMC dataset, one mouse brain cortex dataset, one human
bone marrow dataset, and one mouse spleen dataset. We compare the
performance of scMoMaT with state-of-the-art data integration meth-
ods using multiple benchmarking metrics. The results show that
scMoMaT has superior performance in learning cell embedding and
dealing with disproportionate cell type composition between batches.
We demonstrate how the multi-modal bio-markers we learned can be
used to annotate cell types of the clusters obtained in the integrated
space. We also show that these annotations can be better than the
annotations published together with the dataset.

Results
Framework of scMoMaT
scMoMaT uses a matrix tri-factorization framework, which treats each
single cell data matrix as a relationship matrix between the “cell” and

Fig. 1 | scMoMaT overview. a Graph illustration of running scMoMaT on an
example dataset (4 batches and 3 modalities). Given data matrices in a mosaic
layout to integrate, scMoMaT outputs cell representations and feature repre-
sentations of multiple modalities, cell clusters and top-scoring bio-markers of

every input modality. The top-scoring markers are used to annotate cell types for
the clusters on the learned cell embedding. b Graph illustration showing the fac-
torization of matrix Xij in scMoMaT.
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“feature” entities. A feature comes from amodality, which canbe gene,
region, or protein. An entity is the meaning of the rows or columns of
each data matrix. For example, “cells batch1”, “cells batch2”, “genes”,
“regions”, “proteins” are entities. We denote single cell data matrix
from the ith cell batch and jth modality as Xij, where the rows of Xij

correspond to cells, and columns correspond to features of the
modality. Then matrix tri-factorization decomposes Xij into a cell fac-
tor Ci, a feature factor Cj, and an association matrix Σij. We add bias
terms, bi and bj, and scaling parameter, αij, into the formulation, and
the objective function for one data matrix is:

Ĉi, Σ̂ij , Ĉj , b̂i, b̂j, α̂ij = argminCi,Cj ,Σ ij ,bi,bj ,αij
k Xij � αijCiΣijC

T
j � bi � bT

j k2F
s:t: Cx � 1= 1,Cx ≥0,Σij ≥0

ð1Þ

bi and bj are 1 dimensional bias vectors for cell batch i and modality j.
The bias terms accommodate the data-matrix-specific information
that cannot be encoded by the interaction between cell and feature
factors. bi encodes the data-matrix-specific variation among cells, and
it has length equal to the number of cells. bj encodes data-matrix-
specific variation among features (which are genes ifXij is a scRNA-seq
count matrix), and it has length equal to the number of features. The
scaling parameter αij is a scalar value, which accommodates the
different scales of values in different data matrices. The row vectors of
Ci and Cj respectively encode the latent factors of corresponding cells
and features in the data matrix. In order for the latent factors to only
capture the major biological variation within the data, the latent
dimension d (number of columns in Ci and Cj) should bemuch smaller
than the number of cells or features in the datamatrix.We assume that
each latent dimension (column vector) of Ci and Cj encodes a distinct
biological factor of the dataset. Then the factor values of each cell or
feature (each row vector) should encode the proportion of each
biological factor contributing to the cell or feature identity, and they
should be non-negative and sum up to 1 for each cell or feature. As a
result, we constrain Ci and Cj with Cx ⋅ 1 = 1, Cx≥0. The association
matrix Σij encodes the interaction strength between cell and feature
factors, where the value on the rth row and cth column correspond to
the interaction strength between the rth dimension of cell factor and
the cth dimension of gene factor. We constrain all values in Σij to be
non-negative. A graphical illustration of the factorization is shown
in Fig. 1b.

When integrating multiple data matrices, we construct a loss
function with multiple tri-factorization terms (Eq. (1)), where each
input data matrix corresponds to a tri-factorization term. We use the
scenario where the data matrices are frommultiple batches and three
modalities: gene, chromatin region and protein as an example (Fig. 1a).
Denote the gene expression matrices as fGigi2Sg , the chromatin
accessibility matrices by fRjgj2Sr , and the protein abundance matrices
by fPkgk2Sp . Sg, Sr and Sp are the sets of batch indices where gene
expression, chromatin accessibility, and protein abundance matrices
are available, respectively. The optimization problem of scMoMaT is:

argminCx,Σ
L

s:t: Cx � 1= 1,Cx>0,Σ ≥0
ð2Þ

And

L=
X

i2Sg
k Gi � αigCiðΣ +Σig ÞCT

g � b1i � bT
gik2F +

X

j2Sr
k Rj � αjrCjðΣ +Σ jr ÞCT

r � b2j � bT
rjk2F

+
X

k2Sp
k Pk � αkpCk ðΣ +ΣkpÞCT

p � b3k � bT
pkk2F + λ

X

i2Sg
k Σigk2F +

X

j2Sr
k Σ jrk2F +

X

k2Sp
k Σkpk2F

0

@

1

A

ð3Þ

where Cis are the factors for cell batches that have gene expression
matrices, Cjs are the factors for cell batches that have chromatin
accessibilitymatrices, andCks are the factors for cell batches that have

protein abundance matrices. Cg, Cr and Cp are the factors for genes,
regions, and proteins. The factors of the same cell batch or feature
modality are shared across the tri-factorization terms. Σ is the shared
association matrix across all data matrices, and Σig, Σjr, Σkp are data
matrix-specific associationmatrices.bxxs are the cell or feature specific
bias vectors for each data matrix. αig, αjr, αkp are data matrix-specific
scaling parameters. λ is the weight that regularize how much data
matrix-specific association matrix should vary.

Each matrix encodes the relationship between the corresponding
cell batch and feature entities, and Eq. (3) combines multiple data
matriceswhich connect entities in thesematrices through either direct
or indirect relationships. For example, in Supplementary Fig. 1a, the
protein and gene entities are connected through cell batch 1 using P1

and G1, similarly cell batch 1 and cell batch 2 are connected through
gene entities using G1 and G2. However, there are cases where not all
entities are connected with the existing data matrices. In Supplemen-
tary Fig. 1b, region entity cannot be connected to gene entity. In this
case, we add pseudo-count matrices to connect all entities. In the
specific scenario shown in Supplementary Fig. 1b, we calculate the
pseudo-scRNA-seq matrix (or referred to as gene activity scores in
some literature) from scATAC-seq matrix, with similar procedure to
that used in Seurat and LIGER (Methods). We also describe how to
calculate pseudo-protein-count matrices from scATAC-seq or scRNA-
seq datamatrices (Supplementary Fig. 1c, d, “Methods”). Such pseudo-
count matrices are also required by existing mosaic integration
methods15–17, with somehaving stronger requirements thanothers. The
pseudo-count matrices can also be used even when not theoretically
required to strengthen cross-modality information and help with
integration.

After the factors are learned byminimizing the objective function,
we include an additional post-processing step on the learned cell fac-
tors (Methods). Similar post-processing steps have been used in
existing integration methods that use matrix factorizations5,16,19. The
post-processing step constructs a neighborhood graph of all cells,
which canbe visualized usingUMAP and clustered using Leiden cluster
algorithm20. After obtaining the cluster result of the cells, we retrain
themodel to learn the feature factors and associationmatrices.Feature
scoring matrices, which represent the importance of a feature for a
cluster, can then be obtained from the retrained feature factors and
association matrices (“Methods”). These matrices have each latent
dimension corresponding to one specific cell cluster, and can be used
to extract the cluster-specific top-scoring features (bio-markers)
across modalities that jointly define cell type identities.

Testing scMoMaT on simulated datasets
First, we used simulated datasets to test scMoMaT, which allow us to
generate different integration scenarios and quantitatively evaluate
the integration method. The simulator that we used was similar to the
simulator described in scDART9, except that continuous cell popula-
tions were generated in scDART9, whereas clusters of cells were gen-
erated in our tests. The simulation procedure can generate paired
scRNA-seq, scATAC-seq, and protein abundance data (all modalities
are profiledwithin each cell) from any number of batches (“Methods”).

We generated 6 batches of paired scRNA-seq, scATAC-seq and
protein abundance data, which results in 18 data matrices in total. To
account for the randomness in the simulation, we repeat the simula-
tion 8 timeswith 8 different random seeds and report summary results
on the 8 datasets (Methods). For each dataset, there are 16 cell types
shared across batches. We randomly selected 4 (out of 16) cell types
for eachdata batchand removed these4 cell types from thebatch such
that the batches have unequal cell type compositions (See Supple-
mentary Table 1 for the numbers of cells and features for each batch in
each dataset).

From these 18 data matrices, we created three different integra-
tion scenarios, as shown in Fig. 2a, b and Supplementary Fig. 3b. In
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Fig. 2a, no simultaneously profiled cell batch exists. We selected only
the scATAC-seq matrices from batches 1, 2, and 3, and selected only
scRNA-seq matrices from batches 4, 5, and 6 (totally 6 selected data
matrices). In Fig. 2b, there exists one batch of cells simultaneously
profiled with scATAC-seq and scRNA-seq (batch 4). In Supplementary
Fig. 3b, we used three modalities of data. We test scMoMaT with dif-
ferent cases which may pose challenges for integration methods: (1)
Unequal cell type compositions across batches; (2) Imbalanced sizes of
data batcheswhere the number of cells in different batches canbe very
different; (3) Rare cell types. Details on how to create these cases are in
“Methods”.

We compared the performance of scMoMaT with two recently
published methods which can work with these integration scenarios:
MultiMap15, UINMF16 and another mosaic integration method
StabMap17. We ran scMoMaT, UINMF, MultiMap and StabMap under
the first integration scenario (Fig. 2a). Firstly, we filled in the missing
scRNA-seq matrices of the first three batches with pseudo-count
matrices (“Methods”). Then, we ran scMoMaT and set its latent

dimension d = 20, number of neighbors k = 30, and radius parameter
r =0.7 for all runs. Details and parameter settings of MultiMap and
UINMF are included in “Methods”.

We quantitatively measured the overall performance of three
methods with three scores: k-nearest neighbor graph connectivity
(kNN-GC or GC), normalized mutual information (NMI), and adjusted
Rand index (ARI) (Methods). These metrics were used in ref. 21 to
benchmark various integration methods, where GC measures batch
effect removal per cell identity label, and NMI and ARI measure con-
servation of biological variation during integration in terms of cell
identity labels.

We summarized the performance of eachmethod on 8 datasets
using boxplots (Fig. 2c). The results show that scMoMaT performs
comparably with MultiMap in matching cell batches (similar GC
score), and perform consistently better in separating cell types
(higher ARI and NMI scores). We visualized the latent embedding of
scMoMaT and baseline methods on one of the 8 datasets using
UMAP (Supplementary Fig. 2), and the visualization shows that with

Fig. 2 | Results on simulateddatasets. aThe layout of datamatrices under the first
integration scenario. b The layout of data matrices under the second integration
scenario. c GC, ARI, and NMI scores of scMoMaT and baseline methods under the
first integration scenario. d GC, ARI, and NMI scores of scMoMaT and baseline
methods under the second integration scenario. e GC, ARI, and NMI scores of
scMoMaT and baseline methods under datasets with imbalanced batch sizes. f The

F1-scores showing the rare cell type detection accuracy of scMoMaT and baseline
methods. In the boxplots above, the center lines show the median data value, and
the box limits show the lower and upper quartiles (25% and 75%, respectively). The
length of the whiskers is within 1.5× interquartile range. Outliers beyond the
whiskers are plotted as points. n = 8 independent samples are included in each box.
Source data for c, d, and e are provided in Source Data file.
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scMoMaT the cell types are better separated, and the locations of
the same cell type in the UMAP space are more consistent across
batches. Taking cluster 16 which is missing in batches 2 and 3 as an
example: in the results of MultiMap, cluster 16 is at consistent
locations in batches 1, 4, 5, 6, but in batches 2 and 3, some cells from
other clusters are placed at this location (circled in red). In the
results of UINMF, cluster 16 in batch 1 is located in a different area
from that in batches 4, 5, 6 (circled in red).

We thenmeasured the performance of all four methods under the
second integration scenario (as shown in Fig. 2b). We filled in the
missing scRNA-seq matrices for the first three batches with pseudo-
count matrices (the same as the first test scenario), and ran methods
with hyper-parameter settings the same as the first test scenario. To
makeMultiMapapplicable to thedataset,we concatenated the scATAC-
seq and scRNA-seq in cell batch 4 into a single datamatrix and reduced
the dimensionality of that batch by running PCA on the concatenated
matrix. Boxplots of GC, ARI and NMI scores of each method on 8
datasets are shown in Fig. 2d. The boxplots again show a better overall
performance of scMoMaT compared to the two baseline methods.

Under the second scenario (Fig. 2b), we also test the ability of the
integration methods in dealing with imbalanced sizes of cell batches
and detecting rare cell types.When the cell batches have very different
numbers of cells, scMoMaT is still the bestmethod in terms of GC, ARI
and NMI, and StabMap is the method whose performance is affected
most by the imbalanced data size (Fig. 2e). We use F1 score (Methods)
to measure the accuracy of rare cell type detection and scMoMaT has
overall the best F1 score (Fig. 2f).

We then test the bio-marker detection accuracy of scMoMaT since
the simulated data provides ground truth marker genes for each
cluster (Methods). For baseline integration methods which does not
output bio-markers, the marker genes are detected with an additional
step of differential expression (DE) detection. We compare the accu-
racy of marker genes detected by scMoMaT with that from a baseline
pipeline where we first use UINMF to learn the cell clusters in the
integrated space and then useWilcoxon rank-sum test to findDE genes
between each cluster and the rest of the cells (Methods). TheWilcoxon
rank-sum test is used to detect DE genes as it has been reported as one
of the best DE detectionmethods22,23. For each cluster of cells, we then
get three rankings of all the geneswhich represent how likely a gene is a
marker gene: (1) The ground truth ranking; (2) The scMoMaT ranking
obtained from the gene score; (2) The baseline ranking obtained by
running UINMF and Wilcoxon test. We measured the accuracy using
Kendall rank correlation coefficient between theground truth andeach
of the other two rankings. The scores are summarized in the barplot in
Supplementary Fig. 3a, where scMoMaT shows consistently better
performance in marker detection compared to baseline method.

We further tested the performance of scMoMaT and baseline
methods using all three modalities (Supplementary Fig. 3b), including
chromatin accessibility, gene expression, and protein abundance.
MultiMap and UINMF require that there exists a modality that is
available in all batches. So we generated pseudo-protein count for
batches 1, 2, 5, and 6 (Supplementary Fig. 3c, “Methods”). scMoMaT
does not require pseudo-protein count matrices to be provided in this
scenario, and we show the performance of scMoMaTwith and without
the pseudo-protein count matrices. Supplementary Fig. 3d shows the
performance of scMoMaT with two modes (with and without pseudo-
protein-counts) and baseline methods, where we can observe that
scMoMaTconsistentlyperformsbetter than thebaselinemethods, and
the inclusion of pseudo-protein count matrices further improves its
performance.

scMoMaTperformsmosaic integration on human PBMCdataset
and annotates sub-cell-types
We applied scMoMaT to a human PBMC dataset which includes 4
batches of cells3. The first 2 batches of cells are measured with gene

expression and protein abundance simultaneously using CITE-seq24,25

(batch 1 has 5023 cells, and batch 2 has 3666 cells); The last 2 batches
of cells are measured with protein abundance and chromatin accessi-
bility simultaneously using ASAP-seq3 (batch 3 includes 3517 cells, and
batch 4 includes 4849 cells). In total, there are 8 datamatrices (Fig. 3a).
On this dataset, we demonstrate: (1) scMoMaT produces integration
with higher quality in terms of preserving cell identity and mixing
batches compared to baseline methods; (2) scMoMaT improves cell
type annotation through integration; (3) The bio-markers learned from
multiplemodalities lead to cell type annotation with higher resolution.

First, we visualized the cell factors of all batches learned by
scMoMaT using UMAP (Fig. 3b, c). In Fig. 3b, the cells are colored with
the cell type labels obtained from the original data paper3, where dif-
ferent cell types are overall separated. In Fig. 3c, cells are colored by
batches and cells from different batches are mixed in the integrated
data. We compared the performance of scMoMaT with MultiMap15,
UINMF16, andStabMap17 (Details andparameter settings are included in
Methods).

We measured the performance using metrics including GC, ARI
and NMI scores. The original data paper3 provides cell type labels for
cells of all four batches, and these labels were used as ground truth
clustering labels. The results (Fig. 3d) show that scMoMaT performs
better than the three baseline methods with all metrics. Indeed,
visualizations of latent embedding from MultiMap, UINMF, and Stab-
Map (Supplementary Figs. 4a,b,c) show that the cell types were not
matched as well between different batches for these methods.

Although it is a standard practice to test how much integration
methods preserve the cell identities thatwere annotated in the original
paper of the dataset (as shown in Fig. 3d)15,21, we take a step further and
ask whether we can improve this cell identity annotation through
integrating data from multiple modalities. Performing Leiden cluster-
ing on the cell representations learned by scMoMaT, we obtained the
clusters shown in Fig. 3e (upper plot) and mapped the labels to the
clusters. We set to compare the labels from the original paper by
Mimitou et al. and those obtained from scMoMaT. We consider that
good cell labels should be consistent with the cell-cell variation in
every batch and every modality. In Supplementary Fig. 5 we visualize
each input data matrix respectively with the cell labels from scMoMaT
and Mimitou et al. Visually, although in most of the plots different cell
types are separated in the UMAP space, there are areas where more
than one cell types aremixed (e.g. the areas circled in red). To quantify
which set of labels has better agreement with the cell–cell variation in
individual data matrix before integration, we used a metric named
k-nearest neighbor agreement (kNN agreement). For each cell in each
input data matrix, this metric measures the percentage of cells that
have the same label as the given cell in its k nearest neighbors
(Methods). Figure 3e (lower plot) shows the kNN agreement score of
each set of labels averaged over all cells in all input data matrices,
where the scMoMaT labels have improvedover the original labels from
Mimitou et al.

We then show that the feature factors learned by scMoMaT
give rise to bio-markers frommultiplemodalities which can be used
to annotate cell types at higher resolution.We ran Leiden clustering
algorithm on the integrated latent space of cells and obtained
seven clusters (Fig. 3f, upper plot). We then fed the cluster labels
into scMoMaT for retraining to obtain feature scoring matrices,
which show the importance score of features in each cluster.
Therefore, for each cell cluster, we have three vectors: (1) a vector
representing the importance of each gene for this cluster; (2) a
vector representing the importance of each chromatin region for
this cluster; and (3) a vector representing the importance of each
protein for this cluster. After we included the motif deviation
matrix from chromVAR18 analysis, we were also able to obtain
vectors representing the importance of each motif for every clus-
ter. The top-scoring features (genes, chromatin regions, proteins,
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andmotifs) in these vectors can be used as bio-markers for cell type
annotation.

The complete annotation of these clusters is shown in Fig. 3f
(lower table). We now discuss how the top-scoring features (with the
highest importance score) from eachmodality lead to this annotation.
First, we annotate clusters 3, 4 and 5 using top-scoring genes. The top-
20 genes for cluster 3 include GNLY, NKG7, KLRD1, and KLRF1, which
are themarker genes ofNatural Killer (NK) cell26,27. The top-20 genes in

cluster 4 includeMS4A1, CD79A and CD37, which are the marker genes
of B cells27,28. The top-20 genes of cluster 6 includes CTSS29, SPI130, and
CD6331, which are the marker genes of Myeloid cells (Supplementary
Fig. 6a, marker genes with red frames). These annotations are further
confirmedby extramarker genes for these cell types fromCellMarker32

(Supplementary Fig. 5a, known marker genes in blue frames). Fur-
thermore, these annotations are consistent with the annotations from
the original paper in visualization (Fig. 3b). These evidence together

Fig. 3 | Results on the human PBMC dataset. a Layout of input data matrices in
human PBMC dataset. The UMAP visualization of cell factors learned by scMoMaT,
where cells are colored by (b) cell type labels from the original data paper (Mimito
et al.) and (c) data batches. d The graph connectivity, ARI, and NMI scores of
scMoMaT and baselinemethods. The top-scoringmethod is colored red. e (Upper)
The UMAP visualization of cell factors, where cells are colored by the label from
scMoMaT. (Lower) The kNN agreement scores of scMoMaT labels and labels in
original data paper (Mimito et al.) under different neighborhood sizes k. f (Upper)

The UMAP visualization of cell factors; cells colored by Leiden clustering labels.
(Lower) Cell type annotation for the Leiden clusters. g scores of marker genes CD4,
CD8A, and CD8B in different clusters, where x-axis correspond to Leiden clusters.
The top-scoring clusters are colored red. h, i The barplots show the scores of
marker protein CD45RA and CD45RO in different clusters. The heatmaps show the
abundance level of proteins CD45RA and CD45RO, where the top-scoring clusters
are annotated in frames. Source data for b-i are provided in the Source Data file.
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show that the top-scoring genes learned by scMoMaT are highly con-
sistent with known knowledge.

We have higher scores of CD3G, CD3E and CD3D (which are T-cell
markers) in clusters 0, 1, 2, 6 than other clusters (Supplementary
Fig. 6b), so we tentatively annotate these clusters as T cells. This is in
agreement with the annotation in Fig. 3e. The feature factors learned by
scMoMaT can be used to further identify T-cell subtypes in the inte-
grateddata. First, clusters 0, 1 have higherCD4 scores, which shows that
they correspond to CD4+ T cells. Clusters 2, 6 have higher CD8A and
CD8B scores,which shows that they correspond toCD8+ T cells (Fig. 3g).
The distributions of the expression value of CD4, CD8A, and CD8B also
matches the importance scores of these genes (Supplementary Fig. 7a).

Within CD4+ and CD8+ T cells, top-scoring proteins can be used to
further separate them into naive T cells and activated T cells. Naive
T cells have high abundance of surface protein CD45RA and low
abundance of surface protein CD45RO. Activated T cells, on the con-
trary, have high CD45RO and low CD45RA33,34. Using the scores of these
proteins, we annotate clusters 0 and 2 to be naive T cells (lower
CD45RO score and higher CD45RA score, Fig. 3h), and cluster 1, 6 to be
activated T cell (higher CD45RO score and lower CD45RA score, Fig. 3i).
The high importance scores of Naive T-cell marker genes (CD27, TCF7)
in clusters 0 and 2 also confirms the annotation of Naive T cell from
protein scores34,35 (Supplementary Fig. 7b). Cluster 1 is further shown
to correspond to CD4+ regulatory T cell (Treg) using the importance
scores of marker genes Foxp3, and IL2RA35 (Supplementary Fig. 7c).
Cluster 6 has high scores of cytotoxicity markers GZMK and GZMB35

(Supplementary Fig. 7d), which further confirms the activated CD8+

identity. Using the marker gene information in CellMarker32, we found
extramarker genes for the cell type annotated to clusters 0, 1, 2, 6 from
the top-20 genes of these clusters (Supplementary Fig. 7e, with known
marker genes in blue frames).

These discussions all together lead to the final annotations shown
in Fig. 3f. The annotations are further confirmed by the known protein
markers in the top-scoring proteins (Supplementary Fig. 8, with mar-
ker proteins in blue frames). Because scMoMaT also incorporates the
motif deviation matrix learned by chromVAR18 from the scATAC-seq
datamatrix, scMoMaTalsooutputs top-scoringmotifs for each cluster.
The known motif markers in the top-scoring motifs also confirm our
cell type annotations (Supplementary Fig. 9, sourceofmotifmarkers in
Supplementary Data. 1).

scMoMaT performs mosaic integration on mouse cortex data
We then applied scMoMaT on a mouse brain cortex dataset. We col-
lected 5 batches of mouse brain cortex datasets from different pub-
lications. The first data batch has 10,309 cells where chromatin
accessibility and gene expressionwere simultaneouslymeasuredusing
SNARE-Seq2. The second batch measures the gene expression of
40,166 cells using 10x v3 single-nucleus RNA-Sequencing technology
(snRNA-seq) and the third batch measures the chromatin accessibility
of 8718 cells using single-nucleus ATAC-Sequencing (snATAC-seq)36.
The fourth batch measures the gene expression of 14,249 cells and is
obtained from Allen Brain Atlas37,38. The fifth batch measures the
chromatin accessibility of 3512 cells and is obtained from 10x Geno-
mics website. In total, 6 data matrices are used as input to scMoMaT
and they are organized as Fig. 4a.

First, to understand the variation structure between cells in each
data matrix before integration, we visualized each data matrix sepa-
rately using UMAP. The cells are colored using the cell type labels
curated and re-organized from the original data paper (Methods, Sup-
plementary Fig. 10). The visualizations show differences in the variation
structures between different batches and modalities, which can be
caused by various factors, including technical confounders such as read
depth and noise level39,40, or disparity of cell type composition between
batches. Applying scMoMaT to these matrices leads to integrated cell
representations in a shared latent space, and the top-scoring features

output from scMoMaT can be used as bio-markers for cell type anno-
tation. Through the latent space representations of genes and regions
learned by scMoMaT, we also demonstrate that bio-markers for the
same cell type tend to have similar low-dimensional representations.

scMoMaT took as input the six data matrices and two additional
pseudo-scRNA-seq matrices that were calculated from scATAC-seq
matrices for data batches 3 and 5 (Methods). The learned cell repre-
sentations are shown in Fig. 4b, c, where the clusters in Fig. 4b were
obtained by running Leiden clustering20 on the cell factors, and the cell
types were annotated with bio-markers learned by scMoMaT. The cell
type annotation process is described below.

We first collected knownmarker genes for the cell types included
in these datasets from existing literature36,41,42 (Supplementary
Table 2). The scores of these marker genes learned through the
retraining step were used to annotate the clusters in Fig. 4b: for the
non-neuron cell types, Mbp and Plp1 annotate cluster 9 as oligoden-
drocyte (Oligo), Aldoc and Slc1a3 annotate cluster 8 as Astrocytes
(Astro), Csf1r and C1qb annotate cluster 12 as Macrophage,Matn4 and
Lhfpl3 annotate cluster 11 as oligodendrocytes (OPC) (Fig. 4d). For the
neuronal cell types, L6 neuron marker gene Sulf1 has high scores in
clusters 0, 2, and 10 (Fig. 4e). Out of these three clusters, Foxp2 was
used to distinguish L6 corticothalamic neuron (L6 CT/b, cluster 2 and
10, with high Foxp2) from L6 intratelencephalic neuron36 (L6 IT, cluster
0,with low Foxp2, Fig. 4e). The scores ofRorb annotate cluster 3 as L4/5
excitatory neuron36, Tshz2 annotate cluster 7 as near-projecting exci-
tatory neurons (NP), and Calb1 annotate cluster 1 as L2/3 excitatory
neurons (Fig. 4e).We also foundhigh scoresofmarker genesPvalb, Sst,
Npy, Vip in clusters 4 and 6, which shows that those two clusters cor-
responds to GABAergic inhibitory neurons (Fig. 4e). Cluster 4 has
higher scores of Pvalb and Sst and cluster 6 has higher scores of Npy
and Vip, which shows that these two clusters correspond to distinct
sub-cell types in GABAergic inhibitory neurons43 (Fig. 4e).

The top-20 scoring genes for each cluster are enriched with
known marker genes for the annotated cell type, according to marker
genes collected in Supplementary Table 2 and in CellMarker32 (Sup-
plementary Fig. 11, with knownmarker genes in blue frames). There are
fewer marker genes found for neuronal cell subtypes partly because
fewer marker genes are known for these cell types.

Including the motif deviation matrix (from chromVAR) allows
scMoMaT to learn top-scoring motifs for each clusters (Fig. 5a). Out of
the top-20 motifs, we see MA0062.2_Gabpa, MA0117.2_Mafb and
MA0002.2_RUNX1 for Macrophage (cluster 12), MA0515.1_Sox6,
MA0442.1_SOX10 and MA0514.1_Sox3 for oligodendrocyte (cluster 9),
MA0463.1_Bcl6 and MA0518.1_Stat4 for L6 CT/b neuron (clusters 2
and 10), etc44. In particular, motifs MA0623.1_Neurog1 and
MA0461.2_Atoh1 stand out in L6 CT/b, and Neurog1 and Atoh1 are
reported to be important transcription factors in neurogenesis45,46.
Overall, these motifs further support our cell type annotations.

Since scMoMaT jointly learns the region and gene factors
along with the cell factors, we also visualize the region and gene
factors (Fig. 5b, c). Figure 5b shows the gene factors where known
marker genes for different cell types are marked with different
colors. One can observe that the marker genes for GABAergic
inhibitory neurons, oligodendrocyte, oligodendrocyte precursors,
Macrophage, Astrocytes, and Glutamatergic neurons (including
L2/3, L4/5, L6 IT, L6 CT/b, NP) are clearly separated into different
areas of the UMAP space. For the region factors, wemap a region to
a gene if the region is located within the 2000 base-pair upstream
or the gene body of the gene on the genome, and we plot the genes
as the average of the regions associated with the corresponding
gene (genes are represented by colored dots in Fig. 5c). Figure 5c
shows that the chromatin regions that correspond tomarker genes
of oligodendrocyte & oligodendrocyte precursors, Macrophage,
and Glutamatergic neurons are also separated into distinct areas
based on the region factors. Both the gene and the region factors
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show that genes and regions do not form distinct clusters (which is
expected because genes like house keeping genes do not belong to
a specific gene module), but marker genes of different cell types
are separated in the gene and region factor space learned by
scMoMaT.

scMoMaT integrates batches with no shared modalities
It is a very challenging integration scenario if the batches do not share
any modality (also called diagonal integration). The most common
example of such a scenario is the integration of a scATAC-seq matrix
and a scRNA-seq matrix obtained from different batches. To integrate
such datasets, additional assumptions or information often need to be
provided. Some methods assume that the latent distributions of cells

are similar between batches, which fails to accommodate the cases
where the data batches have unequal cell type compositions. Other
methods transform the scATAC-seq matrix into a pseudo-scRNA-seq
matrix using the cross-modalities relationship, and integrate the
scRNA-seq matrix and pseudo-scRNA-seq matrix. Using the pseudo-
scRNA-seq instead of the scATAC-seq matrix, these methods may
suffer from the errors introduced during the process of calculating the
pseudo-scRNA-seq matrix and do not fully utilize the epigenomic
information in the scATAC-seq matrix. scMoMaT, on the other hand,
keeps both the original scATAC-seqmatrix and the pseudo-scRNA-seq
matrix in order to better exploit the scATAC-seq information. Also, we
binarized the pseudo-scRNA-seq matrices as a denoising step
(Methods).

Fig. 4 | Results onmouse brain cortex dataset. a Layout of input data matrices in
mouse brain cortex dataset. The UMAP visualization of cell factors learned by
scMoMaT, where cells are colored by b Leiden clusters (with scMoMaT-annotated
cell types) and c cell batches. d The scores of marker genes for non-neuronal cell

types, where x-axis correspond to Leiden clusters. e The scores of neuronal cell
type marker genes in different clusters. The top-scoring clusters are colored red.
Source data for b–e are provided in the Source Data file.
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We applied scMoMaT to a healthy human bone marrow mono-
nuclear cells (BMMC) dataset47. The dataset includes two batches of
cells, where the first batch has 16,510 cells sequencedwith scATAC-seq
and the second batch has 12,601 cells sequenced with scRNA-seq
(matrix relationships follows Fig. 6a). scMoMaT takes as input both
matrices, and generates a pseudo-scRNA-seq matrix for the second
batchusing its scATAC-seqdatamatrix (Methods).Wevisualize the cell
factors learned from scMoMaT (Fig. 6b, c) using UMAP, and color the
cells using the literature-derived labels (Fig. 6b) and data batches
(Fig. 6c). In the visualizations, cell batches are well integrated in the
latent space, while cell identities in each data batch are also preserved.

We also ran UINMF, MultiMap, LIGER5, Seurat10 and StabMap17 on
the dataset (results visualized in Supplementary Fig. 12). We

quantitativelymeasured the overall performance of themethods using
GC, NMI, and ARI scores (“Methods”, Fig. 6d). scMoMaT has the
highest GC score, which shows that scMoMaTbettermatches the same
cell type between batches. scMoMaT and UINMF have similar ARI and
NMI scores. The ARI and NMI scores of Seurat are slightly higher than
both scMoMaT andUINMF, while the scores of LIGER and StabMap are
worse than scMoMaT and UINMF. Overall, scMoMaT and Seurat are
two topperformers on this datasetwith comparable results.MultiMap,
on the other hand, mixes cells from different cell types in the latent
space. It may be due to the fact that the cell types in BMMCdataset are
closely located in the original dataset as they follow the trajectories of
the hematopoiesis process, and MultiMap fails to distinguish the clo-
sely located cell types (Supplementary Fig. 12b).

Fig. 5 | Additional results on mouse brain cortex dataset. a The top-20 scoring
motifs in cluster 12 (Macrophage), 9 (Oligo), and 2 (L6 CT/b). Motifs with TFs
reported for a specific cell type are highlighted in blue frames. The UMAP

visualization of b gene factors and c region factors; known marker genes of dif-
ferent cell types are annotated with corresponding colors. Source data for a are
provided in the Source Data file.
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After clustering the cells, scMoMaT learned the importance scores
of genes and regions in each cluster. We annotated cell types
according to the top-scoring genes and regions. The cluster result and
cell type annotations are shown in Fig. 6e. Sincewealso input themotif
deviationmatrix obtained by chromVAR, scMoMaT learns top-scoring
motifs along with genes and regions. Multiple known marker genes

and relevant motifs are shown to have high scores for their corre-
sponding cell types. In cluster 8 (natural killer (NK) cells), scMoMaT
found a high score of marker gene GNLY26,27, which matches the gene
expression pattern in the dataset (Supplementary Fig. 13a). Similarly,
scMoMaT found T-cell marker gene CD3D35 in clusters 0, 3, and 6
(Supplementary Fig. 13a), B-cell marker gene CD79A28 in clusters 5 and

Fig. 6 | Results on the human bone marrow and mouse spleen dataset.
a Relationship between data matrices in the two datasets. The UMAP visualization
of cell factors, where cells are colored by (b) ground truth cell type, and (c) data
batches. d The GC, ARI, and NMI scores of scMoMaT and baseline methods. e The
UMAP visualization of cell factors, where cells are colored by Leiden clusters (with
scMoMaT-annotated cell types). f The cell type composition of each batch in ori-
ginal and subsampled mouse spleen dataset. g The UMAP visualization of cell

factors learned from subsampled dataset; Batches 1 and 2 are visualized separately.
The disproportionate B follicular cells are annotated in frames. h The UMAP
visualization of cell factors learned from subsampled dataset, where cells are
colored by data batches. i The graph connectivity (GC), ARI, and NMI scores of
scMoMaT and baseline methods on the subsampled dataset. Source data for
b, c, e, f, g, and h are provided in the Source Data file.

Article https://doi.org/10.1038/s41467-023-36066-2

Nature Communications |          (2023) 14:384 10



7 (Supplementary Fig. 13a), Monocyte marker gene S100A948 in clus-
ters 1, 2, and 10 (Supplementary Fig. 13a), and Plasmacytoid Dendritic
Cell (pDC) marker gene PTPRS49 in cluster 9 Supplementary Fig. 13a).
The top-20 genes of clusters 0, 3, and 6 reveal evenmoreT-cell-related
marker genes including BCL11B, IL7R, LEF1, etc32 (top-20 genes in
Supplementary Fig. 13b, with known marker genes in blue frames).

Meanwhile, the topmotifs for each cluster also confirmed the cell
type annotations. scMoMaT found high scores of motif
MA0102.3_CEBPA, MA0837.1_CEBPE, and MA0466.2_CEBPB in Mono-
cytes. Their corresponding transcription factors CEBPA, CEBPE, and
CEBPB are known to be monocyte-differentiation regulators47,50,51

(Supplementary Fig. 14a). In addition, motifs MA0800.1_EOMES,
MA0802.1_TBR1, and MA0690.1_TBX21 have high scores in cluster 8
(NK). EOMES regulates the maturation of NK cells52, whereas TBX21
(alsoknownasT-bet, belonging toT-box subfamilyTBR1) is also known
to orchestrate the development and effector functions in NK cells53

(Supplementary Fig. 14b).
Finally, the cell type annotations obtained with the learned bio-

markers are overall consistent with the original cell type annotations
(Fig. 6b, e), which verifies that the bio-markers we learned are
meaningful.

scMoMaT integrates batches with unequal cell type
compositions
In this section, we test howwell scMoMaT performswhen the cell type
compositions are unequal between batches. We used a mouse spleen
dataset15,54 that includes two batches of cells, where the first batch has
4382 cells sequenced with scRNA-seq, and the second batch has 3166
cells sequencedwith scATAC-seq (matrix relationships follows Fig. 6a).
The datasetmainly consists of T cells (1190 cells in Batch 1, 990 cells in
Batch 2), B cells (2621 cells in Batch 1, 1835 cells in Batch 2), and some
other cell types that reside in mouse spleen. The original two data
batches have similar cell type compositions (Fig. 6f). We created data
batches with disproportionate cell types by subsampling the most
populated cell type, B cells (including B_follicular, B_follicular_transi-
tional and Marginal_zone_B), in Batch 1 such that only 100 B cells were
left. The subsampling step changed the proportion of B cells from
59.8% to 5.4%, which drastically changed the cell type composition of
Batch 1 (Fig. 6f).

We applied scMoMaT, UINMF, MultiMap, LIGER, Seurat and
StabMap to this dataset. The visualization shows that scMoMaT can
correctly match cell types in two data batches regardless of the dis-
proportionate cell type compositions between two batches, especially
B cellswhich barely exist in thefirst batch (Fig. 6g,h). The cell factors of
twobatches are separately plotted in Fig. 6g for the twobatches, where
B cells lie within the box. UINMF, StabMap, andMultiMap also perform
reasonably well in terms of integrating the two batches (Supplemen-
tary Figs. 15 and 16), but the cell types are not clearly separated in
MultiMap (Supplementary Figs. 15, 16, 6i). Seurat has a slightly higher
NMI score than scMoMaT, but its GC score is much lower than scMo-
MaT. Overall, scMoMaThas the best overall performance among these
methods on this dataset (Fig. 6i).

Effects of hyper-parameters settings in scMoMaT
The hyper-parameters in scMoMaT include the latent dimension d for
cell and feature factors, the regularizationweight λ in the loss function,
the number of neighbors k and radius parameter r in the post-
processing step.

We tested how scMoMaT performance is affected by different
hyper-parameter settings using the simulated datasets illustrated in
Fig. 2b. We measured the performance of scMoMaT using three
metrics, including NMI, ARI, and GC. We first tested the two para-
meters used in the training stage including d and λ, where d = {10, 20,
30, 50} and λ = {10−4, 10−3, 10−2}. Supplementary Fig. 17a shows that all
three metrics are not sensitive to the change of λ. The metrics are also

robust with the change in d except for the case where d = 10, as 10 is
too small a number for the latent dimensions

We then varied the twohyper-parameters used in post-processing
stage including k and r, where k = {15, 30, 50} and r = {0.7, 0.9, 1}. In
Supplementary Fig. 17b, we observe that the metrics are not sensitive
to the change of k. We also observe that ARI and NMI decrease under
larger r, although only by a small amount. This is because these data-
sets have unmatched cell types across data batches, and a smaller r can
better accommodate for cell type mismatch. When the datasets are
expected to have equal cell types, we suggest setting r = 1 to skip the
pruning step (Methods).

We then conducted hyper-parameter testing on the human PBMC
dataset3 using the same values for λ, r and k as used on the simulated
datasets, and extended the values of d to d = {10, 20, 30, 50, 80} since
real datasets tend to require more latent dimensions than simulated
data (Supplementary Fig. 18). From these results, we see a pattern that
is consistent with observations from Supplementary Fig. 17: scMoMaT
is overall very robust to the changes in λ, k and r. In terms of d, in both
Supplementary Figs. 17 and 18, the NMI and ARI scores stabilize once d
reaches a certain threshold, which is a number of latent dimensions
that is large enough for the given dataset. This threshold is smaller in
simulated data than that in real data, which is expected.

Wealsoprovide guidanceonhyper-parameter selection, aswell as
the settings of hyper-parameters in all test results that are presented in
this manuscript (“Methods”).

Discussion
In this study, we introduced scMoMaT, a single cell data integration
method that works on mosaic integration scenario. We applied
scMoMaT on different mosaic integration tasks. The results validated
the broad applicability of scMoMaT under various types of data inte-
gration scenarios. We showed that scMoMaT not only has superior
performance compared to existing methods in terms of metrics used
to evaluate integration methods, but also learns cluster-specific bio-
markers from every input modality that can be used to annotate cell
types in the integrated cell space with high confidence. The new
annotations can improve the annotations provided in the original
papers that publish the datasets, as the clustering and annotations
from scMoMaT comprehensively consider information from multiple
modalities. Furthermore, we also showed that scMoMaT is able to
integrate batches that have disproportionate cell type compositions.
With the increasing availability of single cell multi-omics datasets, we
expect that scMoMaT will be widely applied to various data
integration tasks.

Compared to data integration methods that only learn cell
representations in the integrated space, scMoMaT also learns feature
representations (e.g., gene representations). In the future, considering
feature representations in the data integration framework can help
with learning cross-modality relationships from single cell multi-
omics data.

Methods
Training procedure of scMoMaT
Weminimize the loss functionof scMoMaT (Eq. (2) and (3)) usingmini-
batch stochastic gradient descent. Within each iteration, we pick one
parameter matrix from cell and feature factors (the Cx matrices),
shared and data matrix-specific association matrices ({Σ, Σxx}), bias
matrices (bxx), and scaling parameter αxx and fix the other parameter
matrices. Then, we update a mini-batch of the selected parameter
matrix using gradient descent. Each mini-batch is constructed by
subsampling 10% of cells and features in each data matrix. Then we
loop through all parameter matrices and update them using gradient
descent in order.

In order to enforce the simplex constraint on the factor matrices,
we transform the original factor matrices using a softmax function
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before using it to calculate the reconstruction loss and use the
softmax-transformed factor matrices as the output factor matrices of
the model. We enforce the non-negativity constraint on the shared
association matrix Σ by changing all its negative values to zero every
time that it is updated.

In each iteration, we update the bias terms and scaling parameters
using closed-form solutions by setting its gradient to 0. Taking the
data matrix Gi as an example, the closed-form solution of its cell bias
term b1i follows:

b1i =
1

nfeats

Xnfeats

n= 1

ðGi½: ,n� � αigCiðΣ +Σ ig ÞCT
g ½: ,n� � bgi½n�Þ ð4Þ

where nfeats is the total number features inGi. Similarly, its feature bias
term bgi follows:

bgi =
1

ncell

Xncell

n= 1

ðGi½n, :� � αigCiðΣ +Σ ig ÞCT
g ½n, :� � b1i½n�Þ

T ð5Þ

where ncell is the total number of cells inGi. The scaling parameter can
be calculated as

αig =
trðGi � b1i � bT

giÞ
T ðCiðΣ +Σig ÞCT

g Þ
trððCiðΣ +Σ ig ÞCT

g Þ
T ðCiðΣ +Σig ÞCT

g ÞÞ
ð6Þ

The complete pseudo-code of scMoMaT is included in Supplemen-
tary Note 1.

Calculating pseudo-count matrices
scMoMaT uses the relationship between different feature entities to
create pseudo-count matrices that can fill in the positions of missing
modalities or batches during integration. For each feature in the target
modality, its pseudo-count is calculated by combining the counts of
the features in the originalmodality that only correlatedwith the target
feature. We further explain the calculation step of pseudo-count
matrices using three example modalities that are most commonly
used: chromatin accessibility, gene expression, and protein abundance.

When calculating pseudo-scRNA-seq matrix from scATAC-seq
matrix, scMoMaT constructs pseudo-scRNA-seq matrix from scATAC-
seq matrix by summing up the region counts from all regions that lie
within the 2000 base-pair upstream from the TSS of the gene and the
regions that lie within the gene body on the genome. Different from
the gene activity matrix that was used in Seurat and LIGER, scMoMaT
further binarizes the pseudo-scRNA-seq instead of directly using it for
integration. The use of additional binarization step is based on two
reasons: (1) the relationship between region counts and gene counts is
not linear. The activation of the promoting regions of a gene correlate
with the activation of the transcription process of the gene, but there is
not enough evidence showing that the gene expression level is posi-
tively correlated with the number of activated promoting regions. (2)
binarized gene counts are shown to also have enough ability in dis-
tinguishing cell types55.

When calculating pseudo-protein count matrix from scRNA-seq
matrix, scMoMaT first connects each protein with its corresponding
RNA molecule as there exists a one-one correspondence between the
two modalities. Then for each protein, we use the gene expression
count of the corresponding RNA molecule as the pseudo-
protein count.

When calculating the pseudo-protein count matrix from scATAC-
seq matrix, scMoMaT first calculates the pseudo-scRNA-seq from
scATAC-seq following the first example above, then calculate the
pseudo-protein count from pseudo-scRNA-seq count following the
second example above.

Post-processing procedure
After training the model, we calculate a pairwise distance matrix
between cells from all batches using cell factor values. We then con-
struct a neighborhood graph from the distance matrix by connecting
each cell with both its within-batch nearest neighbors and its cross-
batches nearest neighbors. Denoting the overall number of nearest
neighbors for each cell by k (k = 30 for most of the results shown), the
number of nearest neighbors taken in each batch is proportional to the
total number of cells in the batch. More specifically, the number of
neighbors ki for batch i can be calculated by ki = (Ni/Ntotal) ⋅ k, where Ni

is the number of cells in batch i, andNtotal is the total number of cells in
all batches. We also offer an option to prune the connections in the
neighborhood graph using a radius parameter r. The radius parameter
is from0 to 1, denoting the percentage of connections to be preserved
between every two batches.

After obtaining the neighborhood graph, we then normalize the
distances between cells in the graph. We first calculate the mean
within-batch distance and mean cross-batches distances for each cell
using the distance of the cells to itswithin-batchnearest neighbors and
cross-batches nearest neighbors. Then we normalize the distances
between the cell and its cross-batches nearest neighbors, whichmakes
the mean within-batch distance and mean cross-batches distances for
the cell to be the same. Considering cell m and cell n are nearest
neighbor calculated frombatch i and batch j, the distancedmn between
m and n can be normalized by d̂ðmnÞ= ð�dii=

�dijÞdðmnÞ, where d̂ðmnÞ is
the normalized distance between cell m and cell n, �dii is the mean
within-batch distance of cell m and its neighbors in batch i, �dij is the
mean cross-batches distance of cellm and its neighbors in batch j. The
normalized neighborhood graph can be used for visualization and
clustering purposes. UMAP can take the neighborhood graph to
visualize the cell-to-cell variation, and Leiden clustering algorithm is
used to cluster the cells based on the neighborhood graph.

Retraining procedure
After clustering the cells, we use the cluster label for the retraining of
scMoMaT. We first construct binary cell factor matrices from the
cluster label by making each column dimension of the cell factor
matrices match one specific cell cluster, and by assigning 1 to the
corresponding cluster dimension and 0 to the other dimensions for
each cell. The retraining step is to learn feature factors and association
matrices that are consistent with the binary cell factors.

We then fix the binary cell factor matrices and update the
remaining parameters in scMoMaT to minimize the loss (Eq. (2)). The
retrained feature factor matrices and associationmatrices can be used
to build the feature scoringmatrices that includes themarker score for
each feature in each cell cluster. The top-scoring features in each
cluster are considered to be the bio-markers of the cluster. Given the
retrained feature factor matrix Cfeat (e.g. Cg, Cr, Cp) and shared asso-
ciation matrix Σ, the feature scoring matrix Mfeat can be calculated as
Mfeat =Cfeat ⋅ Σ

T, and each column of Mfeat are the marker scores of all
features in the corresponding cell cluster.

During the retraining process, scMoMaT is flexible on the data
matrices that are used for each data batch. One can incorporate
additional data matrices that measure different data modalities of the
existing data batches into the retraining process and learn the factor of
the newly added data modalities through scMoMaT. In the testing
result ofmousebrain cortex dataset, PBMCdataset, BMMCdataset, we
obtained the motif deviation matrices (cell by motif matrices, calcu-
lated from scATAC-seq matrix using chromVAR), and included the
motif deviation matrices in the retraining process to learn the motif
factor of the dataset.

Hyper-parameter setting in scMoMaT
There are four hyper-parameters in scMoMaT: the latent dimension d
for cell and feature factors, the regularization weight λ in the loss
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function, the number of neighbors k and radius parameter r in the
post-processing step.

The latent dimension d corresponds to the number of latent
biological factors that should be included in the dataset. It varies
according to the complexity of the cell-cell variation in thedataset. The
higher the complexity is, the larger d is required. It does not corre-
spond to the number of cell types and is usually larger than the number
of cell types. In all our tests on real datasets, we select d = 30. In all our
tests on simulated datasets, where the dataset structure is less com-
plex, we set d = 20. The regularization weight λ is selected to be 0.001
(default value) for all our tests.

The number of neighbors k in the post-processing step should be
based on the total number of cells (larger k for larger dataset). We
suggest users to set k to be30–50. The radius parameter rprunesweak
connections in the neighborhood graph. Smaller r means more con-
nections are removed. We suggest to apply the pruning step when
there is a strong mismatch between cell type composition of different
cell batches. We did not apply pruning for the real datasets; and on
simulated datasets, we applied pruning and set r = 0.7 because of the
mismatch of cell types between cell batches.

Data simulation
We implemented a simulation procedure that can generate multiple
batches of paired scRNA-seq, scATAC-seq, and protein abundance
datasets which is generalized upon previous work SymSim23. In the
same batch, cross-modality relationship between scATAC-seq and
scRNA-seq data, and between scRNA-seq and protein abundance
data are modeled in this simulator. The relationships between
scATAC-seq and scRNA-seq data are considered through the kinetic
model used to generate the scRNA-seq data. More details on this
procedure are described in ref. 9. The process of generating the
protein modality from scRNA-seq modality is described in Supple-
mentary Note 2. The numbers of genes, regions, proteins, and cells
in each batch of each simulated dataset are shown in Supplementary
Table 1.

On the simulated datasets, we created various challenging
cases to test scMoMaT and the baseline methods: (1) Unequal cell
type compositions across batches. We randomly selected 4 (out of
16) cell types for each data batch and removed these 4 cell types
from the batch such that the batches have unequal cell type com-
positions. (2) Imbalanced sizes of data batches where the number of
cells in different batches can be very different. We create the
imbalanced dataset by subsampling the cells in the original simu-
lated datasets for 3 batches. For cell batches 1, 4, and 6 in each
dataset, we subsampled their cells such that each of these three
batches has a number of cells that is a tenth of each of the remaining
batches. (3) Rare cell types. In each batch of cells before removing
the 4 cell types to create the unequal cell type composition sce-
nario, there are 16 cell types and one of them is a rare cell type. The
number of cells in the rare cell type is 15% of the number of cells of a
normal cell type.

To evaluate the bio-marker detection accuracy of scMoMaT, we
used the ground truth marker genes available from the simulation.
The SymSim package allows users to output ground truth differen-
tially expressed genes between two groups of cells based on mRNA
counts without intrinsic and technical noise. The ground truth is in
the form of a ranking of genes on how likely a gene is a DE gene. To
obtain DE genes from the baseline method, we use the common
pipeline in most of the current data integration methods: (1) We
learned the cell latent factor from the dataset using UINMF. (2) We
clustered the cells by running Leiden cluster algorithm on the cell
factor. (3)We conducted two-sidedWilcoxon rank-sum test to detect
cluster-specific bio-markers. When running Leiden clustering algo-
rithm, we select the resolution parameter that gives the highest
NMI score.

Preprocessing of datasets
When running scMoMaTon real datasets, we filter genes in the scRNA-
seq matrices by selecting highly variable genes. Then we quantile
normalize the scRNA-seq matrices. We quantile normalize and log-
transform the protein abundance matrices56. No protein filtering step
is conducted as there is a small number of proteins measured. The
scATAC-seq is filtered by selecting the regions that lie within the 2000
base-pair upstream activation region and the gene body of all genes
kept in the scRNA-seq count matrices. When dealing with multiple
scATAC-seq matrices with different region features, we remap the
fragment file of other scATAC-seq matrices using the peaks from one
scATAC-seqmatrix that we select, which was also used in Cobolt14 and
Signac57. This allows the scATAC-seq matrices to have the same region
features.

With simulated datasets, we did not filter the genes or regions for
all integration methods. The pseudo-scRNA-seq matrices are calcu-
lated by multiplying the “region by gene” association matrix that is
provided by the simulator with the scATAC-seq matrices. The pseudo-
protein abundancematrices are calculated bymultiplying the "protein
by gene" associationmatrix with scRNA-seqmatrices or bymultiplying
the "protein by region" association matrix with scATAC-seq matrices.
We quantile normalize the scRNA-seq matrix, quantile normalize and
log-transform the protein abundancematrix, and binarize the scATAC-
seq matrix when inputting these data to scMoMaT. When running
UINMF and MultiMAP on the simulated data, we followed the online
tutorial of these methods (see Section “Running baseline methods”).

Some details in the preprocessing procedures can vary for each
real dataset, which are described as follows.

Human PBMC dataset. For the human PBMC dataset, we selected top
7000 highly variable genes using scanpy for each scRNA-seq matrix
separately. We do not remap the scATAC-seq matrix as the dataset
comes with the same region features in the two scATAC-seq matrices.
After gene and region filtering, we obtained overlapping 4768 genes,
17,442 regions and 216 proteins.

Mouse brain cortex dataset. Since the scATAC-seq matrices have
different sets of region features, we first remapped the scATAC-seq
matrices in the first and the fifth batches to the regions in the third
batch. We then selected the top 2000 highly variable genes using
scanpy for the scRNA-seq matrix in the second batch, and used the
same set of genes for all the scRNA-seq matrices. We filled in pseudo-
scRNA-seq matrix for the batches without scRNA-seq matrices, and
selected the regions in scATAC-seq matrices that lie within the 2000
base-pair upstream or the gene body of the genes in scRNA-seq
matrices. After the filtering process, we obtained overlapping 1677
genes and 25734 regions for all data matrices.

We download the cell label from the original data manuscripts,
reorganize the labels to make them as consistent as possible. We re-
annotate the “E2Rasgrf2”, “E3Rmst” and “E3Rorb” as “L2/3”,
“E4Il1rapl2”, “E4Thsd7a”, “E5Galnt14”, “E5Parm1”, “E5Sulf1”, and
“E5Tshz2” as “L4/5”, “E6Tle4” as “L6”, “OliM” and “OliI” as “Oligo”, “InV”
as “CGE”, “InS” as “Sst”, “InP” as “Pvalb”, “InN” as “Npy”, and “Mic” as
“MGC” in the first batch. We re-annotate “Lamp5”, “Vip” and “Sncg” as
“CGE”, “L4”, “L5 ET” and “L5 IT” as “L4/5”, “L6 CT”, “L6 IT” and “L6b” as
“L6”, “L5/6 NP” as “NP”, “Macrophage” as “MGC” in the second batch.
We re-annotate “L5.IT.a”, “L5.IT.b” and “L4” as “L4/5”, “L6.CT” and
“L6.IT” as “L6”, “L23.a”, “L23.b”, and “L23.c” as “L2/3”, “OGC” as “Oligo”,
“ASC” as “Astro”, and “Pv” as “Pvalb” in the third batch. We re-annotate
“L2/3 IT” as “L2/3”, “L4”, “L5 IT”, and “L5 PT” as “L4/5”, “L6 CT”, “L6 IT”,
and “L6b” as “L6”, “Macrophage” as “MGC”, “Lamp5”, “Vip”, and “Sncg”
as “CGE” in the fourth and the fifth batches.

Healthy human BMMCdataset. We selected top 1000 highly variable
genes using scanpy for scRNA-seq matrix. We also remove the genes
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withno regions in the scATAC-seqmatrices lyingwithin the 2000bpof
their upstream sequence. The filtering process gives us 924 genes
22133 regions.

Mouse spleen dataset. We selected top 3000 highly variable genes
using scanpy for the scRNA-seqmatrix. We also remove the genes with
no regions in the scATAC-seq matrices lying within the 2000 bp of
their upstream sequence. The filtering process gives us 2708 genes
20435 regions.

Running baseline methods
UINMFand LIGER.We followed its online tutorial (http://htmlpreview.
github.io/?https://github.com/welch-lab/liger/blob/master/vignettes/
SNAREseq_walkthrough.html) to run UINMF.When applying UINMF to
real datasets, we first binned the genome into bins of 100,000 bp for
raw scATAC-seq matrices. We then used the same the pseudo-scRNA-
seq and scRNA-seq matrices as the ones that were used in scMoMaT,
but normalized the matrices following UINMF tutorial instead of per-
forming quantile normalization and log transform.We select the latent
dimension to be 30 aswas recommended in the tutorial.When running
on simulated dataset, We generated pseudo-scRNA-seq matrices fol-
lowing the same procedure as scMoMaT. Setting the number of latent
dimension to 30 led to very bad results so we used the ground truth
number of clusters as the number of latent dimensions. SinceUINMF is
extended from the LIGER framework, we ran LIGER with the same
hyper-parameter setting as UINMF.

MultiMap. We ran MultiMap following the example in its GitHub
repository (https://github.com/Teichlab/MultiMAP). We ran the
method using the raw data matrices as was required by the example
and generated the pseudo-scRNA-seq matrices following the same
procedure as was used in scMoMaT. MultiMap can be directly applied
to integration scenarios with no batch that has paired data, including
the humanBMMCdataset,mouse spleen dataset, and the first scenario
of the simulated dataset, following the example. Where there exist
batches with more than one modality profiled, including the human
PBMC dataset and the second scenario of the simulated dataset, we
concatenated the count matrices for each batch and calculated the
low-dimensional representation using PCA on the concatenated
matrices (as suggested by the authors). We ran MultiMap using the
default hyper-parameter setting in its example.

StabMap. We ran StabMap following its online tutorial (https://
marionilab.github.io/StabMap/articles/stabMap_PBMC_Multiome.
html). StabMap can be directly applied to the integration scenario
where there exists paired data to connect different modalities. When
running StabMap on the integration scenarios where no paired data
exist to connect every modality, we generate pseudo-counts to con-
nect differentmodalities instead. For a fair comparison result, we used
the same set of pseudo-count matrices that were used in scMoMaT
when running StabMap. In addition, we used the first batch as the
reference batch, and used the default parameters setting when run-
ning the algorithm.

Seurat. We ran Seurat following its online tutorial (https://satijalab.
org/seurat/articles/atacseq_integration_vignette.html), and set the
hyper-parameter of Seurat to be exactly the same as its online tutorial.

Evaluation metrics
Graphconnectivity. Graph connectivity (GC) scoremeasures howwell
the cells of the same cell type between batches aremixed in the latent
space21. GC score is calculated by first constructing a kNN graph using
cells from all batches. Then for each cell type, we select the cells that
belong to the cell type and denote the corresponding subgraph by
Gc(Nc, Ec) where c denotes the cell type. The GC score of this cell type

can be calculated as ∣LCC(Gc)∣/∣Nc∣, where ∣LCC(Gc)∣ denotes the largest
number of connected cellswithin the subgraphGc, and ∣Nc∣denotes the
total number of cells in the subgraph. The GC score of the whole
dataset is the average GC score of all cell types.

Adjusted Rand Index (ARI). The ARI score measures how well cells
from different cell types can be correctly clustered regardless of bat-
ches using the latent embedding. After clustering the cells using the
cell latent embedding obtained from different integration methods,
we calculate the Adjusted Rand Index58 by comparing it with the
ground truth cell label. Leiden clustering algorithm has one resolution
parameter that decides the number of clusters. For each method, we
ran Leiden clustering with different resolution parameters (from0.1 to
10 with stepsize 0.5) and report the highest ARI score for all resolution
parameters as the final result.

Normalized mutual information (NMI) score. Similar to ARI score,
NMI score alsomeasures howwell cells fromdifferent cell types can be
correctly clustered using the latent embedding. NMI is calculated with
both the cluster label and ground-truth label. For each method, we
obtained the cluster label using Leiden clustering algorithm, ran the
clustering algorithm with different resolution parameters (from 0.1 to
10with stepsize 0.5) and report the highestNMI score for all resolution
parameters.

k-Nearest neighbor (kNN) agreement score. The kNN agreement
score is designed to evaluate a set of cell-type annotations that are
often obtained on integrated datasets. Ideally, a set of cell type labels
obtained on the integrated dataset should also be able to separate
cells in each individual data matrix before integration. To quantify to
what extent a set of labels “separate” the cells in each data matrix, we
calculate the kNN agreement score for each cell in this data matrix.
Given the cell type labels for a set of cells, the kNN agreement score
measures the label agreement between each cell and its nearest
neighbors. Intuitively, with high-quality labels, cells with different
labels should be separated, somost of the cells should have the same
label as their neighbors, unless the cell is at the boundary of two or
more closely located clusters. Taking a scRNA-seq matrix as an
example: we first construct a kNN graph of cells using pairwise dis-
tances obtained after performing PCA on the original data matrix
(using the top 30 principle components). For each cell, we calculate
the proportion of cells that share the same label with this cell in its k
nearest neighbors, and the kNN agreement score of a dataset is the
average of this proportion over all cells. The procedure is the same
for protein abundance matrices. For scATAC-seq matrices, latent
semantic indexing (LSI, using the top 30 components) was used to
reduce the dimension of the original matrices in order to construct
the kNN graphs.

F1 score. F1 score is used for rare cell type detection59. Given the
ground truth and predicted rare cell types, F1 score is calculated as the
harmonic mean of precision and recall:

F1 = 2 ×
precision × recall
precision + recall

ð7Þ

We assigned the predicted rare cell type to be the cell cluster that has
the largest overlap with the ground truth rare cell type.

Statistics and reproducibility
The datasets in this study are previously published, and the sample
sizes are pre-determined in the original datasets. No data were
excluded from the analyses results. The study does not involve the
use of experimental replication, randomization, and allocation
blinding.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this paper are previously published and freely
available. The human PBMC dataset is available at Gene Expression
Omnibus under accession number GSE156478. The first batch in the
mouse brain cortex dataset can be accessed at Gene Expression
Omnibus under accession number GSE126074. The second and the
third batches are from Yao et al. and accessed at NeMO Archive with
accession number nemo:dat-ch1nqb736. The fourth batch is from
Allen Brain Atlas [http://celltypes.brain-map.org/api/v2/well_known_
file_download/694413985]37,38. The fifth batch is from 10x Genomics
website60 [https://support.10xgenomics.com/single cell-atac/
datasets/1.1.0/atac_v1_adult_brain_fresh_5k]. The healthy human
BMMC dataset is available at Gene Expression Omnibus under
accession number GSE139369. The scATAC-seq and scRNA-seqmatrix
of mouse spleen dataset are available at ArrayExpress under acces-
sion numbers E-MTAB-6714 and E-MTAB-9769. All other relevant data
supporting the key findings of this study are available within the
article and its Supplementary Information files or from the corre-
sponding author upon reasonable request. Source data are available
through Zenodo61. Source data are provided with this paper.

Code availability
scMoMaT is implemented as a python package (python ver. 3.8.10,
pytorch ver. 1.11.0) that is available at https://github.com/PeterZZQ/
scMoMaT. The package version used for the analyses in the paper has
been assigned a citable DOI through Zenodo https://doi.org/10.5281/
zenodo.7523552.
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