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Abstract

The mandible or lower jaw is the largest and hardest bone in the human facial skeleton. Frac-

tures of the mandible are reported to be a common facial trauma in emergency medicine and

gaining insights into mandibular morphology in different facial types can be helpful for trauma

treatment. Furthermore, features of the mandible play an important role in forensics and an-

thropology for identifying gender and individuals. Thus, discovering hidden information of the

mandible can benefit interdisciplinary research. Here, for the first time, a method of artificial

intelligence-based nonlinear dynamics and network analysis are utilized for discovering dissim-

ilar and similar radiographic features of mandibles between male and female subjects. Using a

public dataset of ten computed tomography scans of mandibles, the results suggest a difference

in the distribution of spatial autocorrelation between genders, uniqueness in network topologies

among individuals, and shared values in recurrence quantification.

Keyword: Mandible, computed tomography, image processing, nonlinear data analysis, network

theory, artificial intelligence

1 Introduction

The mandible known as lower-jaw bone is multi-functional. It constitutes the shaping of the

lower face, regulation of mastication, and accountability for the articulation of phonemes. In
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facial trauma, a severe injury to the mandible can cause serious adversarial impact on the

patient. Thus, understanding characteristics of the mandible such as its morphology, physiology,

and genetic profile can be helpful for improving mandibular reconstruction. As a result, it can

accelerate the healing process and prevent the patient from postsurgical complications [1].

On another scientific aspect, the ability to determine sex from an unknown human bone

plays an important role in forensics and anthropology. Because the mandible can withstand

the effect of postmortem damage and provide informative evidence about sexual traits, it is

commonly used in these fields [2]. Cross-sectional slides of mandibles on cone beam computed

tomography (CT) of two young cohorts of 268 males and 386 females were used to discover differ-

ent morphological characteristics of sexes with nonlinear regression analysis of the mandibular

growth trajectories [3]. Insights gained from the study can lead to better abilities for assessing

craniofacial abnormalities, identifying age and sex of juvenile remains. An investigation [4]

reported that 14 out of 16 radiographic data of the adult mandible could be used for identify-

ing sexual dimorphism, and 15 out of 20 morphometric studies of the dry mandible suggested

a relationship between mandibular parameters and sexual dimorphism. Another work found

a significant difference in the mandibular angle between males and females [5]. The authors

concluded that gonial angle, and antegonial angle and depth can be utilized as measurements

of forensic evidence for gender determination.

On a clinical aspect, craniofacial abnormalities are known to be a risk factor associated

with obstructive sleep apnea (OSA). However, this association still needs to be validated with

physical evidence. A study [6] used CT scans to measure mandibular width and other param-

eters of the head and neck of a cohort. The study found a correlation between the mandibular

width and OSA, and wide mandibles are subject to attention for screening of the risk. Tem-

poromandibular disorders (TMDs) are a group of pathologies that cause pain and dysfunction

around the temporomandibular joint and muscles regulating the jaw movement, particularly
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when chewing. A study aimed to describe the mandibular postural position and mouth open-

ing in healthy subjects and patients with articular/muscular pathology for discovering novel

characteristics of TMDs [7], such study has highlighted the importance for extracting useful

information from the mandible. On a more dental aspect, a study [8] tried to determine the

normal size of the mandible and investigated difference between the dental arch length and total

teeth size space. The finding can help prevent the sharp collision of the lower third molars by

performing a preventive or therapeutic surgery. Furthermore, the same study highlighted the

important role of the mandibular morphology for determining aesthetics and recommending

patients for orthognathic and reconstructive surgeries.

Being motivated at discovering novel features of the mandible in radiology, this paper

introduces an original study in coupling the theory of spatial statistics and artificial intelligence

(AI)-based nonlinear dynamics for discerning subtle dissimilarity and similarity of mandibles

on CT scans obtained from male and female subjects. The rest of this paper is organized

as follows. Section 2 describes a public CT dataset of mandibles for testing the proof of

concept. To make the highly interdisciplinary content of this paper self-contained by providing

adequate background, Section 3 outlines technical methods adopted in this study for extracting

new mandibular imaging features. Such methods include geostatistics as a branch of spatial

statistics, fuzzy recurrence plots and their quantitative measures of nonlinear dynamics. Section

4 shows results of the analysis together with discussion of the finding. Finally, Section 5

concludes the study with emphasis and limitation of the current finding as well as suggested

issues for future work.

2 Data

The image data used in this study were provided and described in [9], aiming to facilitate serial

image studies of the human mandible and assessment of automated segmentation algorithms.
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The data consist of 10 anonymized CT scans of the human craniomaxillofacial complex origi-

nally in DICOM (Digital Imaging and Communications in Medicine) format files. The image

slices provide complete physiological mandibles and mandibular bone structures without teeth

and with the inclusion of atrophic and non-atrophic mandibular bones.

The 10 CT scans were from 5 male and 5 female subjects out of 45 original CT scans.

This selection was to ensure high-quality ground-truth data having clear bone contours and

anatomical structures without artefacts. The data are publicly available for downloading from

a Figshare repository [10], where CT scans as stacked TIFF (Tag Image File Format) files are

provided and used in this study.

Table 1 briefly lists the CT-scan and demographic information of the five female (S1-S5)

and five male subjects (S6-S10). Figure 1 shows the montages of 25 CT slices (75th to 100th)

of female subject S1 and male subject S6.

3 Methods

3.1 Geostatistics

As a class of spatial statistics, geostatistics can be applied to quantify variances of variables

associated with spatial or spatiotemporal phenomena. It is used in this study to determine

spatial variances of image intensities in sequential CT slices of the mandibles. Let f(x, y) be

the intensity value of a pixel on a 2D CT slice I(x, y). To simplify the mathematical expression,

let f(i) = f(x, y), where i refers to a position in I, i = 1, . . . ,M , and M is the number of pixels

in I. Geostatistics computes the semi-variogram of variable f(i) as a function of lag h, denoted

as γ(h), as

γ(h) =
1

2N(h)

N(h)∑
i=1

[f(i)− f(i+ h)]2, (1)

4



where N(h) is the number of pairs of f(i) and f(i + h) that are taken into account in the

calculation.

If γ(h) is computed for each CT slice for a given h, then a distribution or time series of

γ(h) for a CT scan be visualized on a plot of γ(h) or spatial variances against CT slices. Not

only series of the CT spatial variance can provide information to discern the difference of image

features between male and female mandibles, they can be further used for recurrence analysis

of fluctuations exhibited in the nonlinear distributions of the semi-variogram series.

3.2 Fuzzy recurrence plots

Stemming from the concept of recurrence plots (RPs) developed in chaos and nonlinear dynam-

ics as a descriptive statistical technique for quantifying recurrences occuring in a trajectory [11],

the method of fuzzy recurrence plots (FRPs) was introduced [12]. An FRP can be constructed

from time series based on the concepts of artificial intelligence (AI) known as fuzzy logic [13]

and its cluster analysis [14]. It has been shown that, in comparison with the method of FRs, an

FRP can quantify recurrences and present visual of a system underlain with nonlinear behavior

in a more natural way.

An FRP is mathematically described as follows. Let x = (x1, x2, . . . , xT ) be a sequence

of the semi-variograms of a mandibular CT scan, where T is the number of CT slices. Let m

and τ be the embedding dimension and time delay for the construction of an FRP, respectively.

The phase space of the series x, denoted as Y, is expressed as

Y = (y1,y2, . . . ,yL), (2)

where L = T − (m− 1)τ , and its elements are formed by

yi = (xi, xi+τ , . . . , xi+(m−1)τ ), i = 1, . . . , L. (3)
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Using the phase space and fuzzy c-means (FCM) algorithm [14], an FRP is computed as

follows. Given a number of clusters c, the FCM partitions Y into c clusters: (v1,v2, . . . ,vc).

The FCM also associates each element of Y with real membership grades in [0, 1], which

expresses degrees of similarity between each element and all clusters, denoted as µ(yi,vk),

i = 1, . . . , L, k = 1, . . . , c. Here, a larger membership value indicates a higher degree of the

recurrence of the phase space. As the result, an FRP, denoted as R, is formulated as

R(i, j) = µ(yi,yj), i, j = 1, . . . , L, (4)

where µ(yi,yj) is the degree of similarity between two elements yi and yj, which can be inferred

based on the fuzzy similarity relations [16] as follows.

1. Reflexivity (self-similar): µ(yi,yi) = 1, i = 1, . . . , L.

2. Symmetry (computed by FCM): µ(yi,vk) = µ(vk,yi), i = 1, . . . , L; k = 1, . . . , c

3. Transitivity (inferred by fuzzy reasoning): µ(yi,yj) = max [min{µ(yi,vk), µ(vk,yj)}] , k =

1, . . . , c; i ̸= j.

3.3 Fuzzy recurrence networks

Network theory in graph theoretic analysis has been applied to medicine known as network

medicine, which is an emerging research area for studying human diseases [17] and processing

big data in biomedicine [18]. Here, networks of fuzzy recurrence [15] is adopted to construct

network topology and compute graph properties of the mandible on CT.

Using the same fuzzy similarity relations [16], the membership grades of recurrence or

similarity between cluster pairs (vk,vq) can be obtained as

1. Reflexivity (self-similar): (vk,vk) = 1, k = 1, . . . , c.

2. Symmetry (computed by FCM): µ(vk,yi) = µ(yi,vk), k = 1, . . . , c; i = 1, . . . , L.
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3. Transitivity (inferred by fuzzy reasoning): µ(vk,vq) = max [min{µ(vk,yi), µ(yi,vq)}] , i =

1, . . . , L; k ̸= q.

A defuzzification procedure allows the transformation of an FRN into a binary network

using the α-cut method by

Gα =


1 : µ(vk,vq) ≥ α

0 : otherwise

(5)

where Gα is a c× c binarized matrix, and α takes values in [0,1].

Finally, the adjacency matrix of an unweighted α-cut recurrence network of size c × c,

denoted as Aα, is defined as follows:

Aα = Gα − I, (6)

where I is the identity matrix of size c × c, and Aα can be used to compute graph properties

such as the characteristic path length and average clustering coefficient [19, 20, 21].

3.4 Fuzzy recurrence quantification

An FRP R, who elements take real values in [0, 1], can be transformed into a binary FRP,

denoted as B, using an image segmentation method described in [22]. Information provided by

both R and B can be used to quantify recurrence of a dynamical system, which are described

as follows [22].

3.4.1 Fuzzy recurrence rate

Fuzzy recurrence rate, denoted as fRR, quantifies the rate of recurrences in R as

fRR =
1

L2

L∑
j=1

L∑
i=1

Rω(i, j), (7)
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where Rω(i, j) = 0 for R(i, j) < ω, i, j = 1, . . . , L; implying recurrence points are considered

for only FRP elements whose values ≥ ω.

3.4.2 Fuzzy determinism

Fuzzy determinism (fDET ) quantifies recurrence with respect to lines along the main diagonal

in B, which is expressed as

fDET =

∑ND

LD=LDmin
LDp(LD)∑ND

LD=1 LDp(LD)
, (8)

with LD = diagonal length, LDmin
= minimum diagonal length, and ND = maximum diagonal

length of B; ND = main diagonal length - 1, and p(LD) is the probability of LD computed from

the histogram with ND bins.

3.4.3 Fuzzy laminarity

Fuzzy laminarity (fLAM) is the rate of recurrence with respect to vertical lines in B, which is

defined as

fLAM =

∑K
LV =LVmin

LV p(LV )∑N
LV =1 LV p(LV )

, (9)

where LV = diagonal length, LVmin
= minimum vertical length, and K = maximum vertical

length of B; and p(LV ) is the probability of LV obtained from the histogram with K bins.

3.4.4 Fuzzy trapping time

Fuzzy trapping time (fTT ) quantifies the average length of vertical lines in B as

fTT =

∑K
LV =LVmin

LV p(LV )∑K
LV =LVmin

p(LV )
. (10)
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3.4.5 Fuzzy divergence

Fuzzy divergence (fDIV ) measures the divergence of the phase-space trajectory, which is ex-

pressed as

fDIV =
1

LDmax

, (11)

where LDmax = maximum diagonal length of B.

3.4.6 Fuzzy recurrence entropy

Fuzzy recurrence entropy (fENT ) is computed as the Shannon entropy of the diagonal lines

in B:

fENT = −
ND∑

LD=LDmin

p(LD) log2(p(LD)). (12)

3.5 Largest recurrence eigenvalue

The determination of the largest recurrence eigenvalue [23], denoted as λmax, is described as

follows:

1. Input R of size L× L.

2. Specify a filter kernel, ReLU, pool size, and stride

3. Specify n as final n× n convolved matrix cR

4. While L > n

5. Convole R with ReLU

6. Do max pooling on the cR

7. End While loop
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8. Compute λmax of the final cR .

The ReLU, denoted as u, is defined as

u(y) =


0, for y < 0

y, for y ≥ 0

(13)

The maximum pooling works as follows. Given a pooling size s× s, and a set of pooling

regions P = (P1,P2, . . . ,Pw, . . . ,PW ), where Pw = (zw,1, zw,2, . . . , zw,s×s). The maximum

pooling, denoted as Hmax, that operates on a pooling size s× s is defined as

Hmax(Pw) = max
1≤l≤s×s

(zw,l). (14)

The number of pooling regions within a cR is determined by the pool size and stride,

which is the step size for traversing the cR.

4 Results and Discussion

Figure 2 shows the plots of semi-variogram series obtained from the first 100 slides of the CT

scans of the 10 subjects. The selection of this number of slides was due to the total number of

slides otained from subject S3 = 110, where the last 10 slides contains little image information

about the mandible. The semi-variogram values were calculated using h = 1 (to maximize the

measure of spatial autocorrelation), and only voxel intensity ≥ 0.5 ∈ [0, 1] from row 150th were

included in order to avoid a large part of the image background and non-mandible regions.

Figure 2 shows the sequential spatial variances captured from the CT scans of the mandibles.

The semi-variogram series of the male subjects tend to exhibit higher values than those of the

female subjects, showing a pattern of dissimilarity in mandibles between genders.

Fluctuations of the semi-variogram sequences as depicted from Figure 2 lend themselves

to nonlinear data analysis using the method of FRPs. Figure 3 shows the FRPs constructed

10



from the 10 semi-variogram sequences shown in Figure 2. The FRPs were computed using

embedding dimension m = 3, time delay τ = 1, and number of clusters c = 10.

In general, either RPs or FRPs are characterized with large-scale (typology) and small-

scale (texture) patterns. The typology consists of homogeneous, periodic, drift, and dis-

rupted/abrupt types. A homogeneous FRP indicates a stationary system that is governed

by a random time series. An FRP that displays diagonal lines and checkerboards refers to a

periodic time series, including a quasi-periodic signal whose FRP shows different distances be-

tween the diagonal lines. The typology of a drift, which is caused by a slowly varying dynamical

system, displays changes in the upper-left and lower-right corners of an FRP. The disrupted

typology, which shows white bands in an FRP, expresses abrupt changes in a dynamical system

and can be useful for studying extreme and rare events. Here, the FRPs constructed from all

CT scans exhibit abrupt changes of the spatial autocorrelation. However, all the FRPs are

of different visuals. To quantify the recurrence patterns of the FRPs, several measures were

calculated and shown in Table 2, where values for the minimum vertical and diagonal lines =

5. The mean values of fRR, fTT , and fDIV are different between male and female subjects.

To construct FRP-based networks for mandibles on the 10 CT scans, α = 0.4 and β =

0.08 were used. Figure 4 shows the network topologies generated from the FRPs of the CT

scans. Each network topology is unique among each others. The characteristic path lengths

and average clustering coefficients of the networks are shown in Table 3. There is a slight

difference between the mean values of the characteristic path lengths for male (0.017 ± 0.02)

and female (0.019 ± 0.03) subjects. The mean values of the average clustering coefficients for

male (0.050 ± 0.01) and female (0.050 ± 0.02) subjects are similar.

Table 4 shows the largest recurrence eigenvalues of the FRPs of mandibles on 10 CT

scans obtained from the 10 subjects. The largest recurrence eigenvales were computed using

the 3× 3 convolutional kernel = [0 -1 0; -1 5 -1; 0 -1 0] (image sharpening), pooling size = 5,
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and final size of convolved matrix = 70. The largest eigenvalues for the male mandibles tend to

be smaller than those for the female subjects. However, the mean largest eigenvalues between

the two genders are quite similar (9.0 ± 2.2 for male and 9.2 ± 1.5 for female).

The mandible has been utilized as an evidence for forensic investigations and archaeo-

logical studies in terms of sex identification when cranial and pelvic bones are absent [24].

Utilization of mandibular bones for the expedition of human identification was reported in the

literature of oral and maxillofacial pathology [25], where the ramus of the mandible can be

used for identifying gender and age in forensic science. Statistical analysis of morphological

variation in the human mandible was carried out for classifying sex and ancestry in unknown

subjects [26]. It was further reported that 10 mandibles had been used for gender classifica-

tion using both linear and mixture discriminant methods [27]. The results showed that the

analysis of mandible data would be useful to the communities of anthropology and forensics.

In particular, the ability for determining sex by means of the mandible plays an important

role in forensics. Thus, machine-leaning methods have been applied for sex identification us-

ing volumetric and linear measurements of the mandible on cone beam CT scans [28]. Dental

biometrics involves the utilization of dental radiographs for human identification, emerging as

a cutting-edge technology in forensic data analysis, where other human remains such as faces,

fingerprints, and irises are missing due to injuries caused by accidents or natural disasters.

Mandibular information was extracted from panoramic dental radiographs and outer contours

of mandibles were used as time series of spatial mandibular structures for matching and recog-

nizing individuals using an autoregressive model [29]. In line with previous studies, the work

reported herein can contribute to the aspect of image feature extraction for machine learning

to perform computer-based identification of gender and individual identity.

Furthermore, the approach proposed in this study can be applied for discriminating subtle

differences between individual faces. Such a technical capability is essential for social under-
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standing by solving the general challenge of facial recognition. A study has recently been

reported to use 3D morphable models based on principal component analyses of real faces [30].

The study was able to discern differences between faces and to generate new faces. Features

of the mandible on CT scans developed in this study can be used with deep learning models,

which are a state-of-the-art AI approach, for facial recognition and generation.

5 Conclusion

Methods of AI-based nonlinear dynamics and network analysis for extracting spatial infor-

mation of the mandible on CT have been presented in the foregoing sections. As a proof of

concept, results obtained from testing the proposed approach with 10 CT scans from 5 male and

5 female subjects suggested potential features of dissimilarity and similarity between male and

female subjects. The finding highlights unique characteristics of human mandibles captured on

radiographic data. Due to the small data size, this study was unable to investigate associations

among mandibles, ages, and body weights. More data are needed to rigorously confirm the

present finding and allow investigations of the mentioned relationships of the mandible with

other physical variables.

Furthermore, it is of clinical interest to apply the proposed approach for exploring com-

plex image properties of human mandibles for improving the diagnostics and treatment of facial

trauma. It has recently been reported that by considering the uniqueness of the mandible can

enhance clinical approaches to mandibular regeneration in order to avoid postsurgical compli-

cations [1]. In parallel to precision medicine [31], precision dentistry [32, 33] is an emerging

area of research that has potential to achieve precise dental diagnostics and targeted treat-

ment. Important roles of AI and image analysis for contribution to precision dentistry have

been quickly realized [34]. The feature extraction and network analysis proposed in this study

can be relevant to gaining insights into dentomaxillofacial imaging.
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(a) Female S1 (b) Male S6

Figure 1: Montages of CT slices obtained from female and male subjects.

(a) Females (b) Males

Figure 2: Semi-variograms of mandibles on CT.
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(a) S1 (b) S2 (c) S3 (d) S4 (e) S5

(f) S6 (g) S7 (h) S8 (i) S9 (j) S10

Figure 3: FRPs of mandibles on CT: females (first row), and males (second row).

(a) S1 (b) S2 (c) S3 (d) S4 (e) S5

(f) S6 (g) S7 (h) S8 (i) S9 (j) S10

Figure 4: FRNs of mandibles on CT: females (first row), and males (second row).
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Table 1: CT scans and subjects’ demographics.

S# Slices Thickness (mm) Voxels Gender Age Weight (kg) Height (cm)

1 141 1.99 512× 512 F 52 67 176

2 168 1.5 512× 512 F 67 71 168

3 110 2 512× 512 F 71 76 181

4 154 1 512× 512 F 75 64 172

5 298 0.75 512× 512 F 74 77 169

6 217 1 512× 512 M 55 86 178

7 154 1 512× 512 M 68 75 174

8 136 2 512× 512 M 65 96 190

9 232 1 512× 512 M 59 91 184

10 200 1 512× 512 M 48 87 180
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Table 2: Recurrence quantification of mandibles on CT slices.

S# Gender fRR fDET fLAM fTT fDIV fENT

1 F 0.064 0.931 0.798 4.729 0.031 3.102

2 F 0.041 0.906 0.693 10.739 0.014 2.808

3 F 0.117 0.886 0.814 5.211 0.030 2.893

4 F 0.100 0.895 0.575 11.748 0.036 2.928

5 F 0.001 0.925 0.920 4.551 0.019 3.145

0.065 ± 0.05 0.908 ± 0.02 0.760 ± 0.13 7.396 ± 3.54 0.026 ± 0.01 2.975 ± 0.14

6 M 0.002 0.823 0.834 7.071 0.011 3.191

7 M 0.023 0.828 0.849 3.553 0.091 1.963

8 M 0.074 0.625 0.577 3.910 0.022 2.122

9 M 0.079 0.939 0.909 10.185 0.042 2.507

10 M 0.061 0.875 0.643 3.620 0.036 2.355

0.048 ± 0.03 0.812 ± 0.12 0.762 ± 0.14 5.668 ± 2.92 0.040 ± 0.03 2.427 ± 0.48
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Table 3: Graph properties of mandibles on CT slices.

S# Gender Characteristic path length Average clustering coefficient

1 F 0.005 0.034

2 F 0.006 0.060

3 F 0.010 0.045

4 F 0.007 0.036

5 F 0.065 0.075

0.019 ± 0.03 0.050 ± 0.02

6 M 0.057 0.065

7 M 0.011 0.043

8 M 0.004 0.034

9 M 0.004 0.062

10 M 0.009 0.047

0.017 ± 0.02 0.050 ± 0.01
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Table 4: Largest recurrence eigenvalues of mandibles on CT slices.

S# Gender λmax

1 F 7.952

2 F 11.270

3 F 8.053

4 F 10.095

5 F 8.450

9.164 ± 1.50

6 M 9.393

7 M 12.727

8 M 7.164

9 M 7.777

10 M 7.937

9.000 ± 2.24
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