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Abstract— In conjunction with huge recent progress in cam-
era and computer vision technology, camera-based sensors
have increasingly shown considerable promise in relation to
tactile sensing. In comparison to competing technologies (be
they resistive, capacitive or magnetic based), they offer super-
high-resolution, while suffering from fewer wiring problems.
The human tactile system is composed of various types of
mechanoreceptors, each able to perceive and process distinct
information such as force, pressure, texture, etc. Camera-based
tactile sensors such as GelSight mainly focus on high-resolution
geometric sensing on a flat surface, and their force measurement
capabilities are limited by the hysteresis and non-linearity of the
silicone material. In this paper, we present a miniaturised dome-
shaped camera-based tactile sensor that allows accurate force
and tactile sensing in a single coherent system. The key novelty
of the sensor design is as follows. First, we demonstrate how
to build a smooth silicone hemispheric sensing medium with
uniform markers on its curved surface. Second, we enhance
the illumination of the rounded silicone with diffused LEDs.
Third, we construct a force-sensitive mechanical structure in
a compact form factor with usage of springs to accurately
perceive forces. Our multi-modal sensor is able to acquire tactile
information from multi-axis forces, local force distribution, and
contact geometry, all in real-time. We apply an end-to-end deep
learning method to process all the information.

I. INTRODUCTION

For humans and robots alike, the sense of touch is fun-
damental to the ability to understand, interpret and interact
with the environment. As a consequence, the development
of accurate force and tactile sensing is a key goal in robotics
- indeed successful robot-environment interaction is reliant
on end-effector sensors providing the robot with the relevant
feedback. Despite this, the use of tactile sensing remains
somewhat limited, and its development in recent years has
been relatively slow in comparison with the dramatic devel-
opments in computer vision. One of the principal reasons
for this is that from a hardware perspective, current robotic
tactile systems fall short of their human equivalents in terms
of their efficacy and, equally importantly, their compactness.

The human tactile system is highly complex, and capa-
ble of integrating a wide range of sensing characteristics.
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Fig. 1. Our miniaturized multi-modal sensor next to an improved GelSight
tactile sensor [1]. Compared to the GelSight, our sensor uses (1) a dome-
shaped elastomer surface with uniform markers; (2) an improved illumi-
nation system with small diffused LEDs; (3) a force-sensitive mechanical
structure in a compact form factor.

The glabrous skin is endowed with a high density of epi-
dermal mechanoreceptors (Pacinian corpuscles, Meissner’s
corpuscles, Ruffini corpuscles, and Merkel cells), arranged
at different depths within the epidermis [2]. Two of these, in
particular, are responsive to force and texture perception:

1) Ruffini corpuscle: responsive to low-resolution multi-
directional static forces based on skin stretched near
joints (intrinsic tactile sensing);

2) Merkel cells: responsive to high-resolution skin de-
formation, sustained pressure and texture perception
(extrinsic tactile sensing).

Inspired by the human tactile system, sensors using many
different technologies have been proposed, in which a variety
of functional sensing elements are integrated into the robot
end-effector to provide the requisite feedback. Among them,
camera-based tactile sensors [3], [4], [5], [6], [7], [8], [9]
show certain advantages, among them super-high-resolution
as each pixel from an image can be regarded as a ”tac-
tel” (tactile element), and ease of use as they use fewer
cables than other capacitive-based, resistive-based, OFETs
and OECTs tactile array sensors.

In this paper, we present an innovative design, see Fig-
ure 1, that offers better functionality and greater compactness
than earlier camera-based tactile sensors. Initially, we outline
the design and fabrication processes for the compact multi-
modal sensor (see Section III). We then evaluate its proper-
ties (see Section IV) and demonstrate its potential uses by
applying an end-to-end learning method to a binary hardness
classification task.



Fig. 2. Comparison of our miniaturised sensor (middle and right side) to a human tactile system (left side). With an arrangement of a domed-shaped
coated elastomer (for tactile array sensing and texture perception, similar to the functionality of the Merkel cells in the human tactile system) bonding
upon a force-sensitive mechanical structure (for force sensing, similar to the functionality of the Ruffini corpuscle), a camera (similar to the functionality
of the sensory nerves) at the bottom can directly capture the deformation of the two components, therefore transferring both extrinsic and intrinsic tactile
information to the computer for further processing.

II. RELATED WORK

Research into camera-based tactile sensors has become
commonplace alongside developments in small compact
cameras and computer vision technology. A camera is usu-
ally placed inside the sensor to observe the deformation of
the sensing medium within different frames. Many sensors
have been produced in recent years focusing on different
aspects, among them multi-axis force measurement, pressure
sensing, and geometric perception. A typical example is the
GelSight and GelSlim family, designed to estimate geometry
and force information. In 2009, Adelson et al. introduced
an elastomeric sensor [15] that can reconstruct the contact
surface’s shape and texture. This was a precursor to GelSight,
which was able to obtain ultra-high-resolution tactile images
beyond even human tactile perception. Several vision-based
tactile sensors were then produced and a comparative sum-
mary of some of their characteristics is shown in Table I.
It can be seen that the evolution of these sensors includes
a shift from bulkier formats down to dimensions compatible
with small grippers and robot hands. Different illumination
methods have been explored and employed for better image
quality; markers have been uniformly added to the top of
the silicone surface to measure force information (although
as yet never onto a spherical surface). Different shape
profiles have also been produced (flat surface for grippers
and rounded shape for robotic hands).

In this work, we present a new miniaturised camera-
based multi-modal tactile sensor. We mainly focus on the
miniaturisation of form factors, compactness, sensor man-
ufacture, and illumination quality. Our sensor is capable
of both extrinsic and intrinsic tactile sensing due to the
use of a rounded silicone elastomer (with markers) and a
force-sensitive mechanical structure within the sensor body.
It is worth noting that using a relatively rigid structure
provides for better multi-axis force measurement than having
markers on soft materials due to its hysteresis. Our sensor
is in a compact form factor with a dome surface that can
be mounted onto robotic grippers and hands. Because the
underlying sensing element of our new sensor is a camera,
data that is rich in information can be acquired and exploited
by computer vision-based learning algorithms. We enhance
the internal illumination system by means of diffused LEDs
that provide a uniform lighting environment for better image
quality.

III. SENSOR DESIGN AND FABRICATION

This section provides further detail on the design and
fabrication of the miniaturised compact multi-modal tac-
tile sensor, with a dome-shaped Lambertian surface (with
uniform markers), a force-sensitive spring-like mechanism
structure, and a tiny endoscope camera (see Figure 2).

TABLE I
SUMMARY OF THE GELSIGHT AND GELSLIM FAMILIES AND OUR SENSOR

Tactile Sensors Year End-effector Illumination Force Shape Remarks
TacTip [10] 2009 To robot arm White LEDs Force distribution Round Use pins to measure force distribution

GelSight [11] 2015 Robot gripper RGBW LEDs Force distribution Flat Use photometric stereo for reconstruction
FingerVision [12] 2017 Robot gripper No LEDs Force distribution Flat Use environment light for observation

GelSlim [13] 2019 Robot gripper RG LEDs Force distribution Flat Use IFEM to measure force distribution
GelTip [6] 2020 Robot gripper RGB LEDs No Round Omnidirectional observation
DIGIT [14] 2020 Robot hand RGB LEDs Force distribution Curved Compatible to robot fingertip

GelStereo [3] 2021 Robotic gripper White LEDs Force distribution Flat Use stereo camera for reconstruction
Our Sensor 2022 Robot hand Diffused RGB LEDs Multi-axis force Round Use force-sensitive structure



A. Tactile Sensor Design Principle

An ideal artificial tactile system needs to be compact and
versatile. The improved GelSight sensor [1] is designed to
provide comprehensive information on force and geometric
characteristics when in contact with the external environ-
ment. However, it does have limitations. Firstly, the device is
relatively bulky, and therefore incompatible with robot hands
and small grippers used in manipulation tasks. Secondly,
its sensing surface is relatively flat, which restricts its use
in certain situations. For example, [16] demonstrates cases
where the size of the contact patch is reduced to a point
contact during exploration, thereby leading to an inconsis-
tency in measurement results. Thirdly, although GelSight
is intended to produce homogeneous illumination, SMD
LEDs are usually spotty focus light sources. Therefore,
they require some physical distance for the lighting path
in order to achieve wave uniformity. Additionally, GelSight
adds multiple markers onto an elastomer surface for force
estimation, which can generate hysteresis leading to lower
accuracy.

To overcome these challenges, we propose the following
design adaptations for the new sensor design (see Figure 3).
The innovations of the proposed sensor are as follows.

1) Miniaturisation: Small tactile sensors have the po-
tential to handle small objects. Our sensor (24 mm ∗
24 mm ∗ 26 mm) is designed to fit onto small end-
effectors. The sensor is composed of (1) a small coated
elastomer with a diameter of 20 mm; (2) a 3D printed
miniaturized structure, with small compression springs
and magnets; (3) a 0.8 mm thick PCB with 1.2 mm
height surface-mounted LEDs; (4) a 7.5 mm diameter
ultra mini CMOS camera with a 160◦ lens.

2) Thumb-like Structure: The human finger has a
curved surface to facilitate daily tasks. We designed
the sensor elastomer to be dome-shaped (like a thumb)
rather than a flat surface. We also added uniformly
distributed black markers to the curved surface to esti-
mate the local force distribution. The coated elastomer
is bonded to the spring-like mechanism structure (for
multi-axis force measurement) to provide a compact
form factor, comparable to a human thumb, for multi-
modal signal acquisition.

3) Uniform Illumination: The illumination system in
our fingertip sensor has been redesigned. We applied
rough-surface materials around the sources to diffuse
LEDs into smooth glow light for uniform lighting on
the curved Lambertian reflective surface. In doing so
we shortened the distance of the light path to ensure a
compact minimised sensor structure.

4) Durability and Reliability In order to increase the
durability and reliability of the elastomer, we followed
the methods in [16] to manufacture the coating layer.

Fig. 3. Exploded view of the miniaturised tactile sensor demonstrating
the internal components of the coated elastomer, force-sensitive mechanical
structure, the illumination system, and the camera.

B. Tactile Sensor Fabrication

We followed [1] to manufacture the elastomer with a Lam-
bertian reflective membrane and black markers. However,
Adding tiny markers onto a rounded elastomer surface is
hard due to the fact that oil-based silicone ink takes a long
time to dry and the printed markers can easily be erased
from the surface. Therefore, we used pad printing to transfer
the black dotted pattern from the soft silicone pad to our
transparent silicone. Moreover, in order to observe evenly
spaced markers in the pixel frame, we built a pinhole camera
model to calculate the distances between pattern dots so that
the dots on the rounded surfaces would be ideally displayed
in the camera capture (see Figure 4).

Fig. 4. A pinhole camera model for generating uniform dots pattern
displayed in the camera frame. We calculate the distance between each
dot on the curved surface given the physical size of the sensor and camera
parameters. We use pad printing to transfer the dots pattern to the rounded
transparent silicone surface.



Fig. 5. (a) Comparison of the influence of light diffusion material (with different surfaces) on the light source [17] . (b) Schematic design of the sensor
illumination system. (c) Comparison of the influence of the light source tilting angle and the diffusion material. We aim to obtain equal lighting conditions
on the sensing surface. (d) Our illumination system shortens the lighting path (compared to the GelSight-like sensor), resulting in a compact form factor.

We redesigned the illumination system by utilising dif-
fused LEDs to shorten the light path distance. GelSight aims
to obtain equal lighting conditions for each pixel across the
sensing surface but the RGB LEDs are allocated in separate
corners. It therefore requires fine-tuning of both the distance
and the irradiation angle of the LED arrays (Figure 5(d)).
Since rough-surface materials can change the angle of the
light beam, resulting in light diffusion [17] (Figure 5(a)),
we stuck tapes of different colours on the lighting path
of each source, and adjusted the inclination angle of the
source (as shown in Figure 5 (d)) to produce homogeneous
lighting conditions on the dome surface. The influence of
the inclination angle and the diffuse material can be seen
in Figure 5 (b) and (c). In this work, we chose LUXEON
CZ RGB LEDs on account of their compact size and high
luminous flux. All LEDs were tilted by 85◦ with respect to
the elastomer bottom plane. RGB coloured tapes were sealed
after installing the PCBs.

Our sensor uses a spring-like mechanism structure to
measure multi-axis force and torque. Four tiny white markers
are painted on the top surface of the acrylic sheet (see
Figure 3) to track the overall deflection of the structure
(see Figure 6). The upper and lower platforms are 3D
printed from transparent VeroClear material. The compres-
sion springs are 5 mm in length and 3 mm in diameter,
with a 0.3 mm wire diameter. As the springs cannot easily
be glued to the platform (the wire is too thin), twelve 3 mm-
diameter magnets (glued to platforms) are used to connect
the springs (via magnetic attraction). An ultra mini CMOS
colour UVC camera (MISUMI Group Inc.) is used and fixed
to the lower platform.

IV. SENSOR EVALUATION

Using this tactile sensor, we can obtain three modalities
from a single image in real time without too much compu-
tation (30 Hz in Python-OpenCV). They are (1) local force
distribution from the motion of the black markers; (2) multi-
axis force/torque information from the spatial translation and
rotation of the four white markers; (3) geometric informa-
tion from the tactile image. The detailed methodology for
obtaining data for each modality is outlined below.

The use of a wide-angle lens in our sensor ensures a
full view of the entire elastomer surface. It does however

Fig. 6. Working principle of the sensor. The top row depicts the camera
view under different contact conditions. The movement of the white markers
is derived from the spring compression. By calculating the 6-axis spatial
pose of the plane composed of the white markers, we can derive 6-axis
force/torque applied to the sensor. Black dots are used to illustrate the
local force distribution. Contact patterns can be directly observed from the
capture.

also cause considerable image distortion. Therefore, when
initialising the sensor, the first step is to apply a correction
function based on the camera’s intrinsic matrix K and the
distortion coefficients (k1, k2, p1, p2, k3), both of which
are acquired from the standard pinhole camera calibration.
The initial frame is saved and set as the reference frame F0.
For each subsequent frame, we then apply Gaussian blur to
reduce the image noise. In addition, we apply a circular mask
with a diameter equal to the height of the frame to remove
unwanted areas (the obtained frame is F ) and, then, apply
a sharpening function to enhance the edges of both black
and white markers. The RGB frame is transformed into a
greyscale image Fgray, as follows:

• For force distribution detection, we extract black mark-
ers from the previous frame Fgray0 with a low thresh-
old, and apply morphological transformations to remove
noise. We then find the connected components of each
marker in the image and save its centroid coordinate
p0. For the subsequent frame, we apply an optical flow
method with Fgray0, current greyscale frame Fgray1,
and p0 to calculate the new feature points p1. This
allows us to track the movement of the black markers
between adjacent frames; this movement is then shown
by yellow arrows overlaid onto the image (see Figure 7).



Fig. 7. Examples of pressing different objects on top of our sensor’s surface at different frames. From left to right are: A small iron ball; a cylindrical nut;
an alloy bolt; a USB head. In the sensor capture, the tactile imprint shows the geometric information of the contact objects; the yellow arrows illustrate
the movement of black markers between adjacent frames, indicating the force distribution; the red arrows illustrate the movement of white markers (the
spatial pose is represented by the RGB coordinate) between the current and the reference frame, indicating the net force and torque.

• For multi-axis force and torque evaluation, we extract
white markers from the frame Fgray with a high thresh-
old. We then apply the same morphological transfor-
mations and connected components function (as done
above) to locate each centroid coordinate P1. We apply
the SolvePnP method with the markers’ coordinates in
3D space S1 (measured in advance), P1, K, and zero
distortion coefficients to obtain the 6D pose estimation
P (three translation values and three Euler angles).
Through the design of the force-sensitive spring-like
structure, the multi-axis force/torque value is linearly
correlated to P . We plot the force changes using red
arrows (using F0 as the reference coordinate). The
measured maximum load force is 17 N . An in-depth
evaluation of this approach can be referred from [18].

• For geometric information, we use frame F which
contains depth information from the acquired RGB
colours in the captured frame [15].

V. TEST AND EXPERIMENT

With the above manual feature extractions, we tested and
pressed objects of different shapes on top of our tactile
sensor, as shown in Figure 7. The sensor can perceive local
force distribution (in yellow arrows), force estimation (in red
arrows), and contact geometry in real-time. Deep learning
shows advantages in end-to-end processing and the GelSight
tactile sensor can measure the object’s hardness based on
the sensor’s raw images [19]. However, the GelSight sensor
offers reduced accuracy when measuring net forces due to
the hysteresis of the soft material. Our sensor obtains rich
information (multi-axis force, force distribution, and geome-
try signals) from images of both the deformed elastomer and
the force-sensitive structure, which makes it suitable for an
end-to-end approach.

TABLE II
EVALUATION OF THE TRAINED MODEL RESNET18-GRU

Training Testing Epochs CE Loss - Precision (%)

24,000 6,000 50 0.031 - 99.054

Fig. 8. An experiment where our tactile sensor contacts hard and soft
objects of the same appearance. We use a network architecture consisting
of the ResNet-18 and a bi-directional GRU (gated recurrent units) to classify
the hardness (soft or hard) of the object. We evenly choose 10 frames as
the input and use the output of the last five frames to predict the class.

One advantage of a camera-based tactile sensor is that it
can perceive aspects of an object’s characteristics that cannot
be ascertained by vision alone. We set up an experiment to
distinguish between two objects with the same appearance
but with different levels of hardness. A typical hardness test
is performed by pressing an indenter (with a given load) into
a test object and measuring the depth of indenter penetration.
The object’s hardness is then determined by the relationship
between the applied force and the object’s deformation.
In this experiment however, we used a neural network to
distinguish between the two objects (see Figure 8) based on
a sequence of raw images from our sensor. The two test
objects are of different hardness: the soft one is cast with
Ecoflex 00-50, the hard one is 3D printed (30 Shore A).

A. Neural Network Design

The design of the neural network architecture is presented
in Figure 8, and the code will be made publicly available.
The network input is a sequence of raw sensor images
(without arrows and coordinate symbols) representing the



contact process. The input images (containing both force and
tactile information) are propagated through the ResNet-18
convolutional network, from which the features are extracted
in the fully-connected layer (fc) with a dimension of 128.
The encoded image features are then propagated through the
bi-directional gated recurrent units (GRU) neural network to
model the sequence information. Here we select the latent
features of the last five frames as the inputs to the Sigmoid
classifier for predicting the hardness (two classes with 0
standing for soft and 1 standing for hard, respectively).

B. Experimental Results

To evaluate our sensor’s ability to distinguish between
two objects, we pressed objects onto the top of our sensor
with random force, and recorded the sensor captures. We
collected 500 videos, each one containing 60 frames. By
selecting 10 frames from each video we form a training
data-set containing about 24, 000 frames and 6, 000 frames
for validation. We trained the model of both ResNet-18 and
GRU using the stochastic gradient descent (SGD) as the
optimiser, with a learning rate of 0.001. We used cross-
entropy loss, and we trained the model for 50 epochs within a
few hours and selected the model with the best performance
for final validation. We validated our model on test frames
of both objects, and the result is shown in Table II. Our
sensor achieved an accuracy of 99.054%, which proves it
can well distinguish between soft and hard objects of similar
appearance, using both force and geometric information.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced a new miniaturised camera-
based multi-modal tactile sensor, that can perceive multi-axis
force, local force distribution, and high-resolution geome-
try. The sensor is dome-shaped, with a marked interaction
surface, a spring-like mechanism, and, in comparison to
earlier tactile sensors, an improved illumination system.
We also demonstrated how a neural network can be used
alongside the sensor to distinguish between objects of the
same appearance but of differing hardness.

In the future, we plan to expand our work on object
hardness estimation using an extensive data-set of objects,
and demonstrate better end-effector manipulation capabili-
ties, once the sensor is installed.
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